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Abstract— Peer-peer networking has recently emerged as a
new paradigm for building distributed networked applications.
In this paper we develop simple mathematical models to explore
and illustrate fundamental performance issues of peer-peer file
sharing systems. The modeling framework introduced and the
corresponding solution method are flexible enough to accom-
modate different characteristics of such systems. Through the
specification of model parameters, we apply our framework to
three different peer-peer architectures: centralized indexing, dis-
tributed indexing with flooded queries, and distributed indexing
with hashing directed queries. Using our model, we investigate
the effects of system scaling, freeloaders, file popularity and
availability on system performance. In particular, we observe that
a system with distributed indexing and flooded queries cannot
exploit the full capacity of peer-peer systems. We further show
that peer-peer file sharing systems can tolerate a significant
number of freeloaders without suffering much performance
degradation. In many cases, freeloaders can benefit from the
available spare capacity of peer-peer systems and increase overall
system throughput. Our work shows that simple models coupled
with efficient solution methods can be used to understand and
answer questions related to the performance of peer-peer file
sharing systems.

I. INTRODUCTION

Peer-peer networking has recently emerged as a new
paradigm for building distributed networked applications. The
peer-peer approach differs from the traditional client/server
approach towards building networked applications in several
crucial ways. Perhaps most importantly, a peer is both a pro-
ducer and a consumer of the implemented service. In a peer-
peer file-sharing application, for example, a peer both requests
files from its peers, and stores and serves files to its peers. A
peer thus generates workload for the peer-peer application,
while also providing the capacity to process the workload
requests of others. As a result, an increase in the number of
peers results not just in an increase in workload, but also in a
concomitant increase in the capacity to serve the workload. In
the traditional client-server approach, a clear distinction exists
between the consumers and producers of a service — clients
generate workload and workload is processed by servers; an
increase in the number of clients results simply in an increase
in workload. A second important difference is that a peer’s
lifetime in the system is transitory — a peer may be active
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in the system for some time (both generating requests and
serving the requests of others) and then go off-line, removing
itself from the system.

Considerable research has been devoted to developing a
fundamental understanding of the performance of traditional
client-server applications [1]. For example, various models
exist for predicting the system throughput and average re-
sponse time of a workload that is load-balanced among a set
of servers. Perhaps because the field is so new, significantly
less work has been devoted to developing a fundamental
understanding of peer-peer applications. Much of the research
to date in peer-peer networking has focused on developing
point solutions to specific peer-peer problems, or on measur-
ing client workloads and serving characteristics of currently
deployed peer-peer systems.

To our knowledge, no study has yet evaluated fundamental
performance issues of peer-peer file sharing systems. It is
difficult to evaluate any conjecture in real deployed peer-peer
systems, given the unregulated and transitory nature of such
networks. Thus, a formal framework is clearly needed to pro-
vide for the systematic evaluation of such performance issues.
For example, it is generally assumed that peer-peer systems
can scale better than the traditional client/server approach.
However, there has not been any quantitative evaluation of
the scalability of peer-peer systems. Moreover, it is commonly
assumed that freeloaders can degrade the performance of peer-
peer systems since they do not contribute to the capacity of the
system. Again, we are not aware of any study that examines
the impact freeloaders have on the overall system performance
and on other non-freeloading peers.

The goal of our work is to develop simple mathematical
models that can be used to illustrate and illuminate funda-
mental performance issues of peer-peer file sharing systems.
We introduce a flexible mathematical abstraction of a peer-
peer file sharing system that is general enough to capture
the essence of different architectures and different peer be-
haviors. We also present an approximate solution method for
the system throughput which will be used to analyze the
system performance. By defining specific model parameters
we capture three different architectures (centralized indexing,
distributed indexing with flooded queries, distributed indexing
with routed queries) and two classes of peers (non-freeloaders
and freeloaders).

A particular strength of our approach is the generality of
the modeling framework which allows one to explore a range
of issues and performance trade-offs of file sharing peer-peer
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systems. In particular, we address the following fundamental
issues: (i) the scalability of different architectures with the
number of peers; (ii) the impact on such systems due to the
presence of different classes of peers (e.g., freeloaders); (iii)
the impact of imbalance in service capacity and file request
load on such systems.

We now summarize some of our results:
• The use of limited-scope flooding of queries has a seri-

ously negative impact on the system performance. This
approach has an inherent handicap in not being able to
fully capitalize on the potential capacity of a peer-peer
system.

• Contrary to what one might expect, freeloaders often do
not have a significant negative impact on the performance
of other peers. In fact, peer-peer systems are likely to have
spare capacity which freeloaders can benefit from.

• It is known that well designed distributed indexing archi-
tectures like CAN and Chord [2], [3] can scale with popu-
lation size. However, we show that a centralized indexing
approach can scale gracefully until the system reaches its
capacity to process queries, and can outperform the other
architectures for small population sizes.

• The performance of a peer-peer system shows only a
minor degradation when the most requested files are not
the most widely available.

