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Modeling Passive Mode-Locking in Quantum
Dot Lasers: A Comparison Between a Finite-

Difference Traveling-Wave Model and a
Delayed Differential Equation Approach

Mattia Rossetti, Paolo Bardella, and Ivo Montrosset, Member, IEEE

Abstract— We present a detailed quantitative comparison be-
tween a finite-difference traveling wave (FDTW) model and a
delayed differential equation (DDE) approach for the simulation
of passive mode-locking in quantum dot lasers with both ring
and Fabry–Perot (FP) cavities. Modifications with respect to the
standard DDE models available in the literature are proposed.
The new DDE approach improves the quantitative agreement
with the FDTW model when applied to the simulation of passive
mode-locking in FP lasers, preserving a very high computational
efficiency. The modifications proposed in the DDE model also
apply to the simulation of quantum-well and bulk devices.

Index Terms— Mode-locked lasers, quantum dots, semiconduc-
tor device modeling, semiconductor lasers.

I. INTRODUCTION

PASSIVE mode-locking in multi-section quantum-dot
(QD) lasers has been extensively studied in the last years

both experimentally and theoretically due to their expected
superior properties with respect to bulk and quantum-well
counterparts [1], [2]. From the theoretical point of view,
different numerical models have been proposed allowing to
gain insights on the physical mechanisms governing the onset
of the ML regimes. Finite-difference travelling-wave (FDTW)
models allow for an accurate description of these devices;
this approach is based on the direct solution via a finite-
difference method of the one-dimensional first-order wave-
equations governing the field evolution inside the cavity; these
equations are then coupled, via proper polarization terms, with
a set of rate equations modelling carrier dynamics within the
QD states in each longitudinal section of the cavity [3], [4].
FDTW models allow to accurately describe two-section QD
passively mode-locked lasers with both ring and Fabry-Perot
(FP) cavities.

Alternatively, assuming a unidirectional ring cavity and
introducing suitable approximations, one can derive from the
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fundamental wave-equations an alternative set of equations
describing the laser dynamics; these equations are based on a
delayed differential equation (DDE) coupled to rate equations
governing the carrier dynamics in the gain and saturable
absorber (SA) sections. The DDE model is essentially a
generalization of New and Haus analytical models [5], [6].
It was originally formulated by Vladimirov et al. in [7], [8]
and successively extended to the analysis of QD ML lasers
[9]. This approach has the advantage of an extremely reduced
computational cost with respect to the FDTW models; more-
over, taking advantage of its simplicity, the DDE model allows
for both analytical and numerical studies of the bifurcations
leading to different dynamic regimes. This approach has been
extensively applied to study passive ML in QD FP lasers
[10]–[12] even if the model would be strictly valid for uni-
directional ring lasers only. A qualitative agreement between
DDE and FDTW models when simulating FP QD ML lasers
has been demonstrated [12], [13].

This work establishes a quantitative comparison between
a FDTW model and a DDE approach for the simulation of
ML in QD lasers with both ring and FP cavities. In order
to improve the agreement, we propose a generalization of
the DDE approach [7]–[12] considering a discretization in
subsections of the gain and saturable absorber sections. We
show that, with respect to standard DDE approaches [7]–[12],
the proposed multi-section DDE (MS-DDE) model allows for
an improved quantitative agreement with the FDTW model
when simulating a QD FP ML laser.

To establish a quantitative comparison, in the MS-DDE
model, input parameters for the description of carrier dynamics
in the QD material are kept the same as those in the FDTW
model; moreover, the FDTW model is implemented with a
formulation as close as possible to that used in the MS-DDE
approach.

It must be pointed out that the modifications introduced
in the MS-DDE model remain valid and effective even when
rate equations describing carrier dynamics in quantum-well
and bulk active media are considered.

In section II, the implemented FDTW model for QD ML
lasers is described; the developed multi-section DDE model
is presented and the differences with respect to standard DDE
approaches available in the literature are highlighted. As a first
validation, in section III, the two numerical models are applied
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to the simulations of QD ML lasers with ring cavity geometry.
In section IV, the two approaches are then used for the simu-
lations of FP ML lasers. A detailed comparison is established,
demonstrating that the additional features introduced in our
multi-section DDE model allow for an improved agreement
with the FDTW model when simulating QD FP ML lasers.
Finally a brief conclusion is drawn.

