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Abstract

We consider the multi-agent reinforcement learn-

ing setting with imperfect information. The re-

ward function depends on the hidden goals of

both agents, so the agents must infer the other

players’ goals from their observed behavior in

order to maximize their returns. We propose a

new approach for learning in these domains: Self

Other-Modeling (SOM), in which an agent uses

its own policy to predict the other agent’s actions

and update its belief of their hidden goal in an on-

line manner. We evaluate this approach on three

different tasks and show that the agents are able

to learn better policies using their estimate of the

other players’ goals, in both cooperative and com-

petitive settings.

1. Introduction

Reasoning about other agents’ intentions and being able to

predict their behavior is important in multi-agent systems, in

which the agents might have different, and sometimes com-

peting, goals. In this paper, we introduce a new approach for

estimating other agents’ unknown goals from their behavior

and using those estimates to choose actions. We demon-

strate that in the proposed tasks, using an explicit model

of the other player leads to better performance than simply

considering the other agent as part of the environment.

We frame the problem as a two-player stochastic game

(Shapley, 1953), in which each agent is randomly assigned

a different goal from a fixed set, which is shared between

the agents. Players have full visibility of the environment,

but no direct knowledge of the other’s goal and no commu-

nication channel. The reward obtained by each agent at the

end of an episode depends on the goals of both agents, so

an optimal policy must take into account both of their goals.

The key idea of this work is that as a first approximation
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of understanding what the other player is trying to achieve,

an agent should ask itself “what would be my goal if I had

acted as the other player had?”. We instantiate this idea by

parametrizing the agent’s action and value functions with

a neural network that takes as input the observation state

and a goal. As the agent plays the game, it uses its own

policy (with the input expressed in the other agent’s frame of

reference) to maximize the likelihood of the other’s observed

actions and optimize directly over the goal representation to

infer the other agent’s unknown goal. In contrast with the

current literature, our approach does not require building

any model of the other agent in order to infer its intention

and predict its behavior.

2. Approach

Background: A two-player Markov game is defined by a

set of states S describing the possible configurations of all

agents, a set of actions A1,A2 and a set of observations

S1,S2 for each agent, and a transition function T : S ×
A1 ×A2 → S which gives the probability distribution on

the next state as a function of current state and actions. Each

agent i chooses actions by sampling from a stochastic policy

πi : S × Ai → [0, 1]. The reward function of each agent

is: ri : S ×A1 ×A2 → R. Each agent i aims to maximize

its discounted return from time t onward: Ri
t =

∑

∞

t=0
γtrit,

where rit is the reward obtained by agent i at time t and

γ ∈ (0, 1] is the discount factor. In this work, we consider

both cooperative and adversarial settings. In cooperative

games, the agents have the same reward function: r1 = r2.

We now describe Self Other-Modeling (SOM), a new ap-

proach for inferring other agents’ goals in an online fashion

and using these estimates to choose actions. To decide an

action and to estimate the value of a state, we use a neural

network f that takes as input its own goal zself , an estimate

of the other player’s goal z̃other, and the observation state

sself , and outputs a probability distribution over actions π

and a value estimate V , such that for each agent i playing

the game we have:
[

πi

V i

]

= f(siself , z
i
self , z̃

i
other; θ

i) .

Here θi are agent i’s parameters for f , which has one soft-

max output for the policy, one linear output for the value

function, and all the non-output layers shared. The actions
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are sampled from policy πi. The state siself contains the

observation features from agent i’s viewpoint.

We propose that each agent models the behavior of the other

player using its own policy. Thus, each agent uses its own

network f in two ways: acting mode, in which the agent

uses f to choose its actions and inference mode, in which

the agent uses f to infer the other agent’s goal. For notation

purposes, whenever f is used in acting mode (inference

mode) we will refer to it as fself (fother):

acting mode: fself (sself , zself , z̃other; θ) (1)

inference mode: fother(sother, z̃other, zself ; θ). (2)

The two modes have different relative placements of the

network’s inputs zself and z̃other. Additionally, since the

environment is fully observed, the observation state of the

two agents differs only by the specification of the agent’s

identity on the map (i.e. each agent will be able to distin-

guish between its own location and the other’s location).

