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Abstract: Finite-element analysis on a pavement structure under traffic loads has been a viable option for researchers and designers in
highway pavement design and analysis. Most of the constitutive drivers used were nonlinear elastic models defined by empirical resilient
modulus equations. Few isotropic/kinematic hardening elastoplastic models were used but applying thousands of repeated load cycles
became computationally expensive. In this paper, a cyclic plasticity model based on fuzzy plasticity theory is presented to model the
long-term behavior of unbound granular materials under repeated loads. The discussion focuses on the model parameters that control
long-term behavior such as elastic shakedown. The performance of the constitutive model is presented by comparing modeled and
measured permanent strain at various numbers of load cycles. Calculated resilient modulus from the complete stress-strain curve is also
discussed.
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Introduction

Permanent deformation is one of the important factors used to
evaluate the performance of a pavement structure under a service
load. Depending on the stress history in a pavement due to a
moving wheel load, the accumulated permanent deformation
could keep increasing with load cycles or reach a stabilized value
which is called elastic shakedown �Werkmeister et al. 2004;
García-Rojo and Herrmann 2005�. For moderate stress levels,
elastic shakedown is expected where the material response is typi-
cally characterized by the resilient elastic modulus after numerous
cycles. It is preferred so that the life of the pavement lasts longer.
Through laboratory and field measurements and observations,
empirical equations have been widely used in predicting perma-
nent deformation under repeated load �Lekarp et al. 2000a�. It is
straightforward to use for practical design; however, they nor-
mally lack a physical framework to be formulated and a well-
defined stress-strain relationship. Because of that, finite-element
analysis has been popular in analyzing and modeling a pavement
structure under traffic load. In order to carry out an accurate
analysis, a constitutive model capable of describing material be-
haviors under repeated loading is desired. Most of the constitutive
models used in finite-element analysis for pavement structures are
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nonlinear elastic models defined by empirical resilient modulus
equations �Lekarp et al. 2000b; Kim and Tutumluer 2008�. Few
isotropic/kinematic hardening elastoplastic models were used
�e.g., Chazallon et al. 2006; Johnson and Sukumaran 2009� be-
cause applying thousands of repeated load cycles became compu-
tationally expensive.

A majority of the models for granular materials is based on
classical plasticity theory, where kinematic hardening or mixed
hardening �isotropic and kinematic hardening� is normally used to
mimic hysteretic phenomena such as reverse plastic flow and
memory of particular loading events. However, they are sophisti-
cated and often difficult to implement in constitutive drivers
within reliable finite-element codes.

Multisurface plasticity, bounding surface plasticity, and gener-
alized plasticity theories have been successfully used to model
cyclic behavior of granular materials. In multisurface plasticity
�e.g., Prévost 1982�, multiple yield surfaces take the shape of
nested subspaces in stress space, where the stress-strain behavior
within the innermost surface is assumed to be elastic. The instan-
taneous configuration of the field of yield surfaces was estab-
lished by computing the parameters and equations that govern the
translation, expansion, or contraction of individual surfaces dur-
ing proportional as well as nonproportional loading and unload-
ing. In bounding surface plasticity �e.g., Manzari and Dafalias
1997�, the plastic strain occurs for stress states within the bound-
ing surface. It is also possible to have a very flexible and smooth
variation of the plastic modulus during straining, unlike the mul-
tisurface plasticity model which assumes piecewise constant plas-
tic moduli. As for generalized plasticity �e.g., Pastor and
Zienkiewicz 1986�, both plastic flow direction and plastic modu-
lus for loading and unloading are defined explicitly where dila-
tancy was approximated by a linear function of stress invariant
ratio, as proposed by Nova and Wood �1979�.

A cyclic plasticity model based on fuzzy set plasticity theory is
presented in this paper to model the accumulated permanent axial
strain and shakedown behavior of unbound granular materials

under repeated loads. The concept of the fuzzy set plasticity was
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first introduced by Klisinski et al. �1988� and its theory and for-
mulation have been described by several researchers �e.g., Klin-
sinski 1988; Klisinski et al. 1991; Arduino and Macari 2001; Ge
and Sture 2003a,b�. The model presented in this paper is capable
of simulating realistic stress-strain behaviors under repeated load
cycles including nonlinear dilatancy, material memory, accurate
reverse loading feature, nonproportional loading, and long-term
cyclic effects. In the following sections, the framework of the
fuzzy set plasticity theory is first introduced, followed by its
model formulation, calibration, and performance.