In the following section we provide an overview of current
peer-peer file sharing architectures and discuss their differ-
ences. In Section III we introduce an abstract model for peer-
peer file sharing systems. The model parameters corresponding
to each particular architecture are defined in Section IV. In
Section V, we derive an approximate solution technique for the
system throughput. Numerical results and comparison between
different architectures under various conditions are presented
in Section VI. Finally, we conclude the paper in Section VII.

II. BACKGROUND

It is possible to divide the currently proposed peer-peer file
sharing systems into three different architectures. The earliest
design uses a central server (or server cluster) to coordinate
participating nodes and to maintain an index of all available
files being shared. When a peer node joins the system, it
contacts the central server and sends a list of the local files
that are available for other peers to download (shared files).
To locate a file, a peer sends a query to the central server,
which performs a database lookup and responds with a list of
peers that have the desired file. If a peer leaves the system, its
list of shared files is removed from the central server. We will
denote such an architecture as a CIA (Centralized Indexing
Architecture). An example of such a system is the Napster
network [4].

The two other architectures eliminate the central server and
distribute the indices of available files among participating
nodes; they differ from each other primarily in the manner
in which they distribute the file indices. In one approach, each
peer is responsible for maintaining the indices of only the
files it stores. A limited-scope query message is flooded to the

network when a peer wants to locate a file in the system. All
nodes reached by the flooding that have a positive match with
the query reply to the peer that originated the request. Note that
since query messages have limited-scope, it is possible that
peers cannot locate files even though the files are available
in the system. This type of architecture will be denoted as
DIFA (Distributed Indexing with Flooding Architecture). It is
typified by the Gnutella network [5].

The third approach eliminates flooding by systematically
distributing the file indices among participating nodes, with
queries being routed directly to the node responsible for that
subset of the file index. When a node joins the system, it is
assigned a subset of the index space and it receives all keys (〈
file name, peer address 〉 pairs) for that subset. If a peer leaves
the system, another peer (or peers) becomes responsible for
its subset of the file index. We will denote such systems as
DIHA (Distributed Indexing with Hashing Architecture) which
are typified by Chord [2], CAN [3], Pastry [6] and Tapestry
[7].

Despite their architectural differences, three common impor-
tant functions are performed by all peers in all architectures: (i)
maintenance of the infrastructure of the peer-peer system. This
involves handling peer arrivals and departures and ensuring
network connectivity among peers; (ii) handling queries. This
involves query propagation and response mechanisms; (iii) file
transfers. This last function involves reliable file download,
and is performed similarly in all three architectures, since
after locating the destination node a direct file transfer takes
place, between the peer requesting the file and the one storing
it. The manner in which the first two functions above are
accomplished, however, differ significantly among the three ar-
chitectures. In the central server architecture, the central server
handles all infrastructure maintenance and query processing
functions. In contrast, these functions are distributed among
all the peers in the system in the two distributed architectures.

III. MODEL FOR PEER-PEER FILE SHARING SYSTEMS

In order to capture the distinguishing characteristics of peer-
peer file sharing systems, we seek a simple, yet representative,
mathematical abstraction. We model the peer-peer system as
a multiple class closed queueing network where each class
consists of a fixed population of peers, given by N =
(N (1), . . . , N (C)), where C is the number of classes. Peers
can be either on-line, participating in the system, or off-line.
While on-line, a peer generates workload by posing queries to
locate files and performing file downloads. When a peer joins
the system, moving from the off-line to the on-line state, it not
only generates workload, but also brings service capacity to
the system. In the distributed architectures, a peer participates
in infrastructure maintenance and query processing (which we
will term “common service”). In all architectures a newly
arriving peer will also be available to serve files to its peers,
which increases the service capacity of the system. After
downloading a file, a peer either leaves the system (and returns
to the off-line state) or remains in the system (to generate
subsequent requests, and to provide file transfers to other
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M total number of distinct files in the system
C number of classes of peers
N(c) population size of the c-th class of peers
N vector (N(1), . . . , N(C)) of population sizes

N
(c)
a no. of peers on-line from the c-th class

Na vector (N(1)
a , . . . , N

(C)
a ) of peers on-line

1/λ
(c)
off

average off-line time of the c-th class

1/λ
(c)
idle

average idle time of the c-th class
µq(Na) service rate of common service queue
µf (Na, i) service rate for downloading the i-th

most replicated file
pj prob. that a request is associated with

j-th most popular file

p
(c)
off

prob. that a peer from the c-th class
goes off-line

qf (Na, i) prob. that a query for the i-th most
replicated file fails

T (c) throughput of c-th class observed at
reference point A in Figure 1

T system throughput,
∑C

c=1 T (c), observed
at reference point A in Figure 1

TABLE I

NOTATION AND MODEL PARAMETERS.

peers). Figure 1 illustrates a model that captures this behavior,
while the notation for the model is introduced in Table I. We
next consider the individual components of this model in more
detail.