Hence, in acting mode, the network fself will take as input

sself (with the identity of the acting agent at the location

of the self ) and in inference mode, the network fother will

take as input sother (with the identity of the acting agent at

the location of the other).

At each step, the agent uses equation (2) to output an esti-

mate of the probability distribution over the other agent’s

actions. Then, the agent uses supervision of the other’s true

action to backpropagate through fother (without updating

its paramters) and directly optimize over its input z̃other,

the estimate of the other agent’s goal. The number of op-

timization steps used to update z̃other is a hyperparameter

that can vary with the game. The new estimate z̃other is

used as input to fself in (1) for choosing the self agent’s

next action. Figure 1 illustrates this technique.

Note that the network f is never updated during inference

mode (i.e. using supervision of the other agent’s actions),

f ’s parameters θ are updated only at the end of each episode

using Asynchronous Advantage Actor-Critic (A3C) (Mnih

et al., 2016) with reward signal obtained by the self agent.

In contrast, z̃other is updated (multiple times) at each step

in the game.

Algorithm 1 represents the pseudo-code for training a SOM

agent for one episode. The procedure is formulated from

the viewpoint of a single agent. Since the goals are discrete

in all the tasks considered here, the agent’s goal zself is

encoded as a one-hot vector of dimension equal to the total

number of possible goals in the game. In line 6, siself is

the self’s observation state from the perspective of agent i,

which is the same as the other’s observation state from the

perspective of agent j, s
j
other.

We consider a continuous vector z̃other of the same dimen-

sion as zself , such that the estimate of the other agent’s

Algorithm 1 SOM training for one episode

1: procedure SELF OTHER-MODELING

2: for k := 1, num players do

3: z̃kother ←
1

ngoals
1ngoals

4: game.reset()

5: for step := 1, episode length do

6: siself = s
j
other ← game.get state()

7: z̃
OH,i
other = one hot(argmax(softmax(z̃iother))

8: πi
self , V

i
self ← f i

self (s
i
self , z

i
self , z̃

OH,i
other; θ

i)

9: aiself ∼ πi
self

10: game.action(aiself )
11: for k : = 1, num inference steps do

12: z̃
GS,j
other = gumbel soft(softmax(z̃jother))

13: π̃
j
other← f

j
other(s

j
other, z̃

GS,j
other, z

j
self ; θ

j)

14: loss = cross entropy loss(π̃j
other, a

i
self )

15: loss.backward()
16: update(z̃

j
other)

17: for k := 1, num players do

18: policy.update(θk)

goal is a sample from the Categorical distribution with class

probabilities softmax(z̃other). Thus, the estimate of the

other’s goal is given by the one-hot vector z̃OH
other, as shown

in line 7. At the beginning of each game, the estimate of the

other’s goal z̃OH
other is randomly initialized, as illustrated in

line 3, where 1ngoals represents a vector of all ones with the

size equal to the number of possible goals.

In inference mode, the estimate of the other agent’s goal

is expressed as a sample from the Gumbel-Softmax distri-

bution (Jang et al., 2016; Maddison et al., 2016), z̃GS
other,

as shown in line 12, where gumbel soft(p) = softmax[g +
log(p)]), with g sampled from the Gumbel distribution and

the softmax temperature τ = 1. To update the estimate of

the other’s goal, we directly optimize z̃other by using the

cross-entropy loss to backpropagate through fother (lines 14,

15, 16).

Figure 1. Our Self Other-Model (SOM) architecture.

The agents’ policies are parametrized by long short-term

memory (LSTM) cells (Hochreiter & Schmidhuber, 1997)
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with two fully-connected linear layers, and exponential lin-

ear unit (ELU) (Clevert et al., 2015) activations. The weights

of the networks are initialized with semi-orthogonal matri-

ces, as described in Saxe et al. (2013) and zero bias.

