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ABSTRACT 

Strain caused by the adsorption of gases was measured in samples of subbituminous 

coal from the Powder River basin of Wyoming, U.S.A., and high-volatile bituminous 

coal from the Uinta-Piceance basin of Utah, U.S.A. using a newly developed strain 

measurement apparatus.  The apparatus can be used to measure strain on multiple small 

coal samples based on the optical detection of the longitudinal strain.  The swelling and 

shrinkage (strain) in the coal samples resulting from the adsorption of carbon dioxide, 

nitrogen, methane, helium, and a mixture of gases was measured.  Sorption-induced 

strain processes were shown to be reversible and easily modeled with a Langmuir-type 

equation.  Extended Langmuir theory was applied to satisfactorily model strain caused by 

the adsorption of gas mixtures using the pure gas Langmuir strain constants.  The amount 

of time required to obtain accurate strain data was greatly reduced compared to other 

strain measurement methods. 

Sorption-induced changes in permeability were also measured as a function of pres-

sure.  Cleat compressibility was found to be variable, not constant.  Calculated variable 

cleat-compressibility constants were found to correlate well with previously published 

data for other coals.  During permeability tests, sorption-induced matrix shrinkage was 

clearly demonstrated by higher permeability values at lower pore pressures while holding 

overburden pressure constant.  Measured permeability data were modeled using three dif-

ferent permeability models from the open literature that take into account sorption-

induced matrix strain.  All three models poorly matched the measured permeability data 

because they overestimated the impact of measured sorption-induced strain on permeabil-

ity.  However, by applying an experimentally derived expression to the measured strain 

data that accounts for the confining overburden pressure, pore pressure, coal type, and 

gas type, the permeability models were significantly improved. 
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CHAPTER 1. INTRODUCTION

Coal beds in the United States (U.S.) contain an estimated 703 trillion standard cubic 

feet (Tcf) of natural gas and 141 Tcf of recoverable natural gas resources, or 12% of the 

total recoverable natural gas in the U.S. [1], making coal beds a major contributor to the 

energy security of the U.S.  Besides being highly productive natural gas reservoirs, coal 

beds throughout the world have a huge potential to store carbon dioxide (CO2).  If coal 

seams were viewed purely as potential CO2 sinks and not tied to commercial production 

of methane, the worldwide CO2 sequestration potential in unmineable coal may be 380 

billion tons of CO2 [2].  For comparison, a typical, modern coal-fired power plant pro-

ducing 300 megawatts (MW) of electricity would output roughly 1.3 million tons of CO2

per year [3]. 

Unlike conventional gas reservoirs, methane in coal is not stored as free gas but rather 

as adsorbed gas, at near-liquid densities on the internal surface area of the microporous 

coal [4], which can range from 30 m
2
/g to 300 m

2
/g [5, 6].  Besides methane, other gases 

are present in coal; carbon dioxide, nitrogen (N2), and higher molecular weight hydrocar-

bon gases (C2
+
) are usually present.  The coal gas in the San Juan Basin can contain up to 

10% CO2 and 13% C2
+
 [7].  In the Powder River Basin, adsorbed gas composition is 

typically about 90% methane (CH4), 8% CO2, and 2% nitrogen [8]. 

1.1 Fluid Flow through Coal

As reservoir pressure is lowered during coalbed methane (CBM) production opera-

tions, gas molecules are desorbed from the coal’s internal surfaces and travel through the 

matrix to the cleat (natural fracture) system where they are conveyed to producing wells.  

Figure 1.1 is a diagram showing the movement of gas molecules through the matrix to the 
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fracture system.  Because matrix permeability is typically eight orders of magnitude 

lower than the permeability of the cleat system [9], fluid movement in the coal matrix is 

best modeled by Fick’s Law of diffusion and flow through the fracture system is de-

scribed by Darcy’s Law.  Coal seams are, therefore, treated as fractured reservoirs with 

respect to fluid flow and permeability of the matrix blocks is neglected. 

matrix centerline face cleat

methane
molecules in

micropores
of coal matrix

high methane
concentration

low methane
concentration

diffusion through coal matrix

lo
w

 p
re

s
s
u
re

Figure 1.1.  Diagram showing the movement of gas molecules through matrix of coal 

block towards cleat system. 

In most coalbed methane (CBM) reservoirs, the cleat system is initially filled with 

water.  Producing water from the cleats causes the reservoir pressure to decrease and 

causes the gas to desorb from the coal matrix at the matrix-cleat interfaces.  This creates a 

methane concentration gradient across the coal matrix causing the gas to diffuse through 

the matrix and then to be released into the cleat system where it flows to the production 

well.
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1.2 Gas Storage in Coal

The capacity of the coal matrix to store gas as a function of pressure is described by 

the Langmuir adsorption isotherm [10, 11]: 

pp

pV
V

L

L ................................................................................................................... (1-1) 

where V is the volume of gas adsorbed per unit mass in the coal matrix and p is the pres-

sure of the system.  VL is the Langmuir volume constant and represents the maximum 

volume of gas per unit mass a coal can adsorb onto the matrix surface area.  The Lang-

muir pressure constant, pL, is the pressure at which the storage capacity of the coal is 

equal to one-half the Langmuir volume VL.  The constants in the Langmuir adsorption 

isotherm equation are determined by fitting desorption data obtained in the laboratory and 

are specific for any given coal and gas ensemble.  Figure 1.2 shows a typical methane 

sorption isotherm for coal from the San Juan Basin [4]. 
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Figure 1.2.  Example of an adsorbed gas isotherm showing relationship of fit parameters 

VL and pL from Eq. (1-1). 
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1.3 Gas Production from Coal Beds

Methane production from coal beds can be enhanced by injecting other gases to dis-

place or strip the methane from the coal and accelerate production of methane without 

lowering reservoir pressure.  This process is called enhanced coalbed methane (ECBM) 

production.  About twice the amount of CO2 can be adsorbed in the microporosity of the 

coal matrix as CH4, while N2 is less adsorbing than CH4.  Figure 1.3 compares sorption 

isotherms for CO2, CH4, and N2 as a function of pressure for a sample San Juan Basin 

coal [12].  The mechanism of N2-ECBM is called inert gas stripping and is primarily the 

result of reducing the partial pressure of CH4 in the cleat system.  As N2 is injected, the 

partial pressure of CH4 is reduced and methane is desorbed from the coal even at high 

total cleat pressure [4], which can greatly accelerate the recovery of the methane from the 

coal bed and reduce after-wellhead compression costs [13]. 
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Figure 1.3.  Example of sorption isotherms for different gases. 
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The mechanism for CO2-ECBM is called displacement desorption because the CO2 is 

strongly adsorbed onto the coal as it is injected and displaces the methane in the matrix.  

If the coal seam is relatively homogeneous and the diffusion rate into the coal matrix is 

sufficient, CO2 is not expected to break through to the production wells until the bulk of 

the coal bed is swept of methane [14].  Because CO2 is strongly adsorbed onto the coal 

matrix, coal beds throughout the world have a huge CO2 storage potential.  When viewed 

as commercial CO2-ECBM projects, the total worldwide potential for CO2 sequestration 

may be 7.8 billion tons while producing 68 Tcf of methane, and if viewed purely as a 

non-commercial CO2 sequestration technology, the worldwide potential may be 50 times 

greater [2]. 

1.4 Gas Mixtures in Coal Beds

During normal primary recovery of natural gas from coal beds, the gas does not con-

sist of a single pure gas, but is truly a mixture of a number of components.  Besides 

methane, other gases, such as carbon dioxide, nitrogen, and higher molecular weight hy-

drocarbon gases are also usually naturally present.  The coal gas in the San Juan Basin 

can contain up to 10% CO2 and 13% C2
+
 [15].  In the Powder River Basin, sorbed gas 

composition is typically about 90% methane, 8% CO2, and 2% nitrogen [16].  In fact, in 

recent years the term coalbed methane (CBM) has begun to be replaced with other more 

accurate terms such as coalbed natural gas (CBNG) or natural gas from coal (NGC). 

Because coal has the capacity to adsorb from 2 to 5 times as much CO2 as methane 

[51], coal beds would be an excellent target for CO2 sequestration, while at the same time 

enhancing the production of desirable methane.  The injection of CO2 or N2 to enhance 

production of natural gas from coal further increases the presence of non-methane gases 

within the coal bed. 

Tiffany project (operated by BP) in the San Juan Basin, Colorado was the first com-

mercial demonstration of enhanced methane recovery by gas injection [17].  The Tiffany 
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Field project consisted of 38 producer and 10 injector wells.  During the enhanced recov-

ery phase of this project (from February 1998 to April 2001), N2 was injected into the 

field to accelerate methane recovery.  Reservoir simulation efforts for this project found 

problems associated with the permeability changes during the enhanced production stage 

[18], which could have resulted from an inadequate model of the strain-permeability rela-

tionship.

The Allison Unit CBM project (operated by Burlington Resources) located in San 

Juan County, New Mexico, in close proximity to the border with Colorado consisted of 

16 producing wells, 4 CO2 injectors, and one pressure observation well [19].  The Unit 

originally began primary production in 1989, with CO2 injection beginning in 1995 and 

ending in August 2001 to evaluate the results.  Clear evidence was found of significant 

coal permeability reduction with CO2 injection, which compromised the CO2 injectivity, 

reduced incremental methane recoveries, and lowered project economics. 

Under the direction of the Alberta Research Council micropilot tests of ECBM and 

CO2 sequestration were done near the towns of Fenn and Big Valley in Alberta, Can-

ada [20].  Two wells, completed in the Medicine River Coal seams were used to study 

how CO2 and mixtures of CO2/N2 reacted during injection, soak, and production phases.  

Among other things, they found that their permeability model for the injection phase was 

deficient in predicting permeability changes that actually took place. 

1.5 Stress-Dependent Permeability in Coal

Cleats are generally regarded as having a uniform geometry representative of the coal 

as a whole.  The cleat system consists of two or more sets of sub-parallel fractures ori-

ented nearly perpendicular to the bedding plane [21].  Face cleats are more dominant, 

while butt cleats, generally oriented perpendicular to face cleats, are less dominant, and 

connect face cleats.  Although it treats face and butt cleats equally, matchstick-type ge-
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ometry (see Figure 1.4) is often chosen as an appropriate analogy to model the cleat sys-

tem [22]. 

Cleat permeability is directly dependent on the width of the cleats and the cleat fre-

quency.  Cleat frequency is generally assumed to be constant, but cleat width is depend-

ent on the in situ stress, the coal properties, and the gas content of the coal.  The in situ 

stress is equivalent to the net pressure in the coal seam and is equal to the overburden 

pressure minus the fluid pressure in the cleat system (horizontal stresses are expected to 

be negligible in the field [23]). 

Figure 1.4.  Depiction of flow through matchstick-type fractured media. 

During CBM production operations, overburden pressure at a given depth remains 

constant, but as the cleat pressure decreases due to the production of water and gas, the 

cleat width will decrease depending on the elastic moduli of the coal matrix.  These 

moduli (Young’s modulus, bulk modulus, Poisson’s ratio, and constrained axial modulus) 

can be used to calculate the cleat compressibility of any fractured media [24] – including 
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coal.  Coal, however, has another property that contributes to a change in cleat width as 

pressure is drawn down that most other fractured media do not have – it contains ad-

sorbed gas that is released as pressure is lowered (see Figure 1.2).  As this gas is desorbed 

from the coal, the matrix blocks shrink, which increases the cleat width as well as perme-

ability.  The matrix shrinkage (volumetric strain) due to the release of the adsorbed gas 

can be modeled with a curve analogous to the adsorbed gas isotherm [25].  The model 

used to fit the sorption-induced strain data is called the Langmuir strain curve. 

Figure 1.5 shows an example of the combined effects of the coal’s elastic moduli and 

the matrix shrinkage on the change in permeability of coal as pressure is drawn down.  

When pressure in the cleat system is high, the associated sorption-induced strain accom-

panying a change in pressure is relatively small and the dominant strain acting on the coal 

is matrix expansion due to the elastic properties of the coal; accordingly, the cleat width 

would decrease as would permeability.  However, as the total pressure continues to drop 

and the cleat pressure becomes small, the associated sorption-induced strain accompany-

ing a change in pressure can be relatively large and the dominant strain acting on the coal 

is matrix shrinkage due to the gas desorption, causing cleat width to increase along with 

permeability. 

1.6 Objectives of Research

The first objective of this research is to measure sorption-induced strain in coal not 

only for pure gases, but for gas mixtures as well.  The second objective is to measure 

permeability of coal for pure gases and mixtures.  The final objective is to assess the per-

formance of models for calculating permeability as a function of sorption-induced strain 

for pure gases and mixtures. 

This thesis will discuss the development of a new strain measurement apparatus that 

greatly reduces the time required to obtain sorption-induced strain data in coal.  New 

strain data induced by the sorption of three pure gases and a gas mixture will be presented 
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for two coals of different ranks.  The strain induced by the sorption of the gas mixture 

will be modeled using extended Langmuir theory based on the strain curves induced by 

the sorption of the pure gas components of the mixture. 

Pore pressure, psi

(increasing )

C
o

a
l 
p

e
rm

e
a

b
il
it
y
 r

a
ti
o

, 
k
/k

o

(i
n

c
re

a
s
in

g
 

)

G
a

s
 c

o
n

te
n
t,

 g
/m

L

(i
n

c
re

a
s
in

g
  

)

Figure 1.5.  Conceptualized behavior of permeability rebound in coal and gas desorption 

curve as pressure becomes small. 

The effect of sorption-induced strain on coal permeability will be presented.  Perme-

ability will be measured as different gases are sorbed using automated data-collection 

software.  The methodology for core preparation, data manipulation, and experimentation 

will also be discussed. 

Selected permeability models based on Langmuir strain curve data will be used to 

model laboratory permeability data.  The models will also be expanded to account for the 

sorption of mixed gases by incorporating extended Langmuir theory into the permeability 

equations.  It is anticipated that if strain parameters associated with mixed-gas adsorption 

were incorporated into these equations, field permeability changes could be better mod-
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eled.  The resulting expanded permeability models could be incorporated into reservoir 

simulators to better predict permeability decline and rebound during traditional CBM 

production operations.  However, results of this research may be even more applicable 

during simulation of N2- or CO2-enhanced methane recovery from coal beds, as well as 

for CO2-sequestration in coal beds. 
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CHAPTER 2. LITERATURE REVIEW 

In this chapter, previous work done by other researchers will be reviewed leading up 

to the current work reported in this thesis.  Specifically, the methodology, equipment 

used, and drawbacks of sorption-induced coal strain will be reviewed along with past ef-

forts to model permeability changes in coal induced by sorption of gases. 

2.1 A Review of Previous Measurement of Strain Isotherms in Coal

Measurement of sorption-induced strain was an integral part of this research.  Strain 

data were to be collected using pure and mixed gases and at least two different coals.  

The pure gas strain data were to be used to predict the strain behavior of the coals under 

mixed gas conditions.  A methodology to measure strain was needed and a review of the 

literature found that there were some drawbacks to the most common method of obtain-

ing this data.  This section describes the most common method for collecting strain data 

and suggests improvements that could be made. 

The measurement of sorption-induced strain in coal has been reported by relatively 

few researchers.  Gray [26] reported that strain varied linearly with gas pressure for both 

CO2 and CH4, but did not include any details about how those values were obtained.  

Harpalani and Schraufnagel [27] showed that sorption-induced coal strain was not neces-

sarily a linear function of gas pressure, but might be non-linear with decreasing gas pres-

sure.  They were also among the first researchers to relate sorption-induced strain in coals 

to permeability changes during the production of methane from coal seams.  Using a pro-

cedure suggested by the International Society of Rock Mechanics, they attached strain 

gauges to the surfaces of a cylindrical coal specimen – one each for axial and radial 

strains, 180° apart.  The coal specimen, measuring one and one-half inches in diameter 
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and three inches in length, was then placed into a pressure cell.  The strain gauges were 

connected to the strain indicators outside the cell by passing the connecting wires through 

O-rings used to seal the pressure cell.  Other researchers have used this same basic ex-

perimental design and employed strain gauges attached to blocks of coal of the same rela-

tive size to study sorption-induced coal strain [28, 29, 30].  Figure 2.1 is a drawing of a 

coal sample with typical dimensions showing the configuration of attached strain gauges 

used to measure sorption-induced strain. 

Figure 2.1.  Drawing of typical dimensions of coal block used with strain gauges to meas-

ure sorption-induced strain. 

Typical sorption-induced strain experiments are done in two phases: adsorption, 

where strain is measured as gas pressure is increased; and desorption, where strain is 

measured as gas pressure is decreased.  In these experiments, the initial gas pressure sur-
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rounding the coal samples is typically set at a low pressure or under vacuum and the ini-

tial strain gauge readings are noted indicating zero strain.  Next, a specified gas is intro-

duced and held at a given pressure while the strain readings are monitored.  When the 

strain becomes constant at that pressure, the strain is noted and the gas pressure is then 

increased to the next desired value.  This process is repeated until some maximum pres-

sure is reached over a period of five or six pressure steps.  During desorption, pressure 

can either be stepped down, or it can be released all in one step. 

