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This is the second paper in a two part series in which we analyze two diffuse interface models to

study pinchoff and reconnection in binary fluid flow in a Hele-Shaw cell with arbitrary density and

viscosity contrast between the components. Diffusion between the components is limited if the

components are macroscopically immiscible. In one of the systems ~HSCH!, the binary fluid may be

compressible due to diffusion. In the other system ~BHSCH!, a Boussinesq approximation is used

and the fluid is incompressible. In this paper, we focus on buoyancy driven flow and the Rayleigh–

Taylor instability. In the fully nonlinear regime before pinchoff, results from the HSCH and BHSCH

models are compared to highly accurate boundary-integral simulations of the classical sharp

interface system. In this case, we find that the diffuse interface models yield nearly identical results

and we demonstrate convergence to the boundary-integral solutions as the interface thickness

vanishes. We find that the break-up of an unstably stratified fluid layer is smoothly captured by both

models. The HSCH model seems to be more diffusive than the BHSCH model and predicts an

earlier pinchoff time which causes subtle differences between the two in the pinchoff region.

Further, in the limit of zero interface thickness, we find that the effect of compressibility does not

vanish at pinchoff. This distinguishes the HSCH model from all others in which compressibility

effects are neglected. It may turn out, for example, that characterizing the limiting effect of

compressibility at pinchoff may suggest a physically based selection mechanism for cutting and

reconnecting sharp interfaces. Varying the gravitational force and viscosities of the fluids yields

different pinchoff times and numbers of satellite drops. Moreover, using the analysis of the linear

growth rates from our first paper @paper I, Phys. Fluids 14, 492 ~2002!#, we confirm that the

modified HSCH/BHSCH parameters suggested in that work lead to improved agreement with sharp

interface results at finite interface thicknesses. Last, we also consider a case in which the fluid

components are miscible. We find competition between buoyancy, viscous, diffusional and, at very

early times, surface tension-like forces. © 2002 American Institute of Physics.

@DOI: 10.1063/1.1425844#

I. INTRODUCTION

This is the second paper in a two part series in which we

analyze two diffuse interface models to study pinchoff and

reconnection in binary fluid flow in a Hele-Shaw cell with

arbitrary density and viscosity contrast between the compo-

nents. In this paper, we focus our analysis on a study of the

nonlinear regime including pinchoff and reconnection. In the

first paper ~paper I1!, we presented the model equations and

studied their equilibria, one-dimensional evolution and linear

stability.

In a Hele-Shaw cell, viscous fluid lies between two flat

parallel plates which are separated by a small gap. In this

geometry, the Navier–Stokes equations simplify consider-

ably and the gap-averaged velocity of the fluid is given by

Darcy’s law. See, for example, the reviews by Homsy2 and

Saffman.3 In the flow we primarily consider in this paper, an

unstably stratified layer of light fluid is surrounded by a

heavy fluid. See Fig. 1 in paper I. The Rayleigh–Taylor in-

stability then drives the break-up of the layer into drops.

Such changes in the topology of interfaces are fundamental

features of multicomponent fluid flows and are still poorly

understood as the collision of material surfaces produces a

singularity in the fluid equations ~e.g., Ref. 4!. The relative

simplicity of the governing equations makes Hele-Shaw

flows natural test cases in which to study this phenomena

~e.g., see Refs. 5–13!. Indeed, one of the goals of our work is

to develop insight that can be used in the study of viscous

fluids in more general geometries using diffuse interface

models.

There are several ways in which interface transitions

may be modeled. In interface tracking algorithms ~see e.g.,

Refs. 14–21! the topology of interfaces is typically changed

using ad hoc cut-and-connect rules. In general, these rules

are difficult to justify physically although there are a few

special cases in which this may be done using similarity

a!Also in Department of Chemical Engineering and Materials Science, Uni-
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solutions ~see Refs. 22–24!. In the context of colliding

drops, however, Nobari et al.19 noticed that the flow may

sensitively depend on the time at which the interface surgery

is performed. In the level set ~e.g., see Refs. 25–30! and

volume of fluid ~e.g., see Refs. 31–35!, interface capturing

algorithms, the numerical viscosity associated with solving

the equations of motion provides the mechanism by which

the topology of interfaces may change smoothly. The flow

discontinuities ~density, viscosity! are typically smoothed as

well although there are now several methods in which the

interface jump conditions ~i.e., surface tension! are handled

explicitly.36–38 It is not clear, however, which types of

smoothing and numerical viscosity are physically justified.

In the ~diffuse! interface capturing method that we use in

this paper, ~chemical! diffusion between the different fluid

components provides the physical mechanism to smooth

flow discontinuities and to yield smooth evolutions through

topology changes; an approach suggested by Lowengrub

et al.39 The diffusion is limited if the components are mac-

roscopically immiscible and reflects the partial miscibility

real fluids always display. Sharp interfaces are replaced by

narrow transition layers whose structure becomes important

at topological transitions since the distance between inter-

faces becomes comparable to the interface thickness. While

the thickness of interfaces between real immiscible fluids,

such as oil and water, may be microscopic, our thicknesses

are limited by numerical resolution. Typically, we find that

our pseudospectral numerical methods require six grid cells

to resolve the transition layer. Therefore, we pay close atten-

tion to the limiting behavior of our results as the interface

thickness is reduced in order to estimate their ‘‘robustness’’

with respect to interface thickness.

The idea that interfaces have a finite thickness dates to

Poisson.40 In this approach, an interface between two immis-

cible fluids may be described as a layer where thermody-

namically unstable mixtures are stabilized by weakly nonlo-

cal terms ~gradients! in the energy41 which have their origins

in molecular force interactions between the components.42,43

These gradient terms induce extra reactive stresses in the

fluid which become surface stress in the zero thickness limit.

There have been many research efforts in this area and we

refer the interested reader to the recent review by Anderson,

McFadden, and Wheeler44 and the introduction of paper I1

for a collection of recent references.

In this paper, we study the nonlinear evolution of unsta-

bly stratified fluid layers in a Hele-Shaw ~HS! cell, through

pinchoff and reconnection, using the diffuse interface models

~HSCH and BHSCH systems! we presented in paper I. These

equations are obtained by simplifying a system of general

equations of motion for binary fluids, whose components

have arbitrary density and viscosity contrast ~NSCH

model45!, to the Hele-Shaw case. In the HSCH/BHSCH sys-

tems, a concentration field is introduced and evolved. Gradi-

ents in concentration generate reactive stresses in the fluid

which mimic surface tension. The flow velocity is obtained

from a generalized Darcy’s law and the concentration field

evolves according to a nonlinear, fourth order diffusion equa-

tion of Cahn–Hilliard @CH ~Ref. 46!# type. In the HSCH

model, diffusion between different density fluids generates

nonsolenoidal velocity fields. In addition, the chemical po-

tential depends explicitly on the fluid pressure. In the

BHSCH model, density differences are assumed to be small

and a Boussinesq limit is taken. In the BHSCH case, the

velocity is solenoidal and the chemical potential does not

depend on the pressure.

Recently, E and Palffy-Muhoray47 derived equations

similar to the HSCH model to study polymer melts ~see also

Ref. 48!. In addition, Verschueren50 derived an analogous

system to study thermocapillary flow in a Hele-Shaw cell. In

the case of density matched components, the HSCH model

reduces to one which was previously used by Shinozaki and

Oono49 to study spinodal decomposition and has been re-

cently used by Verschueren50 to study coalescence in hyper-

bolic flows. Very recently, Struchtrup and Dold ~preprint!
derived a version of the HSCH system to study miscible,

buoyantly unstable reaction fronts in a Hele-Shaw cell.

The HSCH and BHSCH models belong collectively to

the class of phase-field models which have been widely used

for free boundary problems in other physical situations such

as the solidification of binary alloys, e.g., see the review

edited by Gurtin and McFadden.51 In fact, because there is a

close connection between quasisteady diffusion and the

Hele-Shaw problem ~both involve harmonic fields in a do-

main with a free boundary!, some phase-field equations

~even the classical Cahn–Hilliard equation!, have Hele-Shaw

like sharp interface limits ~e.g., Refs. 52–55!. Typically these

limiting models do not include hydrodynamic effects such as

buoyancy. Very recently, however, Folch et al.56 derived,

analyzed, and implemented numerically a phase-field model

for Hele-Shaw flows, also with buoyancy and arbitrary vis-

cosity contrast, to study the evolution of viscous fingers ~e.g.,

Ref. 57!. Their approach differs from ours in several impor-

tant ways. In their model, a modified Allen–Cahn equation58

~nonconservative equation! governs the motion of the phase

field which is then coupled to a dissipative, time evolution

equation for the stream function. While the authors show that

this system converges to the classical Hele-Shaw system in

the thin interface limit and indeed reproduces fingering, it

seems difficult to justify their choice of phase-field function

and governing equations from physical considerations. Our

approach, on the other hand, is motivated by physical con-

siderations such as chemical diffusion.