3. Related Work

Multi-Agent Learning. Recent work in deep multi-agent

RL focuses on partially visible, fully cooperative settings

(Foerster et al., 2016a;b; Omidshafiei et al., 2017) and emer-

gent communication (Lazaridou et al., 2016; Foerster et al.,

2016a; Sukhbaatar et al., 2016; Das et al., 2017; Mordatch

& Abbeel, 2017). Lerer & Peysakhovich (2017) design

RL agents that are able to maintain cooperation in com-

plex social dilemmas by generalizing a well-known game

theoretic strategy called tit-for-tat (Axelrod, 2006), to multi-

agent Markov games. Leibo et al. (2017) considers semi-

cooperative multi-agent environments in which the agents

develop cooperative or competitive strategies depending on

the task type and reward structure. Similarly, Lowe et al.

(2017) proposes a centralized actor-critic architecture for

efficient training in settings with such mixed strategies. Our

setting is different since we do not allow communication

between the agents, so the players have to indirectly reason

about others’ intentions from their observed behavior.

Intent Recognition. Research on plan, activity, and intent

recognition has a long history, but it usually assumes do-

main knowledge or a form of rationality and uses techniques

such as Bayesian inference or Hidden Markov Models (Suk-

thankar et al., 2014). The field of inverse reinforcement

learning (IRL) (Russell, 1998; Ng et al., 2000; Abbeel &

Ng, 2004) is also related to the problem considered here.

IRL’s aim is to infer the reward function of an agent by ob-

serving its behavior, which is assumed to be nearly optimal.

In contrast, our approach uses the observed actions of the

other player to directly infer its goal in an online manner,

which is then used by the agent when acting in the environ-

ment. This avoids the need for collecting offline samples

of the other’s (state, action) pairs in order to estimate its

reward function and use it to learn a policy. The more re-

cent papers by Hadfield-Menell et al. (2016; 2017) are also

concerned with the problem of inferring intentions, but their

focus is on human-robot interaction and value alignment.

Motivated by similar goals, Chandrasekaran et al. (2017)

consider the problem of building a theory of AI’s mind, in

order to improve human-AI interaction and the interpretabil-

ity of AI systems. Recent work in cognitive science attempts

to understand human decision-making by using a hierarchi-

cal model of social agency that infers human intentions for

choosing a strategy (Kleiman-Weiner et al., 2016). However,

none of these papers design algorithms that explicitly model

other artificial agents in the environment or estimate their

intentions, with the purpose of improving their decision

making.

Modeling Other Agents. Opponent modeling has been ex-

tensively studied in games of imperfect information. Yet

most previous approaches focuses on developing mod-

els with domain-specific probabilistic priors or strategy

parametrizations. In contrast, our work proposes a more

general framework for opponent modeling. Davidson (1999)

uses an MLP to predict opponent actions given a game his-

tory, but the agents cannot adapt to their opponents’ behavior

online. Lockett et al. (2007) designs a neural network archi-

tecture to identify the opponent type by learning a mixture

of weights over a given set of cardinal opponents, but the

game does not unfold within the RL framework.

The closest work to ours is Foerster et al. (2017) and He et al.

(2016). Foerster et al. (2017) designs RL agents that take

into account the learning of other agents in the environment

when updating their own policies. This enables the agents to

discover self-interested yet collaborative strategies such as

tit-for-tat in the iterated prisoner’s dilemma. While our work

does not explicitly attempt to shape the learning of other

agents, it has the advantage that agents can update their

beliefs during an episode and change their strategies online

to gain more reward. Our setting is also different in that

it considers that each agent has some hidden information

needed by the other player to maximize its return.