There have been a number of problems associated with obtaining sorption-induced 

strain data using attached strain gauges. These problems are discussed in the following 

paragraphs.

Levine [29] noted that there were “few reliable measurements available for strains 

caused by gas sorption/desorption in coal.  The lack of data is due to the difficulty of 

making these measurements and too few such studies have been conducted.  Much more 

data are needed to document this phenomenon.”  Permeability models for coal beds re-

quire the use of sorption-induced strain data. Accurate and rapid generation of strain data 

is necessary if permeability models are to be correctly formulated and applied to different 

fields.

Harpalani and Schraufnagel [27] noted that “desorption [was] an extremely slow 

process and it took a long time for the readings on the strain indicator to stabilize.”  The 

slow process of strain stabilization is presumably due to the slow diffusion rate coupled 

with the size of the samples.  The samples are necessarily no less than three cubic inches 

in order to accommodate the adhesion of the strain gauges.  Seidle and Huitt [28] also 

measured coal strain using strain gauges glued to coal samples and reported that it took 

nearly three months for the coal matrix strains to stabilize during the adsorption phase at 

each pressure step.  Zutshi and Harpalani [31] report equilibration times of over 75 days 

during the gas adsorption phase. 

Conservatively assuming that if 50 days were required for strain equilibration at each 

pressure step and that five pressure steps were planned for the adsorption phase and five 
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more for the desorption phase, the entire experiment for one sample of coal could take 

over 16 months to complete!  In addition, any measurement errors caused by insufficient 

time allowed for strain equilibration would yield strain measurements lower than reality.  

Of course, smaller samples should require shorter equilibration times, owing to the 

shorter diffusion pathways, but sample size is limited by the dimensions required by the 

strain gauges. 

Harpalani and Schraufnagel [27] reported a hysteresis between increasing and de-

creasing gas pressures, which could be explained by possible errors in their strain meas-

urements caused either by insufficient equilibration time or by abnormal deformation of 

the strain gauges themselves.  Seidle and Huitt [28] found that the most challenging part 

of their strain experiments was getting the glue to adhere to the coal for the very long 

times required for completion of the strain tests.  They also noted that the strain gauges 

experienced some irreversible strain at the end of each leg of their experiments, which 

complicated the analyses. 

Chikatamarla and Bustin [30] also recently reported strain measurements using strain 

gauges and although they do not mention the amount of time needed for equilibration, 

they did report problems with gas reacting with the strain gauges forcing an early termi-

nation of some experiments. 

Table 2.1 summarizes some coal strain data collected using resistance-type strain 

gauges as reported by previous researchers.  The strain reported in this table is not all di-

rectly comparable because different gases were used and different pressures were re-

ported.  However, these data do show that sorption-induced strain is generally higher for 

carbon dioxide than for methane and that strains measured with strain gauges are about 

1.0% for carbon dioxide and about 0.3% for methane.  A discussion of longitudinal strain 

and volumetric strain appears in Section 4.2.5 later in this work; but briefly, longitudinal 

strain is generally  the value of volumetric strain. 
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Table 2.1.  Coal strain values as reported by previous researchers. 
Strain

Author
Sorbed

gas Type of strain Value 
Pressure, psi 

CO2 Longitudinal 1.0% 800 
Gray, 1987 

CH4 Longitudinal 0.06% 800 

Harpalani and Schraufnagel, 1990 CH4 Volumetric 0.6% 1000 

CO2 Longitudinal 0.8% 800 
Seidle and Huitt, 1995 

CH4 Longitudinal 0.1% 1000 

CO2 Longitudinal 0.5% 750 
Levine, 1996 

CH4 Longitudinal 0.2% 1000 

CO2 Volumetric 1.1% 750 
Zutshi and Harpalani, 2004 

CH4 Volumetric 0.5% 1000 

CO2 Volumetric 2.41% 800 
Chikatamarla and Bustin, 2004 

CH4 Volumetric 0.49% 1000 

Most of the sorption-induced strain data for coals has been for pure gases as noted 

previously.  Massaratto [32] identified a need for mixed-gas strain isotherms because of 

the rather large difference between the CO2 and the CH4 strain isotherms.  Law [33] ar-

gued that during primary CBM production, matrix shrinkage might be adequately mod-

eled using pure gas (methane) strain measurements; however, during ECBM CO2-

sequestration activities, mixed-gas strain isotherms would become essential in order to 

adequately model permeability changes.  Even though there is a need for mixed-gas strain 

isotherm, these measurements have not been found in the open literature. 

Measuring sorption-induced coal strain using strain gauges could be very time con-

suming, fraught with equipment malfunctions, and result in difficult-to-interpret data.  

Therefore, it was thought that a more rapid method, not reliant on the use of strain 

gauges, was needed to meet the needs of this research and to generate data for future pro-

jects.  In light of the rapid development of coalbed methane plays in the U.S. and the 
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world, and the potential for CO2 storage in unmineable coal seams, there appears to be a 

need for more sorption-induced strain for use in reservoir simulators.  Relatively few 

pure-gas strain isotherms and no mixed-gas strain isotherms have been reported in the 

open literature perhaps because of the difficulties associated with resistance-type strain 

gauges and the length of time required for equilibration of the samples. 

2.2 A Review of Previous Coal Permeability Modeling Efforts

Knowledge of how the adsorption or desorption of gases affects coal permeability is 

important not only to operations involving the production of natural gas from coal beds, 

but is also important to the design and operation of projects to sequester greenhouse gases 

in coal beds [34]. 

Sorption-induced strain of the coal matrix causes a change in the width of the cleats 

or fractures that must be accounted for when modeling permeability changes in the sys-

tem.  A number of permeability-change models for coal have been proposed that attempt 

to account for the effect of sorption-induced strain.  In 1987, Gray [26] explained that 

permeability fluctuations in coal beds during pressure depletion production were not 

solely a relative permeability effect, but rather a result of the opposing effects of effective 

stress increase with fluid pressure reduction and shrinkage of the coal due to gas desorp-

tion.  His model assumes that strain isotherms are linear with respect to pressure; how-

ever, sorption-induced strain can be better modeled using a Langmuir-type equation in-

stead of a linear relationship as discussed previously and shown later in this current work. 

The permeability model described by Sawyer et al. [35] in 1990 assumed that strain 

was proportional to gas adsorption.  The proportionality constant that equates the strain 

and adsorption isotherms, however, was left undefined and was used to calibrate the per-

meability equation by matching measured data.  The Pekot and Reeves model [36] used 

in the commercial CBM reservoir simulator, COMET, is based on the Sawyer et al. 

model.
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In 1995, Seidle and Huitt [28] presented a permeability model designed to demon-

strate the potential for drastic permeability increases due to gas desorption.  Their model 

ascribed all matrix strain to gas desorption and neglected the matrix compressibility 

based on the elastic properties of the coal.  This model, therefore, is limited to specific 

conditions where sorption-induced strain dwarfs the effect of the elastic properties of the 

coal with changes in pressure. 

In 1998, Palmer and Mansoori [23] published a permeability model incorporating the 

combined effect of coal’s elastic properties and gas sorption on the matrix strain.  The 

Palmer-Mansoori theory of permeability changes during CBM production includes a 

permeability loss term (due to an increase in effective stress), and a permeability gain 

term due to matrix shrinkage as gas desorbs from the coal  This model has been the basis 

of other models such as that presented by Chikatamarla and Bustin [30] in 2004.  How-

ever, some concerns have been raised regarding the broad applicability of this model in 

that field permeability cannot always be matched without neglecting the permeability loss 

term associated with an increase in effective stress [37, 38]. 

Shi and Durucan [39] presented yet another coal permeability model in 2003, which 

included both stress-dependent permeability and matrix shrinkage terms.  They were able 

to match field data [40] and obtained initial porosities generally similar to those obtained 

using the Palmer-Mansoori model [37].  In addition, they found that if initial reservoir 

pressure is high enough, a theoretical permeability rebound should occur, but if it is not 

high enough, a permeability rebound might not occur, just an increase of permeability 

with depletion right from the start. 

The phenomenon of increasing permeability as pressure becomes small, which can 

only be caused by sorption-induced strain, has been clearly demonstrated in the 

field [37], but efforts to adequately match field results using coal permeability models 

have been largely unsuccessful without large changes to measured parameters [23].  In 

the field, the produced gas is typically a mix of CH4, CO2, N2, and lesser quantities of 

heavier hydrocarbons; and the adsorbed gas typically has a higher content of the heavier 
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molecules such as CO2 and C2
+
.  Although models for coal permeability changes induced 

by pure gas adsorption have been presented as discussed earlier, the applicability of these 

models to mixed-gas systems is unknown. 
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CHAPTER 3. COAL DESCRIPTION, COLLECTION, 

HANDLING, AND STORAGE 

Because most coals are sensitive to oxidation and because exposure of freshly mined 

coal to air at ambient temperatures for as little as a few days can adversely affect some 

properties such as heating value and tar yield [41, 42], care was exercised during the col-

lection of the coal to limit exposure to air and to ensure that the samples remained as pris-

tine as possible.  A short description of the coal is provided in this chapter along with a 

narrative of how it was collected and stored until used. 

3.1 Coal Description

High-volatile bituminous coal from the Uinta-Piceance basin was collected from the 

Aberdeen seam, the Gilson seam, and the lower Sunnyside seam of the Book Cliffs coal 

field from underground mines near Price, Utah.  Additionally, subbituminous coal from 

the Powder River basin was collected from the Anderson and Canyon seams from an 

open pit coal mine near Gillette, Wyoming.  At the Wyoming mine location, the Ander-

son and Canyon seams were each over 100 ft thick and there was about 150 feet of rock 

separating these coal seams.  Proximate, ultimate, and heating value analyses were sub-

sequently done on samples of the collected coal and are shown in Table 3.1.  Values ob-

tained from the open literature for both the Wyoming coal [43] and the Utah coal [44] are 

also shown in Table 3.1 for comparison.  Additional coal information can be found in an 

Argonne National Laboratory study [45] using a Utah coal collected from a mine adja-

cent to the coal used in this study. 
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Table 3.1.  Properties of coal samples collected and used in this research as ascertained 

from various analyses on an “as received” basis. 
Powder River basin, 

subbituminous 

Uinta-Piceance basin, 

high-volatile bituminous 

Anderson Canyon Gilson Sunnyside Aberdeen 

Proximate Analysis wt%:  

Moisture 26.60  20.36  7.52  4.61  3.71  

Ash 6.18  24.50  2.99  19.30  3.38  

Volatile Matter  30.99  24.46  37.42  31.14  41.49  

Fixed Carbon  36.23  30.68  52.07  44.95  51.42  

Total 100.00  100.00  100.00  100.00  100.00  

      

Ultimate Analysis wt%:  

Moisture 26.60  20.36  7.52  4.61  3.71  

Hydrogen  2.08  1.83  3.86  3.68  4.56  

Carbon 50.57  41.96  71.66  62.38  75.74  

Nitrogen 0.43  0.34  1.36  0.80  1.60  

Sulfur 0.27  0.54  0.49  1.37  0.59  

Oxygen 13.87  10.47  12.12  7.86  10.42  

Ash 6.18  24.50  2.99  19.30  3.38  

Total 100.00  100.00  100.00  100.00  100.00  

      

Heating Value, Btu/lb 

Measured 8,514 6,939 12,437 10,788 13,685 

Literature values 8,220 [43] — 12,000 [44] — 12,300 [44] 

      

Vitrinite Reflectance 0.24 0.28 0.53 0.62 0.54 
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3.2 Coal Collection and Sample Storage

Coal samples of about one cubic foot in size were collected from the coal seams listed 

in Table 3.1.  The Utah coal samples were taken from the conveyer belt carrying recently 

mined coal out of the underground mine within one-half minute of first exposure to limit 

degradation of the sample by oxygen.  Immediately after being taken from the conveyer, 

each sample was double wrapped in plastic bags and sealed by tape.  Transporting the 

sample from the mine face to the surface took from 5 to 20 minutes depending on the col-

lection site.  Upon reaching the surface, the samples were removed from the bags and 

placed under de-ionized (DI) water inside containers for transport back to Idaho National 

Laboratory (INL) in Idaho Falls, Idaho.  One coal sample was taken from the Aberdeen 

mine (Aberdeen seam), one from the Centennial mine (Gilson seam), and two from the 

West Ridge mine (Sunnyside seam).  Figure 3.1 is a photograph of one of the coal blocks 

collected from the Sunnyside seam that was not used in the experimentation.  The Wyo-

ming coal was collected from an open pit mine from mine walls exposed earlier in the 

day.  Large boulders several feet in diameter were broken open to expose fresh coal in-

side.  Samples of roughly one cubic foot were then taken from this fresh area and imme-

diately placed under water in sealed containers for transport to INL where they were ei-

ther cut and drilled or stored in sealed containers under DI water. 
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Figure 3.1.  Photograph of the block of coal collected from the Sunnyside seam. 
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CHAPTER 4. DEVELOPMENT OF NEW OPTICAL 

STRAIN MEASUREMENT APPARATUS 

In this chapter, evolution of the apparatus design, test procedures, and development of 

the optical strain measurement apparatus is described.  Direct strain measurement using 

an optical method was pursued as a possible alternative to the use of strain gauges.  It was 

believed that smaller samples could be used with this type of approach, which would 

speed up the strain experiments and also eliminate the equipment problems associated 

with strain gauges. 

4.1 Strain Measurement Apparatus – Version 1

The first effort at developing an optical strain measurement apparatus was to use a 

fine-scale video system connected to a video screen to monitor changes in the length of 

coal samples placed inside a transparent pressure cell [46].  A pressure cell commonly 

used as a sight glass
1
 for determining fluid levels in high pressure reactors was used in 

the initial coal strain experiments.  The off-the-shelf pressure cell was manufactured with 

thick glass walls on opposite sides to allow for the direct viewing of the contents inside 

and to contain pressures of up to 5000 psia. 

A long, skinny piece of coal, on the order of -inch by -inch by 1-inch, small 

enough to fit through the pressure cell end ports would be used with this apparatus.  A 

video camera with a high-magnification lens was mounted to a tripod and focused on the 

coal sample inside the pressure chamber.  The magnified image was viewed on a video 

monitor attached to the video camera. 
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The pressure cell was inclined to a 45-degree angle to seat the coal sample against the 

bottom of the cell by gravity to permit the measurement of linear strain from a common 

reference point as the sample elongated.  Figure 4.1 is a photograph of Version 1 of the 

strain measurement apparatus and shows the pressure cell, the placement of the video 

camera attached to the tripod, as well as the monitor used to view the video image.  In 

this photograph, the rectangular end of the coal sample can be seen on the left in the im-

age on the monitor. 

Figure 4.1.  Photograph of Version 1 of the strain apparatus. 

1 Model 17T40, Jerguson Gage and Valve Company, 16633 Foltz Industrial Pkwy, Strongsville, OH 44149 
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4.1.1 Operation of Apparatus – Version 1

A proof-of-principle experiment was designed solely to demonstrate the possibility of 

measuring sorption-induced coal strain using an optical system.  For this experiment, the 

strain of the coal sample induced by CO2 adsorption was determined by measuring the 

travel of the end of the coal sample across the video monitor.  Because this experiment 

was done before the collection of the coal described in the previous section, a small sam-

ple of coal was cut from a larger coal block of unknown origin (thought to have come 

from a mine near Price, Utah) and placed in the pressure cell.  The use of a weathered 

coal of unknown origin was deemed appropriate in this case because the experiment was 

designed solely as a test of the apparatus and not to obtain any reportable strain data on 

coal.

After focusing the video image on the end of the sample, the video monitor‘s field of 

view (screen size) was calibrated to a standard length.  Using this calibration value, and 

knowing the number of pixels across the screen, the length corresponding to each pixel of 

the monitor was calculated.  Then, the growth of the coal sample was calculated by con-

verting the number of pixels the end of the sample moved during the adsorption of carbon 

dioxide to its change in length.

  Figure 4.2 is a close up view of the pressure cell and video camera lens.  Inside the 

pressure cell, the ends of a piece of 1/8-inch stainless steel tubing (left) and a piece of 

coal (right) can be seen. 

4.1.2 Strain Measurements and Problems

Version 1 of the strain measurement apparatus for optically measuring coal strain 

without strain gauges was a qualified success, but also uncovered some problems that 

would need to be addressed in subsequent versions of the apparatus.  Measured strain was 

on the order of ½ percent at 770 psig CO2 and 70° F, which was in line with measure-
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ments made by previous researchers using strain gauges (see Table 2.1).  Encouragingly, 

equilibration time using the small coal sample was much less than the equilibration time 

using the larger samples required for strain gauges; less than 24 hours compared to 

greater than one month.  The problems of long equilibration times, strain gauge hystere-

sis, and glue failure were eliminated with this new system, but other problems were en-

countered that had to be fixed in order to use the system reliably, which are described in 

the following paragraphs. 

Figure 4.2.  Close up view of the pressure cell and video camera lens.  Inside the pressure 

cell can be seen the ends of a piece of 1/8-inch stainless steel tubing (left) and a piece of 

coal (right). 