In this paper, we investigate the differences between the

HSCH, BHSCH, and classical sharp interface models in the

nonlinear regime. Away from the pinchoff region, both the

HSCH and BHSCH models yield nearly identical results and

converge to the classical sharp interface model as the inter-

face thickness vanishes. We find that the break-up of an un-

stably stratified fluid layer is smoothly captured by both the

HSCH and BHSCH models. The HSCH model seems to be

more diffusive than the BHSCH model and predicts an ear-

lier pinchoff time which causes subtle differences between

the two in the pinchoff region. Further, in the limit as the

interface thickness is reduced to zero, we find that the effect

of compressibility does not vanish at pinchoff. This distin-

guishes the HSCH model from all others ~including that of

Folch et al.56! in which compressibility effects are neglected.

It may turn out, for example, that characterizing the limiting
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effect of compressibility at pinchoff may suggest a physi-

cally based selection mechanism for cutting and reconnect-

ing sharp interfaces.

Varying the gravitational force and viscosities of the flu-

ids yields different pinchoff times and numbers of satellite

drops. Moreover, using the analysis of the linear growth rates

from our first paper ~paper I1!, we confirm that the modified

HSCH/BHSCH parameters suggested in that work lead to

improved agreement with sharp interface results at finite in-

terface thicknesses.

Last, we also consider a case in which the fluid compo-

nents are miscible. We find competition between buoyancy,

viscous, diffusional and, at very early times, surface tension-

like forces. In the miscible case, we find that when the un-

stable stratification of density and viscosity are aligned, fin-

gering analogous to that seen in the immiscible case is

observed. Otherwise, diffusion seems to dominate and there

is little differential motion of the fluids.

The paper is organized as follows. In Sec. II, the HSCH

and BHSCH models are presented and briefly discussed. In

Sec. III, the numerical discretization of the systems is de-

scribed. In Sec. IV, the numerical results are presented. Fi-

nally, in Sec. V, conclusions are given.

II. THE HELE-SHAW–CAHN–HILLIARD MODEL

Consider a viscous two-component ~binary! fluid be-

tween two parallel plates with gap width b ~e.g., see Fig. 1 of

paper I!. We suppose that the two plates are located at z

56b and extend over the region 0<x , y<L where d
5b/L is small. Let c(x,t) be the mass concentration of one

of the fluid components ~e.g., M 1 /M where M 1 is the mass

of component 1 and M is the total mass of the binary fluid in

a representative volume V!. As in paper I, c is always the

mass concentration of the fluid labeled 1 ~the light fluid!. Let

r1 ,r2 and v1 ,v2 be the densities (M i /V) and velocities of

the two fluid components, respectively. Let r5r(c) be the

total density (M /V) and v be the mass-averaged velocity

field, i.e., rv5r1v11r2v2 .

Separately, the fluid components are assumed to be in-

compressible and have constant densities and viscosities. We

assume that the density of the binary fluid depends on the

concentration but not on the pressure. In particular,

1

r~c !
5

1

r1

c1

1

r2

~12c !, ~2.1!

which implies that volume is preserved under mixing ~simple

mixture assumption59!. Diffusion is allowed to occur be-

tween the components which is limited if the components are

macroscopically immiscible. The binary fluid is then termed

‘‘quasi-incompressible’’ 45,59,60 since diffusion may introduce

density variation and hence may cause the mass-averaged

velocity of the binary fluid to be nonsolenoidal thus intro-

ducing compressibility effects.

In paper I, we presented a simplification, to the Hele-

Shaw case, of the general Navier–Stokes–Cahn–Hilliard

~NSCH45! equations for binary fluids which takes into ac-

count the chemical diffusivity between different components

of a fluid mixture and the extra fluid stresses induced by

inhomogeneity ~van der Waals stresses!. In particular, we

followed the classical sharp interface model and assumed

Poiseuille flow between the plates. In addition, we assumed

there is no diffusion in the direction normal to the plates.

This results in a generalized Darcy law in which there is only

planar flow and diffusion. This yields one of the simplest

such systems that can describe the flow and indeed captures

topological transitions smoothly ~referred to as the HSCH

model!. However, it does not account for 3D flow which

could play a role near the meniscus and near pinchoff and

reconnection. To rule out such effects, one would have to

perform a detailed analysis of meniscus region as is done by

Park and Homsy61 for the classical Hele-Shaw model. We

did not perform such an analysis ~although it seems quite

possible such an analysis could be performed at least away

from topology transitions! and thus our model should be un-

derstood as just that—a model. We do provide an indirect

justification for our model by demonstrating that it converges

to the classical sharp interface models in the limit of zero

interface thickness.

The HSCH model is then given as follows. Let u be the

nondimensional, gap-averaged velocity field. Then,

u52

1

12h~c !
F“q1

C

M
r~c !S Dc“c2

1

2
“u“cu2D

2G̃r~c ! ŷ G , ~2.2!

“•u52

1

r
r8~c !~c t1u•“c !52

a

Pe
D2m , ~2.3!

r~c t1u•“c !5

1

Pe
Dm , ~2.4!

where q is a modified pressure, ŷ is a unit vector in the y

direction, G̃ is a measure of gravitational force and

a52

r8

r2 5

1

r1

2

1

r2

, ~2.5!

is a constant where r1 and r2 are the densities of the fluid

components before mixing. As in paper I, we scale the non-

dimensional parameters C, M, and Pe with a single param-

eter g which measures the interface thickness. The following

scaling yields the classical sharp interface as a limiting case

when g→0:1

C5g2, M5 t̃g , Pe5O~1/g !. ~2.6!

In the above, t̃ is a scaled surface tension.

The generalized chemical potential m is given by

¹5m0~c !1aMq2CDc , ~2.7!

where m0(c)5 f 08(c). Note that chemical potential depends

explicitly on the fluid pressure. If the fluid components are

immiscible, then f 0 is taken to be a nonconvex function of c.

If the components are miscible, f 0 is taken to be a convex

function of c ~e.g., see Fig. 2 in paper I!. Note that for f 0

nonconvex, there is a region ~called the spinodal region! in

which the diffusion coefficient f 09(c),0. This creates anti-
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diffusion and is what prevents the fluids from mixing com-

pletely. The system ~2.2!–~2.7! also has the nonincreasing

energy functional

E5

1

M
E

V
r~c !F S f 0~c !1

C

2
u“cu2D1MG̃y Gdx dy ,

~2.8!

which is the sum of the dimensionless surface ~chemical! and

potential energies. We refer the reader to paper I for further

details.

The HSCH system is much simpler to solve than the full

NSCH equations. In the HSCH model, the velocity, rather

than being determined from the balance of linear momentum,

instead is given by a generalized version of Darcy’s law ~2.2!
which relates the velocity, viscosity, pressure, and concentra-

tion. Several essential features of the NSCH model are re-

tained, however. First, the velocity u is not necessary sole-

noidal which may introduce compressibility effects. Second,

gradients in concentration may produce forces which mimic

the effect of surface tension ~see paper I!. Third, the chemi-

cal potential depends explicitly on the fluid pressure. We

note that equations similar to ~2.2!–~2.7! were derived by E

and Palffy-Muhoray in the context of polymer melts.47 In

particular, those authors noticed the dependence of the

chemical potential on the pressure. However, they did not

seem to account for compressibility effects due to density

differences of the constituents. In addition, Verschueren de-

rived an analogous system to study thermocapillary flow in a

Hele-Shaw cell.50

We also consider a simpler version of the HSCH model

obtained using a Boussinesq ~B! approximation in which

density variation is small but the gravitational force is large.

As discussed in paper I, the BHSCH system is obtained by

taking the density to be a constant equal to 1 everywhere

except in the gravitational term. The BHSCH model is then

u52

1

12h~c !
F“q1

C

M
S Dc“c2

1

2
“u“cu2D

2G̃ r̃~c ! ŷ G , ~2.9!

“•u50, ~2.10!

c t1u•“c5

1

Pe
Dm , ~2.11!

where

r̃~c !5~r121 !c11, ~2.12!

and r251. Further,

m5 f 08~c !2g2Dc . ~2.13!

In the Boussinesq case, the energy Eq. ~2.8! reduces to

E5

1

M
E

V
F f 0~c !1

C

2
u“cu2

1MG̃ r̃~c !y Gdx dy . ~2.14!

The BHSCH system is simpler than the HSCH model in that

the velocity is solenoidal and the chemical potential does not

depend directly on the fluid pressure. Concentration gradi-

ents still may produce nonzero velocities however. The sys-

tem ~2.9!–~2.11! has been used previously to study spinodal

decomposition in a Hele-Shaw cell in the absence of

gravity49 and was recently used by Verschueren50 to study

coalescence in hyperbolic flows.