The common services component of the system is abstracted
by having a single server queue represent query processing.
In the distributed architectures, peers cooperate to process
queries, and hence the service rate µq(Na) for this queue is
an increasing function of the number of on-line peers. Na is a
vector containing the number of peers on-line from each class.
As noted earlier, peer-peer architectures differ significantly
in how they process queries. Thus, µq(Na), appropriately
chosen, can be used to model the distinctive characteristics
of the search mechanism of each architecture.

An important abstraction of our model is that each distinct
file being shared in the system will have a certain service
capacity associated with it. That is, there will be some number
of copies of each file in a peer-peer network, and the larger
the number of copies, the larger the capacity of the peer-
peer system to serve this file. This abstraction is modeled by
associating a single server queue with each distinct file in the
system (we assume there are M distinct files). All requests to
download a particular file must enter its corresponding queue
to be served. The service capacity to serve a file depends on
the number of replicas of that file present in the system, which
in turn generally depends on the popularity of that file. The
number of replicas in the system also depends on the number
of peers currently on-line. Thus, we denote the service capacity
for the i-th most replicated file as µf (Na, i), where i varies
from 1 to M .

Another important aspect of file sharing applications is that
queries are not uniformly distributed among the M distinct
files available in the system. Thus, let j = 1, . . . ,M indicate

the rank of the file based on the number of requests it receives.
Let pj denote the probability that a query is directed to the
j-th most requested file. Note that the j-th most popular file
might not be the same as the j-th most replicated file. If a
file has recently become “hot” it might receive more requests
than any other file in the system, however, it might not be the
most replicated file of the system.

In all architectures, a query request can fail to locate the
desired file. This can happen for one of several reasons: (i) the
desired file is not present in the system; (ii) peers that hold the
desired file are off-line; (iii) the query message did not reach
the peer node that holds the index for the file being searched.
Again, we want to model the fact that queries fail with un-
equal probability across the files available in the system. The
probability that a query fails is a function of the number of
replicas of the desired file. Moreover, the number of on-line
peers also affects the probability that a query will fail. Thus,
let qf (Na, i) denote the probability that a query for the i-th
most replicated file fails given that there are Na peers on-line.
By appropriately choosing qf (Na, i) we can model different
architectures and their behaviors with respect to query failure.

When peers are on-line, they are not always posing queries
and downloading files. A peer might remain silent and neither
generate queries nor download files for a period of time. This
behavior is modeled by including a “think phase” that each
peer must go through before posing a query. User behavior
(while on-line) thus consists of alternating intervals of think
time and file query/download activity. The think time period
for the c-th class (1 ≤ c ≤ C) is modeled by an infinite
server queue with mean service time 1/λ

(c)
idle. The time spent

querying/downloading will depend on system architecture,
load, and other specific system parameters, as will be discussed
later.

The final component of our model captures the behavior
of peers going off-line and, subsequently, coming back on-
line. After downloading a file a peer might decide to leave
the peer-peer system (go off-line), which occurs with a class
dependent probability p

(c)
off . Note that p

(c)
off determines the

expected number of downloads a peer from class c performs
before going off-line, which is given by 1/p

(c)
off . Upon leaving

the system the peer will remain off-line for a period of time
before going on-line again. This corresponds to users exiting
the application and executing it again at a later point in time.
Peer behavior thus consists of alternating intervals of being
on-line and off-line. The off-line period for the c-th class is
modeled by an infinite server queue with mean service time
1/λ

(c)
off .

A. Multiple classes of peers

Recent measurement studies have observed a significant
disparity in peer behavior. For example, in [8] the authors point
out that nearly 70% of Gnutella users do not share any files;
these peers are classified as “freeloaders”. More generally, in
[9] the authors identify two distinct classes of peers: (i) a set
that behave more like servers, adding capacity to the system
(by sharing many files) and requesting fewer downloads; (ii)
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Fig. 1. Model for peer-peer file sharing systems

a set that behaves more like clients, adding little capacity to
the system and requesting more downloads.

Our model captures this important aspect by having multiple
classes of peers and by providing differentiated treatment
according to their class. We distinguish among different
classes by giving different values to model parameters that
characterize the peer behavior, such as average think time,
probability of going off-line, and average time off-line, on a
per class basis.

Moreover, having the service capacity (query processing
and file downloading) depend on Na allows the model to
differentiate the amount of capacity that peers in different
classes bring into the system. Note that different classes of
peers can be used to distinguish not only among user behavior,
but also other characteristics, such as different peer bandwidth
connectivity.

B. Model extensions

It is worth noting that the framework on which our model
is constructed is easily extended to accommodate other char-
acteristics of peer-peer file sharing systems. In particular, we
have extended it to capture the impact that peers have on the
system when making the transition from the off-line to the
on-line stage. During this phase, the system adapts to the new
peer and may perform local (or global) updates in the file
index. This transient stage can be modeled by another infinite
server queue located just after the off-line stage. While in this
transient stage, peers effectively reduce the service capacity
of the system. We believe that adding this subsystem to the
model has little impact on the general trend of our results. Two
reasons can help explain why: (i) the relatively short period of
time peers stay in the transient stage (compared to on-line and
off-line periods, which are several orders of magnitude larger);
(ii) the relatively small overhead of adapting the system to the

new peer (an average update should not involve significantly
more work than the equivalent of a few queries). We have
considered this issue in a more detailed version of this work
[10].