With the large and heavy lens of the video camera attached to a tripod, fairly severe 

vibrational problems were encountered.  Vibrations caused merely by walking past the 

station could be seen in the video image, which caused potential errors in the counting of 
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strain-pixels on the video monitor.  However, even though accuracy was somewhat com-

promised by the vibrations, confidence that sample elongation was on the order of 0.5% 

was high.  Nevertheless, a way to reduce or eliminate these vibrational effects on the 

video image was needed in order to more accurately measure strain. 

The proof-of-principle experiment was done using carbon dioxide (a gas expected to 

cause a large sorption-induced strain) at high pressure because results using the best-case 

scenario were desired.  Even though the video camera lens was highly magnified, the 

0.5% strain (0.127 mm of actual length change) was at the low end of the system’s detec-

tion capability.  During the experiment, the end of the coal sample traveled only 5 pixels.  

In addition, the end of the coal sample was blurred over two to four pixels, making the 

determination of the edge difficult.  Lower pressure and adsorption of other gases, such 

as methane or nitrogen, was expected to induce strains potentially much smaller than the 

0.5% induced by the adsorption of carbon dioxide.  Clearly, the ability to view much 

smaller changes in coal sample length was needed to compare the effect of different gases 

at a range of pressures. 

Although the pressure cell was large enough to handle multiple samples of coal, Ver-

sion 1 of the strain measurement apparatus was only able to handle one sample at a time.  

Being able to measure the strain of multiple samples would allow the generation of 

enough data to make meaningful comparisons between coals and conclusions about the 

nature of coal swelling. 

4.2 Strain Measurement Apparatus – Version 2

Based upon the problems encountered using the proof-of-principle apparatus, a modi-

fied strain measurement apparatus (Version 2) was constructed.  The main components of 

this refined system included a pressure cell of the type used previously, a removable 

multi-sample holder, and a digital filar microscope mounted directly to the pressure cell.  

The pressure cell was modified slightly by drilling-out the entrance and exit ports to al-
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low for the passage of a ¼-inch rod used to house multiple samples.  A multi-sample 

holder, fabricated out of a solid ¼-inch stainless steel rod, was designed to be easily re-

movable from the pressure cell when samples needed to be changed.  A microscope
2
 was 

mounted directly onto the pressure cell to more accurately measure changes in coal strain 

under different pressures and gas compositions.  Mounting the microscope directly to the 

pressure cell eliminated the vibrational problems encountered with the proof-of-principle 

apparatus and allowed a much closer and cleaner view of the end of the coal sample. 

The rod holding the coal samples was centered in the pressure vessel by passing it 

through both the inlet and outlet ports of the pressure cell. The test gas could enter and 

exit the vessel through holes drilled through the center of the rod.  A thermocouple to 

monitor temperature was placed inside the pressure vessel through the gas ports in the 

rod.

The stainless steel sample holder was designed to hold six samples allowing the 

measurement of six coal types under identical conditions.  The size of the samples was 

constrained by the dimensions of the sample “beds” machined into the rod.  The maxi-

mum size is 1-inch in length by 5/32-inch in width by 1/8-inch in height.  The sample 

beds have a solid bottom on which the coal samples rest except for the upper portion, 

which is machined completely through the rod to allow light to shine up from below and 

illuminate the coal sample.  Figure 4.3 is a photograph of the rod used to house the six 

samples.  This rod, with samples in place, is inserted into the pressure cell for strain 

measurements. 

2 Model M110AE filar microscope with an M224 objective and M330 support rod, Gaertner Scientific Cor-

poration, 3650 Jarvis Avenue, Skokie, Illinois 60076 
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Figure 4.3.  Photograph of the stainless steel rod used to house the coal samples. 

The microscope currently employed has an attached eye piece that has a movable 

crosshair attached to a precision rotary encoder that sends the location to a small digital 

display with a precision of 0.0001 mm.  The microscope has a magnification of 2.3X, 

which gives an object field of 4.8 mm.  The coal samples used in these experiments are 

roughly 20 mm in length, 3 mm in width, and 3 mm in height (¾ in. by  in. by  in.).  

The lower limit of accurate and repeatable measurements of changes in length using the 

microscope and digital output is 0.001 mm, which translates into a strain of 0.005% for a 

20 mm sample, which is two orders of magnitude better than the video camera used in the 

proof-of-principle apparatus.  The upper limit for a growth measurement is 4 mm, yield-

ing a strain of 20% for a 20 mm sample, which is an order of magnitude larger than typi-

cal coal strain induced by gas adsorption. Because of the magnification of the micro-

scope, only the ends of the samples can be seen.  The apparatus is tilted about 45 degrees 
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with respect to the horizontal plane so that the coal samples are at rest at one end of the 

bed.  Figure 4.4 shows the components of the filar microscope. 

Digital Readout

Eyepiece

Microscope

Horizontal
crosshairs
adjuster

DC power
source

Vertical
microscope
adjuster

Figure 4.4.  Components of the digital filar microscope used for measuring sorption-

induced strain in coal. 

An adjustable microscope holder was designed and fabricated that allows the entire 

microscope assembly to be translated along the length of the pressure cell window by 

turning a hand-adjusted rotating screw.  By this means, the microscope can be precisely 

moved along the entire length of the cell window to view and measure the strain of each 

of the six samples in the cell during the same experiment. 

Figure 4.5 is a photograph of the apparatus developed to measure the longitudinal 

strain of multiple samples under identical conditions of pressure, temperature, and gas 
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composition.  In the photograph, the microscope attached to the pressure cell and a num-

ber of the sample beds can be seen. 

Figure 4.5.  Photograph of the apparatus developed to measure the strain of multiple 

samples without the use of strain gauges. 

The measurement of change in length of the samples is accomplished by recording 

the change in distance between the end of each sample and a specific mark on a clear 

plastic ruler placed directly on top of the pressure vessel between the microscope and the 

transparent glass wall of the pressure cell.  Figure 4.6 is a photograph of a portion of the 
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pressure vessel showing the bottom of the microscope, the clear measurement standard, 

and a few coal samples lying in the sample holder. 

Figure 4.6.  Photograph of clear measurement standard overlaying the clear glass wall of 

the pressure vessel.  At the top of the figure the bottom of the microscope can be seen; in 

the center, the sample holder containing coal samples. 
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4.2.1 Version 2 – Initial Testing

All the coal samples used in the following experiments were cut from a piece of coal 

taken from the Gilson coal seam.  One-eighth-inch thick pieces were cut from a piece of 

the boulder using a tile saw cooled with DI water and then the small samples used in 

these experiments were chipped from these pieces to the appropriate size and length.  Al-

though every effort was made to minimize atmospheric exposure and to keep the samples 

moist, the samples may have dried somewhat, and in addition, moisture was not added to 

the pressure cell during these strain measurements. 

A series of swelling experiments using carbon dioxide as the pressurizing medium 

were conducted to determine response time and swelling properties of coal compared to 

other porous media and to test the capabilities of this new system. 

An experiment was run to compare coal swelling and sandstone swelling (as a con-

trol) at room temperature and using carbon dioxide as the adsorbing gas.  A coal sample 

19.61 mm in length and a Berea sandstone sample 19.97 mm in length were placed in the 

visual pressure cell in separate sample beds and the air in the cell was displaced by car-

bon dioxide.  The end positions of both samples were recorded while at atmospheric 

pressure.  The carbon dioxide atmosphere was then pressurized to 770 psig.  The change 

in length of both samples was recorded as a function of time, while holding pressure and 

temperature constant at 770 psig and 73° F respectively.  Results of this experiment are 

shown in Figure 4.7 and show that contrary to expectations, the sandstone sample did 

elongate somewhat in the presence of pressurized carbon dioxide – on the order of 

0.1 percent.  However, the coal sample experienced much more strain than the sandstone 

sample with a strain of over 1.0% under the identical conditions. 
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Figure 4.7.  Linear strain in Gilson coal sample and Berea sandstone as a function of 

CO2-exposure time.  The calculated maximum strain for the coal curve is 1.10%. 

In a subsequent experiment, multiple samples of coal from the same seam prepared in 

the same manner as the previous experiment were tested to determine the swelling capac-

ity under the same conditions as above – 770 psig and room temperature.  Six different 

coal samples ranging in length from 19.16 mm to 21.38 mm were placed inside the visual 

pressure cell and then the air in the cell was replaced by CO2.  The locations of the sam-

ple ends before pressurization were noted and then carbon dioxide was admitted into the 

cell until a pressure of 770 psig was reached at a temperature of 73° F.  The change in 

length of each sample was monitored over the course of a day.  Figure 4.8 shows the total 

linear strain of each of the samples as a percent of original length ( L / L  100).  As can 

be seen, there was a fair amount of variability in the measured strains for the samples 

tested, which might be caused by heterogeneity of the coal. 
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Figure 4.8.  Total linear strain for six samples of Gilson-seam coal under identical test 

conditions.

Figure 4.9 shows the average strain build-up curve showing the standard deviation for 

the six samples.  The average strain of all the samples is represented by the triangular 

data points.  The vertical bars represent the standard deviation around the average and 

was calculated based on the spread in the strain data between the six coal samples meas-

ured.
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Figure 4.9.  Average swelling response of Gilson-seam coal showing standard deviation 

of six different samples.  The calculated average maximum strain is 1.25%. 

4.2.2 Coal Heterogeneity Discussion

Comparing the swelling characteristics of six coal samples under identical conditions 

gives insight into the heterogeneity of the coal.  Even though the samples were taken 

from the same small volume of coal, there is a fair amount of spread in the end points 

seen in Figure 4.8.  The linear strain for these six samples ranged from 1.00% to 1.45%.  

If larger samples could have been used, perhaps the spread in strain measurements would 

have been smaller.  Although bulkier samples might reduce the spread in the data, it 

would without question increase the equilibration time, which could make the acquisition 

of these kinds of data prohibitive.  Averaging the strain data of a number of small sam-

ples is arguably a reasonable alternative to using larger samples 
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4.2.3 Modeling Strain Equilibration Time

The strain-time data shown in Figure 4.7 and Figure 4.9 were modeled using a Lang-

muir-type equation of the form: 

,
tt

tS
S

L

t .................................................................................................................... (4-1) 

where S is the observed linear strain, L/L; St is the maximum strain-time constant and 

represents the maximum amount of strain that can occur due to gas adsorption at infinite 

equilibration time at a given temperature and pressure; the time constant tL corresponds to 

the time at which the observed strain is equal to one-half the maximum strain; and t is the 

time the sample is exposed to the new conditions (pressure or gas).  At infinite time, ob-

served strain, S, would equal the maximum strain, St.

Modeling the data in Figure 4.7 and Figure 4.9 with Eq (2) resulted in a very good fit: 

R-squared values of 0.997 and 0.996 respectively.  The calculated values of maximum 

strain were 1.10% for Figure 4.7, and 1.25% for Figure 4.9.  Recall that the data in Figure 

4.7 were obtained using one single sample of coal, while the data in Figure 4.9 repre-

sented the average strain of six coal samples.  Based on the excellent fit of the data, a 

very good estimate of maximum strain was calculated from data collected within the first 

24 hours of exposure to the pressurized gas, which is a great improvement over the rela-

tively long equilibration times required by methods employing strain gauges as described 

earlier.

4.2.4 Temperature Control and Possible Effect on Strain

These experiments were done at room temperature and no effort was made to regulate 

it, but it was monitored.  The amount of adsorption (and by inference, resulting strain) is 

known to be a strong function of temperature [47, 48].  The room temperature during 

these experiments varied between 68° F and 75° F with an average of 73° F.  The second 
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to the last data point in Figure 4.9 was taken at a temperature of 69° F, while the last data 

point was taken at a temperature of 73° F.  At lower temperatures, more gas is adsorbed 

resulting in higher strains.  This slight change in temperature could account for the de-

crease in strain from one point to the next.  Studying the effect of temperature on coal 

strain was not included in the work scope of this project.  In order to neglect any future 

temperature effects, the temperature was controlled at a constant value in all subsequent 

experiments by the addition of heat tape and insulation wrapped around the apparatus. 

4.2.5 Discussion of Linear Strain versus Volumetric Strain

The main reason for obtaining coal strain data is to correlate strain data to changes in 

permeability.  The volumetric strain of coal is needed to model changes in coal perme-

ability as gas is adsorbed.  In these experiments, linear strain was measured, not volumet-

ric strain.  A relationship between linear or longitudinal strain and volumetric strain is 

needed and derived in this section. 

Longitudinal strain is defined as the change in length of a sample divided by its origi-

nal length: 

,
L

L
SL ...................................................................................................................... (4-2) 

where L is the change in length of a dimension and L is the original length of that di-

mension.  Also, volumetric strain is defined as the change in volume of a sample divided 

by its original volume, 

,
V

V
SV ..................................................................................................................... (4-3) 

where V is the change in volume of a body and V is the original volume of that body. 
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Assuming a solid, rectangular volume with dimensions L1, L2, and L3, the change in 

volume ( V) can be calculated by subtracting the original volume (V) from the stressed 

volume: 

.LLLLLLLLLV 321332211 .......................................................... (4-4) 

Multiplying these terms and simplifying yields: 
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.................................................. (4-5) 

Volumetric strain is calculated by dividing the change in volume ( V) by the original 

volume (V): 
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Simplifying and canceling terms results in: 
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Substituting the definition of longitudinal strain, LLSL , into the above equation 

gives a rigorous derivation of the relationship between longitudinal strain and volumetric 

strain: 

,SSSSSSSSSSSSS
321213132321 LLLLLLLLLLLLV ................................. (4-8) 

  Coal, on a large scale, can be considered to be a layered and heterogeneous medium 

and layers of ash or other sediment can cause differences in vertical and horizontal strain.  

However, the samples used in these experiments are quite small and did not show any 

visible layering or changes in texture in any direction.  By assuming the coal body is iso-



40

tropic, the strain becomes equal in all directions (SL1 = SL2 = SL3 = SL), and the above re-

lationship between linear and volumetric strains reduces to the following form: 

.SS3S3S
3

L

2

LLV ................................................................................................ (4-9) 

If strain is small, the last two terms can be neglected and volumetric strain is ap-

proximately equal to three times the linear strain as shown in the following equation: 

.S3S LV .................................................................................................................... (4-10) 

The assumption of isotropic conditions for coal is supported by the strain results re-

ported by Levine [29].  In his experiments, strain was recorded for all three dimensions 

and both longitudinal strain and calculated volumetric strain were compared.  The ratio of 

the longitudinal strain to the volumetric strain in Levine’s data is 1:3, which supports the 

assumption that small samples of coal can be considered isotropic. 

4.3 Strain Measurement Apparatus – Final Version

Based on the potential for temperature to affect the observed strain data as discussed 

in Section 4.2.4 , the entire pressure cell was wrapped with heat tape and insulated to bet-

ter control the temperature.  Temperature was controlled using input from the thermo-

couple inserted into the pressure cell through the upper gas port.  Figure 4.10 is a photo-

graph of the final version of the strain measurement apparatus showing the pressure cell 

wrapped in insulation, the digital filar microscope attached to the pressure cell, and the 

digital readout attached to the microscope. 
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Figure 4.10.  Photograph of the final version of the strain measurement apparatus.  Pres-

sure cell is wrapped in insulation, the attached microscope is attached to the top of the 

apparatus, and the digital readout is at the lower right of the photograph. 

A series of experiments were designed and performed using the final version of the 

strain measurement apparatus.  These experiments are described below. 

4.3.1 Sample Preparation for Measurement of Strain Data

The small samples used to measure strain were taken from the larger blocks by using 

a rock saw cooled by de-ionized water.  These small samples were then dried on the lab 

bench using paper towels, measured, and placed into the strain measurement apparatus.  
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Gas adsorption is known to be a strong function of moisture content [49, 50, 51].  To 

eliminate this potential source of variability in the strain data, the moisture within the 

samples was evaporated at 80
o
 F inside the strain measurement apparatus by cycling be-

tween a vacuum and high pressure moisture- and oxygen-free gas until strain at the pres-

sure extremes was constant. 

4.3.2 Experimental procedure

Much of the experimental procedure and resulting data has been previously reported 

by Robertson and Christiansen [52].  All strain measurements were done at a constant 

temperature of 80
o
 F.  Initially, a hard vacuum was applied to the pressure chamber for 24 

hours and then the initial location of each of the sample ends with respect to specific 

marks on the measurement standard was recorded.  Gas was then introduced into the 

chamber and pressurized to a desired pressure and changes in the length of the samples 

were monitored over time as gas was adsorbed by the coal and the samples equilibrated 

to the new pressure state.  The strain of five coal samples were averaged to arrive at an 

average strain value and one stainless steel sample was used as a control in all experi-

ments.  This procedure was repeated for a number of increasingly higher pressures until 

the maximum desired pressure was achieved.  At that point, a hard vacuum was applied 

to determine the reversibility of the strain as gas was desorbed.  The process was repeated 

for other gases of interest. 

Strain measurements were obtained by following these steps: 

With the microscope looking through the clear measurement standard overlying the 

clear glass wall of the pressure vessel, it is focused on the end of a coal sample and the 

eyepiece crosshairs are placed at the end of the sample by adjusting the horizontal ad-

juster (see Figure 4.4 for components of the filar microscope). 

The digital readout is zeroed. 