As was shown in paper I, the HSCH/BHSCH models

have the classical sharp interface model as a limiting case as

g→0 when the scaling Eq. ~2.6! is satisfied. For complete-

ness, we give the classical system here. Let a zero thickness

interface G separate two fluid immiscible, incompressible

components. Then, in each fluid region,

“•ui50, ~2.15!

ui52

1

12h i

~“p2G̃r iŷ !, ~2.16!

where i51, 2 labels the two fluid components. The labeling

here is to be understood as follows. The 1 denotes the fluid

below the interface ~i.e., the direction of gravity! and the 2

denotes the fluid above the interface ~i.e., opposite to the

direction of gravity!. The boundary conditions on the inter-

face G are

~u12u2!•n50, ~2.17!

~p22p1!5tk , ~2.18!

where n is the unit normal vector to G, k is the curvature, and

t is the dimensionless surface tension coefficient. The flow is

characterized by the two relevant physical parameters the

Bond number B and the Atwood number A:

B5G̃~r22r1!/t the Bond number, ~2.19!

A5

h22h1

h11h2

the Atwood number. ~2.20!

Therefore, B,0 means the interface is unstably density

stratified ~gravity is in the negative y direction!. If A,0 then

the viscous stratification is unstable if fluid 2 moves into

fluid 1 (B,0).

To match the surface tension t of the sharp interface

model, the scaled surface tension in the HSCH system must

be taken to be

t̃5tF&E
c2

c1

r~c !Af 0~c !2 f 0~c1!2 f 08~c1!~c2c1!dcG21

,

~2.21!

where c1,2 are the equilibrium concentrations of fluid 1 in the

two ‘‘macroscopically homogeneous’’ fluid domains @i.e.,

wells of the nonconvex Helmholtz free energy f 0(c), immis-

cible case#. Note that this implies c1'1 and c2'0. In what

follows, we take the quartic polynomial

f 0~c !5c2~12c !2 ~2.22!

as a simple model for f 0 . In the ~periodic! geometry we

consider in this paper, we found that this choice of f 0 yielded

essentially the same results as more complicated logarithmic

models ~see also paper I!. We note that for the free energy in

Eq. ~2.22!, c151 and c250 and

t̃5t3& . ~2.23!
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In the remainder of the paper, we take the following

conventions. We fix t51/(3&) so that t̃51. We then vary

the Bond number B by choice of gravitational constant

through Eq. ~2.19!,

G̃5

B

3&~r22r1!
. ~2.24!

Unless otherwise specified, we take the nondimensional pa-

rameters as in Eq. ~2.6! with Pe51/g .

Before we close this section, we present a relatively

simple form for the out of plane vorticity v in the HSCH

model, i.e., v5“3u•e3 where e3 is the unit vector out of

the plane. The vorticity is given by

v52“S r~c !

12h~c !
D3“~g1G̃y !•e31

1

M
“S mr~c !

12h~c !
D

3“c•e3 , ~2.25!

where g is the Gibbs free energy @see Eq. ~2.33!, paper I#.
The first term on the right-hand side is the baroclinic vortic-

ity and the second term is the vorticity due to surface ten-

sion. An analogous formula holds in the BHSCH case.

III. NUMERICAL METHODS FOR THE HSCH
EQUATIONS

In this section, we describe the numerical methods used

for computing the solutions of the full HSCH model. When

appropriate, we point out the simplifications that may be

made for simulations of the BHSCH model. Our discussion

of the numerical algorithm proceeds as follows. We first

present the temporal discretization of Eq. ~2.4!. We then give

the algorithms for the pressure solver and velocity evalua-

tion.

We assume 2p periodicity in both the x and y directions

and Fourier pseudospectral methods62 are used to obtain the

spatial discretizations: all spatial derivatives are performed in

Fourier space with the fast Fourier transform ~FFT!, while

algebraic operations are performed in physical space. No nu-

merical filtering is used.

A balancing pressure

qb52^r&G̃y , where ^r&5

1

4p2 E
@0,2p#2

r dx dy ,

~3.1!

is added to the model to ensure the fluid pressure q is peri-

odic. More specifically, q in Eq. ~2.2! is replaced by q

1qb . The BHSCH model is analogously modified. The bal-

ancing pressure can also be viewed as arising from changing

a stationary reference frame to a moving reference frame

which is appropriate to match classical boundary integral

simulations of the sharp interface model ~see, e.g., Refs. 12

and 8!.

A. Time discretization

To integrate the concentration equation ~2.4! in time, we

use a third order accurate, equilibrium preserving version of

a linear propagator method. By equilibrium preserving, we

mean that the balance of terms in equilibrium on the continu-

ous level is preserved exactly on the discrete level. Such

methods based on an integrating factor ~linear propagator!
approach were apparently first derived in Refs. 63 and 64.

Following Sec. IV B in paper I, let us reformulate Eq.

~2.4! using the volume fraction f as the unknown variable

instead of c. Recall the transformation between the two is

f5r~c !c . ~3.2!

The inverse transformation is

c5f/r~f !, where r~f !5r2~12af !, ~3.3!

and a is defined as in Eq. ~2.5!.
We then obtain the following conservation equation for

f:

f t52

C

r1Pe
D2f1CN , ~3.4!

where

CN52“•~fu!1

1

Pe
DS m0~c !1aMq2CDS c2

f

r1
D D ,

~3.5!

and we have added and subtracted the term (C/r1Pe)D2f to

take advantage of the fact that c2(f/r1) is nearly zero

away from transition regions. This is because c'0 in region

2 since c250. Note that in the BHSCH model, f5c and

a50 in Eq. ~3.5! since r51 except in the gravity term.

In the classical linear propagator algorithm ~e.g., see

Ref. 12!, the highest order linear term is integrated exactly in

Fourier space. Here, this term is the fourth order diffusive

term 2(C/r1Pe)D2f . For illustrative purposes, let us con-

sider a classical linear propagator method applied to Eq.

~3.4!. The scheme is derived as follows. Take the Fourier

transform of Eq. ~3.4! and multiply by the integrating factor

emt, where

m5

1

r1

C

Pe
uku4

and k5(k1 ,k2) is the Fourier wave number vector. This

yields an ODE in time at each wave number:

~emtf̂ ! t5emtĈN . ~3.6!

Discretizing Eq. ~3.6! in time using the three-step Adams–

Bashforth method ~AB3! yields the linear propagator method

~LPAB3!:

f̂n115e2mDtf̂n1

Dt

12
~23e2mDtCN̂n216e22mDtCN̂n21

15e23mDtCN̂n22!. ~3.7!

The three-stage Runge–Kutta method ~RK3! may be used to

initialize LPAB3 for example.

The linear propagator method LPAB3 has the nice fea-

tures of being both explicit and exponentially damping at

high wave numbers in Fourier space. The latter property

makes the algorithm quite stable and removes high order
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time step stability constraints due to the fourth order term.

However, it is easy to see that the continuous equilibrium

condition

mf̂5CN̂ ~3.8!

is not satisfied by the discrete equilibrium. We therefore say

that LPAB3 is not equilibrium preserving. Below, we show

that one consequence of this is that oscillations are produced

in the chemical potential m.

To overcome this difficulty, we derive a modified linear

propagator method ~MLPAB3! which preserves Eq. ~3.8! for

discrete equilibrium. Let @ # denote an approximation for the

quantity inside the bracket. We modify Eq. ~3.7! as

f̂n115

f̂n

@emDt#
1Dt~A@e2mDt#CN̂n1B@e22nDt#CN̂n21

1C@e23mDt#CN̂n22!, ~3.9!

where the approximations and the constants A, B, and C are

to be determined. In view of Eq. ~3.8!, we obtain the consis-

tency relation

12

1

@emDt#
5mDt~A@e2mDt#1B@e22mDt#1C@e23mDt# !

~3.10!

for the MLPAB3 method. For simplicity, we set

@e22mDt#5e22mDt, @e23mDt#5e23mDt.

We may then consider a fourth order approximation for

@e2mDt# ,

@e2mDt#5

11mDt1
1
2~mDt !2emDt/3

112mDt1
1
2~2mDt !2e2mDt/3

~3.11!

and determine @emDt# by ~3.10!. Alternatively, we may take

the following fourth order approximation for @emDt#:

@emDt#5

emDt

emDt
2mDt~11

1
2mDte1/3mDt!

, ~3.12!

and determine @e2mDt# using ~3.10!. In the former approach,

@e2mDt#21 damps modes at large wave number exponen-

tially but @emDt# damps only algebraically, and vice versa in

the latter approach. Our numerical experiments show that the

computations are better resolved when we have exponental

damping on CN, and so we shall use ~3.11!. Moreover, it is

easy to check that the same constants as in ~3.7!

A5
23
12, B52

16
12, B5

5
12

make the MLPAB3 method third order accurate in time.

FIG. 1. Slice of the generalized chemical potential at x5p obtained by using the original ~dashed curve! and modified integrating factors ~solid curve!.

uBu525, a50.1, and g50.04.
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One of our motivations for using an equilibrium preserv-

ing time integration method for the HSCH and BHSCH mod-

els is that away from pinchoff and reconnection, the chemi-

cal potential m should be nearly in local equilibrium as seen

from the sharp interface asymptotics in paper I. That is, m

should be nearly constant across the transition region. This is

especially important in the HSCH model because the mass

conservation equation ~2.3! links “•u with Dm.