Our work is very much in line with He et al. (2016), where

the authors build a general framework for modeling other

agents in the reinforcement learning setting. He et al. (2016)

proposes a model that jointly learns a policy and the behav-

ior of opponents by encoding observations of the opponent

into a DQN. Their Mixture of Experts architecture is able to

discover different opponent strategy patterns in two compet-

itive tasks. In our approach, rather than using hand designed

features of the other agent’s behavior, the agent models oth-

ers using its own policy. Another difference is that in this

work, the agent runs an optimization over the input vector

to infer the other agent’s hidden goal, rather than using a

feed-forward network. In the experiments below, we show

that SOM outperforms an adaptation of the method of He

et al. (2016) to our setting.

4. Experiments

In this section, we evaluate our model SOM on three tasks:

• The coin game, in Section 4.2, which is a fully co-

operative task where the agents’ roles are symmetric.

• The recipe game, in Section 4.3, which is adversarial,

but with symmetric roles.

• The door game, in Section 4.4, which is fully coop-

erative but has asymmetric roles for the two players.
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We compare SOM to three other baselines and to a model

that has access to the ground truth of the other agent’s goal.

All the tasks considered are created in the Mazebase grid-

world environment (Sukhbaatar et al., 2015).

4.1. Baselines

TRUE-OTHER-GOAL (TOG): We provide an upper bound

on the performance of our model given by a policy network

which takes the other agent’s true goal as input zother, as

well as the state features sself and its own goal zself . Since

this model has direct access to the true goal of the other

agent, it does not need a separate network to model the

behavior of the other agent. The architecture of TOG is the

same as the one of SOM’s policy network, f .

NO-OTHER-MODEL (NOM): The first baseline we use

only takes as inputs the observation states sself and its own

goal zself . NOM has the same architecture as the one used

for SOM’s policy network, fself . This baseline does not

explicitly model the other agent’s policy, goal, or actions.

INTEGRATED-POLICY-PREDICTOR (IPP): Starting with

the architecture and inputs of NOM, we construct a stronger

baseline, IPP, which has an additional final linear layer that

outputs a probability distribution over the next action of the

other agent. Besides the A3C loss used to train the policy of

this network, we also add a cross-entropy loss to train the

prediction of the other agent’s action, using observations of

its true actions.

SEPARATE-POLICY-PREDICTOR (SPP): He et al. (2016)

propose an opponent modeling framework based on DQN.

In their approach, a neural network (separate from the

learned Q-network) is trained to predict the opponents ac-

tions given hand crafted state information specific to the

opponent. An intermediate hidden representation from this

network is given as input to the Q-network.

We adapt the model of He et al. (2016) to our setting. In

particular, we use A3C instead of DQN and we do not use

the task-specific features used to represent the hidden goal

of the opponent.

The resulting model, SPP, consists of two separate net-

works, a policy network for deciding the agent’s actions,

and an opponent network for predicting the other agent’s

actions. The opponent network takes as input its own state

observation sself and goal zself , and outputs a probability

distribution for the action taken by the other agent at the

next step, as well as its hidden (recurrent) state. As in IPP,

we train the opponent policy predictor with a cross-entropy

loss using the true actions of the other agent. At each step,

the hidden (recurrent) state outputted by this network is

taken as input by the agent’s policy network, along with the

observation state and its own goal. Both the policy network

and the opponent policy predictor are LSTMs with the same

architecture as SOM.

In contrast to SOM, SPP does not explicitly infer the other

agent’s goal. Rather, it builds an implicit model of the

opponent by predicting the agent’s actions at each time step.

In SOM, an inferred goal is given as additional input to the

policy network. The analog of the inferred goal in SPP is the

hidden (recurrent) state obtained from the opponent policy

predictor which is given as an additional input to the policy

network.

Training Details. In all our experiments, we train the

agents’ policies using A3C (Mnih et al., 2016) with an

entropy coefficient of 0.01, a value loss coefficient of 0.5,

and a discount factor of 0.99. The parameters of the agents’

policies are optimized using Adam (Kingma & Ba, 2014)

with β1 = 0.9, β2 = 0.999, ǫ = 1×10−8, and weight decay

0. SGD with a learning rate of 0.1 was used for inferring

the other agent’s goal, z̃other.

The hidden layer dimension of the policy network was 64

for the Coin and Recipe Games and 128 for the Door Game.

