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Abstract: Thisarticleoffersanalternativeperspectiveonorganizational cognitionbasedone-cognitionwhereby

appeal to systemic cognition replaces the traditional computational model of the mind that is still extremely

popular in organizational research. It uses information processing, not to explore inner processes, but as the

basis for pursuing organizational matters. To develop a theory of organizational cognition, the current work

presents an agent-based simulation model based on the case of how individual perception of scientific value

is affected by and affects organizational intelligence units’ (e.g., research groups’, departmental) framing of the

notorious impact factor. Results show that organizational cognition cannot be describedwithout an intermedi-

atemeso scale – called here social organizing – that both filters and enables themany kinds of socially enabled

perception, action and behavior that are so characteristic of human cognition.

Keywords: Organizational Cognition, Distributed Cognition, E-Cognition, Impact Factor, Perceived Scientific

Value, Social Organizing, Agent-Based Simulation Modeling

Introduction

1.1 In very broad terms, cognition can be defined by the enabling conditions for adaptive, flexible behavior, where

behavior also includeswhat people commonly call thinking (Wheeler 2005). Under these lenses, the key aspect

tounderstandcognitionbecomes interactivity asopposed to themore traditional viewof the isolated individual

and his/her processingmechanisms (Chemero 2009). Thus, these enabling conditions lean on people, artifacts

and processes working together to ensure that tasks are accomplished. In this paper, our interest is on how,

in practice, organizations and their members act, make plans and implement decisions (Hodgkinson & Healey

2008) providing the ground for us to examine this interactive perspective on cognition. One turns to how indi-

viduals and groups can be effective as they identify problems and sustain, improve or set up various practices

andmodes of action. This systemic view is not recent in themanagement literature becausewe see it very close

to the work of some of the founding fathers of the discipline (Simon 1997; Cyert & March 1963).

1.2 Consistently with the tradition of organizational behavior research (e.g., Gavetti et al. 2007), we focus on cog-

nition. However, our approach moves the boundaries of early and more recent works by interpreting brain

activities and processes as part of a larger set of “equipment”, enhanced and fostered by human co-operation.

As we will detail in the next section, cognition is spread (better, “distributed” Hutchins 1995) over a diverse set

of systemic resources that are internal and external to the individual. Clearly, in this view it is the process of

exploiting external resources – natural, social, and artifactual (Magnani 2007; Secchi 2011) – that matters the

most. While many distributed cognitive researchers have directed their interest towards natural or artifactual

resources (e.g., Pedersen 2012; Steffensen 2013), fewer have paid attention to the effect of distributed social

resources (Hollan et al. 2000; Secchi 2011). The activities that are reflected on various organizational practices

seem to be the archetypical environment where these distributed processes can be studied. Building on recent

work (Secchi & Cowley 2016), we study the case of peer-review. The case is interesting in that, while organized,

it does not depend on a single institution. Further, the literature shows that, as quality control, peer-review

shows several shortcomings and issues that let some scholars question its validity (see, Bornmann 2011). In this

influential comprehensive review (2011), Bormann views it as a “social judgement process of individuals” (i.e.
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not as practice which arises between people in ameso scale). He finds no evidence that peer review is either

reliable, valid or an effective predictor of impact. Starting from this basis, other scholars propose peer review

be rethought as a socially distributed process (Cowley 2016).

1.3 This paper extends the example of peer-review to citationmeasures and, specifically, to impact factor (IF).While

IF is susceptible tomanycriticisms (Vanclay2011; Seglen 1997), the index is an important constraint onacademic

practice. The choice of IFwasmade on two grounds. One is that it is awidely used index that is employed – very

controversially – to evaluate a journal’s standing and the relative weight of its articles. Hence, we assume that

our readers would know what this measurement index is as they encountered it in their academic life. This is

to say that IF is familiar to most readers and most of our arguments may be easily understood by the average

academic. Theother reason forusing IF is that,whilewidelyused, it is known for several flaws. One is that it is an

unreliable indicatorof articlequality in that a journal’s IF correlates inconsistentlywitharticlespublished in that

same journal (e.g., Seglen 1997). Another is that the two- and five-year time span IF usesmay be appropriate for

some disciplines, but not for others (e.g., Curry 2012). Finally, papers with a high number of citations are very

few, even in high IF journals (Colquhoun 2003), hence the vast majority of papers in high IF journals are not

influential or less influential than other articles published in low IF journals. These issues can be anchored to

at least two logical fallacies – i.e. connected claims that invoke reasoning that, while fallacious, appears sound

(Woods 2004). IF is used to describe an academic journal as a whole, in relation to citations attracted by the

articles published in there. This means that attributing characteristics of the whole (i.e. the journal) to any of

its parts (i.e. the individual article) is falling on to the so-called composition and division fallacy. Another fallacy

that can be evoqued is the appeal to authority or ad verecundiam, one which arises every time one uses IF to

legitimize the inherent depth, sagacity, rigor, value, or strength of an article. These two have been linked to

decision making (Secchi 2011, pp. 50-51) and are particularly useful in the study of cognition in that they help

us reflect on how imprecise information can be due tomental frames and prejudices. Moreover, beliefs on IF is

sometimes socially construed since it can be shared with professional associations, other faculty, members of

a research group, or an institution’s leadership, hence connecting to the ‘organisational’ side of cognition.

1.4 In pursuing whether IF affects cognition as socially distributed, we use an agent-based computational simula-

tion (Edmonds & Meyer 2017b) of its dynamics in an organization. We show how individual preferences such

as the attitude towards IF, publication outcomes, and evaluation proxies, together with more socially-nested

aspects such as proximity to co-workers, group/departmental affiliation, and update of one’s beliefs affect the

perception of the scientific value of a publication. In summary, one’s perception of the research undertaken is

affected by individual and group attitudes to IF or, in other terms, by individual perceptions as well as social

organizing. This work is oriented towards understanding if and how a theory of cognition that is not bounded

by the skull (e.g., Clark 2003) but socially enabled (e.g., Hutchins 1995) applies to an organizational environ-

ment. The computational simulation considers all these aspects together andwill, hopefully, help us refine the

theoretical model.

1.5 In the following, we outline the theoretical assumptions on organizational cognition that constitute the back-

ground for the model. We then introduce the computational simulation and present its results, outlining im-

plications for both the study of cognition in organizations and the use of IF. We conclude with limitations and a

few suggestions for future research.

