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Modeling plant ranges over 75 years of climate change in California,
USA: temporal transferability and species traits
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Abstract. Species distribution model (SDM) projections under future climate scenarios
are increasingly being used to inform resource management and conservation strategies. A
critical assumption for projecting climate change responses is that SDMs are transferable
through time, an assumption that is largely untested because investigators often lack
temporally independent data for assessing transferability. Further, understanding how the
ecology of species influences temporal transferability is critical yet almost wholly lacking. This
raises two questions. (1) Are SDM projections transferable in time? (2) Does temporal
transferability relate to species ecological traits? To address these questions we developed
SDMs for 133 vascular plant species using data from the mountain ranges of California (USA)
from two time periods: the 1930s and the present day. We forecast historical models over 75
years of measured climate change and assessed their projections against current distributions.
Similarly, we hindcast contemporary models and compared their projections to historical data.
We quantified transferability and related it to species ecological traits including physiognomy,
endemism, dispersal capacity, fire adaptation, and commonness. We found that non-endemic
species with greater dispersal capacity, intermediate levels of prevalence, and little fire
adaptation had higher transferability than endemic species with limited dispersal capacity that
rely on fire for reproduction. We demonstrate that variability in model performance was
driven principally by differences among species as compared to model algorithms or time
period of model calibration. Further, our results suggest that the traits correlated with
prediction accuracy in a single time period may not be related to transferability between time
periods. Our findings provide a priori guidance for the suitability of SDM as an approach for
forecasting climate change responses for certain taxa.

Key words: California; climate change; endemism; fire adaptation; forecasting; hindcasting; historical
data; species distribution models (SDM); species traits; transferability; Vegetation Type Map (VTM).

INTRODUCTION

Understanding climate change impacts on biota has

long-term implications for social and economic welfare

and conservation efforts (Parmesan 2006). Concern over

climate change impacts has led to the widespread use of

species distribution models (also known as climate

envelope models or environmental niche models) for

examining potential range shifts and extinction risks

under climate change scenarios. These studies have

projected increased extinction risks and range shifts for

hundreds of plant and animal species (e.g., Peterson et

al. 2002, Thomas et al. 2004, Iverson et al. 2007, Loarie

et al. 2008). The potential impact of these studies on

scientific, political, and public debate is high (Wiens et

al. 2009), yet our understanding of their skill in

predicting climate change responses is quite limited.

Species distribution models (SDMs) relate observa-

tions of species presence/absence to environmental

predictors based on statistically or theoretically derived

response functions (Guisan and Zimmerman 2000). The

theory, implementation, and assumptions of SDMs have

been widely reviewed (Guisan and Zimmerman 2000,

Guisan and Thuiller 2005, Elith and Leathwick 2009).

Their applications include the exploration of the ecolog-

ical drivers of species distributions, predictive applica-

tions involving model-based interpolation in sampled

regions, and prediction to new geographic or temporal

domains (reviewed by Elith and Leathwick 2009). In this

manuscript we focus on the latter application as it is

pertinent to forecasting climate change impacts.

Climate change and transferability

Prediction into novel regions and times presents a

unique challenge for SDMs because it can involve the

Manuscript received 1 July 2010; revised 14 September 2010;
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extrapolation of models to spatial and temporal

domains that differ from the domains in which models

are calibrated (Williams and Jackson 2007, Fitzpatrick

and Hargrove 2009). An assumption for projecting

climate change responses is that SDMs are transferable

through time. Transferability (also called ‘‘generality’’)

addresses the ability of a model calibrated in one context

to make useful predictions in a different context (Randin

et al. 2006, Peterson et al. 2007, Phillips 2008). Studies

have examined the spatial transferability of SDMs; i.e.,

they projected models into novel regions and compared

their predictions to spatially independent species distri-

bution data (Randin et al. 2006, Peterson et al. 2007,

VanReusel et al. 2007, Duncan et al. 2009). Far fewer

studies have examined the temporal transferability of

SDMs (for exceptions, see Araújo et al. 2005, Pearman

et al. 2008, Kharouba et al. 2009) despite its relevance to

forecasting climate change responses.