43

The microscope is then adjusted vertically (perpendicular to the plane of the direction 

of strain measurement) until it is refocused on the clear measurement standard on the out-

side of the pressure vessel. 

The crosshairs are then adjusted until they are placed on the nearest mark on the 

measurement standard.  This standard mark is used for all subsequent measurements as-

sociated with this sample. 

The distance in millimeters between the end of the sample and the mark on the stan-

dard is read from the microscope’s digital readout and recorded in laboratory notebook. 

Once one of the sample measurements is taken, the entire microscope assembly is 

moved to the next sample by turning a threaded rod until the sample end comes into view 

through the microscope. 

The strains of each of the samples are measured and averaged to arrive at a final 

strain value for that sample. 

It takes about 10 minutes to collect this data for all six samples.  This process is re-

peated every few hours until the distance between the ends of the samples and the stan-

dard marks ceases to change or nearly ceases to change, which generally occurs at about 

24 hours. 

The pressure of the gas is then increased by 200 psi (or some other desired step 

amount) and the whole process is repeated until data is collected at the maximum pres-

sure of 1000 psi (or some other predetermined maximum). 

A vacuum is then applied in one step and the shrinkage measurements are done in the 

same manner as the swelling measurements. 

The entire process can generally be accomplished in seven to 10 days.  When begin-

ning a test with a different gas, a hard vacuum is maintained on the samples for 48 hours 

before any measurements are made to desorb all the previous gas and “re-zero” or initial-

ize the samples. 
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4.3.3 Experimental Results – Strain Data with Respect to Time

Figure 4.11 is an example of the strain measurements collected over time for the 

Anderson coal and shows the average strain of five coal samples with respect to adsorp-

tion time under differing carbon dioxide and methane pressures.  Note the difference in 

scale between the two plots.  There is more scatter in the strain data for the methane sorp-

tion than for the carbon dioxide sorption because of the smaller strains induced by the 

sorption of methane compared to carbon dioxide. 
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Figure 4.11.  Change in Anderson seam coal strain with respect to time under different 

carbon dioxide (a) and methane (b) pressures. 

As discussed previously in Section 4.2.3 , the relationship between strain and equili-

bration time (constant pressure) can be modeled very well using a Langmuir-type equa-

tion of the following form: 

,
tt

t
SS

L

t .............................................................................................................. (4-11) 
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where S is the measured strain, St is the equilibrated strain (extrapolated to time = ), t is 

time in hours, and tL is a constant representing the time at which S equals ½ St.  The 

value of the equilibrated strain (St) is used later to construct strain versus pressure plots.  

Both St and tL are variables determined by the shape of the strain-time data. 

To model the data and obtain the appropriate constants (St and tL), a macro was writ-

ten for an Excel spreadsheet in Visual Basic to optimize the constants until the best fit of 

the data was obtained as measured by the R
2
 value of the resulting equation.  Appendix A 

lists the code used to optimize the constants in Eq (4-11).  This approach was very help-

ful in extrapolating to infinite time (equilibrated strain) if the strain data were not com-

pletely stabilized after 24 hours.  Figure 4.12 shows the same strain data as in Figure 

4.11, but modeled using Eq (12). 

For comparison, plots showing the sorption-induced strain data collected over time 

for the Gilson coal are shown in Figure 4.13.  Each data point is an average of five strain 

measurements – one for each of the five samples of coal in the apparatus. 
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Figure 4.12.  Change in Anderson seam coal strain with respect to equilibration time un-

der different carbon dioxide and methane pressures.  Also shown are the Langmuir-type 

models with corresponding constants. 
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Figure 4.13.  Average strain induced by the sorption of CO2 (a) and CH4 (b) plotted 

against equilibration time for the Gilson coal. 

The constant tL can be used as a measure of equilibration time; a small value for tL

means that the strain stabilized rapidly, while a large value for tL represents a long stabi-

lization time.  Although not strictly the case, there appears to be a general trend for longer 

equilibration times as pressures increase from 0 psig towards 1000 psig.  For example, 

strain data stabilized very quickly at lower pressures for CO2 sorption with the Anderson 

coal (tL = 0.032 hrs for 100 psia) and the equilibration time became progressively longer 

at the higher pressures (tL = 10.7 hrs at 800 psia). 

Figure 4.14 compiles all the equilibration time, tL, data for the coals and pure gases 

and plots them versus the normalized pressure step ( p/pave).  There is quite a bit of scat-

ter in the data, but generally, as the normalized pressure step decreases, the equilibration 

time increases.  This finding is important as it will aid in the design of future strain ex-

periments. 
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Figure 4.14.  General relationship between the equilibration time, tL, and the normalized 

pressure step, p/pave.

Eq (4-11) was used to extrapolate the 24 hours of strain data to infinite time in order 

to arrive at the stabilized strain for each pressure point as quickly as possible.  In retro-

spect, more time could have been allowed for equilibration or more data points could 

have been taken to more fully establish the strain versus time trend.  However, because 

the data is modeled very well by the Langmuir-type equation, any error associated with 

the extrapolation is expected to be small. 

The calculated value of St at the various pressures was then used to construct a strain 

versus pressure plot.  Figure 4.15 is an example of such data and also shows the strain 

measured in a non-reactive stainless steel bar used as a control for each of these experi-

ments.  In this figure the average longitudinal strain induced by the sorption of carbon 

dioxide is plotted for the Anderson seam coal. 
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Figure 4.15.  Measured longitudinal strain using coal from the Anderson seam under vari-

ous CO2 pressures.  Also shown is the measured strain of a stainless steel sample used as 

a non-reactive control. 

4.3.4 Discussion of Error Associated with Strain Data

Figure 4.15 also shows the measured strain of a stainless steel sample of the same size 

as the coal samples used as a control.  Because stainless steel is non-reactive and does not 

display a change in dimensions with changes in gas pressure, any strain measured on the 

control sample is equivalent to the error associated with the measured strain in the reac-

tive coal samples.  All strain tests of the coal samples included a stainless steel control 

sample for quality control.  The standard deviation of the error associated with Figure 

4.15 (measured strain of control sample) was 0.0016% and was typical of all the strain 

experiments. 

There was an element of operator skill associated with these strain measurements.  

The error associated with these measurements appeared to be random but was also related 
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to the ability, or inability, of the operator to accurately and repeatedly locate the ends of 

the samples or the calibration mark on the standard. 
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CHAPTER 5. PRESENTATION OF EXPERIMENTAL 

STRAIN DATA AND MODELING OF RESULTS 

In this chapter the sorption-induced strain data versus pressure is presented for two 

coals of different ranks for pure gases and for a gas mixture.  Some relationships between 

coal rank and strain are presented for pure gas sorption.  In addition, prediction of strain 

induced by the sorption of a mixed gas based on the pure-gas strain parameters is dis-

cussed.

5.1 Experimental Strain and Modeling – Pure Gases

Sorption-induced strain as a function of pressure can be modeled using a Langmuir-

type equation of the following form: 

,
pp

p
SS

L

max ........................................................................................................... (5-1) 

where S is the measured strain, Smax is the Langmuir strain, which is the maximum strain 

at a hypothetical infinite pressure, p is the gas pressure in psia inside the pressure cham-

ber, and pL is the Langmuir pressure, which is a constant representing the pressure at 

which S equals ½ Smax.  Note that Eq (5-1) has the same basic form as Eq (4-11), which 

was used to model strain versus time data. 

To model the strain versus pressure data, Smax and pL were varied using the Excel 

spreadsheet macro in Appendix A until the R
2
 value of Eq (5-1) was maximized. 

Strain was measured using both the Gilson coal and the Anderson coal as a function 

of gas pressure for three pure gases: CO2, CH4, and N2.  Figure 5.1 shows the data result-

ing from these experiments, which were modeled using Eq (5-1).  Table 5.1 shows the 

Langmuir strain constants accompanying the model curves for the different coals and 
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gases.  Both coals exhibited the largest strain when adsorbing carbon dioxide; nitrogen-

sorption induced the least strain in both coals tested; and the strain curve for methane ad-

sorption fell between the carbon dioxide curve and the nitrogen curve for both coals. 
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Figure 5.1.  Strain curves for two different coals subjected to three different pure gases at 

various pressures.  Solid circles are strain data for the Anderson coal and open circles are 

strain data for the Gilson coal. 

5.1.1 Approach to Modeling Scattered Strain Data

The strain data seen in Figure 5.1 were modeled using Eq (5-1) by adjusting the val-

ues of the equation constants, Smax and pL until the error associated with the calculated 

curve was minimized.  To minimize the error, the coefficient of determination, R
2
, was 

maximized.  The equation for R
2
 is: 
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where y represents the measured strain data, y* represents the strain calculated by 

Eq (5-1), and ȳ   represents the average of the measured strain data.  The value of the coef-

ficient of determination can range from 0 to 1.  An R
2
 value of 1 indicates that the calcu-

lated curve passes through each data point indicating no differences between the meas-

ured and calculated data.  As the value of R
2
 decreases from unity towards zero, differ-

ences between the calculated values and measured data become larger. 

Table 5.1.  Langmuir strain constants for sorption-induced strain for Anderson and Gilson 

coals at 80° F. 
Langmuir strain constants 

Gas Coal 
Smax PL, psia 

R2 value for curve 

fit

Anderson 0.03447 529.19 0.9985 
CO2

Gilson 0.01596 581.32 0.9972 

Anderson 0.00777 618.98 0.9997 
CH4

Gilson 0.00958 1070.82 0.9993 

Anderson 0.00429 1891.44 0.9989 
N2

Gilson 0.00112 348.41 0.8914 

R
2
 values are influenced by two possible conditions: 1) errors in the measured data 

and 2) errors with the model.  Errors associated with the measured data are definitely pre-

sent as demonstrated by the small scatter in the strain data of the control sample.  How-

ever, when the measured strain is large, the error in the measured data is almost negligi-

ble.  On the other hand, when the measured strain is small the error in the data can be-

come significant. 

Considering the strain data presented in Figure 5.1, the error associated with the CO2

strain data is small relative to the magnitude of the strain measurements and very little 
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scatter is detected.  However, the strain associated with nitrogen adsorption is much 

smaller than the CO2 strain data and is approaching the lower limits of strain detection.  

In Figure 5.2, N2 strain data using Gilson coal is plotted with the control sample for com-

parison.  The magnitude of the N2-induced strain is much less than the CO2-induced

strain; and because of this there is more apparent scatter associated with these data.  Be-

cause of the data scatter, the confidence in the calculated Langmuir strain constants, Smax

and pL, is somewhat lower for N2-induced strain than for CO2-induced strain and rather 

large differences in the strain constants (Smax and pL) could result in very nearly the same 

R
2
 value for the N2-induced strain data set. 
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Figure 5.2.  Measured Longitudinal strain using coal from the Gilson seam, Eastern 

Utah under various N2 pressures.  Also shown is the measured strain of the non-

reactive control sample. 
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5.1.1.1 Relationship between Smax and pL

The pressure constant, pL, represents the pressure at which ½ of the maximum strain, 

Smax, is reached.  These two parameters define the shape of the strain curve.  A small 

value for pL would result in a rapid increase in strain at low pressure, leveling off quickly 

as pressure increases.  On the other hand, a large value for pL could result in an almost 

linear rise in strain as pressure increased.  Therefore, pL controls the curvature and Smax

controls the height of the strain curve.  The data in Table 5.1 show a general trend of in-

creasing pL as Smax decreases. 

The values for the pressure constant, pL, are very similar for both coals when adsorb-

ing carbon dioxide (see Table 5.1).  That the strain curves for different coals adsorbing 

the same gas are of similar shape is an important finding for this allows the comparison 

of strain curves for different coals based on the value for Smax.  In other words, if the 

pressure constant were the same for two coals, the sorption-induced strain curves could 

be compared by simply comparing the Smax values instead of a graphical comparison of 

the entire curve.  Note that for methane, and then nitrogen, the maximum strain (Smax)

becomes progressively smaller and the values for pL become progressively less similar.  

The dissimilarity of the values of the pressure constants for nitrogen adsorption, and to a 

lesser extent for methane adsorption, could be attributed to increasing scatter in the strain 

data caused by the increasing influence of measurement error (see Figure 5.2). 

5.1.1.2 Comparison of Strain Curves

Because of the magnitude of the CO2-induced strain compared to the N2-induced

strain, there is inherently more confidence in the pL values of the CO2-induced strain 

curves.  In the previous section it was noted that the pL values of the CO2-induced strain 

curves were very similar for both coals.  It follows that the curvature of the respective 
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CH4 and N2 curves should also be similar, and averaging the pL values for both coals for 

a given adsorption gas could be reasonable. 

By using the average pL value for both coals for a given gas, a normalized Smax was 

calculated and used to consistently compare strain data between coals and gases.  Table 

5.2 shows the resulting modified strain curve constants and the coefficient of determina-

tion, R
2
, for each data set.  Note that the R

2
 values for each data set in Table 5.2 are very 

close to the original values listed in Table 5.1, which means that the model using the 

modified constants fits the data very nearly as well as the model using the original strain 

constants.  For comparison, Figure 5.3 shows models using both the modified strain con-

stants and the original strain constants for all three adsorbing gases. 

Table 5.2.  Modified Langmuir strain constants for sorption-induced strain for Anderson 

and Gilson coals at 80° F. 

Modified strain constants 
Gas Coal 

Normalized Smax Average pL, psia 

R2 value for curve 

fit

Anderson 0.03527 0.9984 
CO2

Gilson 0.01559 

555.25 

0.9972 

Anderson 0.00907 0.9969 
CH4

Gilson 0.00838 

844.90 

0.9981 

Anderson 0.00305 0.9949 
N2

Gilson 0.00196 

1119.93 

0.8639 
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Figure 5.3.  Comparison of models using original and modified strain constants. 

The strain models using the original and the normalized strain constants overlie each 

other for the carbon dioxide data (Figure 5.3a); there is a slight difference in the curves 

for the methane data (Figure 5.3b); and an even larger difference for the nitrogen data 

(Figure 5.3c).  However, even though the resulting curves were slightly different, the data 

were still modeled reasonably well using the normalized strain constants as shown by the 

relative small difference in R
2
 values between Table 5.1 and Table 5.2. 

The relationship between Smax and pL can be seen in Figure 5.4, which plots the aver-

age value of pL, as a function of the normalized Smax for both the Anderson and Gilson 

coals.  The trend shown in this figure for a declining pL with an increasing Smax is almost 

linear.  The trend for higher values of pL as Smax decreases results in a “straightening out” 
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of the strain curve as total strain decreases.  This observation with the shape of the strain 

curves is analogous to the trend observed in adsorption curves where the Langmuir pres-

sure, pL, tends to increase as adsorption decreases [30, 56]. 
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Figure 5.4.  The relationship between the average Langmuir pressure and the average 

maximum strain for two different coals using three gases. 

Figure 5.4 also shows data suggesting that the product of Langmuir strain constant 

and the Langmuir pressure (Smax·pL) decreases as Smax decreases; and ranges from 14 psia 

for CO2 down to 2.8 psia for N2.

5.1.2 Discussion of Shape of Sorption-Induced Strain Data

Seidle and Huitt reported pre-1990 coal strain data from several authors suggesting 

that sorption-induced coal strain varied linearly with pressure [28] and some early results 

from Harpalani and Schraufnagel [27] appear to indicate that sorption-induced strain in 
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coal could be linear with respect to pressure.  However, the data presented in Figure 5.1 

clearly indicate that sorption-induced strain is not a linear function of gas pressure, but 

can be very satisfactorily modeled using a Langmuir-type equation.  This should be ex-

pected because the principal cause of the change in coal dimensions (strain) is the sorp-

tion of gas, which is also modeled by a Langmuir equation. 

A secondary cause of strain in these experiments is the gas pressure acting to com-

press the coal samples.  As gas pressure changes, the resulting compressive and sorptive 

strains are counter acting.  The matrix compressive strain is small relative to the sorption-

induced strain in the presence of carbon dioxide, but may become important when the 

sorbed gas is only slightly adsorptive such as nitrogen.  The matrix compressibility can 

be determined by measuring the strain of a coal sample subjected to the pressure of a 

non-adsorbing gas such as helium.  Figure 5.5 shows the strain induced by the exposure 

of the coal samples to helium at various pressures with temperature held constant at 

80
o
F.  These data were obtained after allowing sufficient equilibration time to arrive at 

constant values with respect to time.  From the data shown in Figure 5.5, the longitudinal 

matrix compressive strain is calculated to be 0.84E-6 psi
-1

, which translates into a volu-

metric matrix compressibility of 2.5E-6 psi
-1

 for Anderson (vitrinite reflectance, 

Ro = 0.24%) coal at 80
o

F.  Schuyer et al. [53] reported compressibilities of “whole” coal 

ranging from 0.70E-6 psi
-1

 for a coal with Ro = 6.2% to 1.43E-6 psi
-1

 for a coal with 

Ro = 0.75%.  (Note: Schuyer et al. reported compressibilities of coal correlated with the 

% carbon on a dry, ash-free (daf) basis.  The % carbon daf was converted to vitrinite re-

flectance, Ro, using the correlation given by Berkowitz [54] to be able to compare 

Schuyer et al.’s compressibilities with that measured for the Anderson coal.)  A direct 

comparison between the compressibility measured on the Anderson coal with those re-

ported by Schuyer et al. is not intended, nor possible because of coal differences; how-

ever, the Anderson coal compressibility lies within the same trend as the Schuyer et al. 

data, which adds a level of credibility to the strain data generated as part of this work. 
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Figure 5.5.  Longitudinal strain of Anderson (subbituminous) coal induced by various 

helium gas pressures at a constant temperature of 80
o
F.