Theoretical Background

2.1 In their recentwork, Secchi &Adamsen (2017) drawon literature frommajor journals that connect ‘organization’

and ‘cognition.’ They show that, while the number of papers on cognition in organizations has risen since the

1980s (as in many other areas), the field has never taken off. They address this failure by offering a logical clas-

sification as the basis for reviewing the field. One approach is additive – cognition and organization can be seen

asmutually illuminating yet separable. For example, organizations can be used to explore consequences of the

bounds on human rationality. In the second, combinatory category, organizations are treated as open to using

cognitive concepts (and vice versa). If contingencies are central (as in Simon’s work; Simon 1997), the organi-

zation is seen to be emergent, complex and hard to predict. However, while tied to input-output models, the

perspective is blind to how the social and the cultural bear on individuals-in-interaction. In the intersectional

category, however, one candevelopa concernwithphenomena suchas shared cognition, teamworkand sense-

making. Accordingly, Secchi & Adamsen (2017) adjudge this the most progressive approach and gives special

weight to howWeick’s work has been used (Weick 1993; Weick & Roberts 1993; Weick & Sutcliffe 2006). Fourth,

the conditional category treats cognition as a part of organizations in that it uses constructs like intelligence and

motivation.
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2.2 The underlying thread in the organizational research literature with a cognition focus is the almost unanimous

interpretation of cognition as information processing. This happens for two main reasons. First, scholars typ-

ically adopt Simon’s early conceptualization of cognition as working like a computer (Newell & Simon 1972;

Gigerenzer & Goldstein 1996). If minds are (like) machines, cognitive models are too coarse grained to capture

the details of individual decision making and organizational life. Thus, while some focus on macro factors like

organizational structure, change, and communication (e.g., March 1981), most turn to micro concerns such as

individual motivation, knowledge, skills and decisionmaking (e.g., Hodgkinson & Healey 2008). In considering

a cognitive dimension together with standard organizational research these studies contribute to the advance-

ment of the field (e.g., Crilly et al. 2008; Boal & Peery 1985; Dew et al. 2015) although they very seldom attempt

at covering the macro-micro gap. One aspect that is o�en brought in to bridge this gap is to consider action

(and, most notably interaction, see Steffensen 2013) as a key feature of cognition – sometimes referred to as

embodiment (Clark 2003; Magnani 2007). So, where this inherently dualistic idea is replaced by some view of

embodiment, organized activity becomes inherently cognitive. The isolationist and internal perspective of the

mind-machine is thus seen as having evolved in an ecology (e.g., Gigerenzer & Selten 2001). This paper focuses

on one way of construing this claim.

2.3 We are aware that different disciplinary traditions may overlap, to some extent, with the one presented in this

article. For this reason, in declaring that our starting point is that of distributed e-cognition (see belowHutchins

1995; Clark 2003; Cowley & Vallee-Tourangeau 2017) and its applications tomanagement (Michel 2007; Secchi &

Bardone 2009; Secchi 2011), we are being upfront in (a) the take this article has on the topic and (b) the literature

from other disciplines we might have overlooked. Hence, starting from cognitive science, we stress that, this

century, almost all have come to see human cognition as embodied (for discussion, see Wilson 2002; Shapiro

2010). Second, we stress that the doings of living bodies allow people to act as parts of what Simon (1991) calls

‘intelligence units’ (herea�er, IU). Indeed, if one eschews mentalism, this is made necessary by the bounded

nature of human rationality (Simon 1997). Successful organizing can only overcome an individual’s inherent

limits by shaping engagement with other people and the world (Simon 1993). Simon thus stressed the intel-

ligent use of contingencies and, in his writings, o�en drew on his experience in the team that designed what

became the Marshall Plan. Importantly, the so-called plan self assembled around a group (including Simon)

who argued that the issues be seen in terms of the balance of trade. What he calls a representation (balance

of trade) thus became, in Simon’s terms, a weapon and a tool. The group developed a formal organization to

challenge how others saw the problem and, eventually, led to a major success in US foreign policy. Building

on his experience, Simon (1991) defined communication as involving influences that shape decision premises.

Far from focusingon individual expertise, he stressedhowdifferently people understand, and, thus, how formal

and informal structures compensate for individual limits. It is from this forward-looking perspective originating

from Simon that we develop our view of organizational cognition, similarly to many social simulation scholars

(e.g., Edmonds & Meyer 2017a; Conte 1999; Carley et al. 1998; Conte et al. 1997).

Beyond a computational theory of themind

2.4 Classic cognitive sciencewas dominated by the computational theory ofmind (see, Boden 2006). As recently as

1975, Fodor was still calling it “the only game in town.” However, the first cracks had already appeared: Dreyfus

(1972) emphasized know-how – not propositional knowledge of a supposedly objective world. Searle’s (1980)

thought experiment in Minds, Brains and Programs picked out a major deficit in computational models. In his

Chinese room thought experiment, Searle argued that if a program, or a little man in the head, carried out

symbol processing, neither the man, the one in his head, nor indeed the one in that head (and so on) could

possibly have any understanding. Not only was computation based on modeling propositions (see also Horst

1999) but neither experience nor consciousness could be clarified by programs. As the focus shi�ed to under-

standingand know-how, interest grew inhowcognitiondrawsonexperienceof action. Hurley (1998)pinpointed

another fatal weakness in all input-output models, the computational posits a cognitive sandwich (i.e. where

‘cognition’ is a filling between a slice of perception and one of action). Computational views thus reduce indi-

viduals (and groups of individuals) to mere processing systems. Much have been learned by these approaches

but more current views highlight that a richer understanding can be gained through considering an extended

system (Clark 1998, 2003). And yet, with very few exceptions (e.g., Weick’s 1995 sensemaking approach, 1995 or

Ocasio’s , 2001), management perspectives on cognition still align with these early computational views (Sec-

chi & Adamsen 2017). Historically, concerns with the traditional computational approach became clearer with

work in fields such as robot design and how brains and bodies co-evolved with living beings (e.g., Perico et al.

2014). This made researchers aware of the way individuals attune through body-based encounters with each

other and the perceived world (see, Varela et al. 1991). For those designing computational models, the focus
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shi�ed from symbol processing to connectionism. Cognition was seen to spread beyond the brain or, in Clark

& Chalmers (1998) well known terms, opened up the hypothesis of extendedmind.

2.5 Evolution opened up flexibility long before the emergence of multi-cellular systems. While recent work traces

the riseofbrains andsensation to theCambrianperiod (see,Keijzer 2015), learning ismore recent and, inhuman

worlds, adds how language co-evolved with social, technological and organizational means. Cognitive activi-

ties build on howhumans learn to use interactions to discover culturally1 appropriateways of acting. As adults,

they develop the skills used in cognitive systems that perform tasks such as navigating a ship (see, Hutchins

1995) or comparing soil samples in archeology (Goodwin 1994). As is increasingly clear, the relevant know-how

connects perception with action – there is no need to posit a cognitive sandwich. Fixing a ship’s position or

seeing soil color as an archeologist arise from linking bodies, central nervous systems and experience as peo-

ple engage with social, linguistic and material phenomena. Humans draw on the past and imagine the future

because cognition and language are distributed (see, Cowley 2011; Hutchins 2014). Given the multi-scalarity of

external resources, neural functionality develops as the familiar is put to new uses (Anderson 2010). Systems

self-simplify by using experience of perceiving-acting in an encultured world (Berthoz 2012). Not only are con-

tingencies useful, butwhat Jaynes (2000) first called excerption enables people tobreak from the flowof experi-

ence to attend to do/say something unexpected (Cowley & Vallee-Tourangeau 2017). Each person brings forth a

world (Varela et al. 1991) through enaction and/or the perception-action coupling known as sense-making (see,

Thompson 2007). Though rationality is bounded, humans ceaselessly overcome their own bodily limits: they

draw on the reductions of entropy associated with what Hutchins calls a cultural ecology – this simplifies pro-

cedures, choices of discourse and ways of remembering as people come to perceive similarly (Hutchins 2014).

Rather than seek a singlemodel of cognition,most acknowledge that, at times, thinking is habitual or procedu-

ral and, at others, it is willful and uses, for example, counterfactuals (Evans 2012; Cowley & Vallee-Tourangeau

2017). In this sense, cognition is distributed and, thus, amenable to systemic investigation. Accordingly, we

pursue how IF functions in relation to, not individual judgements, but how these play out in groups.