II. NUMERICAL MODELS

A. Finite Difference Travelling-Wave Model

The amplitude of the guided mode travelling along the
longitudinal direction (z) of a FP laser cavity can be written
in terms of forward and backward propagating envelopes
E±

i (z, t)which are slowly varying both in time and space:

�i (z, t) =
(

E+
i (t, z) e− j ki z + E−

i (t, z) e+ j ki z
)

e jωi t (1)

where ωi is a reference frequency chosen close to the lasing
frequency, ki = ωi/vg is the corresponding reference wave-
number, where vg is the group velocity. Index i = GS, E S1
indicates the field component which is resonant either with
the QD ground states (GS) or the QD first excited state
(E S1). The spatiotemporal evolution of each forward and
backward travelling GS and ES1 field envelopes is described
by a dedicated first-order wave equation as follows:

1

vg

∂ E±
GS

∂ t
± ∂ E±

GS

∂z
= �xy gGS (t, z)

(
γ e−γ t ⊗ E±

GS (t, z)
)

+ jβ�xygE S1 (t, z) E±
GS (t, z) − αi

2
E±

GS (t, z) ; (2a)

1

vg

∂ E±
E S1

∂ t
± ∂ E±

E S1

∂z
= �xy gE S1 (t, z)

(
γ e−γ t ⊗ E±

E S1
(t, z)

)

− jβ�xygGS (t, z) E±
E S1

(t, z) − αi

2
E±

E S1
(t, z) ; (2b)

gi (t, z) represents the QD material gain at wavelength resonant
with i = GS, E S1; gi(t, z) is time and space dependent and
its dynamics is computed via a suitable set of rate equations,
�xy is the field confinement factor within the QD layers and αi

are the intrinsic waveguide losses. ⊗ stands for a convolution
product which describes the field filtered by a Lorentzian
function of width γ , modelling the finite QD gain spectral
bandwidth which is limited by the QD inhomogeneous gain
broadening. In the second term in the RHS of (2a) and (2b),
β�xygGS(t, z) and β�xygE S(t, z) represent instant changes in
the real part of the propagation constant, induced by the QD
ES at the GS wavelength and vice versa; these contributions
are in fact the main responsible for a non-zero chirp of the
ML pulses due to self-phase modulation [14]. β is a coefficient
which depends on the frequency separation between QD GS
and ES1 and can be approximated as:

β = γ
ωE S1 − ωGS

γ 2 + (
ωE S1 − ωGS

)2 . (3)

Wave equations (2) are then completed with proper bound-
ary conditions that in the case of a FP laser cavity can be
written as:

E+
i (t, 0) = √

R1 E−
i (t, 0) ;

E−
i

(
t, L F P

)
= √

R2 E+
i

(
t, L F P

)
; i = GS, E S1 (4)

where L F P is the total FP cavity length and R1 and R2 are
the power reflectivities at the device facets. The output power
will be therefore simply given by P1i = (1 − R1)|E−

i (t, 0)|2
and P2i = (1 − R2)|E+

i (t, L F P)|2.
As already pointed out, in order to compute the

gain/absorption dynamics in each longitudinal section of the
cavity, a proper set of rate equations is solved. This set consists
of 3 rate equations to describe carrier dynamics in 3 confined
QD states (GS, ES1, ES2) in the excitonic approach and
2 additional rate equations for carrier densities in the quantum-
well (QW) and in the barrier states, respectively. The rate-
equations can properly describe the population dynamics in the
QD under both current injection and reverse bias conditions
[3]. Modified rate equations have been therefore introduced in
order to model the population dynamics in the QD belonging
to SA section, where voltage dependent thermionic escape and
tunnelling processes are taken into account [3].

