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In most species, the capability of perceiving and using the passage of time in the seconds-

to-minutes range (interval timing) is not only accurate but also scalar: errors in time

estimation are linearly related to the estimated duration. The ubiquity of scalar timing

extends over behavioral, lesion, and pharmacological manipulations. For example, in mam-

mals, dopaminergic drugs induce an immediate, scalar change in the perceived time (clock

pattern), whereas cholinergic drugs induce a gradual, scalar change in perceived time (mem-

ory pattern). How do these properties emerge from unreliable, noisy neurons firing in the

milliseconds range? Neurobiological information relative to the brain circuits involved in

interval timing provide support for an striatal beat frequency (SBF) model, in which time is

coded by the coincidental activation of striatal spiny neurons by cortical neural oscillators.

While biologically plausible, the impracticality of perfect oscillators, or their lack thereof,

questions this mechanism in a brain with noisy neurons. We explored the computational

mechanisms required for the clock and memory patterns in an SBF model with biophysically

realistic and noisy Morris–Lecar neurons (SBF–ML). Under the assumption that dopamin-

ergic drugs modulate the firing frequency of cortical oscillators, and that cholinergic drugs

modulate the memory representation of the criterion time, we show that our SBF–ML

model can reproduce the pharmacological clock and memory patterns observed in the

literature. Numerical results also indicate that parameter variability (noise) – which is ubiq-

uitous in the form of small fluctuations in the intrinsic frequencies of neural oscillators within

and between trials, and in the errors in recording/retrieving stored information related to

criterion time – seems to be critical for the time-scale invariance of the clock and memory

patterns.

Keywords: interval timing, striatal beat frequency, computer simulations, dopamine, acetylcholine, neural noise,

noise

INTRODUCTION

The capability of perceiving and using the passage of time in the
seconds-to-minutes range (interval timing) is essential for sur-
vival and adaptation, and its impairment leads to severe cognitive
and motor dysfunctions (Gallistel, 1990; Buhusi and Meck, 2005;
Meck et al., 2008). Considerable progress has been made in recent
years toward elucidating the neural bases of time perception in the
seconds-to-minutes range (Mauk and Buonomano, 2004; Buhusi
and Meck, 2005, 2009; Meck et al., 2008). Recent studies point
toward the cortico-striatal circuits as being critical for interval
timing both, in animals (Matell and Meck, 2000; Matell et al.,
2003; Meck, 2006) and humans (Coull et al., 2004, 2011; Stevens
et al., 2007). Other experiments pointed toward an important role
of the parietal lobe in timing behavior (Harrington et al., 1998;
Schubotz et al., 2000; Onoe et al., 2001; Rao et al., 2001). In par-
ticular, Leon and Shadlen (2003) found evidences of a correlation
between the judgment of time and cell-level neural activity in the
lateral intraparietal area of the posterior parietal cortex of mon-
key (Leon and Shadlen, 2003). As Matell and Meck (2004); Leon

and Shadlen (2003) and others highlighted, it is likely that the
interval timing uses multiple mechanisms and time is represented
in many structures in the brain. Moreover, severe deficiencies in
reproducing temporal intervals were found in various neuropsy-
chiatric disorders, such as Parkinson’s (Harrington and Haaland,
1991; Malapani et al., 1998, 2002).

In most species interval timing is not only accurate but also
time-scale invariant, or simply scalar, in that the errors in time esti-

mation are linearly related to the estimated duration (Gibbon, 1977;
Gibbon et al., 1984). In other words, interval timing is increasingly
less precise as the interval being timed lengthens (Figure 1A).
When timing a 30-s interval (left panel of Figure 1A), responses
are distributed with a quasi–Gaussian distribution around the 30-s
target duration. On the other hand, when timing a 90-s inter-
val (right panel of Figure 1A), responses are distributed with a
quasi–Gaussian distribution around the 90-s target duration. The
scalar property is evident in that normalizing the response func-
tions by the target duration and by the maximum response rate
yields superimposition of response functions (middle panel of
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FIGURE 1 | Scalar property. (A) Mean lever-press response rate in

peak-interval experiments with rats trained with a criterion time of 30 s

(left panel), respectively, 90 s (right panel; re-drawn from Matell et al.,

2004). When normalized by maximum response rate and by the criterion

duration on the horizontal scale, response functions for the two criteria

overlap (middle panel). (B) Administration of indirect dopamine agonist

cocaine results in an immediate, scalar (proportional) leftward shift in

response functions.

Figure 1A). The time-scalar invariance property of interval tim-
ing is ubiquitous in many species from invertebrates such as bees
(Boisvert and Sherry, 2006), to many vertebrates, such as fish (Tal-
ton et al., 1999), birds (Cheng and Westwood, 1993), and mammals
such as rats (Dews, 1962), mice (Buhusi et al., 2009) and humans
(Rakitin et al., 1998). Scalar timing is particular to timing in the
seconds-to-minutes range, but not to circadian timing, which is far
more accurate than interval timing, but whose variance increases
very little with the mean of the interval (Gibbon, 1977; Hinton
and Meck, 1997).

The ubiquity of scalar timing extends over behavioral, lesion
(Meck et al., 1987), and pharmacological manipulations of interval
timing (Buhusi and Meck, 2010). For example, acute administra-
tion of cocaine results in a characteristic leftward shift of response
functions (Figure 1B), consistent with the speeding up of an inter-
nal clock (Matell et al., 2004). Most interestingly, at the same dose,
cocaine speeds up timing of a 90-s interval three times more than
when timing a 30-s interval (Figure 1B), suggesting that the effect
of the drug is proportional – scalar – to the timed interval. More-
over, when normalized in both amplitude and time as in Figure 1A,
the response functions under cocaine (Figure 1B) superimpose,
indicative of the scalar property.