E-cognition and themanagement literature

2.6 The directions very shortly outlined above clearly align to those of the so-called distributed cognition per-

spective or e-cognition, as it has been referred to more recently (e.g., Menary 2010; Theiner 2013). According

to this view, human “powers” are e-cological (sensitive to local resources), e-nacted (by sensing bodies), e-

mbedded (intrinsic to perceived situations), e-mbodied (link action and perception), e-xtended (use technol-

ogy and organisations) or, in aword, systemic (they bind the social, material and the temporal, Cowley & Vallee-

Tourangeau2017). Bydeflating the role of thebrain, systemicor e-cognitionensures that individuals andgroups

are able to draw on a range of computational resources (Wells 2005).2

2.7 Placed against the recent history of cognitive science, the findings are striking. In spite of symbol flight, the turn

to embodiment and rejection of the cognitive sandwich, the organizational literature is conservative. Compu-

tational assumptions ground additive, conditional and combinatory approaches (Horst 1999, 2011); in the inter-

sectional view, whilst there is some embedding and enaction (Weick 1993; Weick & Roberts 1993), no allowance

is made for other systemic aspects of cognition (the extended, the ecological or the distributed). In teamwork,

for example, individuals act as a unit that accomplish tasks that presuppose shared goals. However, in contrast

to the practical details of navigation described on theUSPalau (Hutchins 1995), teams are not seen as culturally

embedded, technically augmented and task-oriented systems. In our terms, littleweight falls on the ecological,

the embedded and the enactive.

Social organizing: A case in peer reviewing

2.8 In order to make the theoretical claims we chose a practical application to which they could be applied to. A

peer-review system can be rather complex in its mix of cognitive and organizational elements (Cowley 2016)

and yet it is emblematic of howmodern tasks are operationalized. In fact, the nature of its activity is grounded

in flexible work, voluntary and professional performance, organizational and group constraints. In an effort to

bemore precise, this study limits its span to the assessment of papers (e.g., annual reviews, promotion evalua-

tions) rather than to the process of journal double-blind peer reviewing. More precisely, using the frames from

the e-cognition literature outlined above, we pursue how such a systemworks.
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E-cological: sensitive to local resources

2.9 The cognitive process is triggered by resources that are located in the environment surrounding the decision

maker. These can be classified in material or natural resources, artifacts, and socially-bound resources (Hollan

et al. 2000; Secchi 2011). It is the interplay between various mixes of resources and one’s individuality (Clark &

Chalmers 1998) that defines a cognitive process as such. In a review process, the article is clearly an artifact,

togetherwith the tools used to perform reviewing and revision – e.g., a printer, a pen, a highlighter, a computer,

the desk in which one sits. These all enable cognitive processes leading to performing the given task. And, of

course, the space/time combination of how these resources are exploited changes the dynamic of these pro-

cesses. In the ecological assumption, also other individuals one interacts with are part of the cognitive envi-

ronment. However, as shown elsewhere in this document (and also below), they are resources of a different

kind. Finally, an ecological perspective also allows peer review to be defined in relation to the IU – that is as

involving reviewer, editor, author, platform, etc. – or, in other words, to ameso area of interaction between the

various players and their environments. This is particularly important due to the fact that, in standard models

– especially due to the influence of Merton (e.g., 1968) – lies precisely in defining it as an individual-centered

process that depends on an ideal agent (Small 2004). So it is seen in terms of the macro – as process – and the

micro – what an individual does and does not do.

E-nacted: cognizing “through doing”

2.10 Consistently with some organizational scholars (e.g., Weick 1993; Weick & Roberts 1993, and also Ocasio 2001,

relative to some aspects only), distributed and e-cognition keep action as an essential part of the process. This

has two extremely relevant implications. First, it reminds researchers that even individual cognition happens

in a time-relevant scale and that these timescales (Neumann & Cowley 2016) have important repercussions

on the way individuals frames data. In peer review, it affects the way one refers and interprets (feels bound)

to professional standards, for example, as to represent a long-term timescale. At the same time, one is very

much affected by the particular topic of the article that, sometimes,may not perfectly fit one’s expertise, hence

forcing ad hoc strategies (e.g., google searches, asking another colleague).

2.11 Second, being spread over time, any cognizant activity involves themanipulation of resources. Every time one

is dealing with resources, their handling is usually more relevant than each of the resources per se. This means

that, in a peer review process, having access to a computer is rather dull compared to the cognitive meaning

of the word one is typing that, combined with other words and knowledge, make one think of changing it or

changing its surroundings (e.g., the other words in the sentence, position, format). This continuous activity

of providing new meaning to the external resource is extremely widespread in human cognition and may be

referred to as re-projecting (Magnani 2007; Secchi & Bardone 2009). Moreover, any cognitive process – espe-

cially creative or knowledge-based such as assessing amanuscript – involves the possibility of tinkering, hence

seeking chances and getting on something new (Bardone 2011).

E-mbedded: intrinsic to perceived situations

2.12 One of the most important assumptions of this perspective is that cognition does not exist outside of the ele-

ments in which it manifests itself as it was in the so�ware/hardware perspective. This is to say that there is no

process without the melding of internal (one’s brain and body) and external resources. In a review, the assess-

ment of a given paper is necessarily the result of one’s use (or exploitation) of the resources available, through

intuition, affordances and, more broadly (if not vaguely), perceptions. This also brings in the implication that a

decision is almost never done the minute it is made. Quite the contrary, even though it is put externally once

done (one could say externalized; Magnani 2007; Secchi & Bardone 2009), one can still “own” a decision, as

in some sort of endowment effect (Kahneman et al. 1990). Once an assessment is submitted back to the au-

thor or to the head of a committee (or to an editor, in case of journal peer review), the reviewer “owns” all the

arguments it contains.

E-mbodied: link action and perception

2.13 The social being requires a biological being. As obvious as it could sound, the role of the body, emotions, and

overall perceptions were not taken into consideration in cognitive studies until recently (Wilson 2005; Varela

et al. 1991). In a distributed e-cognition perspective, a reviewer would interpret andmakes sense of the text by
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also ‘feeling’ it fits within one’s own domain of competence or not, for example. Also, the mental (and some-

times physical) effort required by the act of reading, understanding, interpreting, analyzing, writing, come at a

cost – that of the energy dispersed to perform the task.

E-xtended: use technology and organizations

2.14 If cognition cannot be thought of without all the resources (or tools) that allow it to exist, then it is fair to state

that one’s cognition extends to include these resources (Clark 2003). This is a view also called of the extended

mind because it seems we ‘think’ through the use of these resources. The assessment of a paper may result

differently depending on the tools used – this is to say that the making of one’s thoughts are shaped by the

interaction one has with a so�ware, one or more colleagues, the strategy used to “attack” the manuscript or

the writing process.