The rate equations for the QD GS and ES1 populations have
the form:
dρi (t, z)

dt
= Rin

i (t, z) − Rout
i (t, z) − Rs

i (t, z) − Rstim
i (t, z)

(5)
where ρi (t, z) represents the occupation probability in the i th

QD state in the cavity section z. Rin
i (t, z) and Rout

i (t, z) are in
and out scattering rates, Rs

i (t, z) represents the radiative and
non radiative recombination rate. A detailed description of the
rate equations system containing explicit expressions for the
rates appearing in (5) can be found in [3]. Finally Rstim

i (t, z)
represents the stimulated emission rate that can be written as
follows:

Rstim
i (t, z) = 2�xy gi (t, z)

W ND Di h̄ωi

×
∑
±

Re
[
E±

i
∗
(t, z) · (

γ e−γ t ⊗ E±
i (t, z)

)]
(6)

where gi(z, t) = g0i (2ρi (t, z) − 1), W is the ridge width, ND

is the QD surface density and Di is the degeneracy of the ith

QD state. Finally g0i is the material gain coefficient for the
ith QD state.

Equations (2)–(6) can therefore be solved directly using a
finite difference approach, allowing to compute the spatio-
temporal dynamics of the field along the longitudinal direction
of the FP cavity. A temporal grid with time step 
t = 30 fs
and a spatial grid with unit step 
z = vg · 
t is considered
in the finite difference scheme.

In the case of a unidirectional ring cavity laser, similar equa-
tions can be used: since propagation is assumed to occur in a
unique direction, the optical field can be described by a single
slowly varying envelope, e.g. E+

i (t, z)with i = GS, E S1. The
counter-clockwise field will be therefore set to be identically
zero E−

i (t, z) = 0.
In this way the dynamics of E+

i (t, z) can be simply com-
puted by using (2a). Moreover, (4) can be simply substituted
by the following boundary condition:

E+
i (t, 0) = √

K E+
i

(
t, L Ring

)
(7)

where K are the losses induced by the output coupling
localized in z = 0.
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Fig. 1. (a) Schematic of unidirectional ring laser described by a standard
DDE model [7]–[12]; red line and arrow indicate nonsaturable losses localized
in the reference section of the device. (b) Alternative ring laser structure that
can be described by a standard DDE approach. (c) Schematic of ring laser
that can be described by the proposed MS-DDE model; the device consists of
F isolated sections; red lines/arrows indicate nonsaturable losses introduced at
any interface between two adjacent sections. (d) Schematic of a two section
FP ML laser. Forward biased gain sections (G) (yellow) and reverse biased
saturable absorber sections (SA) (light blue) are also highlighted.

The described approach differs from [3] in the description of
the QD active medium. Here the inhomogeneous gain broad-
ening induced by the QD size dispersion is not considered to
allow for a direct comparison with the DDE model described
in the next section.

B. Multi-Section Delayed Differential Equation Model

The described FDTW model has, as a main drawback, the
high computational cost required by the simulations, caused
by the dense spatial and temporal discretization in the finite-
difference scheme. The DDE model [7]–[12] on the contrary
represents a simple and computationally efficient approach for
the dynamic simulation of such devices.

The DDE equations governing the field dynamics in the
laser cavity have been directly derived from the original wave
equations (2) but several assumptions have been introduced.
In the DDE model proposed in [7], [8] and extended to the
simulation of QD lasers in [9], the following hypotheses have
been assumed:

1) A ring cavity with unidirectional lasing;
2) Filtering effect due to the finite gain spectral bandwidth

is modelled as a lumped element in a single reference
section of the device (z = 0);

3) Intrinsic waveguide losses αi are treated together with
the output coupling losses as lumped losses localized in
the same reference section of the device (z = 0);

4) The ring laser is assumed to consist of only two sections:
the saturable absorber (SA) and the gain (G) section;

5) Lasing from the QD GS only is assumed.

A schematic of the structure considered in [7]–[12] is shown
in Fig. 1a.

In this paper we propose instead a generalization of the
DDE model proposed in [9]–[12] where assumptions 1 and 2
in the above list still apply but:

1) The ring laser is assumed to be composed by an arbitrary
number of electrically isolated sections that can be
independently forward or reverse biased;

2) The non saturable loss terms are introduced between
any two adjacent sections modelling more accurately the
effect of intrinsic waveguide losses and output coupling
losses.