To see the implications of equilibrium preservation, in

Fig. 1 we plot a slice of the HSCH chemical potential m(x

5p,y,t50.5) using the LPAB3 ~dashed curve! and MLPAB3

methods ~solid curve! for time integration. Observe that un-

physical oscillations are produced at the interfaces when the

LPAB3 method is used. Because they are amplified through

the evolution, the oscillations eventually cause the solution

c(x,t) to become inaccurate. The chemical potential from the

MLPAB3 method, on the other hand, remains smooth and the

corresponding solution c(x,t) remains accurate for long

times. In this simulation, the initial condition is given in Eqs.

~4.1! and ~4.2! with k51 and e50.1 @see Fig. 2~a! for a

schematic of the initial condition#. The Atwood number

A50 and the viscosity h(c)51/2. The Bond number

B5225 for the upper interface and B525 for the lower

interface. The spatial grid size is h52p/N with N5256

@there are approximately six grid points across the interface

layer, see Fig. 2~b!# and the time step is Dt50.001. Finally,

the algorithms for the pressure solver and velocity evaluation

are given below.

B. The pressure solver

For the HSCH model, the pressure equation is obtained

by taking the divergence of Eq. ~2.2! and using Eq. ~2.3!.

This gives

“•F S a2
M

Pe
1

1

12h~c !
D“qG

52

a

Pe
D~m0~c !2CDc !2“

•F 1

12h~c ! H C

M
rS Dc“c2

1

2
“u“cu2D2G̃r~c ! ŷ J G .

~3.13!

In addition, we use the explicit cancellation

“•~Dc“c2
1
2“~ u“cu2!!52~cxxcyy2cxy

2 !

to improve the resolution of the numerical solution. Equation

~3.13! is solved simply by inverting the Laplacian in the

constant viscosity case in Fourier space using the FFT or by

using the conjugate gradient method in the variable viscosity

case. An analogous pressure equation is obtained for the

BHSCH model.

C. The velocity evaluation

In the HSCH model, the velocity u is not divergence

free. From Eq. ~2.3!, we obtain the following orthogonal

decomposition for u:

u5

a

Pe
“m1“

'c , ~3.14!

where the first term on the right-hand side is the potential

function and c is the stream function. Further,

“
'

5S ]

]y
,2

]

]x
D .

When the viscosity h is a constant, c is a periodic function

since the right-hand side of Eq. ~2.2! has zero mean. If h is

FIG. 2. Initial data for concentration ~a! and its slice at x5p ~b! when g50.04.
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nonconstant, then c contains a linear term in x. In the non-

constant case, we evaluate u via Eq. ~2.2!. In the constant

case, we use c where

Dc52

1

12h S C

M
“

'S rS Dc“c2

1

2
“u“cu2D D

2G̃“
'~r ŷ ! D . ~3.15!

Note that the negative of the right-hand side of Eq. ~3.15! is

the vorticity of the fluid ~in the constant h case!. We also use

the cancellation

“
'~Dc“c !5~Dc !ycx2~Dc !xcy ~3.16!

to improve resolution of numerical solutions. Equation ~3.15!
is solved by inverting the Laplacian in Fourier space using

the FFT. The velocity in the BHSCH model is obtained

analogously.

IV. NUMERICAL RESULTS

In this section, we present numerical results for the full

HSCH and BHSCH models. In particular, we consider a spe-

cific type of flow geometry: an unstably stratified layer of

light fluid surrounded by a heavy fluid ~see Fig. 2!. The

specific initial data we consider take the following form. Let

the curves (x ,y1(x ,0)) and (x ,y2(x ,0)) be the centerlines of

the diffuse interface and take

y1~x ,0!5p2~0.51e cos~kx !!,

~4.1!

y2~x ,0!5p1~0.51e cos~kx !!, 0<x<2p ,

where k denotes the wave number of the perturbation from

the horizontal y i5constant. Then, the initial concentration

field c(x ,y ,0)5c0(x ,y) is given by

FIG. 3. Evolution of sharp interfaces using a boundary integral method with uBu525 and h15h2 at ~a! t50; ~b! t54.0; ~c! t56.0; ~d! t57.5.
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c0~x ,y !5
1
4~11tanh~~y2y1~x !!/~2A~C/2!!!)*~1

2tanh~~y2y2~x !!/~2A~C/2!!!). ~4.2!

An example of the evolution we wish to capture is given

in Fig. 3 where a simulation of the sharp interface model

~2.15!–~2.18! is shown. The nonstiff boundary integral

method of Ref. 12 is used to solve the equations. The initial

interface positions are as in Eq. ~4.1! with k51 and e
50.1. In this simulation, the interface is periodic in the x

direction and periodicity in the y direction is simulated by

having two additional layers of light fluid included in the

calculation ~not shown!, each a distance of 2p above and

below the layer shown. We found that including more such

layers did not change the results significantly. The Bond

numbers of the upper and lower interfaces are B5225 and

B525, respectively. The surface tension is t51/(2)) for

each interface and the viscosities are matched with h15h2

5h51/2 (A50).

From the figure, we see that the upper interface is un-

stable and the heavy fluid fingers through the layer of light

fluid. The lower interface is stable and hence resists motion.

Eventually, the finger of heavy fluid breaks through the layer

at time t5tc (tc'7.5). At this time, a singularity forms in

the sharp interface model and the simulation is halted. This

type of topological transition has been extensively studied by

Goldstein, Pesci, and Shelley.8–11 In their work, the authors

analyze a lubrication approximation of the sharp interface

model and obtain approximation of the singularity time tc

and asymptotic pinchoff shape which match very well those

seen in simulations of the full equations. Here, rather than

focusing on the singularity, we wish to go beyond it. In par-

ticular, from Fig. 3, it seems likely that the periodic layer

breaks into a sequence of large bubbles and small satellite

drops. As we see next, this is indeed what occurs in the

HSCH and BHSCH models.

A. Beyond break-up

Let us now use HSCH and BHSCH models to simulate

the flow indicated in Fig. 3. In the BHSCH case, the initial

condition for c(x,t) is that given in Eqs. ~4.2! and ~4.1! with

y1 and y2 as in the sharp interface simulation. B, A, h, and t
are matched to the sharp interface values. In the HSCH case,

the initial data for c was actually locally equilibrated by solv-

ing the pure Cahn–Hilliard equation for the short time inter-

val 0<t<1022 with time step Dt51026 using the data de-

scribed above as the initial condition. This is done to reduce

the effects of nonequilibrium c(x,t) on “•u via Eq. ~2.3!. In

the BHSCH case, we checked that equilibrating the initial

data had no discernible affect on the results. In the HSCH

model, the density r is given by Eq. ~2.1! with r251 and

a50.1. In the BHSCH model, the density r̃ is taken to be

r̃(c)512agc with ag50.091 so that the density difference

matches that in the HSCH and sharp interface models.

In Figs. 4 and 5, the evolution of c(x,t) contours is

shown for the HSCH and BHSCH models, respectively. The

contour levels are uniformly spaced from 0.1 to 0.9. In these

simulations, the interface thickness parameter is g50.04, the

grid size in each direction is h52p/N with N5256 and the

time step is Dt5131023. There are approximately six grid

points across each interface layer.

The flow evolution is quite similar to that observed in

the sharp interface case; this is made more precise below.

The thickness of the transition layers is clearly seen and is

nearly uniform in time. Further, the HSCH and BHSCH

models are able to smoothly capture the pinchoff of the light

layer of fluid. Both models predict that the small satellite

drop, produced by the initial pinchoff, later breaks up to form

three smaller drops which circularize due to surface tension.

The mechanism for break-up is the diffusion between com-

ponents which becomes important when the distance be-

tween the upper and lower interfacial layers becomes com-

parable to the interface thickness itself. See time t57.5 for

example. Before pinchoff, the HSCH and BHSCH models

yield virtually indistinguishable results. At pinchoff and be-

yond, small differences occur due to the effects of compress-

ibility; we defer discussion of this until the next section.

Although pinchoff is not well-defined, since the interface

has a finite thickness, it is natural to define pinchoff with

respect to the topology of the layer centerline c51/2. This is

consistent with the sharp interface asymptotics where the

layer centerline is identified with the sharp interface. With

this in mind, consider Fig. 6 which shows the evolution of

the c51/2 contour line, together with several vorticity con-

tours, for the HSCH model. The graphs for the BHSCH

model are analogous. In this figure, the c51/2 contour is the

dotted curve. The solid curves indicate the v50.25•vmax

and v50.75•vmax contours ~positive vorticity! and the

dashed curves show the v50.25•vmin and the v50.75

•vmin contours ~negative vorticity!. A close-up of the region

near the satellite drops is shown at the bottom of the figure.

The initial pinchoff of the c51/2 contour is seen to oc-

cur once the thickness of the light layer of fluid becomes on

the order of the interface thickness. This happens between t

57.5 and t58.0 ~actually at t57.65 in the HSCH case and

t57.7 in the BHSCH case; see Fig. 10!. There is also a

secondary pinchoff at t'8.5.