There are many potential obstacles to SDM transfer-

ability. The most notable is the assumption of species–

environment equilibrium (Guisan and Zimmerman

2000, Nogués-Bravo 2009). This implies that species

establishment will occur at any site that has changed

from suboptimal to optimal environmental conditions

(regardless of dispersal sources and limitations), and

that mortality occurs at any site in which the opposite is

true. Even over long time periods, species may not

actually achieve equilibrium with climate due to

dispersal limitations (Svenning and Skov 2004, Schurr

et al. 2007). Similarly, species may persist at a site under

nonoptimal climatic conditions (Sykes et al. 1996).

SDMs also fail to account for changes in biotic

interactions that can occur in novel temporal or spatial

domains. For example, studies examining biotic inva-

sions suggest that the spatial transferability of SDMs

can be limited due to novel biotic interactions experi-

enced in nonnative ranges (Fitzpatrick et al. 2007,

Urban et al. 2007, Duncan et al. 2009, Medley 2010).

Lastly, investigators commonly assume that climatic

gradients are the dominant drivers of species distribu-

tions when using SDMs for climate change impact

assessments, whereas the actual distributions of species

used to calibrate these models reflect the combined

influence of climate and other factors such as distur-

bance patterns and land use (Loehle and Leblanc 1996,

Davis et al. 1998, Pearson and Dawson 2003). In

practice, violation of any of these assumptions could

affect the ability of SDMs to predict suitable habitat for

species through time.

The temporal transferability of SDMs is also likely to

vary among species and to be dependent upon ecological

traits that reflect species-specific sensitivity to processes

that constrain their distributions. Traits that help species

achieve and maintain equilibrium with climate should

result in greater SDM transferability. For instance, the

ability of plants to migrate and keep pace with shifting

climate may be critical for their survival, given the pace

of anthropogenic warming and limited adaptation rates

(Jump and Penuelas 2005, Engler et al. 2009). In

contrast, disturbance-adaptive traits may have the

opposite effect on transferability because these traits

can promote site fidelity (e.g., obligate seeding after fire;

Syphard and Franklin 2010) and can decouple recruit-

ment from climatic drivers. The relationship between

SDM performance (within a single time period) and

species traits has been widely studied (Kadmon et al.

2003, Thuiller et al. 2005, Guisan et al. 2007, Syphard

and Franklin 2010). However, the traits that result in

improved SDM performance within a single time period

may not ensure transferability between time periods.

Because there has been little work in this area,

investigators have called for further studies examining

the link between transferability and species traits (e.g.,

Randin et al. 2006), as these may provide a priori

guidance of the suitability of SDM as an approach for

forecasting climate change responses for certain taxa.

There are additional challenges unique to assessing

the temporal transferability of SDM projections. SDM

forecasts are largely untested because temporally inde-

pendent validation data are rare (Araújo et al. 2005).

Typically, reported model skill is determined by

partitioning a single contemporary data set into

calibration and test sets (herein referred to as ‘‘internal’’

evaluation, IE). In most cases, IE represents our only

estimate of projection accuracy (the agreement between

the predictions generated by the model and the known

distribution of the species as expressed by temporally

independent validation data). Further, there is a great

deal of uncertainty in the validity of SDM projections,

as studies have demonstrated that the chosen modeling

technique (Guisan et al. 1999, Segurado and Araújo

2004), spatial scale (Luoto and Heikkinen 2008, Randin

et al. 2009a, Seo et al. 2009), and evaluation method-

ology (Allouche et al. 2006) affect the outcome of future

projections. To address this uncertainty, investigators

have employed ensemble approaches that utilize differ-

ent SDM algorithms on a common data set to

characterize central tendencies in projections (e.g.,

Araújo and New 2007). However, even if consensus

among projections from various SDM approaches is

achieved, this represents precision, not accuracy.