3) Lasing from both QD GS and ES1 can be properly
treated.

With respect to previous approaches, our MS-DDE model
allows to describe the structure as depicted in Fig. 1c.

DDE equations governing the evolution of the field at both
GS and ES1 wavelengths as well as the population dynamics
in the QD states belonging to each independent section of the
device can be directly derived from (2a), (3), (5) and (7). By
considering the following coordinate change (t, z) →(τ = t −
z/vg, z) and following essentially the same derivation as in [7],
we end up with the set of equations described below. Being F
the total number of electrically isolated sections in the device
and being Lk the length of the kth section (k = 1, 2, . . .F),
the following DDE equations can be derived:
d Ei (τ )

dτ
= −γ Ei (τ ) + γ Ri (τ −T ) Ei (τ −T ) i = GS, E S1

(8)
where Ei (τ ) = E+

i (τ, 0) is the field in the reference section
z = 0 resonant with GS and E S1 wavelengths, respectively;
T is the cold cavity round trip time given by T = L Ring/vg

with L Ring = ∑
Lk and Ri (τ ) represents the round-trip gain

experienced by the pulse within the cavity. Ri (τ ) can be simply
computed via the following expression:

Ri (τ ) =
F∏

k=1

Bik (τ )Mk (9)

In (9), Mk describes the non saturable losses localized between
the kth and (k + 1)th section. This term can include intrinsic
waveguide losses experienced by the field when travelling
across the kth section i.e. exp(−αi/2·Lk) and output coupling
losses

√
Kk localized at the interface between the two sections:

Mk = √
Kke−αi /2Lk (10)

Bik(τ ) represents instead the amplification or attenuation and
the phase changes experienced by the field at i = GS, ES1
wavelength when travelling across the kth section. Those terms
can be simply written as:

BGS,k (τ ) = exp
(
�xy ḡGS,k (τ ) Lk

)

× exp
(

jβ�xy ḡE S1,k (τ ) Lk
)

(11a)

BE S1,k (τ ) = exp
(
�xy ḡE S1,k (τ ) Lk

)

× exp
(− jβ�xy ḡGS,k (τ ) Lk

)
(11b)

where ḡi,k (τ ) represents the average gain/absorption induced
by the QD GS or ES1 in the kth section. This quantity can be
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Fig. 2. (a–c) Comparison between results obtained with the FDTW model
(black lines, square markers) and the MS-DDE model (gray lines, circle
markers) from the simulation of mode-locking in the ring laser structure
depicted in Fig. 1(c). The behavior of average power (a), pulse peak power
(b), and pulse width (c) is shown as a function of the current applied to the
gain section, for a fixed −7V SA reverse bias. (d) Average power and pulse
width computed using the MS-DDE model for V = 7V and I = 275 mA as
a function of the number of sections F used in the calculation. Black lines
show the corresponding values obtained using the FDTW model.

calculated as:

ḡi,k (τ ) = g0i
(
2ρ̄i,k (τ ) − 1

) ; (12)

where ρ̄i,k is the occupation probability in the i th QD state
averaged over the kth section. The temporal dynamics of ρ̄i,k

in each section of the ring cavity can be computed by a system
of rate equations which is almost identical to the one used in
the FDTW model [3]:

dρ̄ik

dτ
= R̄in

ik (τ ) − R̄out
ik (τ ) − R̄st im

ik (τ ) (13)

apart from the stimulated emission rates that in this case can
be written as follows:

R̄st im
ik (τ ) =

(
|Bik (τ )|2 − 1

)

×
(

k−1∏
m=1

|Bim (τ )|2 M2
m

)
|Ei (τ )|2

h̄ωi Di ND W Lk
. (14)

Finally, the output power from section z=0, is calculated
as:

Pout
i (τ ) = 1 − KF

KF
|Ei (τ )|2 . (15)

Equations (8)–(14) represent the complete set of differential
equations to be solved in order to compute the temporal
evolution of the field in the reference section z = 0.