Another possible extension is to allow for a variable number
of peers in the entire system. This would eliminate our fixed
population assumption and allow us to examine the system
under a varying population. The model could be extended by
introducing an exogenous arrival process of peers to the on-
line stage and allowing peers to probabilistically depart the
system. Although we have not pursued this modification, we
believe such extensions are easy to incorporate in our current
modeling framework.

IV. MODEL PARAMETERS

In the previous section, we presented a peer-peer file sharing
model in which model parameters are functions of Na, file
popularity and file replication, which we now elaborate in
more detail.

Only recently has research been conducted on characterizing
the workload and the service capacity of existing peer-peer
file sharing applications. To our knowledge, there exists only
a few measurements studies performed on actual peer-peer
systems that attempt to characterize the available content and
peer behavior [8], [11], [12]. Thus, we will rely on our
understanding of different architectures, coupled with results
from these measurement studies, to guide the choice of model
parameters for each type of architecture. Note that the model
and the approximate solution method (to be described in
Section V) are flexible with respect to the choice of parameters
and functions used to represent the service capacity. Therefore,
it is possible to modify or replace parameters and functions of
the model and still solve it using the solution method proposed.
We first present the parameters for the single class case, i.e.,
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C = 1 and Na = (N (1)
a ). We will discuss the case where

C = 2 later.
Results from a measurement study of the Gnutella network

[11] have shown that most file queries are directed to a few,
highly popular topics. Other studies [8] have shown that the
number of replicas of a certain file in Napster and Gnutella is
also heavily skewed. A promising candidate distribution that
has been shown to capture such a popularity characteristic is
the Zipf distribution. This distribution can be used to determine
the probability that a query is associated with the j-th most
requested file (pj) and also to determine the service capacity
of the i-th most replicated file. We will use i to denote rank
according to the number of file replicas and j to denote the
rank according to the number of requests a file receives. Using
the Zipf distribution, we have that pj ∝ 1/jα, where α is the
scaling parameter of the distribution. Since

∑M
j=1 pj = 1, we

have
pj = K/jα (1)

where K = 1/
∑M

j=1 1/jα.
The service capacity for a given file in the system is directly

proportional to the number of replicas of that file and to the
number of peers that are currently on-line. Since the number
of replicas of a file are described by Zipf’s distribution, we
model the service rate of the i-th most replicated file by

µf (Na, i) =
N

(1)
a H K

iα
(2)

where H represents the basic service rate associated with the
contribution of a single peer to the file service capacity. Note
that all M distinct files are assumed to be available whenever
one or more peers are on-line.

We assume that the file download component is identical
for all peer-peer architectures, since files are shared by peers
and are directly downloaded from one another. However,
the architectures differ significantly in the manner in which
participating peers contribute to the common services. Hence,
this component can be crucial in illuminating the performance
differences among the three architectures. An important pa-
rameter is how balanced is the query workload distributed
among peers on-line, which will be quantified by θ, 0 < θ ≤ 1.
To exemplify, consider a server cluster that is fully balanced,
in which case we say θ = 1. However, if the workload of
the cluster is skewed towards a small subset of the servers,
then not all available service capacity can be utilized. Thus,
the effective service capacity of the system is less than the
sum of the capacity of the individual servers. In this case we
say θ < 1. Peer-peer systems with distributed architecture are
subject to this imbalance, as queries generated by peers tend
to have a skewed distribution.

We now explore the distinctive characteristics of the three
architectures and describe the rationale behind our choices of
µq(Na).

• CIA - Centralized Indexing Architecture
In such an architecture, there exists a single server that
maintains the index of all files and performs all query

lookups. We thus model the service capacity of the
common services as being independent of the number
of users on-line. Thus,

µq(Na) = C1

where C1 > 0 is determined by the capacity of the central
server to perform query lookups.

• DIFA - Distributed Indexing with Flooding Architecture
In such an architecture, each node maintains the indices
of the files it owns and responds positively to matching
queries. Thus, the system-wide query service capacity
increases linearly with the number of peers on-line. How-
ever, due to the limited-scope flooding, a query reaches a
bounded number of peers in the system. Thus, the system-
wide query service capacity should be scaled down by
this factor. We denote the number of peers a query reaches
by T β , where T is the value of TTL, which indicates the
maximum number of hops a query message traverses in
limited-scope flooding, and β > 1 is a parameter related
to the connectivity of the topology formed by the peers.
Hence we define

µq(Na) =
Cq

T β
N (1)

a θ

where Cq > 0 is determined by the capacity of a single
peer to process a query. Note that in this architecture
there is little imbalance in query processing, since queries
are not directed at any particular set of peers, but rather
flooded to locate files, thus, θ ≈ 1.