The social element

2.15 Given themulti-scalarity sketchedabove, people shi�between themoreautomatic (checking reference format-

ting requirements are met, printing the paper) and doing things deliberately (asking advice to a colleague on a

methodological point, suggesting a twist in an argument). While a combinatorial view (as in Secchi & Adamsen

2017) allows the organizational to influence the cognitive, it leaves out the socially improvised-repetition based

synergies – that ground intelligence in mammals (and humans). As noted, people also experience selves and

others as they use excerption to shi� attention, how they act, what they say, and frames of reference. Much ex-

perience is social or, in lay terms, is bound upwith collective forms of meaning. Whereas a computational view

treats the social as secondary, Simon prefigures systemic approaches in seeing that information differs across

persons who also vary in openness or docility (Simon 1993). This concept was originally introduced by Tolman

(1932) and then developed within the bounded rationality framework in two stages in Simon’s career (Simon

1997, 1993). The idea is that humans have an attitude towards being taught (from the Latin docilis) and that

this reflects on how much one listens to advice, suggestions and recommendations coming from others while

making decisions. While some have elaborated on altruistic behavior stemming out of this idea (e.g., Knudsen

2003), others have pointed that the concept needs an organizational or, at least, a sense of community to effec-

tively play its effects (Bardone 2011; Secchi 2011). Together with Secchi & Bardone (2009), we regard docility as

a behavioral aspect of distributed e-cognition in that it grounds the use of external social resources to cognitive

processes. By following these footsteps, we see Organisational Cognition (OC) as a field where individuals and

organizations form aggregates whose functionality draws onmeso scale events of social organizing. This meso

scale replaces appeal to a macro-micro created by positing that Organisational Cognition is highly dependent

on what has been termed social organizing.

2.16 In an attempt to connect the concepts reviewed in this theoretical framework to a practical case, Table 1 of-

fers a sketch over one phase of peer review paper assessment. In the table, we start from a sample task, then

elaborate examples for each of the e- categories and then link them to amore social, ormeso scale in the cogni-

tive perspective. Finally, to further clarify the conceptually backed model, we have tried to indicate how these

concepts reflect on parameters of the model as described in the next section. Here, we turn our attention to a

practical example of whether OC can be framed as e-cognition to showwhether and how themeso scale affects

the micro (individual) and macro scale events. We use a simulated organization where two research groups

have different appreciation of scientific value based on acceptance or rejection of IF.

The Model

3.1 From the above, one should expect much cognitive processing to occur as people engage in intelligence units

(IU). Due to the dynamical and complex nature of the processes, we deem an agent-based simulation model

(ABM) appropriate, in line with the current organizational behavior literature (Fioretti 2013; Secchi & Neumann

2016; Secchi 2015). In fact, due to their features ABM are especially well equipped to represent the dynamic

interactions of complex systems (Miller & Page 2007) and of boundedly rational agents (Secchi 2017).

Modeling impact factor

3.2 In an attempt to consistently cover most aspects of the ABM simulation, this article uses the Overview, Design

concepts and Details (ODD) protocol (Polhill 2010; Polhill et al. 2008). The simulation was carried over NetLogo
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Sample process: While reading the paper, one writes notes onmethods concerns using a word processing so�ware

to improve technical aspects of the article and communicate to the authors via email.

Cognition Short description Sample resources Samplemeso aspect(s) Model’s how-to

Ecological sensitive to local re-

sources

The combination of

knowledge, affordances

of the user interface,

keyboard, screen, var-

ious environmental

triggers and primes

The history in using that

so�ware and familiarity

with the method em-

ployed in the paper to-

gether with a possible

alternative

PSV , pubv

Enacted cognizing “through

doing”

Formulating ideas

through the com-

puter/so�ware interac-

tion; Formulating ideas

through the computer

Discussing implications

with a colleague either

inoroutof one’s own re-

search group

group, range,

PSV ’s α

Embedded intrinsic to perceived

situations

Having second thoughts

on the notes right be-

fore sending the email

to the author

Sharing the result of

the assessment with

colleagues seeking an

update on one’s own

views

docility d, pubv

Embodied link action and per-

ception

The emotional strength

associated with the be-

lief that the author is

mistaken

Discounting themethod

currently in the paper

because it falls outside

the modus operandi of

the research commu-

nity or of the expecta-

tions of the journal the

article may be sent to

docility d, group,
change, aif

Extended use technology and

organizations

The extent to which

some views are carried

only through the use

of words in a word

processing so�ware (or

email); the distraction

a phone call (or a text

message) brings to

one’s chain of thoughts,

forcing a re-evaluation

once the interrupted

sentence is read again

The “pressure” from

the wider community

of research practice in

which one operates

within his/her own

institution; the views

coming from beliefs

about the appropriate-

ness of certain methods

in certain high/low IF

journals

group, pub,
pubif , pubv

Table 1: E-cognition and peer-review

(Wilensky 1999), an open access computational so�ware specifically designed for agent-based modeling. The

model is available online in theOpenABMplatformathttps://www.openabm.org/model/5589/version/2/

view.

3.3 The unit of analysis is cognition as it materializes among individuals in two separate intelligence units (IUs).

Our approach has been that of following applied psychology and organizational behavior. Scholars from these

fields sometimes measure cognition through psychometric scales and/or indices. These are summarized by

numbers. Hence, we have assigned each agent a score for various elements (e.g., docility, perceived scientific

value) in away thatmimics the results of a data collection exercise. Each agent in the simulation has a score for

this attitude towards socially-bound distributed e-cognition processes. Thus, each agent is more or less prone
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to use information coming from the social channels surrounding it, i.e. the other agents. As explained below

in further details, other aspects affect agent ‘thinking’ and behavior. The simulation pursues how agents may

show different understandings of the same content over different periods of time and depending on their affil-

iation to a specific IU. The environment can be pictured as an academic or research institute where individuals

are employed and perform their work duties. As an aspect of the broader ecological and extended character-

istics of one’s thinking, the simulation uses impact factor (IF) to exemplify how academics may change their

understanding of what grants scientific value (PSV, see below) to their work. Consistently with our framework,

we assume that this understanding depends, in part, on how cognitive processes are structured by IUs. Time,

evaluation of other people’s publications, and professional exchanges with colleagues may also bring a diver-

sity of contents to the same item (i.e. IF). The fact that the IF is a numerical is peculiar in that, superficially,

this appears to place its face value beyond dispute. In examining this idea, the simulation investigates when

and how a simple numeral can be perceived and dealt with differently, exploring whether this is more likely to

happen when individuals interact in their IU even though they all are part of the same institute, university, or

organization. All parameters and notations are specified in Table 2.

Themeso scale

3.4 Themodel includes two “intelligence units” (labeled IU1 and IU2) that each describe how a group of academics

interpret their career, and especially their publications, in relation to macro-concerns. While members of IU1

have a less restrictive interpretation of the IF, IU2 treat it as the sole metric to be used in judging publication

and success. The two IUs might be two departments or, indeed, two research groups/centers in the same or-

ganization. There is also a third residual group of agents who fit between the two views of career, publication,

etc. They are not part of an intelligence unit but, depending on certain conditions (described below), theymay

join one of the units. This general attitude to career is defined by what is labeled ‘perception of scientific value’

(PSV) in the simulation, with values distributed normally at random to all agents, with differences due to being

affiliated with IU1, IU2, or no affiliation (see Table 2 for details). We interpreted non affiliation to be reflected

in a wider variation of PSV values, because of lack of any anchor, while IU1 and IU2 have the same dispersion.

IU2 members (i.e. IF enthusiasts) have higher PSV, on average, reflected by IU1 average + parameter alpha (see

Table 2), in the sense that they ‘believe’ to have higher standards for science.