We use a learning rate of 1×10−4 for all games and models.

The observation state s is represented by few-hot vectors

indicating the locations of all the objects in the environment

(including the other player). The dimension of this input

state is 1 × nfeatures, where the number of features is

384, 192, and 900 for the Coin, Recipe, and Door games,

respectively.

For each experiment, we trained the models using 5 different

random seeds. All the results shown are for 10 optimization

updates of z̃other at each step in the game, unless mentioned

otherwise.

4.2. Coin Game.

First, we evaluate the model on a fully cooperative task, in

which the agents can gain more reward when using both of

their goals rather than only their own goal. So it is in the

best interest of each agent to estimate the other player’s goal

and use that information when taking actions. The game,

shown in the left diagram of Figure 4, takes place on a 8× 8
grid containing 12 coins of 3 different colors (4 coins of

each color). At the beginning of each episode, the agents

are randomly assigned one of the three colors. The action

space consists of: go up, down, left, right, or pass. Once

an agent steps on a coin, that coin disappears from the grid.

The game ends after 20 steps. The reward received by both

agents at the end of the game is given by the formula below:

R(cself , cother) = (nself
Cself

+ nother
Cself

)2 + (nself
Cother

+ nother
Cother

)2

− (nself
Cneither

+ nother
Cneither

)2,

where nother
Cself

is the number of coins of the self’s goal-color,

which were collected by the other agents, and n
self
Cneither

is
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Figure 2. Coin Strategy: Average number of collected coins per episode corresponding to the color of the Self (blue), Other (red), or

Neither (green) by the agents using TOG (left), SOM (center-left), NOM (center), IPP (center-right), and SPP (right). The optimal strategy

is to pick up as many Self as Other coins on average, across a number of episodes, and as few Neither coinsas possible. Being able to

collect more Other than Neither coins indicates that the agent is able to accurately infer the other agent’s color early enough during some

of the episodes and uses this information to collect more Other, instead of Neither coins, which increases its reward. The TOG model

learns to collect just as many Self as Other coins, while the baseline models only learn to collect more Self coins, but cannot distinguish

between the Other and Neither coins. SOM learns to collect significantly more Other coins than Neither. This shows that SOM converges

to a closer-to-optimal strategy using its guess of the other’s goal.

the number of coins corresponding to neither of the agents’

goals, collected by the self. For the example in Figure 4,

agent 1 has Cself = orange and Cother = cyan, while agent

2’s Cself is cyan and Cother is orange. Cneither is red for

both agents.

The role of the penalty for collecting coins that do not corre-

spond to any of the agents’ goals is to avoid convergence to a

greedy policy in which the agents can gain a non-negligible

amount of reward by collecting all the coins in their proxim-

ity, without any regard to their color.
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Figure 3. Coin Performance: Average reward in the Coin game

by SOM (green), TOG (blue), NOM (red), IPP (magenta), and

SPP (orange). SOM performs better than all baselines.

To maximize its return, each agent needs maximize the num-

ber of collected coins of its own or its collaborator’s color,

and minimize the number of coins of the remaining color.

Hence, when both agents are able to infer their collabora-

tors’ goals with high accuracy and as early as possible in

the game, they can use that information to maximize their

shared utility.

Figure 3 shows the mean and standard deviation of the

reward across 5 runs with different random seeds obtained

by SOM. Our model clearly outperforms all other baselines

on this task. We also show the empirical upper bound on the

reward using the model which takes as input the true color

assigned to the other agent.

Figure 2 analyzes the strategies of the different models by

looking at the proportion of coins of each type collected

by the agents. The optimal strategy is for each agent to

maximize n
self
Cself

+ n
self
Cother

and minimize n
self
Cneither

. Due

to the randomness in the initial conditions (in particular, the

locations of coins in the environment), this amounts to each

agent collecting an equal number of coins of its own and

of the other’s color on average, across a large number of

episodes (i.e. n̄
self
Cself

= n̄
self
Cother

).