A more robust approach for validating model

projections through time is to calibrate SDMs with data

from one time period and compare model projections to

a separate time period (herein referred to as external

evaluation, EE). For instance, models can be calibrated

with historical (t1) data and forecasts can be compared

to present-day (t2) data (Araújo et al. 2005). Similarly,

models can be calibrated with contemporary data and

hindcasts can be compared against historical data

(Nogués-Bravo 2009). The use of historical data for

validating SDM projections is vital because it provides

the only means to directly assess the temporal transfer-

ability of SDMs and the factors that influence it.

Here we address two questions pertinent to the use of

SDMs for forecasting climate change impacts: (1) Are

SOLOMON Z. DOBROWSKI ET AL.242 Ecological Monographs
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SDM projections transferable in time? (2) Does tempo-

ral transferability relate to species ecological traits? We

hypothesize the following:

1) Previous studies that examine temporal transfer-

ability of SDMs have demonstrated this for trees at the

millennial time scale based on pollen distributions

(Pearman et al. 2008), birds (Araújo et al. 2005), and

butterflies (Kharouba et al. 2009). We extend this

analysis to distributions of vascular plants during the

last century.

2) Temporal transferability will vary by species traits.

2.1) Species that can achieve longer dispersal distances

will exhibit greater transferability than species with

limited dispersal, given that the former have a greater

ability to colonize new sites and track changing climate.

2.2) Species with highly specialized fire adaptations

will exhibit lower temporal transferability than species

without fire adaptations. Fire is a critical disturbance

agent in mediterranean ecosystems like California and

many species there have life-history traits that shape

their ability to establish in a site after fire. Consequently,

fire-adapted species will be particularly sensitive to the

inability of SDMs to account for dynamic disturbance

patterns and will exhibit lower transferability (Guisan et

al. 1999).

2.3) Endemic species will exhibit greater transferabil-

ity than non-endemic species. Given that we are more

likely to capture the entire realized niche of endemic

species as compared to non-endemics, we expect to have

greater transferability for endemics than non-endemics.

For the latter, we may only capture a portion of the

species–climate relationship, which may result in trun-

cated response curves and lower transferability of these

models through time (Fielding and Haworth 1995,

Thuiller et al. 2004, McPherson and Jetz 2007).

2.4) Species with intermediate levels of prevalence

should exhibit the highest transferability. Rare species

will exhibit lower transferability due to poor detection,

which can introduce error into model specification

(Kadmon et al. 2003). Species that are common will

also exhibit lower transferability, as it is more difficult to

distinguish between suitable and unsuitable habitat for

widespread habitat generalists (Segurado and Araújo

2004, Elith et al. 2006).

2.5) Deciduous species will exhibit lower transferabil-

ity than evergreen species. Mediterranean-type climatic

regions present a common set of selective forces that

have resulted in convergence toward an evergreen,

sclerophyllous habit in many plant lineages (Mooney

and Dunn 1970). The ability of deciduous species to

compete with evergreens in these regions is driven by

interactions between local and regional gradients in soil

moisture, drought seasonality, and disturbances such as

fire (Kikuzawa 1991, Givnish 2002, Sugihara et al.

2006). Consequently, deciduous species are likely to

have lower temporal transferability due to our inability

to account for these local gradients and processes.

To assess these hypotheses, we developed SDMs for

133 vascular plant species using data from the mountain
ranges of California, USA from two time periods: the

1930s and the present day. We forecast historical models
forward 75 years and assessed projections against

current distributions. Similarly, we hindcast contempo-
rary models and compared their projections to historical
data. In both cases, model skill was assessed using

temporally independent data from new sites (external
evaluation, EE). We relate transferability to species

ecological traits including physiognomy, endemism,
dispersal capacity, fire adaptation, and commonness.