The evolution and structure of the vorticity is also quite

interesting. Before pinchoff, the largest absolute values of v
occur on the sides of the penetrating finger of heavy fluid and

are due to buoyancy ~baroclinic vorticity!. Near pinchoff,

light fluid streams from the neck regions into the larger

bubbles and the highest values of the vorticity occur in the

neck due to surface tension. At pinchoff, surface tension cre-

ates opposite-signed vorticity at the tips of the satellite drop.

This can be seen at time t58.0 where the vorticity on the

upper interface of the thin satellite drop has the opposite sign

as its counterpart before pinchoff ~e.g., compare at t57.0;

also see the bottom plot in the figure!. This vorticity causes

the tip of the satellite drop to rebound. At t58.0, the largest

vorticity is still associated with the large, rising bubbles of

light fluid. This vorticity, also due to surface tension, causes

the tips of these bubbles to rebound and be drawn towards

the bulk region thereby reducing curvature ~and interface

length!. The vorticity decays once the curvature of the tip is

reduced. At t58.5, the largest vorticity is now associated

with the pinchoff of the thin satellite drop into three smaller
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drops. The structure of this secondary pinchoff is analogous

to that of the original transition.

The vorticity, in fact, can be used to identify the transi-

tion. As seen in Fig. 7~a!, the maximum of the vorticity

vm(t)5maxxuv(x,t)u achieves its largest values at pinchoff.

This plot shows vm(t) for the HSCH model with several

different interface thicknesses. The BHSCH result is analo-

gous. As seen from this figure, there is peak of vm(t) at t

'7.8 due to the initial pinchoff. Consequently, the pinchoff

time may also be defined as the time at which the peak vor-

ticity occurs. In the g50.04 and g50.05 cases, there is an

additional peak corresponding to the secondary pinchoff.

There is only a single peak in the g50.08 and g50.06 cases

because there is no secondary pinchoff due to the diffuseness

FIG. 4. Contours of c for the HSCH model with uBu525, a50.1, and g50.04. ~a! t50; ~b! t54.0; ~c! t56.0; ~d! t57.5; ~e! t58.0; ~f! t58.5. The 0.1, 0.3,

0.5, 0.7, and 0.9 contours are shown.
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of the interface for those values of g. In addition, observe

that vm is an increasing function of g. Indeed, the vorticity

in the sharp interface case is a delta function supported on

the interface. In the HSCH ~and BHSCH! case, we find that

vm scales with 1/g. This is shown in Fig. 7~b! where

g•vm(t) is plotted for several interface thicknesses. Note the

collapse of the curves before and after pinchoff. Although we

do not present it here, we find that before and after pinchoff,

the vorticity off the interface is a decreasing function of g.

Since the interface thickness is O(g), this suggests that the

HSCH ~and BHSCH! vorticity converges to a delta function

before and after pinchoff. At pinchoff, the vorticity is more

singular, consistent with singularity formation in the classical

sharp interface model.

FIG. 5. Contours of c for the BHSCH model with uBu525, a50.1, and g50.04. ~a! t50; ~b! t54.0; ~c! t56.0; ~d! t57.5; ~e! t58.0; ~f! t58.5. The 0.1,

0.3, 0.5, 0.7, and 0.9 contours are shown.
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In Fig. 7~c!, we compare the maximum vorticity due to

surface tension ~o curve! with vm(t). Observe that baroclinic

vorticity is dominant until pinchoff. Near pinchoff, the vor-

ticity due to surface tension dominates.

Now let us investigate the effect of the interface thick-

ness parameter on the flow evolution. We begin by consider-

ing the effect of g on the secondary pinchoff. This may be

seen in Fig. 8 which shows the contours of c at time t58.5

for g50.04, 0.05, 0.06, and 0.08. As g decreases, the inter-

face becomes thinner and the small satellite drops are better

resolved. On this scale, it is seen that g has only a small

effect on the large bubbles. Upon closer examination, it may

FIG. 6. Vorticity and concentration contours for HSCH model from Fig. 4. Dotted curve, c51/2 contour; solid curves, positive vorticity v5(0.25,0.75)

•vmax ; dashed curves, negative vorticity v5(0.25,0.75)•vmin . ~a! t57.0; ~b! t57.5; ~c! t58.0; ~d! t58.5; ~e! t58.5 close-up of satellite drop region.
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be seen that the bubbles actually rise higher as g is de-

creased.

Let us now obtain a direct measurement of the effect of

g on the interface position. Recall that g50 corresponds to

the sharp interface model. In Fig. 9~a!, the sharp interface

~solid! at t57.5 is plotted together with the g50.04

~dashed!, 0.05 ~dashed–dotted!, and 0.06 ~dotted! c51/2

contours from the HSCH model. As g is reduced, the c

51/2 contours tend towards the sharp interface. To quantify

this, consider the intersection of the curves with the y axis.

Let yg be the y intercept of the upper interfaces with thick-

ness g. Then, assuming

yg5y01y pgp, ~4.3!

we find p'1.031. Thus, the convergence is approximately

linear which is consistent with the sharp interface asymptot-

ics from paper I. This is demonstrated in Fig. 9~b! where the

difference y02yg is plotted versus g.

Next, let us examine the situation after pinchoff. Con-

sider the flow at t58.0. Since this is after pinchoff, there is

no longer a classical sharp interface with which to compare.

Therefore, we consider only the HSCH c51/2 contours.

These contours are shown in Fig. 9~c!. Considering the y

intercept as before, we find that yg satisfies Eq. ~4.3! with

p'1.0375 and y0'5.82. This is shown in Fig. 9~d! which

suggests linear convergence to a sharp interface after pin-

choff. We note that more rapid convergence is observed at

FIG. 7. Evolution of the maximum of vorticity for the HSCH result from Fig. 4 for different values of g. ~a! Maximum vorticity iv(• ,t)i` with g50.04

~solid!, g50.05 ~dashed!, g50.06 ~dotted–dashed!, and g50.08 ~dotted!; ~b! scaled maximum, giv(• ,t)i` ; ~c! maximum of vorticity ~solid! and the

maximum of vorticity due to surface tension ~s!.

526 Phys. Fluids, Vol. 14, No. 2, February 2002 Lee, Lowengrub, and Goodman

Downloaded 08 Nov 2004 to 128.200.174.18. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



the lower regions of the large bubbles and at the upper and

lower regions of the satellite drops. Convergence is approxi-

mately linear at the drop tips.

Since our results suggest convergence of the HSCH/

BHSCH models to a sharp interface after pinchoff, it is natu-

ral, in view of our asymptotic analysis, to expect that the

classical sharp interface equations govern its motion. How-

ever, what remains to be determined is the transition. In par-

ticular, what clues do the HSCH/BHSCH models give as

how to connect the classical sharp interface models through

pinchoff? We follow-up this question in the next section

when we discuss the effect of compressibility at pinchoff.

However, we are not yet able to derive topological jump

conditions from the HSCH/BHSCH models to pinchoff and

reconnect sharp interfaces.

B. Compressibility

We begin our discussion of compressibility by compar-

ing the results from the HSCH and BHSCH models near

pinchoff. In Fig. 10, the c51/2 contours for the HSCH

~solid! and BHSCH ~dashed! are shown at several times

close to pinchoff. Also plotted are the vectors of the velocity

difference uHSCH– uBHSCH . In this simulation, we use Dt

51024 to make our time integration highly accurate. All

other parameters are as before.

At t57.5, the c51/2 contours of the two models are

nearly identical. The vectors, however, indicate that fluid in

the HSCH model is flowing faster in the pinchoff region and

we see that pinchoff occurs in the HSCH model slightly ear-

lier than it does in the BHSCH case. The differences ob-

FIG. 8. Contours of c at time t58.5 for the HSCH result from Fig. 4 for different values of g. ~a! g50.08; ~b! g50.06; ~c! g50.05; ~d! g50.04.
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served between the results of the two models are confined to

the pinchoff region.

To better understand the source of the differences, con-

sider “•u for the HSCH model near pinchoff. In Fig. 11,

several contours of “•u are shown at t57.6, together with

the c51/2 contour ~dotted!. The solid curves correspond to

the (0.25,0.5,0.75)•max(“•u) contours ~positive! and the

dashed curves correspond to the analogous negative con-

tours. Observe that the light fluid in the neck region is com-

pressed. This makes sense since

“•u5

a

Pe
Dm52

D

Dt
log r~x,t ! ~4.4!

in the HSCH model and r is increasing in the neck region

due to diffusion; D/Dt is the advective time derivative. The

compression apparently allows the layer to become slightly

narrower earlier than in the BHSCH model enhancing diffu-

sion and pinchoff.