• DIHA - Distributed Indexing with Hashing Architecture
In such an architecture, each peer is responsible for a
subset of the index space, thus, as in DIFA, the system-
wide query service capacity increases linearly with the
number of peers on-line. However, the average number
of peers traversed to answer a query, and hence involved
in processing it, increases in proportion to log(N (1)

a )
[2]. Thus, we scale down the system service capacity by
this factor. Moreover, the DIHA architecture suffers from
the imbalance phenomena, as specific peers are assigned
fixed subsets of the index space, and queries will not be
distributed uniformly across the index space. Hence, for
this architecture, θ < 1. Thus, we have

µq(Na) =
Cq

log(N (1)
a )

N (1)
a θ

Note that Cq is the same in both distributed architectures
as we assume that peers have identical service capacity
independent of the architecture.

Another important difference between the three architec-
tures is how queries fail, which determines the probability of
query failure. If we assume that all queries are for files that
exist in the system, that a peer that holds the index for this
file is always on-line, and that communication is reliable, then
a query fails only if it is unable to reach the peer node that
holds the index for the file being searched. In CIA and DIHA,
queries are always routed to the peer node that contains the
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index for the file being searched, hence these architectures can
always locate the requested file. For these systems

qf (Na, i) = 0

However in DIFA, since a query is flooded only to a
bounded number of peers, there is a chance that the query
might not reach a peer that has the desired file. Thus, the
probability that a query for a given file will succeed is
proportional to the ratio of the TTL to the diameter of the peer-
peer network (approximated as (N (1)

a )1/β , with β previously
defined). Another important factor is that queries directed at
files with more replicas have a higher chance of success.

Based on the previous arguments, we define the probability
of query failure for a particular file as

qf (Na, i) =

{
0 N

(1)
a ≤ T β

1 − T
(N(1)

a )1/β

M+1−i
M+1 otherwise

If we rank the files by the their number of replicas, then
M+1−i
M+1 captures the notion that a file with a higher rank

has a better chance to be located. It follows that the overall
probability of query failure is defined as:

q(Na) =
M∑

i=1

pi qf (Na, i)

=






0 N
(1)
a ≤ T β

1 − T
(N(1)

a )1/β
(1 − K

M+1

M∑
i=1

i1−α) otherwise

Note that in the equation above we have assumed that the
rank of a file according to its request popularity is identical to
its rank determined by the number of replicas it has. Although
this need not be true, it allows for the analytical tractability
presented in the Section V. We will relax this assumption and
explore this mismatch in Section VI-C.

A. Modeling freeloaders

As described earlier, it has been observed that peers divide
into two classes, those that provide file service capacity
(non-freeloaders) and those that do not (freeloaders). It has
been argued that freeloaders can have a negative impact on
overall system performance. Hence, a fundamental question
concerning the viability of file sharing peer-peer networks
is if it can remain scalable under such a dichotomy in peer
behavior. Freeloaders bring in capacity only to the common
service component of the system, and do not contribute to
the capacity of serving files. This represents the fact that
freeloaders do not share any files but can still provide capacity
to the infrastructure of the architecture (e.g., routing queries).
Moreover, freeloaders generally exhibit a more aggressive
behavior than non-freeloaders, in the sense that they generate
more queries and download more files than non-freeloaders.
Their off-line period can also be different, staying off-line
for longer periods of time, although we are not aware of
any measurement studies that support this possibility. We will

denote the non-freeloaders and freeloaders as classes 1 and 2,
respectively.

Considering our above discussion and using the functions
defined earlier for the model parameters, we can redefine these
functions for the two class case as:

µ′
q(Na) = µq(N (1)

a + N (2)
a )

µ′
f (Na, i) = µf (N (1)

a , i)
q′
f (Na, i) =

{
0 N

(1)
a + N

(2)
a ≤ T β

1 − T
(N(1)

a +N
(2)
a )1/β

M+1−i
M+1

N(1)
a

N
(1)
a +N

(2)
a

otherwise

for DIFA and q′
f (Na, i) = 0 for CIA and DIHA, as before. The

aggressiveness of freeloaders is modeled by properly choosing
p
(2)
off , 1/λ

(2)
idle and 1/λ

(2)
off .

V. SOLVING THE MODEL

In this section we describe an approximate solution tech-
nique that will be used to numerically solve the model de-
scribed above. This technique is based on bottleneck analysis
[13], with an extension to handle multiple classes of customers
[14].