Agent characteristics

3.5 To represent organizational/social cooperation and interactivity, each agent is assigned a tendency to take

on social information or a so-called ‘docility’ level (Simon 1993; Secchi 2016; Secchi & Bardone 2009). This

is fixed on a random-normal distribution with standard deviation fixed at 0.2 and mean taking three values
[0.6, 0.9, 1.2]. Thus, all agents have a level of docility that is assigned at the beginning of the simulation and is
independent of their IU affiliation. Given that this parameter is important for interactions (see below) it is cru-

cial it does not depend on the IU but it is something that agents have independent of affiliation. This attribute

has been used in ABM before (e.g., Bardone & Secchi 2017; Miller & Lin 2010; Thomsen 2016) and it indicates the

extent to which information coming from others affects agent decision making and behavior. To some extent,

it is a measure of how much one is susceptible to the interactivity in a group and it operationalizes socially-

oriented cognitive aspects (Secchi & Gullekson 2016). The values used to generate the three distributions have

a small standard deviation such that values concentrate mostly around the mean and thus allow for clearer

observation of the ‘docility effect’ (Secchi & Bardone 2009).

3.6 Independent of their IU, agents are also associated with attitudes towards the IF of a particular journal. The at-

titudes are distributed in the population of agents normally at randomwith fixedmean and standard deviation

(see Table 2). Possible alignment between IF attitudes and IU are le� to the dynamics of the simulation.
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Parameter Values Description

steps 500 The maximum number of opportunities that agents

have to interact with each other when dealing

with problems. The simulation may stop earlier, if

pub_waves reaches 24 sooner than when steps= 500.

runs 25 Number of times a simulation is performed with each

given configuration of parameters.

publications, pub ∼ [0, 4] This is a number of publications, between 0 and 4, that
each agent presents every time there is an evaluation

(publication wave, see below). It is randomly assigned.

publication IF, pubIF ∼ [0, 5] This is the IF associatedwith the journalwhere the pub-

lication is accepted, hence it is attributed to thepublica-

tion. It is randomly assigned and varies between 0 and
5.

publication value, pubv ∼ [0, 1] The value of a scientific contribution assigned to each

publication on a random basis.

IF attitudes, aif ∼ N (0, 0.5) This is the attitude each agent has towards the impact

factor (IF) of a journal publication.

docility, d ∼ N (0.6, 0.2),
∼ N (0.9, 0.2),
∼ N (1.2, 0.2)

This is the docility level associated randomly to each

agent in the simulation – higher values indicate higher

probability to adapt to the respective IU as well as less

autonomy from the respective IU.

perceived scientific

value, PSV
∼ N (1, 0.25) This is the value attributed to a scientific output by an

agent that is not affiliated with any IU.

∼ N (1, 0.15) This is the value attributed to a scientific output by an

agent that is affiliated with IU1 – smaller st.dev means

that values are more grouped around the mean.

∼ N (1 + α, 0.15) This is the value attributed to a scientific output by an

agent that is affiliated with IU2 – the higher mean signi-

fies stricter criteria to assess PSV .

PSV difference be-

tween IU1 and IU2,

α

0.25, 0.50 The average difference in the perceived scientific value

that members of IU2 have in relation to those from IU1

– this value affects directly the mean of the random-

normal distribution for IU2; st.dev. is unaffected.

group [true, false] The tendency to be socio-cognitively closer to the other

members of the IU the agent is affiliated with.

change [true, false] The possibility to change IU depending on the distance

of one’s PSV to the mean PSV of either IU1 or IU2.

leaving, l [0, 3, 5] A random number of agents between 0 and l exits the
system.

joining, j [0, 5, 15] A randomnumber of agents between 0 and j enters the
system.

range 4, 8 This is the value used to explore the environment that

surrounds each agent.

Table 2: Parameter Notations and Values

3.7 Oneassumptionof thismodel is that eachpublishedarticle is associatedwith the IF of the journal inwhich it ap-

pears. Another is that, we believe, certain papers do have higher scientific value than others. Both assumptions

can be challenged as unrealistic. On the one hand, many journals lack such metrics and other outlets do not

qualify (e.g., books, chapters, conference proceedings). On the other hand, some social constructionists would

argue that all publications are of equal value qua ‘texts’. While disagreeing with the latter view, we accept that

themodel simplifies by treating different IF levels as representative of various kinds of journals. However, what

matters in this simulationmodel is how the agents perceive IF. For hard-liners (members of IU2), scientific value

JASSS, 21(1) 13, 2018 http://jasss.soc.surrey.ac.uk/21/1/13.html Doi: 10.18564/jasss.3628



is a judgement about the journal and the article’s scientific value is identical to the journal’s IF. By contrast, for

members of IU1, IF is a less meaningful criterion for evaluating publications since they rely on the perceived

scientific ‘value’ of the article – this may or may not be aligned to the IF of the journal in which it appears.

3.8 Finally, every agent connects to other agents, preferably of the same IU through a ‘proximity rule’, indicated by

the parameter range that takes two values [4, 8]. This means that each agent screens amind space around it to
seewhether it is possible to connect to other agents and establish a link. The two values [4, 8] for the parameter
were selected to give a relatively narrow and relatively wide reach to each agent.

Publications

3.9 Every agent is assigned a random number of publications (max 4) at the beginning and this number is recalcu-
lated every time that there is an ‘evaluation event’. These events are called publication waves in the simulation

and happen with fixed frequency (e.g., every year, semester, month). A�er a few pilot tests, frequency is set at

every 10 seconds. Every time a publication wave comes, all previous publications are archived and excluded
from the pool that is available for the current round of evaluation. Thismechanism is implemented to replicate

assessments done by the government or by universities, where the same publication cannot be submitted for

evaluation twice.

3.10 Each publication is also assigned some intrinsic value between 0 and 1, that differs from IF (and it is not an

IF function). This is intended to imply, above all, that scientific value exists independently of metrics (Vanclay

2011; Seglen 1997). Second, it allows the value of a scientific contribution and the IF of the journal to be at odds.

As already mentioned above, each and every publication has an IF; this is randomly assigned and can be any

number between 0 and 5. To make the simulation mimic disruptive innovation in science, one in four low IF
publications are granted high scientific value. At every assessment round, one random low IF publication has

its value calculated using the transformation y = 0.8 + IFpi · 0.2, where IFpi is the impact factor of the i
th

publication. This procedure is implemented to make sure that some articles published in so-called “second

tier” journals carry very high meaning for the scientific enterprise. This is to make sure that, in this case, IF

enthusiasts (IU2) are necessarily wrong, because they would at first evaluate the paper badly even thought it

has very high scientific value.

Evaluation procedures

3.11 When a publication wave is completed, each agent evaluates papers according to the rules of their unit. IU2

members (hard core IF enthusiasts) evaluate papers on the sole basis of the journal’s IF score. Conversely, both

agents from IU1 and those unaffiliated to a IU attend to their perceived value (i.e. independently of a journal’s

IF). This step one of the evaluation procedure occurs as each agent evaluates one paper by another.

3.12 Step two adds a second paper to the evaluation. Each agent selects another paper to assesswhich is likely to be

fromone of the other agents in their own IU. The evaluation rules are as for the first paper (i.e. it covarieswith IF

in IU2 andwith perceived value in IU1). In this case, the paper is ‘suggested’ by another individual who prompts

the colleague to read what it thinks is ‘best’. There is one exception to the procedure. If the closer agent is from

a different IU than the agent, then the evaluation focuses on the paper coming from that closer agent.