In mammals, manipulations involving dopaminergic (DA)
drugs such as cocaine induce a particular pattern of response –
clock pattern – that is characterized by several features exemplified
by the data presented in Figure 2A (Meck, 1996). Figure 2A shows
the clock pattern obtained during seven sessions of administration
of DA agonists (red dots) or antagonists (black squares), followed
by seven sessions off-drug, in two groups of rats trained to time a
criterion duration of either a 20-s (lower pattern), or 40s (upper
pattern). First, DA drugs produce an immediate, scalar change in
the perceived time when administered either systemically (Maricq
et al., 1981; Maricq and Church, 1983; Meck, 1983, 1996; Matell
and Meck, 1997; Matell et al., 2004), or directly into the anterior

portion of the striatum (Neil and Herndon Jr., 1978); the pat-
tern is often taken to be suggestive of a change in the speed of an
internal clock, and thus is known as a“clock pattern”(Meck, 1996).
For example, an immediate, scalar (proportional), leftward shift in
perceived time (responding earlier in time than under control con-
ditions) is evident following systemic DA agonist administration,
e.g., methamphetamine or cocaine (black squares in Figure 2A,
upper pattern for a 40-s criterion, lower pattern for a 20-s cri-
terion). Similarly, an immediate, proportional, rightward shift in
perceived time (responding later in time than under control condi-
tions) occurs following systemic administration of DA antagonist,
e.g., haloperidol (red circles in Figure 2A). Second, as shown in
Figure 1B, the magnitude of the shift in the temporal response
scales with the timed duration, and the response functions on-
and off-drug overlap when normalized in amplitude and duration
(Figure 1B). Third, upon chronic administration of DA drugs, the
timing functions recalibrate, i.e., they shift back to the values prior
to drug administration, an effect often interpreted as a relearn-
ing of the clock value associated with a particular duration (left
side of the Figure 2A). Fourth, upon discontinuing the drug reg-
imen, the timing functions rebound (in a scalar manner) in the
opposite direction from the initial effects of the drug (Meck, 1983;
right-side of Figure 2A). This rebound effect is a signature of the
clock pattern. Finally, the magnitude of the shift in the temporal
response scales roughly linearly with the dose (Meck, 1996; Matell
and Meck, 1997; Meck et al., 2011), suggesting a tight relationship
between synaptic dopamine levels and clock-speed.

On the other hand, pharmacological manipulations (Meck,
1983, 1996; Meck and Church, 1987a,b) and lesions (Meck et al.,
1987) aimed at the cholinergic (ACh) systems produce gradual,
scalar (proportional) effects on the memory storage, as shown
in data from Figure 3A. Figure 3A shows the memory pattern

obtained during seven sessions of administration of ACh ago-
nists (red dots) or antagonists (black squares), followed by seven
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FIGURE 2 | Clock pattern. (A) The clock pattern of dopaminergic (DA) drugs

(re-drawn from Meck, 1996): two groups of rats were trained off-drug to time

a criterion time of either 40 s (upper pattern) or 20 s (lower pattern); they were

then administered either DA agonists or antagonists for seven sessions,

followed by seven session off-drug. The first administration of DA drugs

results in an immediate, dose-dependent shift in timing, leftward (faster

timing) for DA agonists (solid squares, methamphetamine), and rightward

(slower timing) for DA antagonists (solid circles, haloperidol). Under

continuous training with the pre-drug criterion time and despite continuing the

drug administration, the timing functions recalibrate to the pre-drug criterion

time. Upon discontinuing the drug, timing functions immediately rebound in

the opposite direction, then gradually recalibrate to the pre-drug criterion time

(Meck, 1996). Solid triangles indicate numerical simulations with the SBF–ML

model. The insets indicate the response function generated by the SBF–ML

model throughout the clock pattern (indicated by arrows, and by a triangle

symbol of the color of the inset). Insets: A1: immediate rebound from T = 40

to T ∗∗ = 48 s upon discontinuing methamphetamine; A2: recalibration under

methamphetamine; A3: immediate shift under methamphetamine from

T = 40 to T ∗ = 32 s; A4: immediate shift under haloperidol from T = 20 to

T ∗= 24 s; A5: recalibration under haloperidol; A6: immediate rebound upon

discontinuing haloperidol. The dashed (A1–3), respectively, continuous (A4–6)

smooth lines represent Gaussian fits. (B). The Gaussian fits (dashed smooth

lines) in (A1–3) are given by Gauss (48, 31 s), Gauss (40, 27 s), respectively,

Gauss (32, 21 s). Timing functions at different points of the clock pattern for

T = 40 s are time-scale invariant. (C). Timing functions from the 20-s clock

pattern and 40-s clock pattern are time-scale invariant. (D). The Gaussian fits

(continuous smooth lines) in (A4–6) are given by Gauss (24, 16 s), Gauss (20,

13 s), respectively, Gauss (16, 11 s). Timing functions at different points of the

clock pattern for T = 20 s are time-scale invariant. Colors match the insets. All

Gaussian fits of numerical simulations gave COD > 0.9 and p < 0.0001.