In the next sections, the FDTW model and the MS-DDE
model described above will be applied to the simulation of
both unidirectional ring lasers and FP ML lasers.

III. MODE-LOCKING IN IDEAL UNIDIRECTIONAL RING

LASERS

We consider a unidirectional ring laser with total length
L Ring = L Ring

g + L Ring
abs = 4 mm and SA length L Ring

abs =
700 μm. The simulated device corresponds to the one depicted

in Fig. 2c: a uniform current injection is assumed in the whole
gain section so that, in the MS-DDE model, all the considered
forward biased sections have the same injected current density.
The losses due to output coupling are assumed to be located in
the middle of the gain section in z = 0 only. We set K = 0.1,
corresponding to 90% extraction, in the FDTW model; corre-
spondingly we set KF = 0.1 and Kk = 1 for k = 1. . .(F − 1)
in the MS-DDE approach. Intrinsic waveguide losses αi =
1.5 cm−1 have been considered.

The QD active region is assumed to consist of 5 layers of
InAs QDs embedded in a InGaAs quantum-well and emitting
around 1.3 μm [3]. Material parameters involved in the rate-
equations, describing the physical properties of the QD active
medium, are fully consistent with parameters reported in [3].
Gain coefficients for QD GS and ES1 are �xy g0GS =
12.7 cm−1 and �xyg0E S = 22.8 cm−1, respectively. The
width of the Lorentzian filter γ is set as the width of the
inhomogeneous gain broadening induced by the QD size
dispersion: 2h̄γ = 34 meV.

Simulations of mode-locking in this structure have been
performed with both the MS-DDE model and the FDTW
model. A total number of sections F = 28 composing the
whole ring cavity has been chosen in the MS-DDE model.

We compare the ML regimes obtained with the two ap-
proaches for a fixed 7V reverse bias applied to the SA section.
In the whole range of investigated bias parameters, only GS
lasing has been achieved. In Fig. 2, the behaviour of average
power, peak power and pulse width (calculated through the
intensity autocorrelation function of the ML pulses and as-
suming a Gaussian pulse shape) are shown as a function of
the current applied to the gain section. A very good agreement
between the two models has been achieved over a wide range
of applied currents. Appreciable differences in the results have
been obtained at very large currents only. We think that this
discrepancy can be mainly attributed to the different treatment
of the intrinsic waveguide losses in the FDTW (where they
are distributed along the whole cavity) and in the MS-DDE
model (where they are assumed to be localized between two
adjacent sections only); as a matter of fact, this difference
may lead to a different gain saturation induced by the pulse
in the gain section and this discrepancy tends to become more
relevant at high currents (high pulse energies). Fig. 2d shows
the behaviour of average power and pulse width, simulated
using the MS-DDE for a fixed 7V SA voltage and 275 mA
gain current, as a function of the number of sections F ranging
from the minimum value F = 3 up to F = 28. This clearly
shows that results obtained with the MS-DDE model remain
rather accurate even for low number of sections.

Finally, in order to study the stability of the obtained ML
regimes to perturbations induced by the spontaneous emission
noise, we can calculate the net gain experienced by the ML
pulse over a single round trip in the cavity. From the ML-
DDE model, the round trip gain experienced by the ML pulse
is simply given by (9). Equation (9) can then be rewritten as
follows:

|Ri (τ ) | = exp
(
(Gi (τ ) − Ai (τ )) L Ring

)
i = GS, E S1

(16)
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Fig. 3. Net gain windows leading to the onset of the ML regime in the
ring laser structure: pulse time trace in z = L Ring (blue), AG S(τ ) (red), and
GG S(τ ) (green) computed using the MS-DDE model (right) and the FDTW
model (left), are shown for a 7-V SA reverse bias and gain currents of (a),
(b) 300 mA and (c), (d) 375 mA.

where Ai (τ ) (in cm−1) represents the overall saturable and non
saturable losses experienced by the ML pulse over a round trip
whereas Gi (τ ) (in cm−1) represents the overall amplification
in the gain section. Ai (τ ) and Gi (τ ) can therefore be simply
calculated as follows:

Gi (τ ) = 1

L Ring

∑

k ∈ Gain
section

log (|Bik (τ )|) ; (17)

Ai (τ ) = αi

2
+ 1

L Ring

×

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F∑
k=1

log

(
1√
Kk

)
−

∑

k ∈ SA
section

log (|Bik (τ )|)

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

(18)

The same quantities can be computed from the FDTW
model by integration over the spatial coordinate z, as described
in detail in [3]. In Fig. 3 we compare the behaviour of
AGS(τ ) and GGS(τ ) at a fixed 7V SA voltage and gain current
equal to 300 mA and 375 mA, obtained with the MS-DDE
model (with F = 28) and the TDTW model, respectively. A
very good agreement between the two modelling approaches
is obtained. As already reported in [3], at low currents, an
ultrafast recovery of the GS population just after the ML pulse
due to fast ES to GS transitions, leads to a corresponding
steep increase in GGS(τ ). This creates therefore a region of net
gain RGS(τ )>1 just after the pulse trailing edge. For current
close to the laser threshold, the net gain window exceeding the
pulse trailing edge becomes large enough so that spontaneous
emission noise generated within this time interval can grow,
inducing a trailing edge instability in the obtained ML regime.

Increasing the applied current, this region of net gain just after
the pulse vanishes and, according to New’s criteria [5], [6],
[15], a region of perfectly stable mode-locking can be achieved
for I = 375 mA as shown in Fig. 3b and Fig. 3d.

In this paragraph we have shown that the proposed MS-DDE
approach can give results in good quantitative agreement with
those obtained with the FDTW model, when used to simulate
ML in QD unidirectional ring lasers. In the next section we
will establish instead a comparison between results obtained
with the MS-DDE model and the FDTW model when applied
to the analysis of Fabry-Perot two-section ML lasers.

IV. MODE-LOCKING IN FABRY–PEROT LASERS

Let consider a two-section FP laser as the one depicted in
Fig. 1d. The device is supposed to have a total length L F P = 2
mm, a SA length L F P

abs = 350 μm, a high-reflection (HR)
coated facet with R1 = 0.99 at the SA side and an anti-
reflection (AR) coated output facet with R2 = 0.1.

The FDTW model allows for an accurate description of such
a structure, as described in section II. On the contrary, a DDE
approach cannot in principle ensure an accurate description of
FP lasers since a unidirectional ring cavity is strictly assumed.

In order to use a DDE model for the analysis of such
devices, we have therefore to set L Ring = 2L F P , ensuring
the same cold cavity round trip frequency in both structures
and similarly: L Ring

abs = 2L F P
abs .

Furthermore we must ensure that the overall non-saturable
losses experienced by the field over a round trip are the
same in both structures. To satisfy this condition, in previous
DDE models [7]–[12], the only possibility was to set the
lumped attenuation factor K , localized at the reference section
z = 0, simply as K = R1 R2exp(−αi L F P). Moreover since in
previous DDE approaches the whole ring cavity was assumed
to consist of one SA section and one gain section only, the
SA section was forced to be located just before or after the
reference section z = 0 where non-saturable losses were
introduced, as schematically shown in Fig. 1a and Fig. 1b,
respectively.

On the contrary, in the proposed MS-DDE model, the non-
saturable losses can be distributed between any two adjacent
cavity sections. This allows to consider an equivalent ring
laser structure as that shown in Fig. 2c, where coefficients
Mk defined in (9) and (10) are in this case chosen as:

Mk =
⎧
⎨
⎩

√
R2e−αi /2L F i f k = F√
R1e−αi /2L F/2 i f k = F

/
2

e−αi /2Lk i f k �= F
/

2 and k �= F
(19)

with F even.
The previous conditions ensures that, for a given current

density injected in the gain section, the FP ML laser under
study and the corresponding equivalent ring structure have the
same total unsaturated round trip gain.