3.13 Together, the two steps ensure that each agent seeks to evaluate two papers. At this point – i.e. a�er two-step

evaluations of, on average, two papers – a ‘socialization’ element is introduced. Agents will tend tomatch their

evaluationwith the ruleof theirown IU;however, theyalsouse theirdocility and thatof thosearound themtoset

evaluation to other standards (if they are so able). This is done to reflect social influences on individual thinking

and behavior in organizations (e.g., Simon 1993; Secchi 2011). The mechanism passes through a function that

adjusts both evaluations and their beliefs depending on how far they are from the others in the IU and in the

system in general. The first phase of step three is an internal update. Agents with high docility (i.e. higher than

the mean) update their paper evaluations by adjusting as a function of their docility. This is an internal update

because agents with high docility second guess themselves and re-evaluate papers by slightly updating their

initial judgement (Secchi & Bardone 2009). This step is done to allow highly docile individuals to come up with

a more differentiated evaluation than the other agents (see the online materials for details).

3.14 The second phase of step three is an external update. This depends on interactions between agents. If both

agents have high docility, then each updates its evaluations following the other agent (i.e. if that is higher, the

value goes up and, if it is lower, the value goes down). The agents also update PSV depending onwhether or not

the ‘other’ individual is from the same or another IU. If docility levels aremisaligned, whereas the highly docile

updates its evaluations in relation to the other, the agent with lower docility updates its evaluations only when
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the other individual is from the same IU. It is important to remember that all the evaluation phases in step three

arise between agents that are connected through a link and in a given range.

Model dynamics

3.15 The initial set up starts with a fixed number of agents (100) that randomly appear on a two-dimensional space.
Their position is intended to be a ‘mental space’ – not just a physical location. The initial number can be altered

with those leaving and joining, to mimic retirements, employee turnover, hiring, and other organizational pro-

cesses of this kind. Where a number of agents leave the organization permanently they are removed from the

simulation right a�er a publication wave. The number can range randomly between 0 and the upper limit that
is fixed in the simulation runs to [0, 3, 5] (see Table 1). The number of agents that join the organization creates
new agents right a�er a publication wave and can be of any number between 0 and the upper limit (randomly
fixed at [0, 5, 15]). These two conditions of leaving and/or joining start from publication wave 3 and add more
dynamism to the simulation, with rapid expansion, when joining tends to 15, and leaving ranges between 0 and
3, or decline, when joining is 0 and leaving can be up to 5. This is in line with Simon’s characterization of IU
(Simon 1991).

3.16 Soona�er their appearance, agents characterize themselves asmembers of IU1, IU2; aminoritywill have lack of

membership. Agents then initially connect together with other same-IUmembers based on proximity (or range

in Table 1) and start paper evaluations as soon as the new publication wave arises. Agents also connect with

other agents from outside their own IU by using a subset of range – i.e. only if these are closer than members

of their own IU. This is done under the assumption that it takes a bit more ‘likemindedness’ to be willing to

connect to someone from outside of one’s own group.

3.17 Once relationships are established, the three-step evaluation can take place. One of the implications of this is

that, at some point, unaffiliated agents may decide to join one of the two IU groups. These agents join groups

depending on whether PSV is closer to the average of IU1 or that of IU2.

3.18 In the group condition, agents from the same IU stay clustered together and thus limit interactions with other

agents outside their own group. This condition is implemented to separate the two IUs so that it is easier to

observe emerging coalitions. This is the case when an organization prompts groups (departments, centers) to

develop an independent climate or, roughly speaking, to live the organization in different ways. The change

condition allows for all agents to shi� from their initial IU placement. Themechanismwhereby this happens is

fixed by PSV such that, where one’s PSV is closer to themean PSV of the other IU, this agent ‘feels’ closer to the

others and shi�s to their IU. There is no limit as to how o�en an agent changes affiliation.

Findings

4.1 A�er a fewpilot runs to study convergence and sensitivity, we settled on the set of conditions described in Table

1 and framedas a factorial design of 27 ·33. This triggers the question of howo�en the simulation should runper
each configuration of parameters (Ritter et al. 2011; Lee et al. 2015). Provided that computational experiments

are assimilated to real life experiments (e.g., Hoser 2013), statistical power analysis can be used for this purpose

(Secchi & Seri 2017). Using a smallest effect size of interest (SESOI) approach (Seri & Secchi 2017), we calculate

a number that satisfies the conditions for power 1− β = 0.95 at the 0.01 significance level for an effect size of
0.1 (Cohen 1988), in an attempt to be conservative. The factorial design leads to 3456 different configurations
of parameters and power calculations indicate that 11 runs are sufficient. However, in striving tomake sense of
the four conditions (group× change= 2 · 2) separately, we also need to know howmany runs are sufficient for
3456/4 = 864 configurations. This leads to 21 runs per configuration, given the SESOI approach, we set on 25
times per configuration of parameters, leading to an estimated expected power of 0.98.

4.2 As far as time for each run is concerned, the simulation spans 24 evaluation periods. If we assume that evalua-
tions happen every year and that every academic may publish between 0 and 4 peer reviewed articles a year3,
thenwehave 24 years in the life of a hypothetical organization. At every evaluation round (i.e. publicationwave)
we take a snapshot of agent’s characteristics and affiliation.

Analytical strategy

4.3 The data produced by the simulation was computed on the Abacus 2.0 supercomputer, available through the

Danish e-infrastructure cooperation (DeIC) to universities and research centers in the Europe. The information
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in the file amounted at approximately 1.05 Gb of data. Specific simulation results are calculated with the aid of
graphics and the generic impact of parameters is presented in fixed effects panel regressionmodels as reported

in the Appendix. All calculations are performed usingR, an open source platform for statistical computing.

4.4 As usual with ABM simulations, the results presented here are a selection from a set of findings that would

require more than one paper to be properly introduced. While overall results are presented in the Appendix,

we deem those that follow to bemost relevant in pursuing our enquiry on whether howmeso scale events and

interactions contribute to organizational cognition 4.

A range effect

4.5 The scope of the analysis is to unveil the circumstances (if any) underwhich cognitive processes involve awider

social context that is located inbetween themacro and themicro scales, specifically inwhatwe callmeso scales

or social organizing. Figure 1 – graphs (a) to (f) – pictures regression lines that estimate how PSV for members

of IU1 (blue lines) and IU2 (red lines) evolves as average IF increases due to the variation of range, leaving, and

joining the organization. All six graphs compare regression lines where agents are allowed (dotted lines) or not

allowed (solid lines) to change intelligence unit.
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Figure 1: PerceivedScientific Value (PSV) as it varies according to average journal publication’s IF (d = 0.6,group
= false, alpha= 0.25)

4.6 The parameter range indicates the approximate reach of each agent; the higher its value, the more likely it

is that agents interact with others outside their own IU. This should have significant repercussions on agents’

PSVsbecause, conditional on their docility levels, theymight update their evaluationsmoreo�en. In the graphs

presented in Figure 1, mean docility is held constant at 0.6, while range varies. Actually, between graphs (a) and
(d), (b) and (e), and (c) and (f), range is the only parameter that changes from 4 to 8. This leads to an increase
in the effects that take place, on average, for both IU1 and IU2. Under all conditions, IU1’s PSV seems to be little

affected by either range values or change and, accordingly, there is only a slight strengthening of the registered

effect. Being able to change IU leads to an increase in the agents’ PSVs; this is minimal for IU1 and very strong

for the IU2members which are also affected by an increase in the range of interactions.