sessions off-drug, in two groups of rats trained to time a criterion
duration of either a 20-s (lower pattern) or 40-s (upper pattern):
first, administration of ACh drugs produced a gradual (rather than
immediate), scalar temporal shift (Meck, 1996); ACh lesions pro-
duce permanent effects (Malapani and Fairhurst, 2002). Second,

chronic administration amplifies (rather than recalibrates) the
temporal shift (left side of Figure 3A). Third, upon discontinu-
ing the drug administration, the timing functions gradually return
to the original criterion time (Figure 3A, right-side). Finally, the
magnitude of the shift in the temporal response scales with the
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FIGURE 3 | Memory pattern. (A) The memory pattern of cholinergic (ACh)

drugs (re-drawn from Meck, 1996): two groups of rats were trained off-drug to

time a criterion time of either 40 s (upper pattern) or 20 s (lower pattern); they

were then administered either ACh agonists or antagonists for seven

sessions, followed by seven session off-drug. The first administration of ACh

drugs results in a minimal effect; repeated ACh drug administration results in

a gradual, dose-dependent shift in timing, leftward for ACh agonists (solid

circles, physostigmine), and rightward for ACh antagonists (solid squares,

atropine). Upon discontinuing the drug, timing functions gradually recalibrate

to the initial criterion time (Meck, 1996). Solid triangles indicate numerical

simulations obtained with the SBF–ML model. The insets indicate the output

function generated by the SBF–ML model with biophysically realistic ML

neurons throughout the memory pattern (indicated by arrows, and by a

triangle symbol of the color of the inset). Insets: A1: gradual shift from T = 40

to T ∗ = 50 s under atropine; A2: gradual recalibration upon discontinuing

atropine; A3: gradual recalibration upon discontinuing physostigmine; A4:

gradual recalibration under physostigmine. The dashed (A1,2), respectively,

continuous (A3,4) smooth lines represent Gaussian fits. (B). The Gaussian fits

(dashed smooth lines) in (A1,2) are given by Gauss (50, 33 s), respectively,

Gauss (40, 27 s). Timing functions at different points of the memory pattern

for T = 40 s are time-scale invariant. (C). Timing functions from the 20-s

memory pattern and 40-s memory pattern are time-scale invariant. (D). The

Gaussian fits (continuous smooth lines) in (A3,4) are given by Gauss (20,

13 s), respectively, Gauss (15, 10 s). Timing functions at different points of the

memory pattern for T = 20 s are time-scale invariant. Colors match the insets.

All Gaussian fits of numerical simulations gave COD > 0.9 and p < 0.0001.

timed duration (Meck, 1996), twice as large for the 40-s group
(upper pattern in Figure 3A) than for the 20-s group (lower pattern
in Figure 3A). The memory pattern is consistent with alterations
of the internal representation of the memorized criterion time
(Meck, 1996).

How do the pharmacological properties of timing in the
seconds-to-minutes range, including the scalar effect of dopamin-
ergic (DA) and cholinergic (ACh) drugs, emerge from unreliable,
noisy neurons firing in the milliseconds range? A response to these
questions was recently proposed by a neurobiologically inspired

Frontiers in Integrative Neuroscience www.frontiersin.org September 2011 | Volume 5 | Article 52 | 4

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Oprisan and Buhusi Modeling pharmacology of interval timing

computational model of interval timing: the striatal beat frequency
(SBF) model (Matell and Meck, 2000, 2004; Buhusi and Meck,
2005; Figure 4). The model is based on the idea that striatal spiny
neurons integrate the activity of massive ensembles of cortical
oscillators to produce coincidental beats that have periods span-
ning a much wider range of durations than the intrinsic periods of
the cortical oscillators (Miall, 1989; Matell and Meck, 2004; Buhusi
and Meck, 2005). Our implementation of the SBF–Morris–Lecar
(ML) model closely follows Matell and Meck (2004) with three
main changes: (1) we replaced the sine wave mathematical abstrac-
tion of oscillators with biophysically realistic and noisy ML (Morris
and Lecar, 1981; Rinzel and Ermentrout, 1998) model neurons,
and (2) we implemented neuromodulatory circuits that mimic the
DA and ACh systems, and (3) we implemented the equivalent of
trials and sessions, to address the effect of experimental DA, ACh,
and lesion manipulations (Figure 4). Our SBF–ML implementa-
tion contains a time-base provided by a large number of neural
oscillators presumably localized in the frontal cortex (FC; Matell
et al., 2003). Following Matell and Meck (2004) review of the neu-
roanatomical foundations of the SBF model, among many other
firing patterns observed in FC, the synchronized cortical oscilla-
tions in the 8- to 13-Hz range (alpha) could serve as pacemakers
for temporal accumulation (Anliker, 1963). Furthermore, Rizzuto
et al. (2003) have shown that alpha range oscillations in humans
reset upon occurrence of to-be-remembered or probe stimuli, sug-
gesting that the phase of these rhythms may be of importance in
interval timing. The set of synaptic weights between neural oscil-
lators in the FC and the spiny neurons in the striatum, which
is the input to the basal ganglia (BG), represent a (long-term)
memory buffer. Learning of the criteria times also depends on
nucleus basalis magnocellularis (Meck et al., 1987), FC (Olton
et al., 1988), and the hippocampus (Meck et al., 1987; Olton et al.,
1988). A coincidence detector was implemented to mimic the spiny

FIGURE 4 |The striatal beat frequency model. Schematic representation

of the neurobiological structures involved in interval timing in the SBF

model. Dashed lines signify couplings that are not implemented in our SBF

version. Frontal oscillators are implemented as biophysically realistic ML

neurons. ACh, acetylcholine; FC, frontal cortex; BG, basal ganglia; DA,

dopamine; Glu, glutamate; GPE, globus pallidus external; GPI, globus

pallidus internal; STn, subthalamic nucleus; SNc/r, substantia nigra pars

compacta/reticulata; TH, thalamus; VTA, ventral tegmental area.

neurons in the striatum, which integrate a very large number of
different inputs, and responds selectively to particular reinforced
patterns (Houk, 1995; Houk et al., 1995; Beiser and Houk, 1998).
As opposed to the existing implementations of the SBF model
(Miall, 1989; Matell and Meck, 2004; Buhusi and Meck, 2005), a
neuromodulatory circuit that mimics “a start gun” in regard to
the effect of DA projections from substantia nigra pars compacta
(SNc), a neuromodulatory circuit that models the DA projections
from the ventral tegmental area (VTA) to the FC, and a cholinergic
system which modulates the BG activity were also implemented in
our SBF–ML model (Figure 4).