California is ideal for addressing the hypothesis we
have posed because its mediterranean climate, distur-

bance-prone ecosystems, and steep environmental gra-
dients support a diverse array of habitats and species.

The California floristic province (which covers 70% of
California and only narrowly extends into southwestern

Oregon and northern Baja, Mexico) is home to some
5500 native plant species, 40% of which are endemic to

the region (Loarie et al. 2008, Thorne et al. 2009). As
such, the province is considered a global biodiversity

hotspot and is of conservation concern (Myers et al.
2000). California has experienced substantial and

spatially variable climate change during the 20th century
(Fig. 1). Average temperatures have increased by
roughly 1.08C during the last 50 years (LaDochy et al.

2007). Moreover, annual precipitation has increased in
the northern region of the state (Hamlet et al. 2005),

resulting in spatially variable trends in climatic water
balance across the state (Fig. 1D). A detailed description

of the effect of these climate changes on the distributions
of the flora of California is beyond the scope of this

analysis and is the focus of a separate analysis by the
authors (in preparation). However, given the observed

climate trends, we can assume that some regions of the
state may be experiencing upslope or poleward shifts in

species distributions due to warming, whereas other
regions may be experiencing stasis or downslope shifts

due to increased water availability. In summary, the
diversity of species, habitats, and climate trends make

California an ideal location to assess SDM transferabil-
ity and the factors that influence it.

METHODS

Study area

Our study area covers the dominant mountain ranges

of California (Fig. 1A) and spans some 220 000 km2.
The study area encompasses all but two of the Jepson

ecoregions (Hickman 1993) of the state (Central Valley
and Sonora Desert; Fig. 1A), a major elevational

gradient (4000 m), and large variations in latitude,
longitude, moisture, and temperature.

Climate data

We produced summarized, gridded climate surfaces

for two 30-year periods: 1905–1935 (‘‘historic’’) and
1975–2005 (‘‘current’’). These surfaces were derived

May 2011 243SDM TRANSFERABILITY AND SPECIES TRAITS



from the Parameter-elevation Regression on Indepen-

dent Slopes Model (PRISM) (Daly et al. 2008) data set,

a gridded climate data set covering the period of 1895 to

present. PRISM data are widely used in North America

and compare favorably to other gridded climate

products for our study area (Daly et al. 2008). We

downscaled the 800-m PRISM data to 400-m resolution

using dynamic lapse rate estimates (Keane and Hol-

singer 2006). We derived a suite of bioclimatic variables,

many of which are used (and described) in the

BIOCLIM model (Busby 1991). Clear-sky radiation

was modeled for the state at a 400-m resolution (ESRI

2008). Potential evapotranspiration (PET) was calculat-

ed via the Penman-Monteith method (Allen et al. 1998)

using the downscaled PRISM data, radiation, and wind

maps from the National Renewable Energy Laboratory

(2009). Climatic water deficit was calculated by sum-

ming the difference between monthly normals of

precipitation and PET. Seven climatic variables were

selected that minimized collinearity (q , 0.85) between

the predictors and that represent biologically meaningful

combinations of the monthly climate variables. These

include maximum temperature of the warmest period,

minimum temperature of the coldest period, precipita-

tion of the driest period, annual potential evapotrans-

piration (PET), PET seasonality, annual water deficit,

and water deficit seasonality. Seasonality was calculated

as the coefficient of variation of the monthly climate

normals.

Vegetation data sets

We used species presence and absence data drawn

from 13 746 vegetation plots from the USDA Forest

Service’s Vegetation Type Map Project, VTM (t1 data).

VTM was an effort to record California’s vegetation

between 1928 and 1940 (Wieslander 1935a, b, Thorne et

al. 2008). This data set provides a unique view of the

composition of vegetation of the mountains of Cal-

ifornia during the early 20th century. A single VTM

plot comprised a vascular plant inventory of 800 m2 in

forests and 400 m2 in other vegetation types, from

which we extracted the presence and absence of target

species. Georeferenced plot locations were estimated to

be accurate within 200 m (Kelly et al. 2005). For

modern data (t2 data), we compiled a collection of

28 622 contemporary vegetation plots of species pres-

ence and absence surveyed by a variety of agencies and

organizations, including inventories from the U.S.