Let consider at first a uniform current injection in both the
gain and SA section so that the device operates as a simple
FP laser in continuous wave regime. In Fig. 4a, we compare
the simulated light-current characteristic obtained with the
FDTW model and the MS-DDE model, the latter applied to the



574 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 47, NO. 5, MAY 2011

150
150

100

50

0

1000

800

600

400

200

0 100 200 300

MS-DDE MS-DDE
FDTW
DDE [7]−[12]
DDE

TDTW

MS-DDE
FDTW

MS-DDE
FDTW
DDE

DDE

100

50

O
pt

ic
al

 P
ow

er
 [

m
W

]
Pu

ls
e 

w
id

th
 [

ps
]

Pu
ls

e 
Pe

ak
 P

ow
er

 [
m

W
]

O
pt

ic
al

 P
ow

er
 [

m
W

]

0

8

6

4

2

0

100 150 200 250 300 350 100 150 200 250 300

100 200

20

10

0
20 30 40 50

Current I [mA]

(a) (b)

(c) (d)

Current I−I
th
 [mA]

Current I−I
th
 [mA] Current I−I

th
 [mA]

300 400

Fig. 4. (a) Comparison between the light-current characteristic obtained
from the simulations of the FP laser with uniform injection using the FDTW
model and the one obtained from the simulation of the equivalent ring laser
structure using the MS-DDE model. Output power from the anti-reflection
coated facet (P2G S ) is considered. (b)–(d) Comparison between ML regimes
obtained with the FDTW model on the FP laser structure of Fig. 1(d), with the
MS-DDE model on the equivalent ring laser structure shown in Fig. 1(c) and
with a standard DDE approach on the equivalent ring laser structures shown
in Fig. 1(a) [7]–[12] and in Fig. 1(b), respectively. Average output power (b),
pulse width (c), and peak power (d) are shown as a function of the current
above threshold. Simulations of the structure shown in Fig. 1(a), performed
with the standard DDE model, show a continuous wave operating regime over
the whole range of investigated currents.

equivalent ring laser structure (Fig. 1c). As expected from the
above considerations, the threshold current density is equal in
the two structures i.e. the threshold current Ith obtained with
the MS-DDE is twice the one obtained from the FDTW model
simulations. Furthermore, in absence of gain saturation, the
differential efficiency of the light-current characteristic should
be exactly the same in the two cases; a slight difference is
instead observed due to the different gain saturation induced
by the field within the FP cavity and in the corresponding
equivalent ring cavity. Despite this slight difference, from
the above discussion it clearly appears that the comparison
between the FDTW and the MS-DDE modelling results can
be established by comparing the dynamic regimes in the two
structures at the same value of current above threshold I − Ith .

Considering a reversely biased SA section, we then per-
formed simulations of ML using both approaches. A fixed
−7V SA voltage is considered. Fig. 4b–d show a comparison
between results obtained with the FDTW model when applied
to the simulation of the FP laser and the corresponding results
obtained with the MS-DDE model on the equivalent ring laser
depicted in Fig. 1c. Moreover, in the same figure, simulation
results obtained using a standard DDE approach are also
shown.

Applying the standard DDE approach [7]–[12] to the sim-
ulation of the equivalent ring structure depicted in Fig. 1a, a
CW operating regime has been obtained in the whole range of
investigated currents. This can be clearly justified by the fact
that the SA section is located just after the reference section
where the cumulative non-saturable losses of the whole cavity
are assumed to be localized. The optical power crossing the
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Fig. 5. Net gain windows leading to the onset of the ML regime in the
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shown for currents above threshold of (a), (b) 195 mA, (c), (d) 265 mA, and
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SA section is in this case too small to induce a significant
absorption bleaching and therefore a stable ML regime cannot
be obtained. An alternative choice is to apply the standard
DDE approach as shown in Fig. 1b, where the SA section
is located before the reference section z = 0. In this case,
a ML regime has been obtained in the whole range of bias
currents; however, the average power is significantly smaller
and the pulse width is much shorter than those obtained in
the FP ML laser, via the FDTW simulations. A significantly
improved agreement with the FDTW modelling results can
instead be obtained by applying the MS-DDE model to the
equivalent ring structure depicted in Fig. 2c. With respect to
the previous cases, the difference in the slope of the light-
current characteristics obtained with the two methods is now
appreciably reduced even if it remains significant, moreover a
good agreement in the behaviour of the pulse autocorrelation
width versus current is achieved, leading also to an improved
quantitative agreement in the values of peak power. From the
above considerations, it becomes evident the effectiveness of
the proposed MS-DDE model when applied to the simulation
of FP ML lasers.