Let us now determine which terms are dominant in the

chemical potential m and hence contribute most to “•u. To

do this, consider a slice of the data at time t
*

57.7 where the

slice is taken at x5x
*

where the max u“•uu is achieved. The

slices are shown in Fig. 12. In ~a!, the concentration is

shown. The peak corresponds to the interior of the pinching

region. In ~c! and ~d!, the chemical potential m and “•u are

shown, respectively. The peaks ~and valleys! again corre-

spond to the pinchoff region. In ~b!, the components of m are

indicated. The m0(c) component is the solid curve, the CDc

FIG. 9. Convergence of HSCH result from Fig. 4 to sharp interface. ~a! c50.5 contours for the HSCH result at time t57.5 ~before pinchoff! from Fig. 4 for

different values of g : g50.04 ~dashed!, g50.05 ~dotted–dashed!, g50.06 ~dotted!, sharp interface ~g50, solid!. ~b! Convergence of the y intercept of the

upper c50.5 contour to the sharp interface; ~c! c50.5 contours for the HSCH result at time t58.0 ~after pinchoff! from Fig. 4 for different values of g; ~d!

convergence of the y intercept of the upper c50.5 contour.
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component is the dashed curve and the aMq component is

the dotted–dashed curve. Clearly, the concentration compo-

nents of m are dominant; the pressure contribution is seen to

be small and slowly varying even through the pinchoff re-

gion. This suggests that for this flow, the pressure depen-

dence of the chemical potential is rather weak and the com-

pressibility of the fluid is mainly due to the variation in

c(x,t) from diffusion.

Not surprisingly, the temporal behavior of “•u is remi-

niscent of that of the vorticity. In particular, the magnitude of

“•u is large only near the pinchoff time. This is shown in

Figs. 13~a! and 13~b!. From these graphs, we see that near

pinchoff, the magnitude of “•u is an increasing function

of g.

To determine the g scaling of “•u, consider the previ-

ously defined slice of “•u for several different values of g.

The slices are given in Fig. 14. In each case, we evaluate the

integral

Ig5E
$y u“•u~x

* ,g ,y ,t
*

!,0%
“•u~x

* ,g ,y ,t
*

!dy . ~4.5!

We find that I0.06520.0162, I0.05520.0178, and I0.04

520.0217. This suggests that “•uÞ0 persists in the limit

as g→0 at the pinchoff time. We also checked that a two-

dimensional version of the above integral centered about the

pinchoff point is nonvanishing at the pinchoff time as well.

Since compressibility seems to persist in the zero-thickness

FIG. 10. Comparison of HSCH and BHSCH results near pinchoff from Figs. 4 and 5 with g50.04. The solid/dashed curves are the c50.5 contour lines of

the HSCH/BHSCH results, respectively. The vectors are the difference in velocities: uHSCH2uBHSCH . ~a! t57.5; ~b! t57.6; ~c! t57.65; ~d! t57.7.
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limit, compressibility at pinchoff may provide a physically

based selection mechanism for reconnecting sharp interfaces

after pinchoff.

While compressibility appears to affect the flow near the

pinchoff region, the bulk flow is relatively insensitive to the

presence of compressibility. This is to be expected since

pinchoff is a local phenomenon and we have shown that

compressibility is only important at pinchoff. What is per-

haps surprising is that the details of the pinchoff region are

quite similar for the HSCH and BHSCH models, albeit with

a time shift due to the fact that pinchoff occurs earlier for the

HSCH model. For example, the number and shapes of the

satellite drops appear to be rather insensitive to the effects of

compressibility. This is likely due to the viscosity-dominant

nature of Hele-Shaw flow since highly viscous fluids tend to

resist motion. In view of sensitivity of drop evolution to

different enforced coalescence times observed in Ref. 19, it

is likely that flows with significant inertia are much more

sensitive to the pinchoff process.

We conclude this section by examining the effect of

density variation but keeping the Bond number B fixed; the

BHSCH model is one example of doing this in the limit of

very small density differences. Let us consider what happens

for larger density differences by varying a. Consider the

HSCH model with a50.2 and a50.05. All other parameters

~except for G̃! are as before. From Eq. ~4.4!, we see that

increasing a leads to increasing the compressibility of the

flow. In Fig. 15, the evolution of the c51/2 contours is

shown for the HSCH model. Because of symmetry, only ap-

proximately one-half of the layer is plotted. The solid curves

correspond to a50.05 and the dashed to a50.2. Consistent

with our previous observations, we see that there is little

difference between the two cases except near the pinchoff

region. Pinchoff takes place earlier for the larger value of a.

Note that the satellite drop at t58.0 with a50.2 seems to

contain slightly less fluid than the a50.05 drop. This is due

to enhanced diffusion associated with increasing a and is

consistent with the linear stability results presented in paper

I.

C. Bond number variation

Let us now examine the effect of Bond number on the

evolution using the HSCH model. Analogous results are ob-

tained for the BHSCH model and are not presented here. In

Fig. 16, the resulting c51/2 contours for the HSCH model

are shown. The left-most column shows an evolution se-

quence for uBu515 ~upper interface has B5215 and lower

has B515!, the middle sequence shows uBu525 ~which is

analyzed previously! and the right-most column shows uBu
535. The times at which the contours are plotted are differ-

ent for each choice of B and are chosen so that the common

stages of evolution may be roughly compared. All other pa-

rameters are unchanged from their values given in the pre-

ceding section.

As expected, increasing B makes the flow evolve more

rapidly and also changes the number of the satellite drops

produced by pinchoff. Two satellites are produced with B

515, three form with B525 and four are present with B

535. The first satellite drop seen at times t513.1, 8.0, and

5.8 increases in extent as B increases. This allows more sat-

FIG. 11. The contours of “•u at time t57.6 for the

HSCH result from Fig. 4 with g50.04. The c50.5 con-

tour is the dotted curve. The solid curves are the

(0.25,0.5,0.75)•max(“•u) contours ~positive values!.

The dashed curves are the (0.25,0.5,0.75)•min(“•u)

contours ~negative values!.
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ellite drops to form by subsequent pinchoffs at larger values

of B.

To further characterize the flows, consider vm(t) defined

as before. This is shown in Fig. 17 for the HSCH model; the

BHSCH result is analogous. The characteristic peaks of vor-

ticity corresponding to pinchoff are seen. In the B535 simu-

lation, there is actually a third peak which is associated with

a third pinchoff at t'6.4.

As we mentioned previously, one may also define pin-

choff to occur when the vorticity reaches a maximum. With

this definition and letting tc ,B denote the pinchoff time with

Bond number uBu, we find that tc ,15512.84, tc ,2557.72, and

tc ,3555.54 for the different Bond numbers. Observe that

tc ,25

tc ,15

50.6012'
15

25
,

tc ,35

tc ,25

50.7176'
25

35
,

~4.6!

tc ,35

tc ,15

50.4314'
15

35
,

FIG. 12. Slices of various quantities for the HSCH result from Fig. 4 at time t57.7. The slices are taken at the value of x for which the max(“•u) is attained.

~a! Slice of c; ~b! slice of components of m: f 08(c) @5m0(c), solid#, 2CDc ~dashed!, aMq ~dotted–dashed!; ~c! slice of m; ~d! slice of “•u.
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which suggests that the pinchoff times are inversely propor-

tional to the Bond number.

D. Viscosity variation

Let us now consider the case in which the light and

heavy fluids have different viscosities. This introduces an

additional source of instability through the displacement of a

more viscous fluid by a less viscous one ~see, e.g., Ref. 2!.
Here, the displacing force is buoyancy.

For simplicity, we assume that the viscosity is a linear

function of concentration and so we set

h~c !5h1c1h2 ,

where the numbering is again as indicated in Fig. 2. We

investigate two cases. In the first ~i! h150.125 and h2

50.5 ~Atwood number for upper interface is A50.6!. In this

case, the viscous and gravitational instabilities are mis-

aligned. In the second ~ii! h150.5 and h250.125 and the

two instabilities are aligned ~Atwood number for upper in-

terface is A520.6!. The evolution of the HSCH c51/2 con-

tours for these flows is shown in Fig. 18; the BHSCH results

are analogous. The interface thickness g50.05 and all other

parameters are as in Sec. IV A.

The left-most column in the figure shows the results for

the viscosity matched case h51/2 for comparison. The re-

sults of cases ~i! and ~ii! are graphed in the center and right-

most columns, respectively. In both ~i! and ~ii!, the initial

pinchoff occurs earlier than in the viscosity matched case

due to lowered resistance to motion of the less viscous fluid.

Due to the alignment of the viscous and gravitational insta-

bilities, the finger of penetrating heavy fluid shows more

deformation in case ~ii! than in case ~i!. One consequence of

this is that a satellite drop forms in case ~i! and not in case

~ii! since the pinchoff region is wider and flatter in case ~i!.

E. Modified parameters for the HSCHÕBHSCH models

In this section, we show that the agreement between the

HSCH/BHSCH and sharp interface models may be improved

at finite interface thicknesses g by appropriately modifying

the Bond number, and hence gravity via Eq. ~2.24!, by an

amount approximately proportional to g. In particular, we

take the modified Bond number B5B0(11bk ,g•g) where

B0 is the sharp interface Bond number and bk ,g is chosen so

that the BHSCH linear growth rate matches that of the sharp

interface for the most unstable wave number k in the initial

data. Again, by Eq. ~2.24!, this amounts to taking gravity in

the form G̃5G̃0(11gk ,gg). In the results up to now, we

have taken B5B0 and G̃5G̃0 .