Forest Service, National Park Service, California Fish

and Game, U.S. Geological Survey, California Native

Plant Society, and data collected by university re-

searchers including the authors. Plot locations for a

subset of the study area (Sierra Nevada ecoregion) are

shown in Fig. 2.

Species selection and ecological traits

We selected 133 vascular plant species for this

analysis, the principal criterion for selection being that

the species had adequate representation in both histor-

ical and contemporary data sets (�30 presences). The

selected species included 5 herbaceous species, 99 shrub

species, and 29 tree species. Median occurrences per

species in the historical and modern data were 150 and

479, respectively.

All species were characterized using five traits:

physiognomy, endemism, dispersal, fire adaptation,

and commonness. Within the tree and shrub life-forms,

species were categorized by whether they had evergreen

(n ¼ 81 species) or deciduous (n ¼ 47) physiognomy.

Species were further classified as endemic (n ¼ 34) or

non-endemic (n¼ 99) to the California floristic province.

Further, species were categorized by four dispersal

strategies: A, anemochorous (wind dispersed; n ¼ 33);

E, endozoochorous or epizoochorous (animal dispersed;

n ¼ 56); G, gravity dispersed (n ¼ 28); and S,

autochorous (self disseminated; e.g., ballistic propa-

gules; n ¼ 16). Species were also categorized into three

classes representing their fire tolerance and adaptation

level: low (n¼ 13), medium (n¼ 100), and high (n¼ 15).

Species with low fire adaptation include shrubs and trees

that have no stump or basal sprouting and do not

exhibit facultative or obligate seeding after fire; trees in

this category also have thin bark. Species with medium

fire adaptation have medium to thick bark (if trees),

facultative stump or basal sprouting, and low to medium

degrees of serotiny. High fire adaptation is associated

with obligate seeding shrub species and trees with a high

level of serotiny. Lastly, commonness was quantified by

taking the log-transformed average prevalence (propor-

tion of occurrences) for each species from both the

historical and contemporary data sets. Species ecological

traits were determined using published accounts of

species autecologies (Schopmeyer 1974, Burns and

Honkala 1990, Hickman 1993, Franklin et al. 2004,

Bonner and Karrfalt 2008, Syphard and Franklin 2010)

and expert opinion. A list of species and species traits is

provided in the Appendix.

Study design

The overall design of the study is summarized in Fig.

3. This is further divided into three parts: sample

stratification, model fitting, and model evaluation.

Sample stratification.—Because the modern data were

opportunistically sampled, we took several steps to

assess and ameliorate potential sampling bias between

the historical and modern periods. First, we conducted a

principal components analysis (PCA) on the sampled

climate data (climate values at locations of plots) for the

historic, modern, and combined historic/modern inven-

tories. In all three cases, the PCA reduced the

dimensionality of the climate data to two axes that

explained over 99% of the variance in climate space, the

first of which (PC1) was loaded primarily on water

availability (climatic deficit) and the second of which

(PC2) was loaded principally on potential evapotrans-

piration (PET) (Table 1). We then produced 900 (30 3
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30) bivariate bins of equal increments of PC1 and PC2

and tallied the number of plots that fell within each

climate bin for both the historical and modern samples

(Fig. 4). We then determined areas of climate space that

were sampled in the modern data but not sampled in the

historical data (non-analog sample, forecast), and

similarly, climate space sampled in the historical data

but not in the modern data (non-analog sample,

hindcast) (Fig. 4). To provide a conservative compar-

ison, we chose a threshold of five plots for treating each

climate bin as being ‘‘sampled.’’ We then identified plots

within overlapping and nonoverlapping climate spaces

to stratify our historical and modern data set into three

classes for assessing metrics of EE and transferability:

FIG. 1. (A) Study site/ecoregion boundaries in California, USA, per Hickman (1993) are outlined in yellow: CR, Cascade
Ranges; CV, Central Valley; CW, Central Western; ES, East of Sierras; MD, Mojave Desert; MP, Modoc Plateau; NW,
Northwestern; SD, Sonora Desert; SN, Sierra Nevada; SW, Southwestern. Positive and negative changes between the historical
period (1905–1935) and modern period (1975–2005) are shown for (B) annual potential evapotranspiration, PET; (C) annual
precipitation, P; and (D) climatic water deficit, PET � P.

May 2011 245SDM TRANSFERABILITY AND SPECIES TRAITS



(1) full sample, with no sample stratification; (2) analog

sample, in which the climate space of the samples

overlaps between the historical and modern periods; and

(3) non-analog sample, in which the climate space of the

samples does not overlap for either the forecast or

hindcast.

Model fitting.—We used multiple modeling techniques

for each species using the BIOMOD suite of tools

(Thuiller et al. 2009). Our choice of modeling techniques

was aimed at capturing the variability in classes of

algorithms (e.g., parametric and nonparametric ap-

proaches; regression-based and machine-learning ap-

proaches) and demonstrated performance in previous

studies. SDMs employed include generalized linear

models, GLM (McCullagh and Nelder 1989), and

generalized additive models, GAM (Hastie and Tibshir-

ani 1990), as examples of parametric and semi-paramet-

ric regression-based approaches, as well as random

forest, RF (Breiman 2001), and generalized boosting

models, GBM (De’ath 2008, Elith et al. 2008), as

examples of techniques developed in the machine-

learning community.

For GAM and GLM, model selection was conducted

using a forward and backward stepwise procedure based

on the Akaike Information Criterion (AIC). For GLM,

each term could be dropped, fit as a linear term, or fit as

FIG. 2. Location of historical and modern plots for plant distributions in the Sierra Nevada ecoregion of California, USA.

FIG. 3. Experimental design. Four species distribution model (SDM) approaches for each species were evaluated with data
from the same time period used to calibrate models (internal evaluation), and forecasts or hindcasts were evaluated using data from
a different time period (external evaluation); t1 represents the historical period (1930s); t2 represents the modern period (2000s).
Both internal and external evaluation were conducted using the area under the curve statistic (AUC).

SOLOMON Z. DOBROWSKI ET AL.246 Ecological Monographs
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a second- or third-order polynomial. For GAM, each

term was evaluated using a cubic spline smoother with

three degrees of freedom, as a linear term, or dropped

from the model. We built GBM models using 2000 trees

with a shrinkage parameter of 0.01, a 0.5-bag fraction,

and an interaction depth of 3. We derived an out-of-bag

estimate of the optimal number of boosting iterations

required to model probability of presence. We then used

the optimal number of iterations from the boosting

sequence to predict probability of presence. For RF

models, independent bootstrap samples from the data

were used to grow 750 trees for each species. Probability

of presence was determined using the proportion of

presence votes from each of the 750 trees fit in a given

RF for a species.

Model evaluation.—Internal evaluation (IE) for mod-

els at times t1 and t2 was conducted using a random

data-partitioning of 70% training data and 30% test

data. This data-splitting was repeated three times for

each model, and model skill was averaged across

repetitions to estimate IE. The area-under-the-curve

(AUC) statistic (Fielding and Bell 1997) was calculated

to determine model skill. We chose the AUC statistic

because it does not require the selection of a probability

threshold to convert probability of presence to a

categorical output of present or absent. External

evaluation (EE) was conducted by comparing forecasts

and hindcasts to independent data from each relevant

time period (Fig. 3) using each sample stratification (full,

analog sample, non-analog sample). The AUC statistic

was also used for EE. We averaged AUC values across

model types for each species and used these average

metrics of IE and EE to assess differences between

groups (IE vs. EE; t1 vs. t2; forecast vs. hindcast; sample

stratification) using Wilcoxon signed-rank tests for

paired comparisons and the Tukey hsd test (a ¼ 0.05)

for multiple-comparison tests.