Both adsorption isotherms and strain isotherms can be modeled using forms of the 

Langmuir equation and it may be possible to predict one based on the character of the 

other.  There is evidence that for most gases and coals, the relationship between strain 

and adsorption is linear [29, 30].  However, Pekot and Reeves suggest that for high ad-

sorbed gas concentration, the adsorption-strain relationship may become non-linear [55].  

More work needs to be done in this area before any strong conclusions can be made as to 

the relationship between strain and adsorption curves, but there is strong evidence that 

there is a positive (and possibly linear) relationship between the sorption and strain iso-

therms. 

5.1.3 Relationship between Strain and Coal Rank

The data presented in Figure 5.1 show a marked difference in the sorption strain be-

tween the two ranks of coals studied here.  The relationships between sorption-induced 
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strain and coal rank for the three gases used in this study are shown in Figure 5.6.  In this 

figure, Smax is used as a measure of strain and vitrinite reflectance is used as a measure of 

coal rank.  The CH4-induced strain decreases only slightly with the change in coal rank, 

but the CO2- and N2-induced strain curves each decrease by a factor of about two as 

vitrinite reflectance increases from 0.24 to 0.53.  One would expect the strain curves of 

all three gases to be affected in the same manner by the change in coals, and more work 

should be done to determine if the CH4 data are truly unaffected by a change in coal rank 

or if it is simply an experimental anomaly. 
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Figure 5.6.  Results for two coal samples show that maximum strain decreases as vitrinite 

reflectance (coal maturity) increases. 

Regardless of the amount of decrease in strain resulting from an increase in coal rank, 

the strain of all three gases did decline as rank increased.  Other researchers, however, 

have shown different results.  Bustin [56] compared the adsorption capacity (not strain) 

of coals of different ranks and found a trend towards higher capacity with higher coal 
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rank.  Later, Chikatamarla and Bustin [30] measured sorption-induced strains of various 

coals and found that strain also increased with higher coal rank (shown in Figure 5.7), 

which is contrary to the data reported in Figure 5.6.  Based on these results, it may not be 

possible to infer a general relationship between coal strains (and by analogy, adsorbed 

gas) and coal rank without further testing on a much larger group of coals of various 

ranks.

Figure 5.7.  Strain as a function of vitrinite reflectance from Chikatamarla and Bustin 

[30].  This increasing trend is in opposition to the trend shown in Figure 5.6 of this cur-

rent work. 

5.1.4 Relationship between Carbon Dioxide/Methane Strain Ratios and Coal Rank

The ratio of strain induced by CO2 adsorption to strain induced by CH4 adsorption is 

of some importance when considering using coal seams as CO2 sinks for sequestration of 

carbon or considering CO2-enhanced CBM production (CO2-ECBM).  During either of 
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these two processes, the strain in the coal increases as CO2 displaces methane.  If the in-

crease in strain is large enough, this can cause a significant reduction in permeability.  

Figure 5.8 shows the ratio of CO2 strain and CH4 strain for the two coals tested.  This fig-

ure shows that if all the methane in the coal were to be displaced by carbon dioxide, the 

expected increase in strain would be about twice as large in the subbituminous coal com-

pared to the bituminous coal.  Therefore, permeability reduction due to coal swelling dur-

ing CO2-ECBM or CO2 sequestration in coal appears to be sensitive to the rank of the 

coal and may be more of a detriment in coals of lower rank.  This knowledge should be 

considered during the field selection process for CO2-ECBM or CO2 sequestration plan-

ning stages. 
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Figure 5.8.  Average CO2/CH4 strain ratios for two coals of distinct ranks showing a de-

crease in the CO2/CH4 strain ratio with an increase in coal rank. 

Reeves [57] compiled some historical data showing a relationship between the 

CO2/CH4 adsorption (not strain) ratio and coal rank and found that as coal rank increased 
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from subbituminous to high volatile bituminous the CO2/CH4 adsorption ratio decreased.  

However, Chikatamarla and Bustin [30] published strain data showing very little trend in 

CO2/CH4 strain ratio with respect to coal rank.  The data shown in Figure 5.8 tend to sup-

port the results presented by Reeves, but definite conclusions regarding the relationship 

between CO2/CH4 strain ratios and coal rank are difficult to make because data for only 

two coals have been collected to date, and further testing should be done. 

5.2 Experimental Strain and Modeling – Gas Mixtures

Strain induced by the adsorption of pure gases can be modeled by the Langmuir ad-

sorption relationship as shown conclusively in Figure 5.1.  Armed with that knowledge, 

extended Langmuir theory [58] then suggests that strain induced by the adsorption of gas 

mixtures can be predicted from the Langmuir constants defining the shape of the pure gas 

strain curves.  The strain constants for pure gases in Table 5.2 should be able to be used 

to calculate the strain curve for a mixture of these gases by applying extended Langmuir 

theory.  Simple Langmuir theory assumes that there is an ideal localized monolayer and 

that there is no interaction between adsorbed molecules.  The following equation is an 

extended version of the Langmuir isotherm equation (modified for strain instead of ad-

sorption) that accounts for multiple components in the gas phase: 
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where Smix is the coal strain predicted by the adsorption of a gas mixture, i represents 

each pure gas component of the mixture, n is the total number of pure gas components, 

Smax is the maximum strain constant for each pure gas component, pL is the Langmuir 

pressure constant for each pure gas component, and y is the mole fraction of each pure 
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gas component.  According to this equation, if the individual strain-pressure curves were 

known for each pure gas in the mixture, the strain-pressure curve for any mixture of these 

gases could be directly calculated. 

To test the accuracy of the above equation, the strains of the same Anderson coal and 

Gilson coal samples used with the pure gases were measured using a gas mixture of 51% 

N2 and 49% CO2.  The gas composition was determined by gas chromatography.  The 

measured strain data of the two coals for this gas mixture are shown in Figure 5.9.  This 

figure also shows results of the extended Langmuir strain equation [Eq (5-3)] using pure 

gas strain constants from Table 5.2. 
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Figure 5.9.  Strain of Anderson and Gilson coal caused by the adsorption of a gas mixture 

of 51% N2 and 49% CO2.  The data are modeled using Eq (5-3) and the strain data for 

pure gases found in Table 5.2. 
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Modeling the mixed gas strain data for both cores using Eq (5-3) appears to be fairly 

accurate.  The R
2
 value for the Anderson coal curve is 0.968 and the R

2
 value for the Gil-

son coal is 0.924.  Both curves, however, under-predicted the amount of measured strain 

associated with adsorbing this particular gas mixture based on the strain curve of the pure 

gas components, which leads to the hypothesis that there may be some other component 

to the physics of the adsorption process that Eq (5-3) does not include. 

Yang [59] presents a more sophisticated version of the extended Langmuir equation 

that takes into account the lateral interactions among adsorbed molecules that could be 

used to more accurately model mixed gas strain: 
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where  describes the changes in interaction energies in the mixed adsorbates, which can 

either be greater or less than unity.  If  = 1, Eq (16) reduces to Eq (5-3). 

Because  accounts for the interaction energies between different species of gas 

molecules (not the adsorption energy between the substrate and the sorbing gas), it stands 

to reason that  should be independent of the adsorbing substrate (coal) surface.  The 

strain data for the gas mixture are replotted in Figure 5.10 along with two extended Lang-

muir strain models – Eq (5-3) and Eq (5-4) – for comparison.  Optimal values for N2 and 

CO2 were determined to be 0.25 and 0.58 respectively, by varying each independently 

until a reasonable match of the strain data was obtained using only the Gilson coal. 
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Figure 5.10.  Strain data for Anderson and Gilson coals induced by the sorption of a 

mixed gas modeled by two different versions of the extended Langmuir strain equa-

tion: one neglecting interaction energies between molecules and the other accounting 

for molecule interaction. 

The same values for N2 and CO2 were applied to the Anderson coal strain data and 

found to model it very well: the R
2
 value for the Anderson coal for Eq (5-4) was 0.995 

and for the Gilson coal the R
2
 value was 0.997 using Eq (5-4).  That the mixed-gas strain 

data for both coals were well modeled using the same values for N2 and CO2, confirms 

experimentally that the gas interaction energies are independent of coal type. 
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CHAPTER 6. PERMEABILITY CHANGES IN COAL 

INDUCED BY SORPTION OF PURE GASES 

In this chapter, the preparation of the coal cores for permeability measurements is 

discussed, the permeability apparatus and measurement methods are described, and mod-

eling of the measured permeability is also discussed.  As discussed earlier in Chapter 5, 

sorption-induced strain was measured for two different coals and three gases.  Permeabil-

ity measurements were also made using the same coals and gases under various pressure 

and stress regimes and have been previously reported by Robertson and 

Christiansen [60].  Results of these measurements and comparison of three permeability 

models from other researchers are presented in this chapter.  This work should be of 

value to those who model coalbed methane fields using reservoir simulators. 

6.1 Preparation of Cores for Permeability Tests

Cores used to measure permeability were drilled parallel to the bedding plane from 

the same coal blocks described earlier in this thesis using de-ionized water as the cool-

ing/lubricating fluid.  Some of the 2-inch diameter cores “fell apart” either while drilling 

or attempting to remove them from the bit, but persistence and care resulted in many 

good cores for flow tests.  The cores were stored in small, sealed containers under de-

ionized water until used in the experiments. 

6.2 Permeability Measurements

All permeability measurements were made at 80° F with gas as the flowing fluid us-

ing 2-inch diameter cores.  Figure 6.1 is a photograph of inlet and outlet faces of the two 
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cores used in the permeability measurements.  The cleat system can be clearly seen in this 

figure.

Figure 6.1.  Photograph of inlet and outlet faces of cores used for permeability measure-

ments.  Cores are two inches in diameter. 

6.2.1 Description of Permeability Apparatus Description

A hydrostatic-type core holder was used for the permeability experiments, which ap-

plied the same confining pressure to all surfaces of the cores.  The flowing gas was sup-

plied by pressurized gas cylinders and the flow rate was controlled by adjusting both the 
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cylinder regulator and a metering valve upstream of the core holder.  A back pressure 

regulator was used to apply a minimum of 100 psia of pore pressure in order to minimize 

the Klinkenberg effect (assumed to be negligible at these conditions) of gas permeability 

measurements.  Upstream and differential pressure measurements were made using pres-

sure transducers.  A flow meter was placed directly downstream of the back pressure 

regulator.  All temperature, pressure, and time readings were logged onto a laboratory 

computer using data acquisition hardware
3
 and analyzed using LabView™ software.

4

Figure 6.2 is a schematic of the permeability apparatus used in these experiments.  Lab-

View™ was also used to perform the calculations necessary to convert the input signals 

from the sensory equipment into pressure and temperature values with the appropriate 

units and to control the temperature and automatic valves used in the system as well as 

write the output data to a spreadsheet. 

6.2.2 Permeability Calculation and Methodology

Permeability was calculated according to the following equation for linear flow 

through cylindrical cores: 

pA

Lq
k

avgavg
............................................................................................................... (6-1) 

where k is permeability, qavg is the average gas flow rate through the core calculated at 

the average pore pressure, μ is viscosity of the flowing fluid calculated at the average 

pore pressure, L is the length of the core sample, A is the cross-sectional area of the core, 

and p is the differential pressure across the core. 

3 FieldPoint FP-1601 module manufactured by National Instruments Corporation, 11500 N. Mopac Ex-

pressway, Austin, Texas  78759. 
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Figure 6.2.  Drawing of the permeability apparatus. 

6.2.2.1 Flow Meter Description

The flow rate through the core was calculated using a flow meter designed specifi-

cally for these experiments where mixtures of different gases could potentially be pre-

sent.  Figure 6.3 is a schematic drawing of the configuration of the flow meter used in 

these experiments.  The flow rate of gas was obtained by measuring the rate of gas-

pressure build-up in a known volume. 

4 A product of National Instruments Corporation, 11500 N. Mopac Expressway, Austin, Texas  78759. 
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Figure 6.3.  Illustration of the flow meter used during permeability experiments. 

The flow meter consisted of two (or more) cylinders of equal volume, an automatic 

4-way valve, and a pressure transducer.  The final set up used in the permeability experi-

ments included sets of cylinders of two different volumes: 150 mL for low flow rates and 

1000 mL for higher flow rates.  The volumes “A1” and “B1” shown in Figure 6.3 were 

made equal by adjusting the length of the lines connecting the cylinders to the 3-way 
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valves as were volumes “A2” and “B2.”  The automated 4-way valve was configured to 

turn 90 degrees when the pressure in the filling vessel reached some predetermined value, 

such as 50 psig.  When the ‘trip’ pressure was reached, and the 4-way automatic valve 

turned, which exhausted the pressurized cylinder and began to pressurize the empty cyl-

inder.  This process was continually repeated resulting in continuous, real-time measure-

ment of gas flow rate.  With this type of flow meter the pressure immediately down-

stream of the back-pressure regulator must be equal to or greater than the trip pressure. 

6.2.2.2 Derivation of Equation Used to Calculate Flow Rate

The ideal gas law was assumed to apply because pressures in the flow meter were less 

than 50 psig. 

,
RT

pV
n tot

tot ................................................................................................................. (6-2) 

where ntot is the total number of moles in the control volume; p is the pressure of the sys-

tem; Vtot is the total volume of the system and is the sum of the upstream volume (Vup)

and the downstream volume (Vdn); R is the universal gas constant, and T is the tempera-

ture of the system.  The total control volume included the volume of the cylinders and the 

flow lines downstream of the back pressure regulator. 

At some time, t1, the number of moles in the control volume was: 

,
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Vp
n

1

tot1
tot1

.............................................................................................................. (6-3) 

where p1 is the pressure in the control volume at time t1, and T1 is the temperature of the 

system at t1.  Likewise, at some time, t2, the number of moles in the system was: 

,
RT

Vp
n

2

tot2
tot2

.............................................................................................................. (6-4) 



75

where p2 is the pressure in the system at time t2 and T2 is the temperature of the system at 

t2.  The change in the number of moles of gas within the system from t1 to t2 was found 

by subtracting Eq (6-4) from Eq (6-3): 
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.......................................................................... (6-5) 

To convert the change in the total moles of gas within the system, ntot, between t1

and t2 to the volume of gas produced at standard conditions between the same time val-

ues, the ideal gas law was applied: 
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Substituting Eq (6-5) into Eq (6-6) gives the working equation for the amount of gas 

produced between t1 and t2:
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where pressures and temperatures are absolute, and Vtot is the total control volume of the 

system. 

The flow rate was defined as the volume of gas at standard conditions produced be-

tween t1 and t2 divided by the change in time: 
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where qsc is the flow rate at standard conditions, such as standard milliliters per second.  

A thermocouple placed on the outside of the pressure cylinder was used to measure T1

and T2; a pressure transducer was used to measure p1 and p2; and the computer clock was 

used to measure t1 and t2.  Using this methodology, the flow rate of the gas stream at 

standard conditions, regardless of its composition, was calculated. 
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To convert the flow rate at standard conditions to in situ conditions, the real gas law 

was used: 

,
p

ZT

T

pq
q

situinsc
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where the subscript ‘sc’ stands for standard conditions.  The compressibility factor, Z, for 

pure gases was taken from the National Institute of Standards and Technology (NIST) 

WebBook [61].  Plots of the pure gas data were constructed and polynomial curves were 

used to model the data, which were then used to calculate Z factors for pure gases based 

on temperature and pressure. 

When gas mixtures were used as the flowing fluid, the mole-fraction weighted aver-

age Z factor [62] was calculated and used to convert to in situ conditions.  The weighted 

average Z factor is a function of the Z factors of the pure gases and their respective mole 

fractions and is defined by the following relationship: 

,xZxZxZZ nn2211av ................................................................................ (6-10) 

where x is the mole fraction of each of the gases in the mixture. 

6.2.2.3 Viscosity  Data and Calculation

Data for viscosity of the pertinent gases were collected as a function of temperature 

and pressure from the NIST WebBook.  An example of this data can be seen in Figure 

6.4.  Each of the curves in this figure can be fitted by a polynomial; nitrogen and methane 

by a second-order polynomial, and carbon dioxide by a seventh-order polynomial curve. 
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Figure 6.4.  Example of viscosity data that can be obtained from the NIST web site [61].

Other plots showing viscosity as a function of temperature and pressure were pre-

pared for each of these three gases and included in the laboratory notebook.  An example 

of these plots is shown in Figure 6.5.  Each viscosity isotherm curve was fitted with a 

polynomial and programmed into the LabView™ software used for data logging and cal-

culation.  Linear interpolation was used to obtain viscosities between viscosity isotherms.  

The calculated gas viscosity was then used in the coal permeability calculation. 
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Figure 6.5.  Viscosity of methane as a function of both pressure and temperature. 