Model Formulation

The original fuzzy set plasticity model consists of deviatoric and
locking fuzzy surfaces to account for material responses under
purely deviatoric shearing and isotropic compression/extension
conditions. In this study, the model has been simplified, and only
deviatoric component of the original fuzzy set plasticity model
was used for the simulation. Further and detailed information
about fuzzy set plasticity can be found at Ge �2003�.

The cone fuzzy surface in compression is expressed as

Fc = r − a0 − a1p = 0 �1�

which represents a three-stress-invariant yield surface. p is the
mean stress and is one-third of first stress invariant I1. r is the
multiplication of q and g, where q is defined in a way similar to
second deviatoric stress invariant J2 and g=Willam-Warnke func-
tion �Willam and Warnke 1974�. For proportion loading, g is 1 so
that r=q.

The coefficient a1 in the cone fuzzy surface for triaxial com-
pression is a density dependent parameter

a1 = Mc + ��− �� �2�

where Mc=stress ratio q / p at critical state condition; �
=constant; �=state parameter which is defined as the difference
between the current void ratio e and the void ratio at its critical
state at a given mean stress; and � �=Macaulay brackets. For
loose granular materials, the current void ratio is always greater
than its value at critical state, i.e., ��0, so a1�Mc and the fuzzy
surface remains fixed in the stress space. For dense materials, the
fuzzy surface moves along with the volumetric strain which is
controlled by the shear dilatancy rule described later.

Membership Function

The membership functions � from fuzzy set theory were intro-
duced to construct reversal plastic loading without resorting to a
kinematic hardening rule. A value of the membership function
ranging from 0 to 1 is assigned and associated with a given stress
state. The stress state with the value of the Membership Function
1 is at a fully elastic state and 0 at the fully plastic state. The basic
rules of kinematic mechanism of the membership functions are as
follows:
1. Plastic loading: �̇�0;
2. Plastic unloading: �̇�0;
3. Elastic loading: �̇�0; and
4. Elastic unloading: �̇�0.

Although the value of the membership function is 1 at a fully
elastic state and 0 at the fully plastic state, the assignment of the
value in elastoplastic state is deterministic and can be arbitrarily
defined as needed. A linear variation with respect to stress state

was adopted in this study. For illustration purposes, the kinematic
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mechanism of the cone membership function � is shown in Fig. 1,
which represents plastic loading from Point a to Point b, followed
by elastic unloading from Point b to Point c. After Point c is
reached, unloading with associated decrease of the value of the
membership function results in plastic deformation, which is the
feature of the membership function. The degree of material
memory � can be simulated by predetermining the location of
Point c. Furthermore, by controlling the location of Point c, one
can also model elastic shakedown behavior, where Point c moves
toward a point as cyclic loading proceeds. Plastic unloading, or
reversal loading, is shown from Point c to Point d, followed by
elastic loading from Point d to Point e and plastic loading from
Point e to Point b again, as shown in Fig. 1.

Material Memory

The material memory parameter � represents the material degree
of memory and it shows the evolution of elastic and plastic de-
viatoric behaviors during the entire loading and unloading �rever-
sal loading� process. For �=0, it represents that the material has
no memory and it shows fully elastic behavior during the entire
unloading process. For �=1, it represents that the material has
maximum degree of memory and it shows fully plastic behavior
during the entire unloading process. In order to describe the evo-
lution of elastic and plastic behaviors of unbound granular mate-
rials under repeated loading, the material memory function is
given as

� = �0�Ni�m3 �3�

where �0= initial value of �; Ni=nth number of load application;
and m3=parameter controlling the evolution of material memory
parameter with load cycles. Fig. 2 shows the evolution of memory
function parameter under different m3.