Strengthening group ties

4.7 Figures 2 to 7 build on findings from Figure 1 and specify what happens to PSVwhen IUmembers intensify their

relations and group ties (parameter group = ‘true’ or ‘on’) as opposed to when their ties weaken (parameter

group = ‘false’ or ‘off’). Figures 2 and 3 show the impact of the group effect as a selection of up to 0, 3, or 5 agents
leave the organization at every evaluation round, with docility = 0.6, joining = 0 and change = ‘false’. They
can be intended as the baseline cases, i.e. those figures that are used as a benchmark for the others. In Figure

3, as we get closer to the end of the rounds (i.e. 24), IU1’s PSVs suffers a very slight decline, moving from 1.0 to
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ca. 0.9, where a group effect is not detectable at all (see alsoModel 1 in Table 3, in the Appendix). Figure 2 shows
values for IU2’s PSVs. From the figurewe can observe that the overall tendency is for an increase of PSVs, except

when fewer agents leave the system (leaving = 5). Here too, the group effect does not seem to be particularly

strong or detectable at all and changes in PSV appear mild.
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Figure2: Conditionalplottingof regressioncurves fittedonPerceivedScientific Value (PSV)as it variesaccording

to evaluation/publication waves for IU2 members (d = 0.6, change = false, alpha = 0.25, joining = 0).
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Figure3: Conditionalplottingof regressioncurves fittedonPerceivedScientific Value (PSV)as it variesaccording

to evaluation/publication waves for IU1 members (d = 0.6, change = false, alpha = 0.25, joining = 0).

Changing affiliation

4.8 A better indication of how the group affects the model becomes apparent from Figure 4, showing how IU2’s

PSV evolves over time when agents can change affiliation (change = ‘true’ or ‘on’). Results for IU1 are omitted

because they do not vary fromwhat already presented in Figure 3. Asmore agents leave the organization, IU2’s

PSV slows the pace of its increase. This seems not to be proportional to the declining number of agents that

belong to IU2 (Figure 5), hence suggesting that the variation in PSVs is to be associated with group effects and

numbers of agents leaving the organization. However, theremight be an effect of agentsmoving away from IU2

because of higher requirements for PSV.
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Figure4: Conditionalplottingof regressioncurves fittedonPerceivedScientific Value (PSV)as it variesaccording

to evaluation/publication waves for IU2 members (d = 0.6, change = true, alpha = 0.25, joining = 0).
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Figure 5: Conditional plotting of regression curves fitted on the number of agents affiliated to IU2 as it varies

according to evaluation/publication waves (d = 0.6, change = false, alpha = 0.25, joining = 0).

4.9 One step forward in this direction is offered by looking at the following figures where PSV levels for IU2 are

calculated when docility mean levels increase to 1.2 (Figure 6) and, in addition to this condition, when joining
is also set to its maximum (Figure 7). All the other conditions are the same as in Figure 4. For IF-purists an

increase in docility means that they would be, on average, more open to external (different) influences on the

way to assess scientific value (PSV in our simulation). Comparing Figure 7 with Figure 6 it can be seen that this

effect does not influence IU2when there is little variability (i.e. leaving is set towither 0 or 3). However, it shows
that PSVs decline towards the end of the evaluation periods when leaving can be up to 5. A�er examination of
the data, we found that the number of IU2 agents is down to zero at round 19 under that condition (Figure 6),
meaning that all agents are affiliated with IU1 (non-IU are difficult to find under change = true). So, a higher

degree of docility seems to wipe out IU2 in an organization facing decline (i.e. leaving = 5), because some
leave while all remaining others move to IU1.
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Figure6: Conditionalplottingof regressioncurves fittedonPerceivedScientific Value (PSV)as it variesaccording

to evaluation/publication waves for IU2 members (d = 1.2, change = true, alpha = 0.25, joining = 0).
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Figure7: Conditionalplottingof regressioncurves fittedonPerceivedScientific Value (PSV)as it variesaccording

to evaluation/publication waves for IU2 members (d = 1.2, change = true, alpha = 0.25, joining = 15).
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Figure 8: Conditional plotting of regression curves fitted on the number of agents affiliated to IU2 as it varies

according to evaluation/publication waves (d = 1.2, change = true, alpha = 0.25, group = true).

4.10 These findings are confirmed by data in Figure 7 where the organization faces high turnover, with many agents

leaving but, on average, more coming in (i.e. joining = 15). While the group effect does not impact the shape
of the curves, there is a decrease in PSV – i.e. amore consistent evaluation over time –whenmore agents leave.

The effect of docility on IU2 seems to be that of the less radicalized view, as if IU2 agents would abandon a rigid

interpretation of the IF and converge towards a more stable PSV (more like IU1). Less variability in numbers

radicalizes the positions instead. Figure 8 presents what happens to IU2’s PSV when individuals leave and join

the organization (with change = true, group = true, docility = 1.2). Highly turbulent organizational environ-
ments (higher agent turnover rates) seem to flatten the curve while more static organizational environments

appear to increase PSV, as if the IF-based evaluations need to always be better at every round.

Implications and Conclusions

5.1 We interpret the ABMmodel of IF and PSV in relation to twomain implications, each of which draws on a scale

from the perspective of organizational cognition defined in the theoretical framework above.

The effect of macro scales

5.2 These results arepartially consistentwithwhatwemight expect frommembersof the two IUs. On theonehand,

under the specific conditions analyzed above, members of IU1 are not affected by the value of IF because they

tend to base PSV on other parameters and, as shown, this is what happens. Even when IU1 interact more with

non-IU1 agents (i.e. when range takes higher values), PSV increases slightly and it seems not affected by an in-

crease in IF values. On theother hand, there is a positive impact of IF onPSV for IU2; this applies especiallywhen

there are opportunities to change affiliation status (i.e. IU). In this case, it seems that interactions strengthen

how IF positively affects PSV for IU2 members5. The parameter change fine tunes the IU, making them more

orthodox so that IU1 becomes populated by more IF-indifferent agents and IU2 is populated by IF-enthusiasts.

In general, however, IU1members are less affected by institutional ormacro pressures, such as the opportunity

to change affiliation. IU2, by contrast, tend to increase PSV as IF increases; this becomesmore radical as change

of IU becomes possible (i.e. bears no institutional costs) and in relatively stable organizational environments

(i.e. agent turnover is low). This leads us to reflect on howmeso scales filtermacro or institutional scales in that

they make agents process them differently. By implication, not only are macro aspects perceived differently

by different individuals but how they are perceived is a function of the IU that constitutes themedium through

which these elements come to the agent’s knowledge.
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Relative reliance on the social individual

5.3 The impact of macro scales varies depending on the different conditions in which it unfolds. In our simulation

of the effect of IF on cognitive processes as they relate to scientific value, amacro framework is filtered by the IU

but, of course, this doesnot reduce the role of individual characteristics. For example, results show that average

high levels of docility (i.e. d = 1.2) lead agents affiliated with IU2 to an increase in PSV as evaluations (i.e.
publication waves) pass by, when change of IU is possible, and when there is a relatively stable organizational

environment (leaving and joining are set to zero). Under the same configuration of parameters, agents affiliated

with IU1 do not behave similarly; on the contrary, they show stable PSV (results omitted here but available

online). Hence, this underlines that individual-bound cognitive processes have values that are, perhaps, less

than expected given that the same characteristic – e.g., docility is distributed at random so that the means of

IU1 and IU2 are approximately the same – brings forth different results. All we can tell by using the results from

the simulation model is that individual cognition still plays a role but it does so only within the boundaries of

an IU.