In addition to the AUC metric, we also determined

the proportion of false positive errors and false negative

errors based on IE and EE from our historical model

forecasts. We translated continuous probability esti-

mates to a categorical output of presence/absence using

a threshold that minimized the difference between the

specificity and sensitivity of our models (Cantor et al.

1999). Using a paired t test for both IE and EE, we

assessed whether the mean false positive fraction across

species differed significantly from the false negative

fraction.

Transferability

The temporal transferability between the two time

periods was assessed using two criteria. The first was

simply the EE values (AUC), the capacity of the model

to distinguish between suitable and unsuitable habitat in

a different time period. The second was that the IE of a

model fitted in t1 should be comparable to the EE of the

same model projected into t2, and vice versa. To assess

the second criterion, we adapted a transferability index

(TI) developed by Randin et al. (2006):

TI ¼ 0:5 1� jAUCt1!t1 � AUCt1!t2j
0:5

� ���

þ 1� jAUCt2!t2 � AUCt2!t1j
0:5

� ���

4 1þ AUCt1!t1 � AUCt1!t2

0:5

����
����

����
�

� AUCt2!t2 � AUCt2!t1

0:5

����
����
����� ð1Þ

where AUCt1!t1 is the evaluation of the model fitted in

the historical time period and evaluated on the same

time period using data partitioning (IE) and AUCt1!t2

fits the model with historical data and evaluates it on

modern data (EE). The transferability index (TI) was

calculated for each species and quantifies the decrease in

the AUC statistic when going from IE (AUCt1!t1 and

AUCt2!t2) to EE (AUCt1!t2 and AUCt2!t1). Values of

the index can range from 0 to 1, with high values

representing strong agreement between IE and EE for

both the forecast and hindcast, whereas low values

represent little agreement between these metrics. We

calculated TI for the three sample stratifications using

AUC values averaged across models.

Transferability and species traits.—We used several

methods to determine whether AUC and TI values were

related to species ecological traits. Given an unbalanced

design, we used the Wilcoxon signed-rank test for

pairwise comparisons between groups. Additionally,

for the TI metric, we used simple regression models to

relate TI values to individual species traits. We also

regressed TI values against all significant predictors

from the previous single-term tests. Due to the potential

for nonindependence between species due to phyloge-

netic relatedness, we developed a linear mixed-effects

model with species traits as fixed effects and family and

TABLE 1. Summary of principal component analysis (PCA)
statistics and PC loadings of climate variables sampled from
the combined historic/modern inventory data.

PCA statistics and components PC 1 PC 2

Standard deviation 767.60 161.34
Proportion of total variance explained 0.95 0.04
Cumulative proportion 0.95 0.99
PC loadings

Max. temperature, warm period
Min. temperature, cold period
Precipitation, dry period
Annual potential evapotranspiration 0.32 0.94
Potential evapotranspiration seasonality
Annual climatic water deficit 0.94 �0.31
Climatic water deficit seasonality 0.11

Notes: Blank cells indicate that the component did not have
loadings on the axis. Climatic water deficit was calculated by
summing the difference between monthly normals of potential
evapotranspiration and precipitation. Seasonality was calculat-
ed as the coefficient of variation of the monthly climate
normals.
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genus as random nested factors. Parameter estimation

was conducted using restricted maximum likelihood. All

statistical analyses were conducted using R version 2.9

(R Development Core Team 2009).