Indeed, this is the strategy learned by the model with perfect

information of the other agent’s goal (TOG). SOM also

learns to collect significantly more Other than Neither coins

(although not as many as Self coins), indicating its ability to

distinguish between the two types, at least during some of

the episodes. This means that SOM can accurately infer the

other agent’s goal early enough during the episode and use

that information to collect more Other Coins, thus gaining

more reward than if it were only using its own goal to direct

its actions.

In contrast, the agents trained with the three baseline models

collect significantly more Self coins, and as many Other as

Neither coins on average. This shows that they learn to use

their own goal for gaining reward, but they are unable to

use the hidden goal of the other agent for further increasing

their returns. Even if IPP and SPP are able to predict the

actions of the other player with an accuracy of about 50%,

they do not learn to distinguish between the coins that would

increase (Other) and those that would decrease (Neither)
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their reward. This shows the weaknesses of using an implicit

model of the other agent to maximize reward on certain

tasks.

Figure 4. Illustration of the Coin (left), Recipe (center), and Door

(right) games. Above each diagram, we show the agents’ goals

(not visible to one another).

4.3. Recipe Game.

Agents in adversarial scenarios have competing goals, so

the ability of inferring the opponent’s goal could better in-

form the agent’s actions. With this motivation in mind, we

evaluate our model on a game in which the agents have to

craft certain compositional recipes, each containing multi-

ple items found in the environment. The agents are given

as input the names of their goal-recipes, without the corre-

sponding components needed to make it. The resources in

the environment are scarce, so only one of the agents can

craft its recipe within one episode.

As illustrated in Figure 4 (center), there are 4 types of items:

{sun, star, moon, lightning} and 4 recipes: {sun, sun, star};
{star, star, moon}; {moon, moon, lightning}; {lightning,

lightning, sun}. The game is played in a 4× 6 grid, which

contains 8 items in total, 2 of each type.

At the beginning of each episode, we randomly assign a

recipe to one of the agents, and then we randomly pick a

recipe for the other agent so that it has overlapping items

with the recipe of the first agent. This ensures that the agents

are competing for resources within each episode. At the

end of the episode, each agent receives a reward of +1 for

crafting its own recipe and a penalty of -0.1 for each item it

picked up not needed for making its recipe.

We designed the layout of the grid so that neither agent has

an initial advantage by being closer to the scarce resource.

At the beginning of each episode, one of the agents starts

on the left-most column of the grid, while the other one

starts on the right-most column, at the same y-coordinate.

Their initial y-coordinate as well as which agent starts on

the left/right is randomized. Similarly, one item of each of

the 4 different types is placed at random in the grid formed

by the second and third columns of the maze, from left to

right. The rest of the items are placed in the forth and fifth

columns, so that the symmetry with respect to the vertical

axis is preserved (i.e. items of the same type are placed at

the same y-coordinate, and symmetric x-coordinates).

Agents have six actions to choose from: pass, go up, down,

left, right, or pick up (for picking up an item, which then

disappears from the grid). The first agent to take an action

is randomized. The game ends after 50 steps.

We pretrain all baselines on a version of the game which

does not have overlapping recipes, in order to ensure that

all the models learn to pick up the corresponding items,

given a recipe as goal. All of the models learn to craft their

assigned recipes ∼ 90% of the time on this simpler task.

Then, we continue training the models on the adversarial

task in which their recipes overlap in each episode. SOM is

initialized with a pretrained NOM network.

Figure 5 shows the winning fraction for different pairs

played against each other in the Recipe game. For the first

100k episodes, the models are not being trained. We can

see that SOM significantly outperfroms NOM, IPP, and SPP,

winning ∼ 75 − 80% of the time, while the baselines can

only win ∼ 15− 20% of the games. SPP ties against NOM,

and TOG outperforms SOM by a large margin. We also

played the same types of agents against each other and they

all win ∼ 40− 50% of the games.