5.4 Another explanation for the role of docility in the simulation is that this attitude towards the information from

social channels may only be effective within the framework of an agent’s IU. This interpretation is consistent

with previous research in that it shows docility to promote openness in the short run but conformity in the

long run (Secchi 2016; Secchi & Gullekson 2016). In the perspective of social organizing – and of organizational

cognition – , it seems to be one of the core ingredients allowing it to work.

Limitations

5.5 The simulation helped us specify practicalmechanisms throughwhich organizational cognition can be concep-

tualized. In so doing, it also pointed to limitations of themodel. One of these is that we selected features of the

individual (e.g., docility, IF attitudes, affiliation) and the organization (e.g., change, turnover, grouping) while

le� out some others that might play a role in PSV such as motivation, performance, job satisfaction, leader-

ship, role models, and positions. We believe these are points to carry over on the simulation to shape future

research. Another limitation of the simulation is that it models generic aspects for the micro/individual scale

that may have been played more consistently with mainstream literature. However, the computational aspect

of agents’ decision making is in line with mainstream management literature. In fact, it is worth noting that

we have not abandoned the computational view but, rather, rejected any notion of an input/output sandwich.

In fact, the error of classic cognitive science – but not Simon – was the form of individualism that arose with

un-networked computers. This is the error of assuming that ‘social judgements’ somehow occur ‘within’ in-

dividuals when, in fact, they are part of interaction (with people and artifacts). The assumptions of the theory

have been tested by computational simulation even if the nature ofwhat it is computed and how it is calculated

is very different from in classic computational models of mind.

Concluding remarks

5.6 The most relevant aspect of the theoretical framework is exemplified by IF because, as all academics know,

it is indicative of diversity in PSV. IF thus provides a macro framework that many organizations use as a point

of reference in evaluation of scientific outcomes. We hope that readers will find it self-evident that how IF is

interpreted and framed varies. The simulation emphasizes the differences and links PSV of academic articles to

the way a research group (IU) interprets it. In fact, individual evaluations are based on a function of the agent’s

characteristics (e.g., docility, location), the IU to which it belongs (e.g., IF estimators, IF detractors, tightness of

links amongmembers), and towider social pressures (e.g., turnover, no cost for a changeof affiliationwithin the

organization). Results show that organizational cognition cannot be described without an intermediatemeso

scale that filters and enables the many kinds of socially enabled perception, action and behavior that are so

characteristic of human cognition.

Appendix A: Panel Regression Results

A series of Hausman tests (Hausman 1978) were performed to evaluate whether the fixed was preferred to the

random coefficient panel regression using the R package plm (Croissant & Millo 2008). These tests resulted

significant with a p− value < 0.01, indicating that the fixed effects was a better fit to the data.
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Model 1 Model 2 Model 3

DV=PSV of IU1 DV=PSV of IU2 DV=PSVIU1

PSVIU2

Average IF 0.006∗∗∗ -0.010 0.173∗∗∗

(0.0008) (0.0238) (0.0200)

PSV difference 0.048∗∗∗ 0.086∗∗∗ 0.014

(0.0008) (0.0261) (0.0225)

Leaving -0.001∗∗∗ -0.039∗∗∗ 0.037∗∗∗

(0.0000) (0.0016) (0.0014)

Joining -0.001∗∗∗ -0.012∗∗∗ -0.021∗∗∗

(0.0000) (0.0005) (0.0005)

Group (true) 0.000 0.034∗∗∗ 0.007

(0.0002) (0.0065) (0.0056)

Change (true) 0.025∗∗∗ 1.268∗∗∗ 0.124∗∗∗

(0.0002) (0.0070) (0.0059)

Mean docility 0.007∗∗∗ 0.028∗ 0.023∗

(0.0004) (0.0133) (0.0115)

Range -0.004∗∗∗ 0.164∗∗∗ 0.005∗∗∗

(0.0000) (0.0016) (0.0014)

IU1 publications (mean) 0.101∗∗∗ 1.093∗∗∗

(0.0003) (0.0096)

IU1 publications (sd) 0.244∗∗∗ 2.207∗∗∗

(0.0005) (0.0167)

IU2 Mean PSV 0.011∗∗∗

(0.0000)

IU2 publications (mean) -0.397∗∗∗ -1.468∗∗∗

(0.0090) (0.079)

IU2 publications (sd) -0.931∗∗∗ -4.261∗∗∗

(0.0159) (0.0141)

IU1 Mean PSV 8.708∗∗∗

(0.0263)

R-squared 0.38 0.16 0.16

F-statistic 53771 16755.4 15454.8
Degrees of freedom 11 and 962858 11 and 962858 12 and 962857
p-value 0.000 0.000 0.000

Significance codes: ∗∗∗ p <.001; ∗∗ p <.01; ∗∗ p <.05; † p < .1. Note: DV: dependent variable; PSV: perceived
scientific value; IU: intelligence unit. In Model 3, all coefficients and standard errors have been divided by a

factor of 1014 to make results easier to interpret.

Table 3: Multiple Fixed Effects Panel Regressions (Dep. Variable: PSV)

Notes

1The use of the word ‘culture’ here refers loosely to values and norms established by a community of in-

dividuals. As such it has very little to do with the use of the word in either the sociological or organizational

literature (Abrahamson & Fombrun 1994; Cameron & Quinn 2011; Schein 1996). Instead, it is in line with the re-

cent Hutchins (2014) indicating a relatively stable ecosystemof individuals interacting together. Thismay entail

something sporadic such as a single task, or something donemore systematically such as a routine. In the latter

case, the word ‘culture’ becomes closer to its well-known use in the literature.

2Another obvious addition to the list is that of defining cognition as also e-mbrained. Even though the brain

plays a role that is less central, it is still relevant – a conditio sine qua non (i.e. necessary but not sufficient) for

cognitive processes to happen. A�er careful consideration, we decided to leave this one ‘e’ out of the frame-

work. This is because one of the objectives of the paper is to highlight the novelty of systemic cognition, hence

focusing on themore disruptive aspects of the approach seemedmore consistent. Moreover, we havemodeled

this aspect only indirectly.

3Five peer-reviewed publications per year would be close to Herbert Simon’s – a Nobel laureate – average;
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given that the numbers are calculated randomly, we wanted to avoid cases when most academics have very

high number of publications. Hence, we excluded Nobel laureate’s performance style from our simulation.

4Results of non-IU agents have been excluded from this section because of small numbers for non affiliated

agents and their tendency to become part of IU1 when the change condition is ‘on’. More details, together with

themodel, the code, specificationdocumentation, anda selecteddata file are availableon theopenaccessplat-

form for agent-based simulations OpenABM at https://www.openabm.org/model/5589/version/2/view.

5If one looks at results when all conditions are factored in, then the regression Table 3 (Appendix) shows

that the overall effect of IF is statistically significant for IU1’s PSV (the beta coefficient is very small 0.006 but
significant at p < 0.001). In otherwords, and very surprisingly,members of IU1 respondpositively to IF. Further,
since the effects of grouping (i.e. strengthening in-group ties), the possibility to change IU, and the effect of

docility are small, it seems that, unlike IU2 members, other factors do not counterbalance their reactions to IF

change. Their own parameters co-function strongly with their affiliation. Members of IU2 are thus less reactive,

overall, to changes in IF andmore so toa rangeof other factors. However, leaving speculationaside,weprefer to

emphasize that the overall results show clearly that the evolution is not explicable by single factors and, above

all, not solely in relation to agent characteristics.
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