Consider a closed queueing network consisting of a set Q of
single server queues and infinite server queues, and C classes
of customers. The visit ratio V

(c)
k , k ∈ Q, c = 1, . . . , C is

defined as the average number of visits of customers from class
c to queue k for every visit of that customer to a reference
point in the network where the throughput will be measured.
The service demand D

(c)
k is defined as the product of the

respective visit ratio and the average service time for class
c at queue k. In this system, the utilization of each queue
is proportional to its service demands. The queue with the
highest service demand has the highest utilization and is called
the bottleneck queue of the system. Let R(c) represent the
average delay of a class c user to traverse the system with
respect to the reference point when the total population size
is N (c). Since a customer must spent at least the respective
service time in each in each device visited, we have that
R(c) ≥

∑
k∈Q

D
(c)
k . Using Little’s Law we obtain an upper bound

on the throughput for class c: T (c) ≤ N (c)/R(c). However, if
there exists a bottleneck device that is queueing customers,
we can include the queueing delay of this device to further
improve the average delay bound. Hence, we have T (c) ≤
N (c)/(R(c)+V

(c)
B WB), where B ∈ Q is the bottleneck device

of the system, and WB is the average queueing time (time
waiting in queue before starting to receive service) at the
bottleneck queue. Putting these two bounds together we have:

T (c) ≤






N(c)∑
k∈Q

D
(c)
k

w/o queueing

N(c)∑
k∈Q

D
(c)
k

+V
(c)

B WB
w/ queueing

The system throughput, T , is simply given by the sum of

the throughputs of each class: T =
C∑

c=1
T (c). Moreover, when
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there is queueing in the system, the bottleneck device becomes
the key limiting factor in the system throughput. In particular,
its service capacity bounds the system throughput, and the
following equation holds:

C∑

c=1

T (c) V
(c)
B ≤ µB (3)

where µB is the service capacity of the bottleneck device.
Notice that there is no queueing for service in the infinite
server queues. Using the above framework we elaborate an
approximate solution for the per class throughput, T (c).

Reverting back to our model, we define the system through-
put as the number of successful file downloads per unit time
as measured at the reference point A illustrated in Figure 1.
The visit ratio for each class for each queue of the system
with respect to reference point A is given by:

V
(c)
off = p

(c)
off

V
(c)
idle =

1
1 − q(Na)

V (c)
q =

1
1 − q(Na)

V
(c)
f,i =

pi (1 − qf (Na, i))
1 − q(Na)

where V
(c)
off is the probability of going off-line; V

(c)
idle and V

(c)
q

reflects the number of times on average a peer revisits the
idle component and the common service queue, respectively,
due to query failures; V

(c)
f,i is the frequency of visiting the file

service component for file i; and Na = (N (1)
a , . . . , N

(C)
a ),

is the expected number of peers of each class on-line in the
system. Note that with the exception of V

(c)
off , all other visit

ratios are the same among different classes of peers.
Thus the corresponding demands for each part of the system

are:

D
(c)
off =

p
(c)
off

λ
(c)
off

D
(c)
idle =

1

λ
(c)
idle (1 − q(Na))

D(c)
q =

1
µq(Na) (1 − q(Na))

D
(c)
f,i =

pi (1 − qf (Na, i))
µf (Na, i) (1 − q(Na))

and the system throughput is bounded by

T (c) ≤






N(c)

Didle+Dq+
M∑

i=1

Df,i+Doff

w/o queueing

N(c)

Didle+Dq+
M∑

i=1

Df,i+Doff+V
(c)

B WB

w/ queueing

(4)

By applying Little’s Law at the infinite server queue that
represents the off-line period of a peer in the system, we have

(N (c) − N
(c)
a ) λ

(c)
off = T (c) p

(c)
off

where N (c) − N
(c)
a is the average off-line population size of

class c, T (c) p
(c)
off is the rate at which peers from class c go

off-line, and 1/λ
(c)
off is the service rate of the off-line infinite

server queue.
This leads to:

N
(c)
a = N (c) −

T (c) p
(c)
off

λ
(c)
off

(5)

We will assume that the throughput of the system actually
equals the upper bound established by equations (3) and
(4). This assumption combined with equation (5) provides

us with 2C + 1 non-linear equations with N
(c)
a , T (c) and

WB as unknowns. We solve the resulting fixed point problem
numerically using an iterative method. We believe it can be
shown that this fixed point problem always has a unique
solution [10]. As we will see in the next section, the results
obtained with this approximate numerical solution agrees very
well with exact results obtained from simulating the model.

Another classical metric usually studied to quantify perfor-
mance is the average response time of the system. In our
model, the average response time of an on-line peer would
be a combination of the average delay in processing the
query (common services component) and the average delay in
downloading the file (file service component). In our closed
queuing network, we can express the average response time
of a class c peer, R

(c)
time as:

R
(c)
time =

N (c)

T (c) −
p
(c)
off

λ
(c)
off

− 1

λ
(c)
idle (1 − q(Na))

Here N (c)/T (c) is the average delay experienced by a user to
traverse a network. To obtain the average user response time,
we subtract the average time spent off-line and the time spent
in the idle component from this value.

From this expression, we note that for a system with a fixed
population, N, a higher throughput implies a lower average
response time. Hence we present our results simply in terms
of the system throughput, T .

VI. MODEL RESULTS

The model coupled with an efficient solution method pro-
vides us with the ability to understand and explore how the
system performs under various conditions. Different funda-
mental “what-if” questions can be answered by simply varying
system parameters. We now address some of these questions,
presenting results obtained with the approximate analytical
method described in the previous section.