4.4. Door Game.

In this section, we show that on a collaborative task with

asymmetric roles and multiple possible partners, the agents

can learn to figure out what role they should be playing in

each game based on their partners’ actions.

In the Door game, two agents are located in a 5 × 9 grid,

with 5 goals behind 5 doors on the left wall, and 5 switches

on the right wall of the grid. The game starts with the two

players in random squares on the grid, except for the ones

occupied by the goals, doors, or switches, as illustrated in

Figure 4. Agents can take any of the five actions: go up,

down, left, right or pass. An action is invalid if it moves the

player outside of the border or to a square occupied by a

block or closed door. Both agents receive +3 reward when

either one of them steps on its goal and they are penalized

-0.1 for each step they take. The game ends when one of

them gets to its goal or after 22 steps. All the goals are

behind doors which are open only as long as one of the

agents sits on the corresponding switch for that door.

At the beginning of an episode, each of the two players is

randomly selected from a pool of 5 agents and receives as

input a random number from 1 to 5 corresponding to its goal.

Each of the 5 agents has its own policy which gets updated

at the end of each episode they play. Note that the agents’
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Figure 5. Recipe Performance: Average fraction of success in the Recipe game by SOM-NOM (left), SOM-IPP (center-left), SOM-SPP

(center-center), SOM-TOG (center-right) NOM-SPP (right). The plots show the performance of SOM with 5 optimization updates of

z̃other at each step in the game.
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Figure 6. Door Performance: Average fraction of success on the

Door game by SOM (green), TOG (blue), NOM (red), IPP (ma-

genta), and SPP (orange). On average, SOM performs better than

all baselines.

identities are not visible (i.e. there is no indication in the

state features that specifies the id’s of the agents playing

during a given episode). This restriction is important in

order to ensure that the agents cannot gain advantage by

specializing into the two roles needed to win (i.e. goal-goer

and switch-puller) and identifying the specialization of the

other player by simply observing its unique id.

The agents need to cooperate in order to receive reward. In

contrast to our previous tasks, the two players must take

different roles. In fact, the player who sits on the switch

should ignore its own goal and instead infer the other’s goal,

while the player who goes to its goal does not need to infer

the other’s goal, but only use its own. In order to sit on

the correct switch, an agent has to infer the other player’s

goal from their observed actions. The only way in which an

agent can use its own policy to model the other player is if

each agent learns to play both roles of the game, i.e. go to

its own goal and also open its collaborator’s door by sitting

on the corresponding switch. Indeed, we see that the agents

learn to play both roles and they are able to use their own

policies to infer the other player’s goals when needed.

Fig 6 shows the mean and standard deviation of the winning

fraction obtained by one of the agents on the Door game.

While our model is still able to outperform the three base-

lines, the gap between the performance of our model and

that of IPP or SPP (an approximate version of (He et al.,

2016)) is smaller than in the previous tasks. However, this

is a more difficult task for our model since it needs the agent

to learn both roles before effectively using its own policy

to infer the other agent’s goal. The plot shows that SOM

actually performs worse than IPP and SPP during the initial

part of training, before outperforming them. Nevertheless,

we see that SOM training allows the agents to play both

roles in an asymmetric cooperative game, and to infer the

goal and role of the other player.

4.5. Analyzing the goal inference

In this section we further analyze the ability of the SOM

models to infer other’s intended goals.
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Figure 7. Inference Accuracy during Training: The mean frac-

tion of episodes in which the agent correctly infers the other’s goal

for the Coin (left), Recipe (center), and Door (right) games, as

a function of training epoch. The estimate of the other’s goal is

considered correct if it remains accurate during all the following

steps in the game.