Flow Rules

The plastic strain increments follow the flow rules in classical
plasticity theory

�̇p = �̇m �4�

where �̇=magnitude and m=direction of the plastic strain incre-
ments. In the fuzzy set plasticity, m is not determined through the
gradient of plastic potential; instead, it is defined through a fourth

a

b

c

d

e

q

q

q

a

d

e c

b, f

1

f

0

Fig. 1. Membership function and its corresponding stress-strain state
tensor T, i.e., m=T :n.
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In p-q space
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Shear dilatancy incorporating current stress state 	 and critical
state condition Mc is defined as

D = A�− Mc�d + 	� �6�

where A and �d=model parameters and 	=current stress ratio
q / p.

Plastic Modulus

At each stress state, once the value of the membership function �
is defined, it is used to determine the plastic modulus on the
loading surface, which is given as follows:

H = H� +
M�d

1 + �d+1 �7�

where M and d=model parameters and H�=plastic modulus at the
image stress on the fuzzy surface. In this paper, the evolution of
the deviatoric plasticity modulus function parameter d is intro-
duced as the following equation to account for the long-term ef-
fects on the incremental plastic strain:

d = d0�1 − m1� Ni

Ncyc − 1
	m2� �8�

where Ncyc= total number of load cycles; Ni=number of current
load cycle; m1 and m2=exponential coefficients depending on the
shear strain level; and d0= initial values of the deviatoric plastic
modulus function parameter. This can be used to simulate the
elastic shakedown behavior when the material behaves elastically
after certain amount of load cycles.

Model Calibration

With the advance of constitutive modeling, the parameters and
constants required in elastoplastic models can be tremendous.
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Fig. 2. Evolution of material memory parameter � under different m3
Calibration of these constitutive models is not an easy task. In
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addition to different types of laboratory experiments demanded, a
systematic approach for model calibration is desired. Conven-
tional method, such as linear regression, is not sufficient to iden-
tify the model parameters because many of them cannot be
described in linear fashion through laboratory testing data. Be-
sides, some of these model parameters are with less physical
meaning, which cause difficulties in model calibration. With that
in mind, a numerical optimization technique of nonlinear least-
squares regression is applied to the constitutive model calibration.
Optimization problems are generally defined as minimizing the
objective function f�x� subject to decision variable vector x. Nu-
merical optimization algorithms can be categorized into three
groups according to the type of information needed in searching
for the minimum of the objective functions. The simplest way to
minimize the objective function is to randomly choose a suffi-
ciently large number of candidate vectors x and evaluate the ob-
jective function for each of them. In calibrating a fuzzy set
plasticity model, the objective function is defined by the Euclid-
ean distance between an experimental point and a theoretical
point, and a random search method is used.

Random search method is considered to be the most inefficient
but most easily implemented among the zeroth-order methods.
With that, random search method was adopted to calibrate the
fuzzy set model in this paper. Moreover, the inefficiency can be
overcome by the aid of modern high-speed computers. Assume
that the variables xi

� for i=1–n lie between its lower bound xi
l and

upper bound xi
u, there must exist a Ri such that xi

�=xi
l+Ri�xi

u−xi
l�

and minimize the objective function f .
Since constitutive models are being calibrated, it is intuitive to

use stress and strain as variables in the objective function. It is
then straightforward to formulate the objective function as the
sum of distances from computed points to their adjacent experi-
mental points in the stress-strain space. For each computed strain
lies between � j

exp and � j+1
exp, the distance between the computed and

experimental strains can be calculated. The objective function is
constructed as follows:

f = �
i=1

n
1

2
��1 −


 j
exp


i
num	2

+ �1 −
� j

exp

�i
num	2

+�1 −

 j+1

exp


i
num	2

+ �1 −
� j+1

exp

�i
num	2	 �9�

where n=number of computed strains.