While “biologically plausible,” the impracticality (or lack
thereof) of perfect oscillators questions the robustness of an SBF
model in a brain with real, noisy neurons, particularly after phar-
macological manipulations. Here we explore the neural mech-
anisms required for clock (Figure 2), and memory (Figure 3)
patterns in an SBF–ML model. First, we checked numerically that,
in the limit of a very large number of neural oscillators and in the
presence of noise, the output of an SBF–ML model is Gaussian-like
(Figure 5). Second, under the assumption that DA drugs modu-
late the firing frequency of cortical oscillators, and that ACh drugs
modulate the memory representation of the criterion time, we
show that the SBF–ML model reproduces the pharmacological
clock (Figure 2), and memory (Figure 3) patterns observed in
the literature. Third, our numerical results support the conjecture
(Matell and Meck, 2004) that parameter variability (noise) – which
is ubiquitous in the form of small fluctuations in the intrinsic fre-
quencies of the neural oscillators within and between trails, and
in the errors in recording/retrieving stored information related to
criterion time – is critical for the time-scale invariance of the clock
and memory patterns of interval timing.

MATERIALS AND METHODS

NUMERICAL SIMULATIONS ASSUME BIOPHYSICALLY REALISTIC

MORRIS–LECAR NEURONS.

Since action potential recordings from real neurons are never
phase oscillators, i.e., sine waves, we departed from cortical phase
oscillators (Matell and Meck, 2004) and we instead implemented
biophysically realistic ML cortical neurons (Morris and Lecar,
1981; Rinzel and Ermentrout, 1998). The membrane potential of
the ML model neuron is given by CmV′ = I bias − I Ca − I K − I L,
where Cm is the membrane capacitance, prime denotes the deriv-
ative of the membrane potential V, I bias is a constant bias cur-
rent required to bring the model to the excitability threshold,
I Ca = g Cam(V − ECa) is the calcium current that involves the
conductance g Ca, the fraction m of calcium channels open at
a given V, and the reversal potential ECa for calcium channels,
I K = g Kn(V − EK) is the potassium current that involves the con-
ductance g K, the fraction n of channels open at a given V, and the
reversal potential EK for potassium channels, I L = g L(V − EL) is
a leak current that only involves a conductance g L and a reversal
potential EL. (Morris and Lecar, 1981; Rinzel and Ermentrout,
1998).

THE SBF–ML MODEL

Briefly, a set of N osc = 600 neural oscillators with uniformly dis-
tributed intrinsic frequencies fi was assumed to activate through
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FIGURE 5 | Scalar property in an SBF–ML model is dependent on noise.

(A) Numerical simulations of an SBF–ML model with Gaussian variability of

the criterion time and between-trial variability in frequencies of cortical

neurons generated response functions (jagged traces) with Gaussian-like

envelopes (smooth curves). The dashed (continuous) envelope corresponds to

30 s (90 s) criterion time. (B) In the presence of noise, the variance of output

function is proportional with the criterion time, thus indicating time-scale

invariance (filled squares). The coefficient of correlation for the linear

regression (continuous line) was r = 0.9 with a p-value less than 0.001. In the

absence of the noise, the variance of the output function is constant (filled

circles), thus violating the time-scale invariance. The coefficient of correlation

for the linear regression (dashed line) was r = 0.98 with a p-value less than

0.0001. (C) Numerical simulations of an SBF–ML model with normally

distributed variability for both the criterion time and both within- and

between-trials variability in frequencies generate response functions (jagged

traces) with Gaussian-like envelopes (smooth curves). The only noticeable

difference when adding within-trial frequency variability is the occurrence of

the skewness in the response rate at late times. A similar skewness was

observed in the behavioral data (see Figure 1) (D) The Gaussian envelopes for

the case of criterion time variability (A) are given by Gauss (30, 21 s),

respectively, Gauss (90, 60 s). They overlap when normalized in amplitude and

in time.

synaptic weights w ij(t ) a set of N mem = 1000 spiny neurons at time
t (Figure 4; our choice of N osc and N mem was due to limitations on
simulation duration, about 5 days on an HP Blade computer). The
membrane potential of neural oscillators was normalized from
[−80, +40 mV] to [−1,1] by a linear transformation that pre-
serves the shape of the action potential (Rinzel and Ermentrout,
1998). The modeled experimental setting included both reinforced
and non-reinforced trials. At the onset of each trial, the oscillators
were reset (0 phase), then neurons were set to fire with frequen-
cies fi, set during each trial, but variable from trial to trial. During
reinforced trials, upon delivery of the reinforcement at criterion
time T, a linear combination of oscillators’ membrane potential in
the current trial at the criterion time T was stored in long-term
memory as criterion pattern w ij(T ) (Matell and Meck, 2004). Dur-
ing non-reinforced (test) trials, spiny neurons were assumed to act
as coincidence detectors by computing the projection (dot prod-
uct) of the running weights w ij(t ) stored in the working memory
onto the retrieved reference weights wij(T ) stored in the long-term
memory:

output(t ) =

trials∑

k=1

Nosc∑

i=1

Nmem∑

j=1

wij(t )wij(T ).