When mixtures of gases were used as the flowing fluid, the viscosity was calculated 

using the procedure set forth by Davidson [63] for calculating viscosities of gas mixtures.  

This method required knowledge of the mole fraction of each gas in the mixture, the mo-

lecular weight of each of the gases, and the viscosity of each component at the tempera-

ture and pressure of interest.  To employ this method, Davidson calculates a momentum 

fraction for each component: 
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where yi is the momentum fraction, xi is the mole fraction of the gas in the mixture, Mi is 

the molecular weight, and n is the number of components in the gas mixture.  Next, the 

efficiency of the momentum transfer was calculated for each of the three sets of possible 
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gas mixtures (nitrogen/carbon dioxide, nitrogen/methane, and methane/carbon dioxide) 

by the following equation: 

,
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where Eij is the momentum transfer efficiency between two gases i and j; and Mi and Mj

are the molecular weights of the gases. 

The fluidity of the gas mixture was then calculated by the following equation: 
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where fmix is the fluidity of the gas mixture; i and j are the viscosities of the pure gas 

components, and n is the number of gas components in the mixture. 

Finally, gas mixture viscosity is the reciprocal of fluidity: 
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6.2.3 Experimental Procedure for Measuring Permeability

Coal cores used in the permeability experiments were cut under de-ionized water and 

stored immersed in sealed containers until needed.  After removing a core from their 

sealed storage containers, it was surface dried, measured, wrapped with Teflon and alu-

minum foil to minimize gas leakage through the Viton sleeve covering the core, placed 

into the hydrostatic core holder set at 80° F (the same temperature as the strain experi-

ments), and allowed to equilibrate for 24 hours inside the core holder with nitrogen flow-

ing through at a low rate. 
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6.2.3.1 Method of Changing the Flowing Gas Between Permeability Experiments

During the course of the research, different gases were injected through coal cores, 

which were sorbed, causing changes in core permeability.  Specifically, carbon dioxide, 

methane, nitrogen, and a gas mixture were tested.  Each of these four gases was tested 

using the same coal core.  When the time came to change gases between permeability ex-

periments, helium was flushed through the core at a low rate for at least 24 hours to de-

sorb any residual sorptive gas left in the core.  If permeability was not stable by the end 

of 24 hours, then additional helium was flushed through the core until the permeability 

became stabile. 

6.2.3.2 Discussion of Relationship between Net Stress and Pore Pressure

Hantush [64] stated that a change in pore pressure results in an equal and opposite 

change in effective stress.  Walsh [65] gave the following general relationship between 

effective or net stress, , total stress, t, and pore pressure, pp:

.ps pt ............................................................................................................. (6-15) 

where s was a constant for linearly elastic materials (such as coal).  McKee et al. [66] 

used this relationship in their work on stress-dependent permeability in coals, but set ‘s’ 

equal to unity with the caveat that this assumption might not be rigorously true.  For lack 

of better information or evidence, the assumption made by McKee et al. was incorporated 

in this thesis and ‘s’ in Eq (6-15) was assumed to equal to unity.  McKee et al. also state 

that t is a constant caused by the overburden.  With these assumptions made, net stress 

can be defined as the difference between the overburden pressure and the pore pressure: 

.pp pob ............................................................................................................... (6-16) 

The net stress condition used in the permeability experiments can be controlled by 

varying either overburden pressure or pore pressure, or both simultaneously. 



81

6.2.3.3 Permeability Experiments while Varying Overburden Pressure

Achieving a repeatable permeability response was an important part of the prepara-

tion of the cores.  The net stress was cycled from high to low and back again by varying 

the overburden pressure until permeability hysteresis was minimized or eliminated.  To 

do this, the average pore pressure was set and held at a constant 100 psia and the over-

burden pressure was cycled from 1000 psia down to 300 psia and back up to 1000 psia 

while measuring permeability changes due to the change in net stress.  The flow rate was 

adjusted as needed to keep the average pore pressure constant. 

During the first overburden pressure cycling for a core, there would typically be quite 

a bit of hysteresis with the permeability data.  However, additional overburden pressure 

cycles reduced the hysteresis until a repeatable permeability curve was obtained as a 

function of net stress (overburden pressure).  Figure 6.6 shows the results of these core 

preparation permeability tests and shows the permeability hysteresis diminishing with 

repeated tests for the Anderson 01 core (a) and the Gilson 02 core (b). 

6.2.3.4 Permeability Experiments while Varying Pore Pressure

Once the permeabilities of the cores were established and repeatable with a change in 

net stress, additional experiments were run where the overburden pressure was held con-

stant and pore pressure was varied, allowing gases to be adsorbed or desorbed.  In these 

experiments, the initial average pore pressure was set to about 100 psia and then in-

creased incrementally until it reached about 800 psia.  Because pore pressure was varied, 

gases were adsorbed or desorbed, and the effects of sorption-induced strain were manifest 

in the permeability results.  Time was given for the gases to adsorb and permeability was 

monitored until a stabile value was achieved at each pressure increment.  Data from these 

tests will be presented and discussed in Section 6.4 of this thesis. 
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Figure 6.6.  Results of core preparation permeability tests showing permeability hystere-

sis diminishing with repeated tests. 

6.3 Description of Permeability Models

Three permeability models were selected from the literature to model the laboratory 

permeability data.  Seidle and Huitt [28] published a permeability model in 1995, Palmer 

and Mansoori [23] published theirs in 1998, and Shi and Durucan [39] published their 

model in 2003. 

A brief explanation of each of the models is laid out in the following paragraphs, but 

for comprehensive descriptions, please see the references for each model given in the 

preceding paragraph.  Because experimental results of permeability measurements under 

certain conditions are used to calculate the initial porosities and fracture compressibilities 

of the cores used by the models, the models are discussed here before the presentation of 

the experimental results. 
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6.3.1 Seidle-Huitt Model

The derivation of this model begins with the assumption derived by Reiss [24] that 

the ratio of the observed permeability, k, to the initial permeability, k0, is equal to the 

cube of the ratio of the observed porosity, , to the initial porosity, 0:

3

00k

k
................................................................................................................ (6-17) 

The porosity ratio was given by Seidle and Huitt as 
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where cmVm is equivalent to the Langmuir strain constant Smax as defined in this thesis.  

Rewriting this equation results in the Seidle-Huitt equation for permeability ratio that can 

be used to model the laboratory-generated permeability data: 
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This model is a function of initial porosity, the Langmuir strain curve constants, and 

pressure; and it neglects the elastic properties of coal and specifies that all permeability 

changes are caused by sorption-induced strain. 

Model formulation was validated by comparing the calculated results from Eq (6-19) 

with the model output reported in the authors’ paper.  Figure 6.7 shows this comparison.  

The resulting fit is very good, which validates the formulation of the model used for this 

study.
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Figure 6.7.  Seidle-Huitt model validation plot showing calculated model output com-

pared to tabulated results from Table 5 of Seidle and Huitt [28]. 

6.3.2 Palmer-Mansoori Model

This is perhaps the most widely discussed permeability model in the literature.  Other 

models are based on it such as the model published by Chikatamarla and Bustin [30] in 

2004, which can be shown to be equivalent to the Palmer-Mansoori model.  As with the 

Seidle-Huitt model, the Palmer-Mansoori model also assumes Reiss’s cubic relationship 

between permeability and porosity for fractured media.  The porosity-change equation for 

this model was given by Palmer and Mansoori as: 
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where M is the constrained axial modulus, K is the bulk modulus, and  is the volumetric 

Langmuir strain constant.  The constrained axial modulus [23] and the bulk modulus [67] 

can be rewritten in terms of Young’s modulus and Poisson’s ratio: 

,
213

E
Kand

211

1E
M ................................................................... (6-21) 

where E is Young’s modulus and  is Poisson’s ratio. 

Recall that the volumetric strain was shown to be equal to three times the linear 

strain: 

.S3 max ..................................................................................................................... (6-22) 

Substituting Eq (6-21) and Eq (6-22) into Eq (6-21) yields the Palmer-Mansoori perme-

ability equation in terms of Young’s modulus, Poisson’s ratio, initial porosity, the Lang-

muir strain curve parameters, and pressure: 
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All parameters in this equation can be either measured or approximated except the 

initial porosity.  However, initial porosity can be obtained by fitting the above equation to 

permeability data unaffected by sorption-induced strain and is discussed in Section 6.4.1 . 

Model formulation was validated by comparing the calculated results from Eq (6-23) 

with the model output reported in the authors’ paper.  Figure 6.8 shows this comparison.  

The resulting fit is very good, which validates the formulation of the model used for this 

study.
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Figure 6.8.  Palmer-Mansoori model validation plot showing calculated model output 

compared to data read from Fig. 1 of Palmer and Mansoori [23].  

6.3.3 Shi-Durucan Model

The derivation of the Shi-Durucan permeability model begins with a permeability 

equation given by Seidle et al. [22] as: 

,C3exp
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k
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where Cf is the fracture compressibility, and  is the effective (net) stress.  Shi and Duru-

can then derive an expression for the change in effective stress: 
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Noting that the volumetric strain, , is three times the linear strain and combining the 

two above equations results in a permeability equation that takes into account sorption-

induced strain effects: 
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Model formulation was validated by comparing the calculated results from Eq (6-26) 

with the model output reported in the authors’ paper.  Figure 6.9 shows this comparison.  

The resulting fit is very good, which validates the formulation of the model used for this 

study.
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Figure 6.9.  Shi-Durucan model validation plot showing calculated model output com-

pared to data read from Fig. 1 of Shi and Durucan [39]. 
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All variables in this equation either can be measured or are approximated except for 

the fracture compressibility, Cf.  Fracture compressibility is not necessarily constant but 

often a function of net stress.  McKee et al. [66] offered the following expression for 

stress dependent, variable fracture compressibility: 

.exp1
C

C 0

0

0

f .......................................................................... (6-27) 

where C0 is the initial fracture compressibility and  is the fracture compressibility 

change rate.  Substituting this term into the permeability equation yields an expression for 

the Shi-Durucan permeability model in terms of fracture compressibility, Young’s 

modulus, Poisson’s ratio, the Langmuir strain curve parameters, and pressure: 
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Values for C0 and  are unique for each coal core, but can be obtained by fitting the 

above equation to permeability data unaffected by sorption-induced strain (discussed later 

in Section 6.4.1 ). 

6.4 Permeability Experimental Results using Pure Gases

Results of the permeability tests are shown as plots of k/k0 versus pressure.  Two 

cores representing two different coal types and three different gases (CO2, CH4, and N2)

with different sorption-induced strain characteristics were used to obtain the permeability 

data.

Poisson’s ratio and Young’s modulus are two of the elastic properties of coal that are 

needed in order to model the permeability data of coal.  Literature values for Poisson’s 

ratio [22, 23, 39] range from 0.2 to 0.5 for coal.  For this work, an average value of 0.35 
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was assumed.  Literature values for Young’s modulus [23, 39] range from 124,000 psi to 

500,000 psi for coal; and for this work, a value of 200,000 psi was assumed. 

6.4.1 Permeability Results: Varying Overburden Pressure

A series of experiments were conducted where confining (overburden) pressure was 

varied while holding pore pressure constant (100 psia) with nitrogen as the flowing fluid 

as described earlier.  The initial overburden pressure was 1000 psia, which gives the ini-

tial stress equal to 900 psi using Eq (6-16).  The initial condition of high net stress was 

selected based on plotting preferences and not tied to any physical reference. 

The experiments where overburden pressure was varied were used to calculate the 

initial porosity and fracture compressibility constants for each coal core and are reported 

later in this paper.  Because pore pressure was held constant in these experiments, there 

were no sorption-induced permeability effects, and any gas presumably could have been 

used with the same results. 

To calculate initial porosity and fracture compressibility constants associated with the 

three permeability models, the initial porosity and fracture compressibility constants were 

varied until a best fit of the permeability data was obtained. 

The Seidle-Huitt model is formulated such that if there is no sorption-induced strain 

(as was the case in this set of experiments), there would be no change in permeability, 

and the permeability ratio would be equal to unity; therefore, this model could not be 

used to obtain a value for initial porosity.  However, the Palmer-Mansoori and Shi-

Durucan models can be used to account for changing overburden pressure and were used 

to obtain initial porosity and fracture compressibility constants.  Because the Seidle-Huitt 

model could not be used to analyze this data set, the Seidle-Huitt initial porosity was set 

equal to the initial porosity obtained for the Palmer-Mansoori model. 
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6.4.1.1 Varying Overburden Pressure: Anderson 01 Core Permeability Data

For the Anderson 01 core, permeability changes resulting from varying the overbur-

den pressure are shown in Figure 6.10.  Along with the actual permeability data, the 

Palmer-Mansoori and Shi-Durucan models are shown.  Because pore pressure was held 

constant, sorption-induced strain was eliminated, which allowed these data to be used to 

calculate the initial porosity and the fracture compressibility constants.  These properties 

of the cores are required by the models in order to be used when pore pressure and sorp-

tion-induced strain do affect permeability. 
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Figure 6.10.  Permeability changes of the Anderson 01 core as a function of net stress. 

Both of these models were forced to a best-fit of the data by varying either the initial 

core porosity or the core fracture compressibility constants until error was minimized us-

ing a least squares process.  The calculated initial porosity (using the Palmer-Mansoori 
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model) was 1.31% and the calculated fracture compressibility constants, C0 and  (using 

the Shi-Durucan model) were 1.88E-4 psi
-1

 and 24.3E-4 psi
-1

 respectively. 

6.4.1.2 Varying Overburden Pressure: Gilson 02 Core Permeability Data

For the Gilson 02 core, permeability changes resulting from varying the overburden 

pressure are shown in Figure 6.11.  Again, two of the models were forced to a best-fit of 

the data by varying initial porosity and fracture compressibility constants.  The calculated 

initial porosity (using the Palmer-Mansoori model) was 0.804% and the calculated frac-

ture compressibility constants, C0 and  (using the Shi-Durucan model) were 

1.69E-4 psi
-1

 and 37.5E-4 psi
-1

 respectively. 
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Figure 6.11.  Permeability changes of the Gilson 02 core as a function of net stress. 
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Considering the wide difference in permeabilities of these two cores, the calculated 

fracture compressibility constants and initial porosities of these cores were remarkably 

similar.  Table 6.1 summarizes the core properties for both the Anderson 01 core and the 

Gilson 02 core. 

Table 6.1.  Properties of coal cores used in permeability experiments 
Anderson 01 Gilson 02 

Rank Subbituminous High-volatile bituminous 

Vitrinite reflectance, Vr (%) 0.24 0.53

Initial permeability, k0 (mD) 262 0.0385 

Initial porosity, 0 (%) 1.31 0.804 

Average fracture compressibility, Cf, (psi-1) 4.17E-4 6.59E-4 

Initial fracture compressibility, C0 (psi-1) 1.88E-4 1.69E-4 

Fracture compressibility change rate,  (psi-1) 24.3E-4 37.5E-4 

The values for average fracture compressibility, Cf, obtained in this work (see Table 

6.1) both fall near the lower range of literature values reported for other coals [22, 66], 

which range from 4.28E-4 psi
-1

 to 18.7E-4 psi
-1

.  The values of compressibility change 

rate, , for these two coal cores (see Table 6.1) compare very closely to a literature 

value [66] for coal in the Piceance basin equal to 29.5E-4 psi
-1

.

6.4.2 Permeability Results: Varying Pore Pressure

Another series of experiments was conducted where pore pressure was varied while 

holding constant the confining pressure at 1000 psia.  Again, high net stress was selected 

as the starting point for initial stress condition to be consistent with the varied overburden 

pressure tests, which required the initial pore pressure to be low.  Because pore pressure 
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was varied, sorption of gases and the resulting strain was expected to affect the perme-

ability of each of the cores to a different degree depending on the sorbing gas. 

During these experiments, adsorption of gases caused by changes in the pore pressure 

affected the permeability results and some time was allowed to reach equilibrium as men-

tioned in Section 6.2.3.4 .  Figure 6.12 is an example of these experiments showing the 

monitoring of permeability values with respect to time.  Permeability was monitored in 

real time and pressure was changed only after equilibration of the permeability values.  

Permeability was measured for five different pore pressures, but the permeability values 

were recorded continuously for only three of these pressure regimes.  In the other two 

pressure regimes (307 psia and 487 psia), permeability was monitored on the computer 

screen, but recorded sparingly.  Contrary to the straight line connecting recorded data 

points (indicating an unequilibrated permeability), if the data had been recorded the per-

meability values in these two pressure regimes would actually appear much flatter before 

increasing the pressure to the next step.  In retrospect, continuous permeability data 

should have been recorded for the entire duration of the experiments; however, that over-

sight should in no way invalidate the results of the experiments. 

6.4.2.1 Varying Pore Pressure: Anderson 01 Core Permeability Data

Results of varying pore pressure and gas composition for the Anderson 01 coal core 

are shown in Figure 6.13.  Initial permeabilities, k0, for all the gases were measured at 

pore pressures of about 100 psia and are shown in the figure.  Even though the same core 

was used for this set of experiments, the initial permeabilities for each of the gases were 

different because of the varying amount of sorption-induced strain caused by each of the 

gases (see Figure 5.1).  As expected, adsorption of carbon dioxide resulted in the lowest 

initial permeability (86 mD) for the three gases, followed by methane (147 mD), and ni-

trogen adsorption resulted in the highest initial permeability (257 mD). 
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Figure 6.12.  Gilson 02 coal core raw permeability results showing the equilibration of 

permeability with respect to time. 