In order to obtain numerical solutions we must specify
the value of all system parameters and this can directly
influence the magnitude of the results. We explain the choice
of numerical values for some of these parameters based on our
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Fig. 3. System throughput for different architectures with varying average
number of requests per session (N = 500, 000)

understanding of realistic peer-peer networks. For example,
the basic service rate associated with the contribution of a
single peer to a file service capacity, H , is set to 1/20. This
corresponds to a file download time of apporximately 150
seconds for the most popular file. This is reasonable, since the
mean file size could be 3.5Mb and the access link of a peer
could have 200Kbps. We choose the capacity of the central
server to perform query lookups (C1) to be 100 requests
per second. This is two orders of magnitude larger than the
capacity of a single peer to process a query, which we set to
Cq = 1. We choose the TTL value for the DIFA system to be
T = 7, since this is the default value used in applications
such as Gnutella [5]. Other parameteres are (time unit in
seconds): M = 1000, θ = 0.1 (DIHA), β = 2, α = 1,
λ

(1)
idle = 1/300, λ

(2)
idle = 1/30, p

(1)
off = 0.2, p

(2)
off = 0.1,

λ
(1)
off = λ

(2)
off = 1/43200.

We start by comparing the scalability of the three different
architectures under a single class of peers and determining
the system throughput, under scenarios of varying load and

system capacity. Figure 2 plots the system throughput T
versus the total number of peers in the system N . Given
the characteristics of a peer-peer networks, an increase in
the population corresponds to an increase in both the system
workload and capacity.

We observe that the CIA architecture outperforms DIFA and
is slightly better than DIHA when the population size is small.
This is primarily due to the higher capacity of the centralized
query lookup. This trend persists until the central server in CIA
becomes the bottleneck. At higher population sizes, DIFA and
DIHA perform better than CIA, since the serving capacity
in these systems scales with the increase in the population.
DIFA however suffers from another drawback: the probability
of query failure increases with the population size. This occurs
since queries can only reach a bounded number of peers
which is independent of the population size, which implies
that queries only search over a bounded subset of the index
space. Thus, DIFA cannot capitalize on the potential capacity
of peer-peer systems, as queries that could have succeeded fail.
This limits the effective throughput of a DIFA architecture,
resulting in a lower performance than DIHA in terms of system
throughput.

In Figure 3, we study the impact of increasing the workload
of the system, by increasing the average number of file
downloads a user performs during an on-line period. We
fix the population size to 500,000 peers and examine the
system throughput. Since the population is fixed, this has
the effect of increasing the load in the system without a
corresponding increase in service capacity. We observe that
all architectures reach a bottleneck point at a certain level of
activity. This bottleneck corresponds to the capacity of the
system to download files. Once again, the DIHA architecture
scales best, since it is not constrained by a central server and
there are no query failures as in DIFA.

The approximate solution method has been experimentally
validated by simulating the same analytical model. In the sim-
ulation we assume that service times of both single and infinite
server queues are exponentially distributed. Our simulation
results are in close agreement with the approximate solution
method, as illustrated in Figures 2 and 3 (crosses indicate
simulation results).

Further validation of the model results, however, is not an
easy task. Existing measurement studies on realistic file shar-
ing peer-peer applications have not focused on characterizing
system wide performance (e.g. system throughtput). Also, even
if such studies are conducted, the results would be for an
instance of such system, and would not yield any insights into
how the system performs upon scaling different parameters,
such as population size, peer behavior, etc. Although it might
be possible to validate our model through detailed simulations
of realistic peer-peer applications, the programming and com-
putational cost would be prohibitive.

A. Impact of freeloaders

We now consider a scenario where there are two classes
of peers, freeloaders and non-freeloaders. Freeloaders are as-
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sumed to be more aggressive than non-freeloaders. To capture
this behavior we let the think time of freeloaders be 10 times
smaller (30 seconds as compared to 5 minutes) than that of
the non-freeloaders, double the average number of downloads
a freeloader performs before going off-line (from 5 to 10), and
keep the average off-line time identical for both classes (12
hours).

Figure 4 plots the system throughput as a function of the
number of freeloaders while maintaining a constant number of
non-freeloaders. Our first observation is that given a reasonable
number of serving nodes, both CIA and DIHA scale well.
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Thus, a small number of serving nodes can support a large
peer-peer network. Note that from an overall system per-
spective, having freeloaders actually increases the throughput,
since they bring more load to the system, which was initially
under-utilized. However, this does not hold true for DIFA,
since in this architecture, a query propagates only over a
bounded number of peers. Thus, increasing the freeloader
population while keeping the number of non-freeloaders fixed,
makes it more difficult for a query to locate a file. This
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behavior is captured in the definition of q′
f (Na, i). In any

case, the overall system throughput increases (even in DIFA,
for a small population of freeloaders) suggesting that peer-peer
file sharing systems have spare capacity that freeloaders can
benefit from.

One might think that even though overall system perfor-
mance scales well with an increase in the number of freeload-
ers, the throughput of the non-freeloaders might decrease.
Although this is true, the decrease in the throughput of non-
freeloaders is very small for the CIA and DIHA architectures,
even for a large number of freeloaders, as illustrated in
Figure 5. This suggests that freeloaders can benefit from avail-
able capacity in the system without significantly degrading
the performance of the non-freeloaders. However, the non-
freeloaders in DIFA suffer more due to the increased query
failure probability, as discussed below.