We assumed that both the storage and retrieval of the cri-
terion time [stored as criterion pattern w ij(T )] to and from

long-term memory is affected by random biological noise, mod-
eled as follows: criterion time variability was modeled by randomly
distributing the criterion time T according to a normal density
probability function pdfT with 0.4T variance. This assumption
accounts for the randomness in learned sample times (reinforced
times) and in response time; e.g., in a peak-interval procedure
(Gibbon et al., 1984) animals are reinforced for the first response
after a criterion time, but since the animal’s response is random,
the reinforced time is random, though close in time to the cri-
terion. Therefore, sample times stored in memory were assumed
to be distributed around T. Additional randomness was included
in our SBF–ML implementation by a Gaussian noise added to the
intrinsic frequencies fi of the neural oscillators within and between
trails. The within-trial variability in frequencies fi accounts for the
randomness in response (e.g., for the first response reinforced),
while the between-trial variability accounts for the observed dif-
ferences in response between-trials (Church et al., 1994; Swearin-
gen and Buhusi, 2010). Another reason to differentiate between
within- and between-trial variability in frequencies fi has to do
with our focus on pharmacological manipulations, which exper-
imentally are conducted in on- and off-drug sessions. Because
we assumed that DA drugs change the frequencies fi, this implies
differences in coding and decoding of criterion time in on- and
off-drug sessions (trials). This in turn implies variations in both
the encoding and the recall of the criterion time due to the current
(on- or off-drug) frequencies fi.
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THE CLOCK PATTERN OF DOPAMINERGIC DRUGS

We assumed that phasic release of dopamine from VTA to FC mod-
ulates the firing rate of FC neural oscillators, and that DA drugs
affect the frequency of the cortical oscillators, f ∗

i = (1 + α)fi ,
where α accounts for the action of the drug and its magnitude
is dose-dependent, with 0 < α < 1 for dopamine agonists, such
as methamphetamine or cocaine, and −1 < α < 0 for dopamine
antagonists, such as haloperidol. Simulations in Figure 2 were car-
ried out with an SBF–ML model using N osc = 600 biophysically
realistic ML cortical neurons firing in the range [8, 12] Hz, using
N mem = 1000 memory samples,with a drug dose effectα = ± 0.25.

RELEARNING OF THE CRITERION TIME ON-DRUG, AND OFF-DRUG

Meck (1996) suggested that the recalibration of the clock pat-
tern may be due to relearning of the criterion time T under the
drug. Numerically, we assumed that the criterion time is stored
in long-term memory as a distribution of N mem = 1000 samples,
and that in each session, a fraction (25%) of the weights w ij(T ) are
updated, by storing the new pattern of the FC oscillators (off-drug
or on-drug) upon delivery of reinforcement at criterion time T.
We ran four sessions of 250 trials off-drug to acquire the distribu-
tion w ij(T ) with the off-drug frequency set fi which vary from trial
to trial. For each trial, a sample w ij(T ) was computed as a linear
combination of the membrane potential at the criterion time T

(Matell and Meck, 2004). During drug sessions, a fraction (25%)
of the weights w ij(T ) originally stored off-drug, are replaced with
new running weights w(T ∗), stored on-drug, such that gradually
the weights w stored in the reference (long-term) memory are
characteristic of the on-drug state. Similarly, when discontinuing
the drug, we assumed that the criterion time, stored in long-term
memory as a distribution of w(T ∗) samples, stored on-drug, is
replaced with a fraction (25%) during each off-drug session, such
that with sufficient training, the weights w stored in the reference
(long-term) memory will be characteristic of the off-drug state.

THE MEMORY PATTERN OF CHOLINERGIC DRUGS

Our numerical implementation assumes that administration of
ACh drugs alters the re-coding of the criterion time in long-term
memory (Meck, 1996; Matell and Meck, 2004). Briefly, we assumed
that criterion time T is coded in long-term memory as a distribu-
tion of N mem = 1000 samples w(T ), and that ACh drugs alter the
process involved in memorizing this distribution, with about 25%
samples learned in each session. The new samples are assumed to
represent an altered, on-drug representation of the criterion time,
T ∗ = k∗T, where the multiplicative coefficient k∗ is both drug and
dose-dependent (Gibbon et al., 1984; Meck, 1996). At the begin-
ning of the drug administration, only a small subpopulation of the
memory samples is affected; with continuing training on-drug,
these altered samples make up the majority of the memory sam-
ples and lead to a progressive shift of the peak output to T ∗. For
simulations presented in Figure 3 we assumed k∗ = 1.25 for ACh
antagonist atropine, and k∗ = 0.75 for ACh agonist physostigmine.

STATISTICAL ANALYSES

Throughout this paper, the Origin package (OriginLab Co.,
Northampton, MA, USA) was used to perform data fits to smooth
analytic curves, and to compare the degree of superposition

between curves. The degree of superposition of curves was indexed
by a coefficient of determination (COD) and the probability (p)
to obtain a certain COD value by chance was estimated. Briefly,
the COD measures the proportion of the total variation in the
dependent variable that is explained by the regression equation (fit
function), with 0 < COD < 1 (Brockwell and Davis, 1991; Resnick,
2006). The correlation described by the COD is usually considered
“good” if the COD > 0.7 (Nagelkerke, 1991; Cameron and Wind-
meijer, 1997; Anderson et al., 2009). If the regression curve is linear,
then the COD reduces to the correlation coefficient (r).