The nitrogen permeability ratio data generally increased as pore pressure increased, 

signifying very little effect of sorption-induced strain.  Increasing the pore pressure (de-

creasing the net stress) with nitrogen as the flowing fluid increasingly opened the frac-

tures and increased permeability. 

The permeability results were different for both methane and carbon dioxide than the 

nitrogen results.  As pore pressure increased, the permeability initially decreased with 

these two gases because of larger sorption-induced strain for these gases compared with 

nitrogen.  Then as pore pressure continued to increase, the permeability also increased 

because the effect of sorption-induced strain was overcome by the opposite-acting strain 

caused by the elastic properties of the coal at higher pore pressures. 



95

0 200 400 600 800 1000
Average pore pressure, psia

0

0.4

0.8

1.2

1.6

2

P
e

rm
e

a
b

ii
ty

 r
a

ti
o

 (
k
/k

0
)

              Gas     k0 (mD)

N2          257

CH4       147

CO2         86

Anderson Coal
(Subbituminous)

T = 80oF
Pob = 1000 psia

Figure 6.13.  Permeability as a function of pore pressure for three gases using the Ander-

son 01 coal core. 

6.4.2.2 Varying Pore Pressure: Gilson 02 Core Permeability Data

Results of varying pore pressure and gas composition for the Gilson 02 coal core are 

shown in Figure 6.14.  As with the Anderson 01 core, adsorption of carbon dioxide re-

sulted in the lowest initial permeability (0.0226 mD) for the three gases, followed by 

methane (0.0289 mD), and nitrogen adsorption resulted in the highest initial permeability 

(0.0372 mD). 
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Figure 6.14.  Permeability as a function of pore pressure for three gases using the Gil-

son 02 coal core. 

The effect of sorption-induced strain was much less with the Gilson core compared to 

the Anderson core.  This can be attributed to the lower sorption-induced strains associ-

ated with the Gilson coal as seen in Figure 5.1.  Carbon dioxide was the only gas that 

caused enough sorption-induced strain to decrease the permeability as pore (sorption) 

pressure increased.  The sorption of both methane and nitrogen had very little effect on 

the permeability.  The change in permeability with methane and nitrogen for this core can 

almost entirely be attributed to the cleat compressibility and elastic properties of the coal.  

For example, the sorption-affected permeability data for nitrogen in Figure 6.14 is very 

similar to the permeability data in Figure 6.11, in which there was no gas sorption. 
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6.5 Modeling Sorption-Induced Permeability Changes for Pure Gases: Results

The three permeability models discussed earlier were applied to the data shown in 

Figure 6.13 and Figure 6.14 to determine the ability of the models to match permeability 

data affected by sorption-induced strain.  The initial porosities and fracture compressibil-

ity constants shown in Table 6.1 as well as the sorption-induced strain constants listed in 

Table 5.2 were used with the respective models to generate the model output.  The plots 

in Figure 6.15 show the model output along with the original permeability data. 

6.6 Discussion of Modeling of Permeability Data

Overall, none of the three coal permeability models did a very good job matching the 

actual laboratory-generated permeability data for every case.  However, two of the mod-

els were relatively better at matching the nitrogen permeability data. 

6.6.1 Seidle-Huitt Model

The Seidle-Huitt model was designed to predict permeability changes as pore pres-

sure decreased from an initial reservoir pressure towards some lower abandonment pres-

sure as the reservoir was produced.  For this research, the pore pressure was initially low 

and then was increased.  As written, this model specifies that if pore pressure decreased, 

permeability would always increase; and if pore pressure increased, permeability would 

always decrease – potentially to negative values.  This predicted permeability behavior is 

not valid because it does not allow for increasing permeability at higher pore pressure as 

the data indicate (see Figure 6.15).  As a result, this model has a limited range of applica-

tion.
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Figure 6.15.  Model results compared to permeability data.  Confining pressure was 

1000 psia and temperature was 80° F. 
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Because the Seidle-Huitt model neglects the elastic properties of the coal it appears to 

oversimplify the mechanics of permeability changes in coal as pore pressure changes and 

gases are sorbed. 

6.6.2 Palmer-Mansoori Model

The Palmer-Mansoori model appears to capture many of the trends associated with 

permeability changes in coal influenced by sorption-induced strain.  However, for gases 

that caused large adsorption strains, this model significantly overestimated the decline in 

permeability (see Figure 6.15).  The Palmer-Mansoori model, as with the Seidle-Huitt 

model, also has the capability to calculate negative permeability ratios, and interpretive 

care should be used to not take calculated negative values literally. 

6.6.3 Shi-Durucan Model

This model also appears to match some permeability data well, but not all (see Figure 

6.15).  As with the Palmer-Mansoori model, the Shi-Durucan model tends to overesti-

mate the impact of large sorption-induced strain on permeability.  However, with low 

sorption-induced strain gases, this model is comparable to the Palmer-Mansoori model.  

In addition, this model is formulated in such a way that the permeability ratio is always 

greater than zero, which more accurately describes actual permeability data than the other 

two models. 

6.7 Incorporating Extended Langmuir Theory to Model Permeability Changes in Coal 

Induced by Sorption of Gas Mixtures

Although methane is most generally the most prevalent gas produced from coal beds, 

there are other gases present as discussed in Section 1.4 of this thesis.  This chapter dis-
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cusses the calculation of permeability changes due to adsorbing or desorbing gas mix-

tures through the implementation of the extended Langmuir equation to two permeabil-

ity-change models, and compares predicted results with measured permeability data with 

a gas mixture as the flowing fluid. 

6.7.1 Permeability Models for Gas Mixtures

Reservoir simulators need to be able to calculate the amount of strain resulting from 

the sorption of an infinite variety of mixtures of gases as injection fronts pass and gases 

are sorbed and desorbed throughout enhanced recovery projects.  Even though the collec-

tion of sorption-induced coal strain for pure gases and gas mixtures has been made dra-

matically easier and more rapid by this research, measuring the strain induced by the 

sorption of all possible gas mixtures is impractical.  However, measuring the strain in-

duced by the sorption of a number of pure gases for a wide variety of coals can now be 

easily and quickly accomplished compared to previous methods.  Showing that coal 

strain induced by the sorption of pure gases can be used to predict the strain induced by 

the sorption of mixed gases would be a significant step forward in the development of 

adequate coal permeability-change equations used to simulate ECBM or CO2 sequestra-

tion projects in coal. 

In Section 5.2 , the application of extended Langmuir theory to account for mixed-gas 

adsorption was discussed.  Two equations were presented: one based solely on the strain 

constants of the pure gas strain curves and the composition of the gas mixture – called the 

“simple extended Langmuir equation”; and the other adding in the gas interaction ener-

gies – called the “interaction extended Langmuir equation.”  Including these two equa-

tions into the Palmer-Mansoori and the Shi-Durucan models is discussed in the following 

sections.
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6.7.1.1 Implementing the Simple Extended Langmuir Equation

The simple extended Langmuir equation, used to calculate the strain induced by the 

sorption of gas mixtures based on data provided by the strain induced by the sorption of 

pure gases was described earlier in Section 5.2 , and is rewritten here: 
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This equation requires knowledge of the strain constants of the gas mixtures, the mole 

fractions of the gas components, and the observed pressure. 

Inserting Eq (6-29) into the previously derived Palmer-Mansoori model, Eq (6-23), 

results in the following permeability equation capable of predicting permeability changes 

in coal induced by sorption of mixed gases: 
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Making the same modifications to the Shi-Durucan model, Eq (6-28), results in the 

following equation for sorption of gas mixtures: 
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6.7.1.2 Implementing the Interaction Extended Langmuir Equation

The interaction extended Langmuir equation that incorporates gas interaction energies 

described in Section 5.2 is rewritten here: 
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Section 5.2 showed that the above equation is a little more accurate than Eq (6-29) for 

predicting strain from mixed gases, but requires additional information regarding the gas 

interaction energies.  Recall that in Section 5.2 the optimal values for N2 and CO2 were 

determined to be 0.25 and 0.58 respectively. 

Inserting Eq (6-32) into the previously derived Palmer-Mansoori model, Eq (6-23), 

results in the following permeability equation capable of predicting permeability changes 

in coal induced by sorption of mixed gases: 
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Making the same modifications to the Shi-Durucan model, Eq (6-28), results in the 

following equation for sorption of gas mixtures: 
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6.7.2 Comparison of Models to Mixed-Gas Strain Data

Langmuir strain constants generated by the sorption of pure gases along with gas in-

teraction energies and gas mole fractions were used with Eqs (6-30), (6-31), (6-33), and 

(6-34) to generate expected permeability changes induced by adsorbing a mixed gas 

stream.  Calculated mixed-gas permeability was compared with measured mixed-gas 

permeability in Figure 6.16. 
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Figure 6.16.  Mixed-gas model comparison for Gilson 02 and Anderson 01 cores. 

As can be seen from the above figure, there is very little difference in predicted per-

meability between models including the interaction energy constants ( ) and the models 

that neglect them.  This is important because although the inclusion of the interaction en-

ergies results in a much better match of strain induced by the sorption of mixed gases (see 

Figure 5.10), the need to include the interaction energies is lost when modeling perme-

ability changes caused by gas sorption. 

Although the models do not appear to benefit from the inclusion of interaction ener-

gies associated with sorption of mixed gases, neither the Shi-Durucan model nor the 
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Palmer-Mansoori accurately predicts mixed-gas permeability changes in coal based on 

pure gas sorption constants alone. 

6.8 Application of Correction Factor to Strain Constants

Generally, both the Shi-Durucan model and the Palmer-Mansoori model underesti-

mated the permeability ratio for the six data sets, which could be 1) the result of incorrect 

model formulation, 2) caused by inappropriate strain data, or 3) the result of inaccurate 

permeability data.  Of these three options, the second – inappropriate strain data – ap-

peared the most probable for reasons discussed below. 

Harpalani and Zhao, [68] Harpalani and Schraufnagel, [27] and Levine [29] all have 

reported sorption-induced strain data in coal using unconstrained coal samples, meaning 

that the coal samples were allowed to expand in all three directions without applying any 

external constraining forces.  Gray [26] specifically states that unconstrained sorption-

induced strain data are appropriate for use in his coal permeability model: “the strain de-

rived from testing samples of coal that are free to move in all directions . . . can be di-

rectly used in calculations where strain is related to varying equivalent sorption pres-

sure.”  Although other modelers [23, 35, 36, 39] did not specifically state that uncon-

strained strain data was appropriate for use in their models, they did cite the uncon-

strained strain data referenced above, which leads to the conclusion that they also in-

tended unconstrained strain data to be employed in their permeability models. 

The data shown in Figure 6.15, where measured permeability is compared to model-

calculated permeability, indicate that there is less of an impact of sorption-induced strain 

occurring during the permeability experiments than that predicted by the models using 

the measured strain constants.  However, because both the Palmer-Mansoori and the Shi-

Durucan models accurately model permeability changes unaffected by gas sorption, it 

appears that the models’ formulations are correct. 
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The use of unconstrained sorption-induced strain data in permeability equations de-

signed to model constrained (by overburden pressure) flow tests appears to be somewhat 

inconsistent.  Unconstrained sorption-induced strain data are easily measured; however, 

the use of these data in equations designed to model permeability changes with external 

forces being applied may be in error and the unconstrained data may need to be modified 

to account for the constrained nature of the flow tests. 

By simply multiplying the strain data by some constant factor, the models could be 

forced to run through the permeability data; however, the shape of the resulting modeled 

permeability curve did not conform to the data very well, which implied that a variable 

strain factor dependent on pore pressure was needed. 

Following this idea of modifying the strain data through the use of a variable strain 

factor, a variable strain factor that depends on the net stress and the pore pressure that has 

the following form was found to fit the permeability data more closely: 
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f ................................................................................................................. (6-35) 

where pob is the overburden pressure (psi), pp is the pore pressure (psi), and X represents 

some factor and was determined by fitting the model output to the permeability data us-

ing a least squares analysis.  This factor was different for each permeability data set. 

For both the Palmer-Mansoori and the Shi-Durucan models, a grouping of pertinent 

strain, coal, and gas parameters was found to have a very good linear relationship with 

the calculated values for X.  The resulting linear relationship was determined to be: 
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where pL and Smax are the Langmuir strain parameters, Vr is the percent vitrinite reflec-

tance for a particular coal, and  is the specific gravity of the sorbed gas.  The constants 

‘a’ and ‘b’ in the above equation were unique for each of the two models.  For the Shi-
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Durucan model the values for ‘a’ and ‘b’ were 8.6846E-2 and 8.4787E-8 psi
-1

 respec-

tively.  For the Palmer-Mansoori model the values for ‘a’ and ‘b’ were 12.609E-2 psi
-1

and 15.346E-8 psi
-1

 respectively.  By combining the two previous equations, an expres-

sion for a variable strain factor (Sf) was obtained that when multiplied to the Langmuir 

strain constant, Smax, improves both models’ ability to match the actual permeability data: 
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Figure 6.17 shows the output of the Palmer-Mansoori model and the Shi-Durucan 

model when the variable strain factor is applied to the original unconstrained strain data.  

Compared to the models’ results shown in Figure 6.15, the results when the variable 

strain factor is applied (Figure 6.17) are much better for all coals and gases. 

6.8.1 Shape of the Modified Strain Data Curves

Figure 6.18 shows the comparison between the original strain curves and the modi-

fied strain curves for the Anderson and Gilson coals.  With only one exception, the modi-

fied strain curves in Figure 6.18 reflect that strain needed to be depressed in relation to 

the originally measured data at larger pore pressures using unconstrained samples in or-

der to match the measured permeability data.  In addition, the modified strain curves for 

both the Palmer-Mansoori model and the Shi-Durucan model are very similar to each 

other in all but one or two cases. 
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Figure 6.17.  Plots showing refined model comparisons to permeability data.  Confining 

pressure was 1000 psia and temperature was 80° F. 
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Figure 6.18.  Comparison of modified strain curves with original Langmuir strain curves. 

Measured strain data are indicated by solid circles.  P-M refers to the Palmer-Mansoori 

model and S-D refers to the Shi-Durucan model. 
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6.8.2 Testing the Strain Modification.

  To test the application of the strain modification to other gases, permeability was 

measured for the same two coal cores (Anderson 01 and Gilson 02) using the gas mixture 

described in Section 5.2 .  The sorption-induced strain isotherms shown in Figure 5.10 

were used to calculate the Langmuir strain constants shown in Table 6.2. 

Table 6.2.  Langmuir constants for sorption-induced strain curves for a gas mixture at 

80° F. 
Constants for Strain Curves 

Gas Coal 
Normalized Smax

Average pL,

psia

R2 value for 

curve fit 

Anderson 0.01766 0.9952 51% N2 – 

49% CO2 Gilson 0.00844 
306.27 

0.9985 

The permeability data for each core were collected in the same manner as the previ-

ous permeability experiments with the exception of the composition of the gas flowing 

through the cores.  The same gas mixture that was used in the strain experiments was 

employed for the permeability tests.  Figure 6.19 shows the generated permeability data 

along with the permeability models with and without the application of the variable strain 

factor for these two cores. 

Incorporating the variable strain factor to both of the models greatly improved the ca-

pability to fit the permeability data for the Anderson 01 core.  For the Gilson 02 core, the 

results were not as striking, but still did improve the fit of the measured data.  These re-

sults tend to validate the assumption that unconstrained strain data need to be adjusted in 

order to be used to fit actual laboratory-generated permeability data. 
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Figure 6.19.  Plots showing permeability model comparisons for a gas mixture flowing 

through two coal cores.  Confining pressure was 1000 psia and temperature was 80° F. 
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CHAPTER 7. CONCLUSIONS 

This chapter summarizes the findings, conclusions, and recommendations for future 

work noted in the previous chapters. 

7.1 Findings and Conclusions

An optical method to measure the linear strain in coal induced by the sorption of 

gases was developed that greatly reduces the amount of time required for sample equili-

bration.  The total time needed to construct a strain-pressure plot for a given temperature 

has been reduced from over 100 days with traditional strain gauges to less than 10 days 

using this new technique. 

Unconfined strain was measured for coal samples subjected to CO2, CH4, and N2 at 

pressures up to 1000 psia. 

Time-dependence of sorption-induced strain (at constant pressure and temperature) 

can be modeled using a Langmuir-type equation, which allows the extrapolation of strain 

to infinite time. 

During sorption-induced strain measurements, as the ratio of the change in sorption 

pressure to total pressure ( p/p) increased, the equilibration time generally increased for 

the samples tested. 

Sorption-induced strain at equilibrium is best modeled using a Langmuir-type equa-

tion with pressure constant pL and maximum strain constant Smax and is not a linear func-

tion of gas pressure. 