Let us now reconsider the flow presented in Sec. IV A

(uB0u525). Here, we match the growth rates at k51. Recall

from Sec. V B of paper I, b1,.0551.4148 and b1,.0451.4025.

The evolution of the corresponding HSCH c51/2 contour

lines is shown in Fig. 19; because of symmetry only approxi-

mately one-half of the layer is displayed. The solid curve is

the sharp interface result, the dashed and dashed–dotted

curves correspond to g50.04 and 0.05, respectively. All

other parameters are as in Sec. IV A. There is now very good

agreement between the models. Decreasing g improves the

agreement further. Up to t57.0, the largest differences occur

on the sides of the rising bubbles where the HSCH curves

have slightly steeper slopes. This causes the HSCH neck

region to be slightly thicker than that of the sharp interface to

conserve mass. At t57.5, we see that pinchoff has occurred

in the HSCH case whereas in the sharp interface case, there

is still a small distance between the upper and lower inter-

faces. This distance is on the order of the interface thickness,

which is why there is pinchoff in the HSCH model.

To compare the performance of the HSCH and BHSCH

FIG. 13. Evolution of “•u near pinchoff of HSCH result from Fig. 4 for different values of g. g50.04 ~s!, g50.05 ~square!, g50.06 ~diamond!. ~a!

min(“•u); ~b! max(“•u).
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results with the Bond numbers B and B0 , we plot the inter-

faces at times t57.0 and 7.5 in Figs. 20~a! and 20~b!, respec-

tively, with g50.04. In these figures, the sharp interface ~1!

is plotted together with the c51/2 contours from the HSCH

model, with B0 ~dashed! and B ~solid!, and the BHSCH

model with B0 ~dotted! and B ~dotted–dashed!. Note the

dramatic improvement in the agreement between the HSCH/

BHSCH and sharp interface models when the modified Bond

number B is used. The differences observed between the

HSCH and BHSCH results exhibit the features discussed as

in Sec. IV B.

Now we examine a flow with a more complicated initial

condition containing several wave numbers. Let the initial

interface positions be given by

y2~x !5p10.510.025(
i51

4

cos~ ix !,

y1~x !5p20.520.025(
i51

4

cos~ ix !,

which contains four Fourier modes. The initial condition

c(x,0) is then constructed via Eq. ~4.2! with these values of

y1 and y2 . Again, we take uB0u525 and all other parameters

~except B! are as in Sec. IV A. The most unstable mode is

k53 ~see Sec. V B 2 in paper I!. Therefore, we match the

BHSCH and sharp interface growth rates at this wave num-

ber. Also from Sec. V B 2 in paper I, we have b3,.05

FIG. 14. The limit of “•u as g→0. Slices of “•u at x5x
*

, where the minimum of “•u is achieved, for the HSCH result from Fig. 11 for different values

of g. ~a! g50.06; ~b! g50.05; ~c! g50.04.
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53.3782 and b3,.0453.2101. The HSCH c51/2 contour

lines for the modified B are shown in Fig. 21. Again because

of symmetry, only approximately one-half of the layer is

shown. The dashed and dotted–dashed curves correspond to

g50.04 and 0.05, respectively, and the sharp interface is the

solid curve. The agreement between the models is quite good

although the match is not as good as that in the previous case

where the initial condition contains only the k51 wave num-

ber. Here we see the heights of the tallest fingers are slightly

overpredicted while the heights of the lower fingers are

slightly underpredicted. This is because we have matched

only the k53 growth rate. For example, the tallest fingers

correspond to the k51 mode which has a larger growth rate

in the HSCH/BHSCH case than in the sharp interface case

FIG. 15. The effect of density variation. The c50.5 contours for the HSCH model using g50.05 and a50.05 ~solid! and a50.2 ~dashed!. All other

parameters are as in Fig. 11. ~a! t57.0; ~b! t57.5; ~c! t57.55; ~d! t57.6; ~e! t57.7; ~f! t58.0.
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due to our choice of B. Other more complicated modifica-

tions of the HSCH/BHSCH parameters, such as matching the

growth rates of an unstable band of Fourier modes did not

improve the agreement although our choices of HSCH pa-

rameters may not have been optimal. Again, pinchoff occurs

in the HSCH case ~before the sharp interface case! when the

distance between the upper and lower sharp interfaces is on

the order of the interface thickness.

FIG. 16. The effect of Bond number. The c50.5 contours for the HSCH model with a50.1, g50.04. Left-most column, uBu535; center column, uBu
525; right-most column, uBu535.
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We conclude this section with a flow using an even more

complicated initial condition for which there is no apparent

symmetry,

y2~x !5p10.510.2(
i51

5

@cos~ ix !2cos~~51i !x !

2sin~2ix !# ,

y1~x !5p20.520.2(
i51

5

@cos~ ix !2cos~~51i !x !

2sin~2ix !# ,

which contains 10 Fourier modes. The initial concentration

c(x,t) is constructed in the same manner as in the previous

simulation. All the parameters are the same as in the previous

simulation since k53 is still the most unstable wave number.

The evolution of the sharp interface ~solid! and the g
50.04 ~dashed! and g50.05 ~dotted–dashed! HSCH

c(x,t)51/2 contours is shown in Fig. 22. The agreement is

quite good with g50.04 contour being closer to the sharp

interface. Although the initial condition is seen to be some-

what irregular, large scale fingers eventually dominate the

flow and three large bubbles are produced by pinchoff. This

is a reflection of k53 being the most unstable wave number.

The bubbles tend to circularize due to surface tension as they

rise.

F. Miscibility

As a final numerical investigation, let us suppose that the

heavy and light components of the fluid are actually mis-

cible, in contrast to the immiscible liquid/liquid flows we

have considered up to this point. To model miscible case, one

needs only to replace the nonconvex free energy f 0 in the

HSCH/BHSCH systems with a convex one. For simplicity,

we take

f 0~c !5~c21/2!2. ~4.7!

The flow geometry is as before ~Fig. 2! and the other param-

eters are chosen as follows: g50.05; Pe53/g; r(c), t, C,

and M are as in Sec. IV A; B5250 for the upper interface

(B550 for the lower interface! and the viscosity h(c)

5(h12h2)c1h2 where h1 , h2 are either 0.1 or 0.5 ~i.e.,

A560.667!. Note that the Bond number is really the initial

Bond number since it is defined using the densities of the

pure fluids. The density of the binary fluid r(c), on the other

hand, becomes uniform as the fluids mix.

FIG. 17. The effect of Bond number on the maximum vorticity in the HSCH model. Parameters as in Fig. 16. Solid curve, uBu515; dashed curve, uBu
525; dotted–dashed curve, uBu515.
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The evolution of HSCH c(x,t) contours for these flows

are graphed in Figs. 23 and 24. In Fig. 23, the higher viscos-

ity fluid is the light fluid in interior of the layer. In this case,

the viscosity and gravitational instabilities are aligned. In

Fig. 24, the viscosity of the heavy fluid is larger; here the

viscosity and gravitational instabilities are misaligned. In the

evolution process, the layer widens rapidly and the concen-

tration becomes more uniform as the fluids mix. Observe that

FIG. 18. The effect of viscosity difference on the c50.5 contours in the HSCH model. g50.05, a50.1 and uBu525. Left-most column, h15h250.5; center

column, h150.125, h250.5; right-most column h150.5, h250.125.

537Phys. Fluids, Vol. 14, No. 2, February 2002 Models for Hele-Shaw pinchoff and reconnection. II.

Downloaded 08 Nov 2004 to 128.200.174.18. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



the concentration does not converge to c51/2, which is the

well ~minimum! of the free energy ~4.7!, as this would vio-

late mass conservation. Instead, c(x,t) is converges to the

value c̄50.148 82. Interestingly, when the light fluid is more

viscous ~Atwood number of upper interface is A520.667!,
the heavy less viscous fluid appears to finger through the

light fluid eventually producing at time t510, ‘‘bubbles’’ of

relatively light and heavy fluid components surrounded by

fluid that has mixed more. In spirit, this is similar to the

immiscible case. The bubbles decrease in size as the compo-

nents mix. When the viscosities of the light and heavy fluids

are reversed so that the heavy fluid is more viscous ~Atwood

FIG. 19. The effect of modifying the Bond number to match the k51 sharp interface growth rate. a50.1 and the c50.5 contour lines from the HSCH model

are shown with g50.04 @dashed, uBu525(111.4025g)# and g50.05 @dotted–dashed, uBu525(111.4148g)# together with the sharp interface ~solid, uBu
525!. Due to symmetry, approximately one-half of the layer is shown. ~a! t50; ~b! t52.0; ~c! t54.0; ~d! t56.0; ~e! t57.0; ~f! t57.5.
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number of upper interface is A50.667!, the tendency to fin-

ger is greatly reduced and the fluids mix diffusionally with-

out much differential motion. The difference in behavior of

the two flows may be explained by the fact that the former is

more unstable since the less viscous fluid displaces the more

viscous fluid. This enables the fingering instability to over-

come the stabilizing effects of diffusion and dynamic surface

tension.