RESULTS

THE SBF–ML EXHIBITS TIME-SCALE INVARIANCE

Previous studies indicated that in the absence of biological noise,
an SBF model with cortical phase oscillators (sine waves) does not
exhibit time-scale invariance (Matell and Meck, 2004). We found
a similar behavior of our implementation of the SBF–ML model.
In the presence of normally distributed variability in the criterion
time, and between-trial variability in the frequencies of cortical
neurons, the output functions were Gaussian-like (Figure 5A)
and exhibited more variance when increasing the criterion dura-
tion T (filled squares in Figure 5B). On the other hand, in the
absence of biological noise the SBF–ML model produces an out-
put function whose envelope is almost Gaussian but violates the

scalar property (filled circles in Figure 5B). Moreover, when adding
normally distributed within-trial frequency variability on top of
the existing between-trial frequency variability, and variability in
criterion time, the output functions were still Gaussian-like with
SD proportional to the criterion time (Figure 5C). Moreover, in
the presence of these three sources of variability (Figure 5C) the
output function has a long tail that does not decrease to zero as
fast as the smooth Gaussian fit. Such a skewed and long-tailed
Gaussian-like output function was observed in behavioral exper-
iments (see Figure 1). When normalized in amplitude and over
time, the envelopes of the response functions from Figure 5C

overlap (Figure 5D). These findings support the conjecture made
by Matell and Meck (2004) that in an SBF model at least one source
of variability is required in order to observe time-scale invariance.
Therefore, biological noise – which is ubiquitous in the form of
small fluctuations of the intrinsic within- and between-trial fre-
quencies of the neural oscillators, errors in recording/retrieving
stored information related to criterion time – seems to be a rather
critical component of this feature of the SBF–ML model. However,
considering the focus of our paper on pharmacological manipu-
lations, for numerical efficiency reasons and without reducing the
generality of our results, in the following analyzes we only used
two sources of variability (noise) when numerically integrating
the equations of the SBF–ML model: normally distributed vari-
ability in the criterion time, and between-trial variability in the
frequencies of cortical neurons.

THE CLOCK PATTERN OF DOPAMINERGIC DRUGS IN THE SBF–ML

MODEL

Immediate shift upon changes in drug state

The clock effect of DA drugs can be easily understood as an
interplay between the storage and retrieval of the criterion time
representation w ij(T ) on- and off-drug. A change in drug state
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induced an immediate change in oscillator frequencies from the
off-drug frequencies f to the on-drug frequencies f∗, respectively,
from the on-drug frequencies f∗ to the off-drug frequencies f. In
our numerical implementation of the SBF–ML, the neural oscil-
lators fire off-drug in the frequency range [fmin, fmax] and that the
criterion time T is represented off-drug as a set of synaptic weights
w ij(T ). The DA drugs alter the frequency of the cortical oscillators
to f ∗

i = (1 + α)fi such that the on-drug frequency range changes
to [f ∗

min, f ∗
max]. As a result, the projection (coincidence detection)

of the vector of the current on-drug weights w∗
ij (t ) to the vector of

reference off-drug weights w ij(T ) peaks at a time T ∗ that differs
from T.

Numerical simulations indicate that our implementation of
the SBF–ML model shows the major features of the clock pattern
effect: immediate, scalar shift in timing, and recalibration on-drug,
followed by an immediate, scalar rebound, and recalibration off-
drug (solid triangles in Figure 2A). Simulations carried with α > 0
for dopamine agonists, indicate an immediate, leftward shift of the
response function to T ∗ < T (inset A3 in Figure 2A), in agreement
with experimental data for DA agonists methamphetamine, and
cocaine (Meck, 1996; Buhusi and Meck, 2002; Matell et al., 2004).
On the other hand, for α < 0 we replicated numerically an immedi-
ate rightward shift due to a slow down of cortical oscillators during
retrieval T ∗ > T (inset A4 in Figure 2A), in agreement with exper-
imental observation of the effect of DA antagonist haloperidol
(Meck, 1996; Buhusi and Meck, 2005).

Recalibration upon chronic drug administration

According to the clock pattern (Meck, 1996), chronic drug admin-
istration results in a gradual recalibration, such that the response
time on-drug gradually approaches the response time off-drug
drug, an effect which is not due to receptor desensitization, but
rather attributed to relearning of the criterion time using the drug-
altered cortical frequencies (Meck, 1996). In our implementation,
the repeated drug administration results in the criterion time T –
which is represented in memory by a distribution of learned pat-
terns wij(T ) – to be gradually re-written with new samples of rein-
forced duration, samples which are computed using drug-altered
oscillator frequencies. We found that our SBF–ML model exhibits
recalibration of the criterion time T ∗ back to T under repeated
methamphetamine administration (α > 0, inset A2 of Figure 2A)
as well as under repeated haloperidol administration (α < 0, inset
A5 of Figure 2A). A similar recalibration occurs after the drug is
discontinued, when the model re-learns the weights w ij(T ) for the
criterion T off-drug (see right-side of Figure 2A). Interestingly, the
rates of the two recalibration processes (Figure 2A) to the original
criterion time T are not necessarily identical since the presence
of the drugs may also significantly change the rate at which the
memory is overwritten. In order to match pharmacological data
from (Meck, 1996; Buhusi and Meck, 2002; Matell et al., 2004), we
set the overwrite rate at 25% samples per session (Figure 2A).