Figure 7 shows the fraction of episodes in which the goal

of the other agent is correctly inferred. We consider that

the goal is correctly inferred only when the estimate of the

other’s goal remains accurate until the end of the game,

so that we avoid counting the episodes in which the agent

might infer the correct goal by chance at some intermediate

step in the game. In all the games, the SOM agent learns to

infer the other player’s goal with a mean accuracy ranging
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from ∼ 60− 80%. Comparing the second plot in Figure 2

with the left plot in Figure 7, one can observe that the SOM

agent starts distinguishing Other from Neither coins after

approximately 2M training episodes, which coincides with

the time when the mean accuracy of the inferred goal con-

verges to ∼ 75%. The Door Game (right) presents higher

variance since the agents learn to use and infer the other’s

goal at different stages during training.
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Figure 8. Inference Step Distribution: Cumulative distribution

of the step tinf at which the goal of the other player is correctly

inferred (i.e. z̃
t
other = zother, ∀t ≥ tinf ) for the Coin (left),

Recipe (center) and Door (right) games. We define this step so

that z̃other = zother for all the remaining steps in the game. The

distribution is computed over the subset of runs in which the goal

is correctly inferred before the end of the game (∼ 70− 80% of

all runs). A total of 1000 runs with trained SOM models were used

to compute this distribution.

Figure 8 shows the cumulative distribution of the step at

which the goal of the other player is correctly inferred (and

remains the same until the end of the game). The cumulative

distribution is computed over the episodes in which the goal

is correctly inferred before the end of the game. In the

Coin (blue) and Recipe (red) games, 80% of the times the

agent correctly infers the goal of the other, it does so in

the first five steps. The distribution for the Door (green)

game indicates that the agent needs more steps on average

to correctly infer the goal. This explains in part why the

SOM agent only slightly outperforms the SPP baseline. If

the agent does not infer the other’s goal early enough in the

episode, it cannot efficiently use it to maximize its return.
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Figure 9. Performance Variation with Number of Inference

Steps: Average reward (blue) and average fraction of episodes

in which the goal of the other agent is correctly inferred (red)

obtained by the SOM agent as a function of the number of infer-

ence steps used for estimating the other’s goal for the Coin (left),

Recipe (center), and Door (right) games. The error bars represent

1 standard deviation.

Figure 9 shows how the performance of the agent varies with

the number of optimization updates performed on z̃other at

each step in the game. As expected, the agent’s reward

(blue) generally increases with the number of inference

steps, as does the fraction of episodes in which the goal

is correctly inferred. One should note that increasing the

number of inference steps from 10 to 20 only translates

into less than 0.45% performance gain, while increasing it

from 1 to 5 translates into a performance gain of 6.9% on

the Coin game, suggesting that there is a certain threshold

above which increasing the number of inference steps will

not significantly improve performance.

5. Discussion

Summary. In this paper, we introduced a new approach for

inferring other agents’ hidden goals from their behavior and

using those estimates to choose actions. We demonstrated

that the agents are able to estimate others’ hidden goals in

both cooperative and competitive settings, which enables

them to converge to better policies. In the proposed tasks,

using an explicit model of the other player led to better

performance than simply considering the other agent as part

of the environment.

Strengths. Some of the main advantages of our method

are its simplicity and flexibility. This method does not

require any extra parameters to model other agents in the

environment, can be trained with any reinforcement learning

algorithm, and can be easily integrated with any network

architecture. SOM can also be adapted to settings with more

than two players, since the agent can use its own policy to

model the behavior of any number of agents and infer their

goals. Moreover, it can be easily generalized to numerous

other environments and tasks.

Limitations. Our approach is based on the assumption that

the agents are identical or that their transition functions are

independent and identically distributed. Hence, the frame-

work is expected to be more suitable for symmetric games,

in which the agents share a fixed set of goals and have simi-

lar abilities, and we expect a degradation of performance for

asymmetric games. Our experiments confirm this observa-

tion. Another limitation of SOM is that it requires a longer

training time than other baselines, since we backpropagate

through the network at each step. However, their online na-

ture is essential in adapting to the behavior of other agents

in the environment.

Future Work. We plan to extend this work by evaluating

the models on more complex environments and model devi-

ations from the assumption that the players have identical

policies, given a certain goal and state of the world. Another

important avenue for future research is to design models

that can adapt to non-stationary strategies of others in the

environment, as well as to tasks with hierarchical goals.
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