Last, let us consider the dynamic or effective surface

energy between the fluids. Since the fluids are miscible, there

is no static surface tension. In the HSCH model, however,

concentration gradients produce stresses which mimic those

due to surface energy. Thus, one may measure the effective

surface energy by measuring the gradients of concentration.

Therefore, let us define

Es~ t !5

C

2M
E u“cu2 dx dy

to be the dynamic surface energy. We note that in the simu-

lations we presented previously where the fluids are immis-

cible, Es(t)5t•(L1(t)1L2(t))/21O(g) where t is the

sharp interface surface tension and L1(t), L2(t) are the

lengths of the two interfaces. The matched asymptotic ex-

pansions in Sec. III B in paper I may be used to justify this

statement. In Fig. 25, we present Es(t) and its logarithm as

functions of time for the simulation from Fig. 23. Observe

that Es(t) decreases very rapidly at early times and eventu-

ally decays exponentially at later times which is consistent

with the evolution of the c contours observed in Fig. 23.

Thus, for this value of Pe, the diffusional forces are much

stronger than the surface tension-like forces. The surface ten-

sion like forces play a role in the flow evolution only at very

short times while at later times, the flow is influenced more

by the competition between buoyancy, viscous and diffu-

sional forces. We note that increasing the value of Pe de-

creases the strength of the diffusional forces.

V. CONCLUSIONS

In this paper, we have analyzed two physically moti-

vated model systems to study pinchoff and reconnection of a

binary fluid in a Hele-Shaw cell. In one of the systems

~HSCH!, the binary fluid may be compressible due to diffu-

sion. In the other system ~BHSCH!, a Boussinesq approxi-

mation is used and the binary fluid is incompressible. The

miscibility of the fluid components is modelled by the free

energy. If the components are miscible, the free energy is a

convex function of concentration. If the components are im-

miscible, the free energy is nonconvex. We primarily focused

on the case of immiscible components.

We observed that the compressibility is important at to-

pology transitions but not in the smooth regions of the flow.

For example, “•u behaves like a delta function localized in

space and time at pinchoff. This distinguishes the HSCH

model from all others ~including that of Folch et al.56! in

which compressibility effects are neglected. It may turn out,

for example, that characterizing the limiting effect of com-

pressibility at pinchoff may suggest a physically based selec-

tion mechanism for cutting and reconnecting sharp inter-

faces.

Furthermore, for smooth interfaces before pinchoff, we

have demonstrated the convergence of the HSCH/BHSCH

models to the classical sharp interface system by direct com-

parison of their respective fully nonlinear numerical solu-

tions. For instance, over the ~flow! time scales we consider,

we do not observe artifacts such as the attraction of diffuse

planar interfaces65 due to the long-range interaction of their

FIG. 20. Close-up of comparison of modified Bond number HSCH c50.5

contours with the sharp interface result. g50.04 and a50.1. Sharp interface

~1 curves!; HSCH and BHSCH models with uBu525 ~dashed and dotted

curves, respectively!; HSCH and BHSCH models with uBu525(1

11.4025g) ~solid and dotted–dashed curves, respectively!. ~a! t57.0; ~b!

t57.5.
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exponential tails. The convergence we observe is linear in

the parameter measuring the interface thickness. Following

the linear stability analysis given in paper I, we have also

shown that the HSCH/BHSCH parameters may be modified

to achieve better agreement with the sharp interface results at

a finite interface thickness. We improved the agreement be-

tween the models by simply modifying the Bond number by

an amount approximately proportional to the interface thick-

ness in order to match the sharp and BHSCH/HSCH growth

rates at a particular unstable wave number. There may be

other, more optimal choices of parameters.

We have also investigated the effects of Bond number

FIG. 21. The effect of modifying the Bond number to match the k53 sharp interface growth rate. a50.1 and the c50.5 contour lines from the HSCH model

are shown with g50.04 @dashed, uBu525(113.2101g)# and g50.05 @dotted–dashed, uBu525(113.3782g)# together with the sharp interface ~solid, uBu
525!. Due to symmetry, approximately one-half of the layer is shown. ~a! t50; ~b! t51.0; ~c! t52.0; ~d! t53.0; ~e! t54.0; ~f! t54.5.
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and viscosity difference on the flows. We found that both

influence the pinchoff time, the interface morphology and the

number of satellite drops produced by pinchoff.

Last, we also considered a case in which the fluid com-

ponents are miscible. We found competition between buoy-

ancy, viscous, and diffusional forces and at early times, sur-

face tension-like forces. When the unstable stratification of

density and viscosity are aligned, fingering is observed. Oth-

erwise, diffusion seems to dominate and there is little differ-

ential motion of the fluids.

There are several directions in which this work will be

taken in the future. First, we intend to pursue the develop-

FIG. 22. The effect of modifying the Bond number to match the k53 sharp interface growth rate with a more complicated, 10 mode initial condition. a
50.1 and the c50.5 contour lines from the HSCH model are shown with g50.04 @dashed, uBu525(113.2101g)# and g50.05 @dotted–dashed, uBu
525(113.3782g)# together with the sharp interface ~solid, uBu525!. ~a! t50; ~b! t52.0; ~c! t54.0; ~d! t54.5; ~e! t55.0; ~f! t56.0.
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ment of physically based selection mechanisms for recon-

necting sharp interfaces. This will require analyzing the de-

tailed dynamics in the transition region and will require

improved numerical methods that allow much smaller inter-

face thicknesses to be resolved than in our current work.

Through comparisons with experiments, the physical correct-

ness of the model and selection mechanisms can be estab-

lished. To this end, algorithms will be developed that use

adaptive mesh refinement ~AMR!. See Refs. 66 and 67 for

examples demonstrating the usefulness of adaptivity in the

context of a finite element method for a phase field model. In

our case, the primary difficulty will be to develop AMR for

FIG. 23. The effect of miscibility. The contour lines of c are shown from the HSCH model with uBu550, g50.05, a50.1; Pe53/g , h150.5, and h2

50.1. ~a! t50; ~b! t52.0; ~c! t54.0; ~d! t56.0; ~e! t58.0; ~f! t510.0.

542 Phys. Fluids, Vol. 14, No. 2, February 2002 Lee, Lowengrub, and Goodman

Downloaded 08 Nov 2004 to 128.200.174.18. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



the fourth order nonlinear Cahn–Hilliard equation for con-

centration. While we anticipate AMR to be quite useful to

reducing the allowable interface thickness, it is unlikely we

will achieve resolutions which enable the interface thickness

to be microscopic as may be the case in oil and water mix-

tures. Nevertheless, our goal is to extrapolate our results to

zero interface thickness and our work here suggests that this

may be possible without microscopic interface thicknesses.

Second, we intend to compare our results with those

obtained by other means such as the level set method and the

volume of fluid method. We are interested in determining

whether the methods agree post-pinchoff; before pinchoff

agreement is to be expected. In the simpler context of inter-

facial motion by mean curvature, for example, the level set

FIG. 24. The effect of miscibility. The contour lines of c are shown from the HSCH model with uBu550, g50.05, a50.1; Pe53/g , h150.1, and h2

50.5. ~a! t50; ~b! t52.0; ~c! t54.0; ~d! t56.0; ~e! t58.0; ~f! t510.0.
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method and the zero thickness limit of the phase-field

method both yield the unique viscosity solution.68,69 How-

ever, since the above methods do not take compressibility

into account, this effect at pinchoff may influence the results.

In viscosity dominated flow regimes, such as in Hele-Shaw

cells, small differences at pinchoff are likely damped out as

suggested by our results in Sec. IV B. When inertia becomes

significant, small differences may be amplified leading to a

wider range of observed behavior.

Third, we will bring the knowledge we have developed

in the Hele-Shaw case to bear for simulations of the full

equations ~NSCH model! where inertia may be significant.

We have already performed simulations of Boussinesq ap-

proximations of the NSCH equations in several flow regimes

and geometries ~see Refs. 39 and 70! and found results con-

sistent with those obtained here for the BHSCH model. For

example, linear convergence to sharp interface models is ob-

served and oppositely signed vorticity is created at pinchoff

due to surface tension. In fact, experimental evidence for the

production of this vorticity is given in Refs. 71–73. How-

ever, it remains to take compressibility into account.

Fourth, and last, we will continue to pursue the use of

the HSCH model ~and also the NSCH model! for simulating

multifluid flows with miscible components. We wish, for ex-

ample, to compare with the experimental results ~see, e.g.,

Ref. 2! as well as to results from other models of miscible

fluids.59 An appealing aspect of the miscible case is that

since the fluids mix, the interface layer widens and becomes

easier to resolve numerically.
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