Immediate rebound in the opposite direction, upon discontinuing

the drug

In the SBF–ML model, discontinuing the drug results in a scalar
rebound of the response in the opposite direction, due to the sud-
den change from on-drug cortical frequencies f∗ to the off-drug

cortical frequencies f = (1 − β)f∗. For example, an immediate left-
ward shift from T = 40 s (inset A2 in Figure 2A) to T ∗ = 32 s
(inset A3 in Figure 2A) under methamphetamine is followed by
relearning of the criterion on-drug; discontinuing the drug results
in an immediate rightward displacement to T ∗∗ = 48 s (inset A1
in Figure 2A), followed again by a slow recalibration back to the
original criterion time T = 40 s due to relearning of the criterion
time with the new cortical frequencies.

Time-scale invariance of the clock-speed effect

For our implementation of the SBF–ML model, the preservation
of time-scale invariance throughout the clock pattern is shown
in the lower panels of Figure 2. For example, the amplitude of
the immediate shift in response time at the transition between the
off-drug to the on-drug state, and the amplitude of the immedi-
ate, opposite rebound at the transition between the on-drug to
the off-drug state, are proportional to the criterion interval T (see
Figure 2B for T = 40 s and Figure 2D for T = 20 s). Moreover, the
variance in the response rate (width of response/output function),
throughout the pharmacological manipulation remains propor-
tional to the current response time, either off-drug T, or off-drug
T ∗ (Figures 2B and 2D). For the 40-s criterion, Figure 2B indicates
that the envelopes of response functions in the insets A1, A2, and
A3 of Figure 2A superimpose when renormalized in amplitude
and time. Similarly, for the 20 s criterion time, Figure 2D indi-
cates that the envelopes of response functions in the insets A4, A5,
and A6 of Figure 2A superimpose when normalized in amplitude
and time. Finally, the scalar property is preserved also between
different criterion times: Figure 2C indicates that the envelopes
of the response functions from inset A2 of Figure 2A (T ∗∗ = 40 s
recalibrated under methamphetamine) and inset A5 of Figure 2A

(T ∗∗ = 20 s recalibrated under haloperidol) superimposed when
normalized in amplitude and in time.

THE MEMORY PATTERN OF CHOLINERGIC DRUGS IN THE SBF–ML

MODEL

Previous research indicates that the administration of ACh agonist
physostigmine results in a gradual, dose-dependent leftward shift
of the response (solid circles in Figure 3A; Meck, 1996). Similarly,
administration of ACh blocker atropine leads to a gradual and
dose-dependent rightward shift of the psychophysical functions
(solid squares in Figure 3A; Meck, 1996). Moreover, the mag-
nitudes of the temporal shifts observed are dose-dependent and
proportional to the intervals being timed (Meck, 1996). To address
this issue, it was proposed that training under the influence of the
ACh drug produces a gradually re-learning of an altered criterion
time T ∗ = k∗T (Gibbon et al., 1984; Meck, 1996; Buhusi and Meck,
2010).

In the SBF–ML model, the dynamics of memory pattern
(Figure 3A) is significantly different from that of the clock pat-
tern (Figure 2A): while the clock pattern takes effect as soon as
the frequencies of neural oscillators are changed by the drug, thus
producing an immediate temporal shift because of the sudden
mismatch in cortical frequencies during storage, and retrieval, the

memory pattern is determined by a gradual alteration of represen-
tation of the criterion time in the long-term memory that affects a
growing number of memorized sample weights. Relearning the
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criterion under the ACh drug eventually overwrites the entire
long-term memory with the altered representation k∗T of the
criterion time T. This induces a gradual change in the content
of the long-term memory that leads to an increasing mismatch
between the contents of the working and the long-term memory
(Figure 3A).

In our numerical implementation, for ACh agonist atropine,
we assumed k∗ = 1.25 in order to match the pharmacological data
from Meck (1996). As shown in Figure 3A (solid triangles), the
gradual change in memory samples under atropine gradually shifts
the peak of the output function from the initial value, T = 20 s
(inset A3 in Figure 3A), to the altered value T ∗ = k∗T = 15 s (inset
A4 in Figure 3A). A similar shift takes place for ACh antagonists,
say from T = 40 s (inset A2 in Figure 3A) to T ∗ = 50 s (inset A1
in Figure 3A). Most importantly, both the amplitude of the grad-
ual shift on-drug and the amplitude of the recalibration when
the ACh drug is discontinued are proportional to the criterion
interval T (Figure 3A). Moreover, the variance (width) of the
response remains scalar, i.e., proportional to the current peak time,
either off-drug, T, or on-drug, T ∗ (Figure 3B for T = 40 s and
Figure 3D for T = 20 s). For the 40-s criterion time, Figure 3B

indicates that the envelopes of response functions in the insets A1
and A2 of Figure 3A superimpose when normalized in amplitude
and time. Similarly, for the 20-s criterion, Figure 3D indicates that
the envelopes of response functions in the insets A3 and A4 of
Figure 3A superimpose when normalized in amplitude and time.
Finally, the scalar property is preserved also between different cri-
terion times: Figure 3C indicates that the envelopes of the response
functions from inset A2 of Figure 3A (T = 40 s, dashed line) and
inset A3 of Figure 3A (T = 20 s, solid line) superimposed when
normalized in amplitude and time.

DISCUSSION

In mammals, DA drugs induce an immediate, scalar change in
the perceived time (clock pattern, Figure 2), whereas ACh drugs
induce a gradual change in perceived time (memory pattern,
Figure 3). To explain these patterns, we assumed that DA drugs
induce a sudden change in the speed of an internal clock, while
ACh drugs induce a gradual change in the memory of the criterion
duration (Gibbon et al.,1984; Meck,1996). Most importantly,both
the clock and memory patterns are scalar, i.e., the drug effects are
proportional to the criterion duration (Gibbon et al., 1984; Meck,
1996).