Figure 6 illustrates the probability of a query succeeding in
locating a file (1− q′(Na)) for varying freeloader population.
We observe a sharp drop in the success probability for all
curves plotted. An increase in the non-freeloader population
causes an increase in the number of queries that fail. Failed
queries generate reattempts which further add to the system
workload. This creates a vicious cycle with consistently de-
grading system performance, which becomes markedly evident
at the sharp drop point in the query success probability. This
illustrates that DIFA can tolerate some number of freeloaders
without much degradation in the query success probability, but
that performance drops sharply if this number is too large.

We now examine the impact of freeloaders in a slightly
different manner shown in Figure 7. We compute the system
throughput with an increasing percentage of freeloaders in the
system for a fixed overall population of 500,000 peers. Once
again, we initially observe an increase in throughput with an
increase in the ratio of freeloaders for all three architectures.
However, above a certain ratio the system throughput starts to
degrade. Note that CIA and DIHA can support a much larger
ratio of freeloaders than DIFA. Again, this rapid degradation
for DIFA is mainly due to the increase in the query failure
probability. This result shows that freeloaders can take advan-
tage of the spare capacity in the system, but that this spare
capacity is limited and saturates at a given ratio.

B. Exploring TTL in DIFA

A crucial aspect of the DIFA architecture is the value
used for T (TTL), which can impact system performance.
Increasing T reduces the probability of query failure, at the
cost of increasing the load on the system by having more
peers process a given query. This trade-off is illustrated in
Figure 8, which plots the system throughput as a function of
T for different values of β. Note that β is a parameter related
to network connectivity, and determines the number of peers
reachable in a query for a given TTL (T β). We observe an
optimal value for TTL that maximizes the system throughput
in all curves. Initially, the system throughput is small since
queries frequently fail due to small TTL values. Increasing
TTL too much can reduce the system throughput as queries
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Fig. 8. System throughput for different values of β with varying TTL for
DIFA architecture

now pose a larger workload to the system. Note that increasing
β reduces the optimal value for TTL and increases the system
throughput. A higher value of β implies that the same number
of peers can be reached with a smaller TTL. Note that for
a fixed small value of TTL (< 6), the system throughput is
larger for larger values of β. However, for fixed large values
of TTL (> 35), the larger β pays higher cost for processing
queries, delivering a lower throughput.

C. Mismatch in file popularity and replication

Until now, we have assumed that the distribution of file
requests and that of file replication (or availability) are the
same, i.e. the most popular file is also the most replicated.
This intuition is justifiable, since the most popular content is
also in all likelihood downloaded more often, and hence has a
higher chance to be made available as a replica to other users.

However, this may not always be true. For instance, a newly
released popular file may take some time to become well
replicated. Similarly, a very popular and also well replicated
file might slowly lose its popularity and be phased out of the
system.

As a consequence, there can exist an imbalance between
the capacity to serve a file and the number of requests this file
receives. In order to study this behavior, we will introduce a
mismatch in the file ranks, such that the i-th most requested
file is not the same as the i-th most replicated file.
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Figure 9 illustrates the procedure to create a mismatch in
the file ranks. As described, each file is assigned two ranks;
one according to its request popularity and the other based on
the number of replicas. We start by assuming that the ranks of
the files have a perfect matching. Then, we group files with
successive rank into clusters of fixed size. The size of the
cluster is a parameter and determines the degree of mismatch
between the ranks. Inside a cluster, the ranks are shuffled. Note
that a cluster size of one is identical to having a perfect match
in the ranks. Increasing the size of the cluster increases the
imbalance in the mapping. With a cluster size of M , the two
file ranks become independent of each other.
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Model simulation is used to investigate the performance of
the unbalanced system. In Figure 10 we observe, as expected,
that the system throughput drops if the most popular files
are not sufficiently replicated. Interestingly, this degradation
in the system performance is not noticeable until the cluster
size significantly becomes large, indicating a large mismatch.

VII. CONCLUSION

Peer-peer systems present an interesting and inherently dif-
ferent resource allocation problem than traditional client/server
models. The work in this paper is motivated by the belief
that simple models can provide important insights into un-
derstanding the behavior of such systems. In this paper, we
have presented a mathematical model that captures the main
characteristics of peer-peer file sharing systems. A strength
of our approach is the generality and the flexibility of the
framework used, which allow us to both capture the essence
of different architectures and peer behavior, and explore a
range of performance trade-off issues. Moreover, as discussed
in Section III, the model can be easily extended to address
other system characteristics not discussed in this paper.

Using an approximate solution method we have numerically
analyzed a few fundamental performance issues of different
architectures under different scenarios. Our results highlight
interesting issues, such as the inherent limitation of DIFA due

to its query mechanism, and the available spare capacity that
freeloaders can benefit from without significantly degrading
performance of non-freeloaders.
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