As in the previous section, the net gain windows leading
to the ML regimes are investigated. In Fig. 5, we compare
the dynamics of the overall saturable and non-saturable cavity
losses AGS(τ ), and the overall amplification GGS(τ ) experi-
enced by the pulse over a round trip in the FP ML laser and in
the equivalent unidirectional ring laser of Fig. 2c, computed
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using the FDTW model and MS-DDE model respectively. A
general agreement between the net gain windows obtained
with the two approaches is preserved: as already shown in
Fig. 3, at low currents a net gain window exceeding beyond the
pulse trailing edge is obtained; for currents close to threshold,
this effect is responsible for instabilities in the ML regime
due to noise perturbations. Increasing the current a regime
of perfectly stable ML according to New’s condition [5],
[6], [15] is achieved; finally, at very high gain currents an
instability at the pulse leading edge starts to appear. Despite
this general agreement, clear differences between the net gain
windows obtained with the FDTW model and the MS-DDE
model are however present. These discrepancies arise directly
from intrinsic differences between the structures simulated
with the two approaches. In the FP ML laser simulated with
the FDTW model, the cavity losses AGS(τ ) tend to decrease
even before the onset of the ML pulse; in the ring laser instead
this effect is completely absent. This behaviour is related to
the coupling between forward and backward travelling fields
in the HR coated SA section: the part of the pulse which has
been reflected back by the HR coated facet sees an absorption
which has been already partially bleached by the pulse itself
when travelling in the SA before being reflected. The coupling
between forward and backward travelling fields also partially
influences the dynamics of GGS(τ ).

The study of the net gain windows allows to define stability
boundaries for the fundamental ML regime. In Fig. 6, we
show maps of pulse width and average power as a function of
SA reverse bias and gain current, obtained with the MS-DDE
model, where ML stability boundaries are highlighted.
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In the results shown above spontaneous emission noise was
not included in the calculation. As shown in [3] however,
introducing spontaneous emission (SE) in the calculations, the
effectiveness of the noise in deteriorating the ML properties
due to either trailing edge or leading edge instabilities can
be clearly proved. As an example, in Fig. 7, we show the
pulse time traces and the corresponding radio-frequency (RF)
spectra, calculated via the FDTW model including SE [3], for
a −7V SA voltage and I − Ith equal to 62 mA and 265 mA,
respectively. The large region of net gain extending beyond the
pulse trailing edge identified at low currents induces a strong
instability in the ML regime that can be clearly seen both in
the ML time trace and in the RF spectrum (Fig. 7a–b).

Despite the lack of a precise quantitative agreement, thanks
to its very low computational cost, the newly proposed MS-
DDE model allows to perform extensive quantitative analysis
of the ML regimes in FP ML lasers as a function of the
bias parameters. The MS-DDE model represents therefore
a powerful and computationally efficient approach for the
analysis, design and optimization of the performances of
FP QD ML lasers. A reduced set of simulations performed
using the FDTW model can then be done for validation and
refinement of the results obtained with the MS-DDE approach.

V. CONCLUSION

We proposed a new multi-section DDE model for the
simulation of passive mode-locking in QD lasers. Its appli-
cation to the simulation of unidirectional ring lasers has been
verified to be in good agreement with a FDTW model. In
order to simulate ML in Fabry-Perot lasers using the MS-
DDE approach, we then identified a ring laser structure whose
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properties are equivalent to those of the FP ML laser under
study. Simulating this structure with the MS-DDE approach,
a widely improved agreement with the FDTW model results
is obtained with respect to standard DDE approaches, proving
that the MS-DDE model can be a powerful and flexible method
to obtain a reliable description of ML lasers with FP cavities.

The MS-DDE model has been applied here to the study
of ML lasers based on semiconductor QDs. This approach
however has a general validity and ensures an improved
description of FP ML lasers even with quantum-well and bulk
active media.
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