Current neurobiological data supports a SBF model, in which
time is coded by the coincidental activation of striatal spiny neu-
rons by cortical neural oscillators (Matell and Meck, 2000, 2004;
Buhusi and Meck, 2005). While generally biologically plausible,
the impracticality of perfect oscillators (or the lack thereof), ques-
tions the robustness of such a mechanisms in a brain with real,
noisy neurons, particularly after pharmacological manipulations.
Here we explored the neural mechanisms required for the time-
scale invariance of the clock (Figure 2) and memory (Figure 3)
patterns produced by the SBF–ML model (Figure 4). To our
knowledge, this is the first time the SBF-type model was used to
match pharmacological data, and the first time it is implemented
using biophysically realistic neurons instead of simple sine waves.
This combination of features opens the possibility of calibrating

the timing network by adjusting conductances and half-activation
voltages for specific ionic channels to mimic the effect of different
drugs at channel-level.

Under the assumption that the biological noise is ubiquitous
in the form of, e.g., variability of frequency within- and between-
trails, variability in memory storage, and retrieval, etc., numerical
simulations indicated that the SBF–ML model shows the scalar
property, i.e., errors in time estimation are linearly related to the
estimated duration (filled squares in Figure 5B). Interestingly, sim-
ply replacing crisp cortical phase oscillators with crisp cortical ML
neurons did not produce scalar effects (filled circles in Figure 5B).
It was only when at least one source of variability (noise) was intro-
duced that the scalar property was evident. This result supports
and extends the conjecture of Matell and Meck (2004) by which
the SBF model requires at least one source of variance (noise) to
address time-scale invariance.

Computational models of interval timing vary largely with
respect to the hypothesized mechanisms by which temporal pro-
cessing is explained, and by which time-scale invariance, or drug
effects are explained. The putative mechanisms of timing rely on
pacemaker/accumulator processes (Gibbon, 1977; Gibbon et al.,
1984), sequences of behaviors (Killeen and Fetterman, 1988), pure
sine oscillators (Church and Broadbent, 1990; Matell and Meck,
2000, 2004), memory traces (Grossberg and Schmajuk, 1989;
Grossberg and Merrill, 1992; Machado, 1997; Buhusi and Schma-
juk, 1999; Staddon and Higa, 1999), or cell and network-level
models (Leon and Shadlen, 2003; Simen et al., 2011). For example,
both neurometric functions from single neurons and ensemble of
neurons successfully paralleled the psychometric functions for the
to-be-timed intervals shorter than 1 s (Leon and Shadlen, 2003).
Reutimann et al. (2004) also considered interacting populations
that are subject to neuronal adaptation and synaptic plasticity
based on the general principle of firing rate modulation in single-
cell. Balancing LTP and LTD mechanisms are thought to modulate
the firing rate of neural populations with the net effect that the
adaptation leads to a linear decay of the firing rate in time. There-
fore, the linear relationship between time and the number of
clock ticks of the pacemaker–accumulator model in the scalar
expectancy theory of interval timing (Gibbon, 1977) was success-
fully translated into a linearly decaying firing rate model that maps
time and variable firing rate. As Matell and Meck (2004) stated, it
may be that the brain uses both (relatively) stable neural oscillators
in an SBF-based paradigm and a variable firing rate paradigm for
interval timing.

Dopaminergic drugs modulation of the firing frequency of cor-
tical oscillators led in our numerical simulations of the SBF–ML
model to clock patterns (Meck, 1996): immediate change in tim-
ing (inset A3 of Figure 2A) and gradual re-calibration under the
drug (inset A2 of Figure 2A), immediate re-bound in the oppo-
site direction (inset A1 of Figure 2A) and gradual re-calibration
upon discontinuing the drug, and scalar (proportional) effects
(Figures 2B–D). ACh drugs modulation of the representation
w ij(T ) of the criterion time in the long-term memory led in
our numerical simulations of the SBF–ML model to memory
patterns (Meck, 1996): gradual change in timing on-drug (inset
A1 of Figure 3A), gradual re-calibration upon discontinuing the
drug (inset A3 of Figure 3A), and scalar (proportional) effects
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(Figures 3B–D). Our interpretation of the clock and memory
patterns within the SBF model is in accord with the interpreta-
tion of drug effect in the scalar expectancy theory (SET; Gibbon,
1977; Gibbon et al., 1984). As in SET, our numerical simulations
assume that DA drugs alter the time-base of the model, and that
ACh drugs alter memory processes. In recognition of this legacy,
our description of the ACh memory effects continue to use the
(rather famous) k∗ factor (Gibbon et al., 1984; Meck, 1996).

In summary, numerical simulations with the SBF–ML model
successfully reproduced the clock (Figure 2) and memory
(Figure 3) effects reported in the literature (Meck, 1996), including
their scalar effects (Gibbon, 1977; Gibbon et al., 1984; Meck, 1996),
previously addressed only by a few established behavioral models
in the field, such as SET (Gibbon, 1977; Gibbon et al., 1984), and
STM (Grossberg and Schmajuk, 1989). Together with previous

studies (Matell and Meck, 2000, 2004; Buhusi and Meck, 2005),
the current results establish the SBF model as a neurobiologically
realistic model of interval timing capable of explaining a large
range of phenomena, from behavior, to lesions, and pharmacol-
ogy, with the potential to provide insight into the neurobiological
bases on interval timing.
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