When comparing the strain curves for a given coal sample caused by the sorption of 

different gases, CO2 adsorption caused the highest strain, followed by CH4, and N2 ad-

sorption caused the lowest strain. 
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Coal samples adsorbing gases (such as CO2) that induce large strains approach their 

maximum strain at lower pressures than when adsorbing gases (such as N2) that induce 

small strains.  In other words, the curvature of the strain curve decreased as total strain 

decreased.

Sorption-induced strain decreased as coal rank increased for all gases tested.  The 

CO2 and N2 strains were about twice as large in the subbituminous coal as the high-

volatile bituminous coal, while CH4 strain was only 1.1 times larger in the subbituminous 

coal than the high-volatile bituminous coal. 

The CO2/CH4 strain ratio decreased with an increase in coal rank, which implies that 

there will be more permeability reduction in lower rank coals during CO2 injection for 

CO2-ECBM or CO2 sequestration operations. 

Simple extended Langmuir theory can be used to model coal strain induced by the ad-

sorption of a multi-component gas mixture; however, the inclusion of the adsorbate inter-

action energies significantly improves the modeling of strain induced by the adsorption of 

gas mixtures. 

Permeability was measured for coal samples subjected to CO2, CH4, and N2 at pore 

pressures up to 800 psia. 

With confining pressure fixed at 1000 psi, permeability, in some cases, decreased and 

then increased with increasing pore pressure.  In other cases, the permeability simply in-

creased with increasing pore pressure.  

Correlating changes in permeability with unconfined strain measurements proved dif-

ficult. 

Although there are many permeability-change models available for use in predicting 

coal permeability behavior as a function of pore pressure, some are too simplistic to be of 

real value in reservoir simulation. 

All three permeability models considered in this work significantly overestimated the 

decrease in permeability as pore pressure was increased. 
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For mixed-gas fluids, very little difference was found in predicted permeability be-

tween models including the interaction energy constants and the models that neglect 

them.  Therefore, there may be no need to include the interaction energies when modeling 

permeability changes caused by mixed-gas adsorption or desorption. 

Although the models do no appear to benefit from the inclusion of interaction ener-

gies associated with sorption of mixed gases, neither the Shi-Durucan model nor the 

Palmer-Mansoori accurately predicts mixed-gas permeability changes in coal based on 

pure gas sorption constants alone. 

A correction factor was developed that is a function of pore pressure, overburden 

pressure, gas type, and coal rank that when multiplied to the original strain data, im-

proves both the Palmer-Mansoori model and the Shi-Durucan model. 

A test of the application of the correction factor to sorption-induced changes in per-

meability appears to validate its application to the strain data. 

Adjusting unconfined sorption-induced strain measurements for incorporation into 

permeability models to account for the confining stress associated with laboratory (and 

presumably field) conditions. 

Corrected sorption-induced strain curves were generally lower as sorption pressure 

increased when compared to actual strain measured on unconstrained samples. 

7.2 Recommendations for Future Work

Initial tests showed that sandstone was not inert with respect to swelling in the pres-

ence of pressurized carbon dioxide.  Further testing should be done to elucidate this phe-

nomenon for it may have application to CO2 injection into deep saline aquifers for CO2

sequestration. 

Temperature effects on sorption-induced strain measurements were specifically ex-

cluded from this work, but could be easily studied using the optical strain measurement 

apparatus developed for this work. 
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Other researchers have shown that coal is probably isotropic at least in small samples.  

Experiments could be easily designed to study the isotropic nature of coals by carefully 

cutting samples in the x, y, and z directions to verify that assumption. 

There are differences of opinion regarding the relationship between adsorption iso-

therms and sorption-induced strain isotherms.  More work should be done to relate these 

two measurements. 

There have been many studies showing the effect of moisture on adsorption isotherms 

in coal, but none have been found that investigates the effect of moisture on strain iso-

therms. 

Further experimentation should be done to confirm the finding that during sorption-

induced strain measurements, as the ratio of the change in sorption pressure to total pres-

sure ( p/p) increased, the equilibration time generally increased for the samples tested. 

Because sorption-induced strain is important to modeling reservoir performance dur-

ing coalbed CO2 sequestration, CO2-ECBM, as well as CBM production by pressure de-

pletion, more strain measurements are needed for a wide variety of coals and under dif-

ferent conditions. 

Although the operation of the strain measurement apparatus was fairly straightfor-

ward, there was still an element of operator skill or art involved with the collection of the 

data.  Improvements to the apparatus should be done to automate the detection of the coal 

edges and avoid the potential for operator error. 

The value for the Langmuir pressure constant (pL) appeared to be independent of coal 

rank.  Further testing should be done to affirm this observation. 

Data in this work show that strain decreases with an increase in coal rank; however, 

other researchers have reported opposite results.  More work should be done to elucidate 

these differences. 

Measured strain data in this work show that as coal rank increased the ratio of the 

CO2-induced strain to the CH4-induced strain decreased. This finding supports the work 
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of other researchers, but contradicts the work of others.  More data need to be collected in 

order to validate this finding. 
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LIST OF SYMBOLS 

 a = constant used in variable strain factor equation, dimensionless 

 A = cross sectional area of core, cm
2

 b = constant used in variable strain factor equation, psi
-1

 Cf = fracture compressibility, psi
-1

cmVm = equivalent to the Langmuir strain constant, Smax, dimensionless 

 C0 = initial fracture compressibility, psi
-1

 E = Young’s modulus, psi 

 Eij = momentum transfer efficiency between two gases i and j 

 fmix = fluidity of a gas mixture, cp
-1

 K = bulk modulus, psi 

 k = permeability, mD 

 k0 = initial permeability, mD 

 L = length, cm 

L = change in length, cm 

 M = constrained axial modulus, psi 

 Mi = molecular weight of gas mixture components, g/mole 

 n = number of moles, dimensionless 

 p = pressure, psia 

p = differential pressure across core, psia 

 pL = Langmuir pressure constant, psia 

 p0 = initial pressure, psia 

 pob = overburden pressure, psia 

 pp = pore pressure, psia 

 ppore = pore pressure, psia 
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 qavg = average flow rate through core, mL/s 

 R = universal gas constant, psi-mL/moles/°R 

 Ro = % vitrinite reflectance 

 R
2
 = coefficient of determination, dimensionless 

 S = strain, dimensionless 

 s = constant for linearly elastic materials (equal to unity for coal) 

 Sf = variable strain factor, dimensionless 

 SL = linear or longitudinal strain, dimensionless 

 St = Langmuir strain-time constant; strain at infinite time, dimensionless 

 Smax = Langmuir linear strain constant; strain at infinite pressure, dimensionless 

 Smix = strain induced by sorption of a gas mixture, dimensionless 

 SV = volumetric strain, dimensionless 

 t = time, sec or hr 

 T = temperature, °F or °R 

 tL = Langmuir time constant, sec or hr 

 V = volume, mL 

 Vsc = volume at standard conditions, mL 

 VL = Langmuir volume, mL

V = change in volume, mL 

 Vr = vitrinite reflectance, % 

 x = Eq (26) and Eq (27): mole fractions of components in gas mixture, dimensionless 

 X = interim strain factor, dimensionless 

 y = Eq (14): measured strain data, dimensionless 

  Eq (15): mole fractions of components in gas mixture, dimensionless 

  Eq (27): momentum fraction of each gas component, dimensionless 

 y* = calculated strain data, dimensionless 

 ybar = the average of the measured strain data, dimensionless 

 Z = compressibility factor 
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 = fracture compressibility change rate, psi
-1

 = gas gravity, dimensionless 

 = volumetric strain, dimensionless 

 = interaction energy of gas adsorbate, dimensionless 

 = viscosity 

 = Poisson’s ratio, dimensionless 

 = effective or net stress, psi 

t = total stress, psi 

0 = initial net stress, psi 

 = porosity, dimensionless 

0 = initial porosity, dimensionless 
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APPENDIX

Visual Basic code used to optimize the model used to fit the measured strain data. 

Sub LangmuirTypeFit() 

'--- Declare module level variables 
Dim ymax As Double 
Dim ymax0 As Double 
Dim ymax1 As Double 
Dim ymax2 As Double 
Dim ymax3 As Double 
Dim xval As Double 
Dim xval0 As Double 
Dim xval1 As Double 
Dim xval2 As Double 
Dim xval3 As Double 
Dim row As Integer 
Dim n As Integer 
Dim ystar As Double 
Dim deltay As Double 
Dim rsqprev As Double 
Dim rsq As Double 
Dim rsqy As Double 
Dim ybar As Double 
Dim datarow As Integer 
Dim nmax As Integer 
Dim i As Integer 
Dim xvalconst As String 

' clear selected part of the output spreadsheet 
    ActiveSheet.Range("e7:e9").Select 
    Selection.ClearContents 
    ActiveSheet.Range("A3").Select 
    datarow = 3 

' find beginning of data 
' count data points 
    Selection.End(xlDown).Select 
    nmax = ActiveCell.row - datarow + 1 

' place active cell at top of new data column 
    ActiveSheet.Range("B3").Select 

' write output header to sheet 
    Cells(7, 4).Formula = "ymax =" 
    Cells(8, 4).Formula = "xval =" 
    Cells(9, 4).Formula = "rsq =" 

' initial values: 
    sumdeltay = 0 
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    sumbottom = 0 
    row = datarow 
    rsqprev = 0 
    rsq = 1 
    ymax0 = ActiveSheet.Range("e4").Value 
    xval0 = ActiveSheet.Range("e5").Value 

' Check to see if xval is or is not constant 
    xvalconst = ActiveSheet.Range("f5").Value 

' get sum of y values 
    sumy = 0 
    Do While row < datarow + nmax 
        y = ActiveSheet.Cells(row, 2) 
        sumy = sumy + y 
        row = row + 1 
    Loop 
    ybar = sumy / nmax 

' optimize ymax values 
    ymax1 = ymax0 / 2 
    xval = xval0 
    If xvalconst = "False" Then 
        Call Optimize_Xval(rsq, datarow, nmax, ymax1, xval, ybar, i) 
    Else 
        Call R_Squared_Value(datarow, nmax, ymax1, xval, ybar, rsq) 
    End If 
    rsqy1 = rsq 

    ymax2 = ymax0 
    xval = xval0 
    If xvalconst = "False" Then 
        Call Optimize_Xval(rsq, datarow, nmax, ymax2, xval, ybar, i) 
    Else 
        Call R_Squared_Value(datarow, nmax, ymax2, xval, ybar, rsq) 
    End If 
    rsqy2 = rsq 

    ymax3 = ymax0 * 2 
    xval = xval0 
    If xvalconst = "False" Then 
        Call Optimize_Xval(rsq, datarow, nmax, ymax3, xval, ybar, i) 
    Else 
        Call R_Squared_Value(datarow, nmax, ymax3, xval, ybar, rsq) 
    End If 
    rsqy3 = rsq 

    rsqyprev = 0 
    rsqy = rsqy2 
    Do While Abs(rsqy - rsqyprev) > 0.000000000001 
        xval = xval0 
        rsqyprev = rsqy 
        If rsqy3 > rsqy2 And rsqy2 > rsqy1 Then 
            ymax1 = ymax2 
            ymax2 = ymax3 
            ymax3 = ymax3 * 2 
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            rsqy1 = rsqy2 
            rsqy2 = rsqy3 
            If xvalconst = "False" Then 
                Call Optimize_Xval(rsqy, datarow, nmax, ymax3, xval, _ 
                    ybar, i) 
            Else 
                Call R_Squared_Value(datarow, nmax, ymax3, xval, _ 
                    ybar, rsqy) 
            End If 
            rsqy3 = rsqy 
        ElseIf rsqy3 < rsqy2 And rsqy2 < rsqy1 Then 
            ymax3 = ymax2 
            ymax2 = ymax1 
            ymax1 = ymax1 / 2 
            rsqy3 = rsqy2 
            rsqy2 = rsqy1 
            If xvalconst = "False" Then 
                Call Optimize_Xval(rsqy, datarow, nmax, ymax1, xval, _ 
                    ybar, i) 
            Else 
                Call R_Squared_Value(datarow, nmax, ymax1, xval, _ 
                    ybar, rsqy) 
            End If 
            rsqy1 = rsqy 
        Else 
            ydiff12 = Abs(ymax1 - ymax2) 
            ydiff23 = Abs(ymax2 - ymax3) 
            If ydiff12 >= ydiff23 Then 
                ymax = (ymax1 + ymax2) / 2 
                If xvalconst = "False" Then 
                    Call Optimize_Xval(rsqy, datarow, nmax, ymax, _ 
                        xval, ybar, i) 
                Else 
                    Call R_Squared_Value(datarow, nmax, ymax, xval, _ 
                        ybar, rsqy) 
                End If 
                If rsqy > rsqy2 Then 
                    rsqy3 = rsqy2 
                    rsqy2 = rsqy 
                    ymax3 = ymax2 
                    ymax2 = ymax 
                Else 
                    rsqy1 = rsqy 
                    ymax1 = ymax 
                End If 
            Else 
                ymax = (ymax2 + ymax3) / 2 
                If xvalconst = "False" Then 
                    Call Optimize_Xval(rsqy, datarow, nmax, ymax, _ 
                        xval, ybar, i) 
                Else 
                    Call R_Squared_Value(datarow, nmax, ymax, xval, _ 
                        ybar, rsqy) 
                End If 
                If rsqy > rsqy2 Then 
                    rsqy1 = rsqy2 
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                    rsqy2 = rsqy 
                    ymax1 = ymax2 
                    ymax2 = ymax 
                Else 
                    rsqy3 = rsqy 
                    ymax3 = ymax 
                End If 
            End If 
        End If 
    Loop 
    ' write output to sheet 
    Cells(7, 5).Value = ymax 
    Cells(8, 5).Value = xval 
    Cells(9, 5).Value = rsqy 

End Sub 

*************************************************

Sub Optimize_Xval(rsq As Double, datarow As Integer, nmax As Integer, _ 
                    ymax As Double, xval As Double, ybar As Double, _ 
                    i As Integer) 

    Dim xval1 As Double 
    Dim xval2 As Double 
    Dim xval3 As Double 

    'initialize vairables 
    xval1 = xval / 2 
    Call R_Squared_Value(datarow, nmax, ymax, xval1, ybar, rsq) 
    rsq1 = rsq 

    xval2 = xval 
    Call R_Squared_Value(datarow, nmax, ymax, xval2, ybar, rsq) 
    rsq2 = rsq 

    xval3 = xval * 2 
    Call R_Squared_Value(datarow, nmax, ymax, xval3, ybar, rsq) 
    rsq3 = rsq 

    rsqprev = 0 
    xvalprev = 0 
    rsq = rsq2 

    Do While Abs(rsq - rsqprev) > 0.000000000001 
        rsqprev = rsq 
        xvalprev = xval 
        If rsq3 > rsq2 And rsq2 > rsq1 Then 
            xval1 = xval2 
            xval2 = xval3 
            xval3 = xval3 * 2 
            rsq1 = rsq2 
            rsq2 = rsq3 
            Call R_Squared_Value(datarow, nmax, ymax, xval3, ybar, rsq) 
            xval = xval3 
            rsq3 = rsq 
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        ElseIf rsq3 < rsq2 And rsq2 < rsq1 Then 
            xval3 = xval2 
            xval2 = xval1 
            xval1 = xval1 / 2 
            rsq3 = rsq2 
            rsq2 = rsq1 
            Call R_Squared_Value(datarow, nmax, ymax, xval1, ybar, rsq) 
            xval = xval1 
            rsq1 = rsq 
        Else 
            xdiff12 = Abs(xval1 - xval2) 
            xdiff23 = Abs(xval2 - xval3) 
            If xdiff12 >= xdiff23 Then 
                xval = (xval1 + xval2) / 2 
                Call R_Squared_Value(datarow, nmax, ymax, xval, ybar, _ 
                    rsq) 
                If rsq > rsq2 Then 
                    rsq3 = rsq2 
                    rsq2 = rsq 
                    xval3 = xval2 
                    xval2 = xval 
                Else 
                    rsq1 = rsq 
                    xval1 = xval 
                End If 
            Else 
                xval = (xval2 + xval3) / 2 
                Call R_Squared_Value(datarow, nmax, ymax, xval, ybar, _ 
                    rsq) 
                If rsq > rsq2 Then 
                    rsq1 = rsq2 
                    rsq2 = rsq 
                    xval1 = xval2 
                    xval2 = xval 
                Else 
                    rsq3 = rsq 
                    xval3 = xval 
                End If 
            End If 
        End If 
    Loop 
End Sub 

*************************************************

Sub R_Squared_Value(datarow As Integer, nmax As Integer, a As Double, _ 
                    b As Double, ybar As Double, rsq As Double) 
row = datarow 
'this subrouting is based on the equations outlined in Probablility and 
'Statistics for Engineers and Scientists by Jay L. Devore, p. 503-506 
    SSe = 0 
    SSt = 0 
    Do While row < datarow + nmax 
        x = ActiveSheet.Cells(row, 1) 
        y = ActiveSheet.Cells(row, 2) 
        'langmuir-type equation for ystar 
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            ystar = a * x / (b + x) 
        'end equation for ystar 
        SSe = (y - ystar) ^ 2 + SSe 
        SSt = (y - ybar) ^ 2 + SSt 
        row = row + 1 
    Loop 
    rsq = 1 - SSe / (SSe + SSt) 
End Sub 