Model Performance

Three sets of laboratory experimental data from Lekarp �1997�
were chosen to calibrate the fuzzy set plasticity model. Due to the
fact that the available laboratory data from Lekarp �1997� are not
sufficient to calibrate the fuzzy set plasticity model and obtain a
unique set of model parameters, appropriate assumptions were
made to carry out the model calibration. The material types in-
clude Leighton Buzzard sands �S�, the sand and gravel �S&G�,
and the slate waste �SW�. The S&G and SW were tested in a
triaxial cell apparatus, while the S was tested in a hollow cylinder
apparatus. Lekarp’s testing program was planned with the primary
aim of characterizing the development of cumulative permanent
strain with number of load applications, as listed in Table 1. The
stress paths that were applied to the laboratory tests are also
shown in Table 1, where the corresponding load applications in

p-q stress space were converted when the stress-strain responses
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were computed through the fuzzy set plasticity model. As Le-
karp’s tests available for model calibration are limited, the fuzzy
set plasticity model parameters given in Table 2 lead to one pos-
sible combination. Fig. 3 shows the entire stress-strain curves for
S under the stress paths listed in Table 1. The sand subjected to
Stress Path P3 where a higher maximum deviator stress �105 kPa�
was applied shows more plastic deformation. Both curves show
the tendency of being more elastic as more load cycles are ap-
plied. Essentially, the sand under both Stress Paths P1 and P3 was
stabilized and elastic shakedown was reached. The entire stress-
strain behaviors for S&G and SW are similar so the curves are not
shown in the paper. The permanent strain versus the number of
cycle curves for all three materials are presented in Figs. 4–6,
respectively. It shows that the proposed cyclic plasticity model is
capable of capturing the long-term behavior in permanent defor-
mation under repeated loads. In particular, most permanent axial
strains were taking place in the first 2,000 load cycles. When the
materials were subjected to higher deviatoric load repetitions,
more load cycles were needed to reach a stable state �shakedown�.
As for resilient modulus, it can be calculated at any given load
cycle since the entire stress-strain curve is available from the
fuzzy set plasticity model. Fig. 7 shows an example of the calcu-
lated resilient modulus for S if a range of confining pressure is
applied. Each resilient modulus was calculated from each corre-
sponding stress-strain curve at its 10,000th cycle. It shows the
trend that for a given maximum deviator stress, the higher the
confinement is, the higher the resilient modulus is. It also shows
for a given confinement that the higher the maximum deviator
stress is, the higher the resilient modulus is.

Table 1. Selected Tests from Lekarp �1997� for Model Calibration

Material
Stress

path code
N

�number of cycles�


3

�kPa�
q

�kPa�

Min Max Min Max

S P1 10,000 70 70 0 80

P3 10,000 70 70 0 105

S&G P1 10,000 100 135 0 200

P2 10,000 100 285 0 500

P3 10,000 100 220 0 400

SW P1 10,000 0 20 0 300

P2 10,000 0 100 0 600

P3 10,000 0 200 0 600

Table 2. Fuzzy Set Plasticity Model Parameters

K
�MPa�

G
�MPa� M d a0

S-P1 580 700.9 105,000 1.8 30

S-P2 580 700.9 56,000 1.8 30

S&G-P1 580 700.9 405,000 1.12 50

S&G-P2 580 700.9 95,000 1.8 50

S&G-P3 580 700.9 50,000 1.85 50

SW-P1 580 700.9 572,000 1.3 50

SW-P2 580 700.9 572,000 1.97 50

SW-P3 580 700.9 793,000 1.8 50
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Conclusions

A cyclic plasticity model based on fuzzy set plasticity theory is
presented in this paper for modeling the permanent deformation
behavior under repeated load cycles. The resilient modulus can
also be calculated from the stress-strain response from the fuzzy
set plasticity model. The model is capable of mimicking the be-
haviors of unbound granular materials under repeated loads which
include reversal loading, nonlinear dilatancy, material memory,
and long-term behavior such as elastic shakedown. The elastic
shakedown is achieved by controlling the material memory and
plastic modulus parameters. It is particularly attractive for finite-
element analysis since a more realistic stress-strain response is
available. However, it also has several drawbacks. Model calibra-
tion is challenging since it requires more laboratory test results.
The triggering mechanisms for elastic shakedown, plastic shake-
down, and progressive failure are not fully understood and not
implemented into the model.
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