RESULTS

Internal and external evaluation

Mean AUC metrics of IE for all 133 species and four

models assessed at t1 and t2 were 0.89 and 0.91,

respectively (Table 2), suggesting that SDMs were well

calibrated. These values differed between time periods

(Wilcoxon signed-rank test, P ¼ 0.006). For EE, mean

AUC values averaged for all species and models varied

between 0.81 and 0.78, depending on sample stratifica-

tion and direction of projection (forecast or hindcast).

IE AUC values were greater than EE by an average of

0.10 across all model types and time periods. All paired

comparisons of model-averaged IE vs. EE values were

significantly different (all paired Wilcoxon signed-rank

FIG. 4. Geographic distribution and sampling intensity of historical and modern plots within the study region (upper panels).
The gray scale key represents the number of plots within 15 3 15 km cells (upper panels) and the number of plots in bivariate
climate space bins (lower panels). The two principal components were derived from seven climate variables used to fit SDMs; they
loaded most heavily on climatic water deficit (PCA 1) and potential evapotranspiration (PCA 2). In the lower panels, the outer
dashed line represents the climate space sampled in at least one time period. The inner solid line represents climate space sampled by
a minimum of five plots per bin in the other time period. The climate space between the solid contour and the dashed contour
represents the climate space that was not adequately sampled in the other time period (i.e., non-analog sample). For example, the
climate space between the dashed and solid contour lines in the lower right-hand plot represents the non-analog sample for the
forecast direction.

SOLOMON Z. DOBROWSKI ET AL.248 Ecological Monographs
Vol. 81, No. 2



tests have P , 0.01). There was consistently greater

variance in AUC values from EE than in AUC values

from IE (Fig. 5). Approximately 20% of the species had

EE values (from the full and analog samples) that were

less than 0.7 (a commonly used threshold to discern

between poor and fair models), whereas 1.5% of the

species had IE values less than 0.7.

The dominant error types for historical models

differed between IE and EE. The mean false positive

fraction and false negative fraction for IE were 0.148

and 0.149, respectively, and did not differ based on a

paired t test (P¼ 0.46). For EE, the mean false negative

fraction (0.34) was greater than the mean false positive

fraction (0.21) based on the same test (P ¼ 0.0002).

Sample stratification had a minimal effect on mea-

sures of EE (Fig. 5). EE metrics for the non-analog

sample were lower, on average, than the full and analog

sample, although the difference was not statistically

significant (based on a Tukey hsd test, a ¼ 0.05).

Variance in EE was equal between the full and analog

samples, but significantly greater for the non-analog

sample for the forecast direction (Levenes test; P ,

0.0001). The choice of model algorithm resulted in small,

but significant, differences in EE values (Tukey hsd test,

a ¼ 0.05). The performance of the model algorithms

(EE) could be ranked as follows: GAM . GBM¼GLM

. RF. However, differences observable among model

algorithms were small compared to the variance in AUC

values among species (Fig. 5).

Transferability

TI values ranged from 0.30 to 0.98 depending on the

sample stratification (Fig. 6). TI values for the non-

analog sample were lower than values from the full and

analog samples, which showed no discernible difference

(Tukey hsd test, a ¼ 0.05; Fig. 6). Consequently, we

only present results from the ‘‘full’’ non-stratified data

set.

Pairwise tests suggest that AUC and TI values vary by

species ecological traits (Fig. 7). We omitted the

herbaceous species from analyses because of inadequate

replication (n ¼ 5 species) and because other ecological

categorizations used in the analysis were not relevant to

herbaceous species (e.g., deciduous vs. evergreen). For

the remaining 128 species, deciduous species showed

lower AUC and TI values than evergreen species,

although the differences were not statistically significant.

Endemic species had lower AUC values in the hindcast

direction (Wilcoxon signed-rank test, P ¼ 0.005) and

lower TI values (Wilcoxon signed-rank test; P ¼ 0.021)

than non-endemic species. AUC values for the hindcast

direction and mean TI values also varied among

dispersal types. AUC values and TI values by dispersal

type were distributed from highest to lowest as follows:

wind (A), animal (E), gravity (G), and ballistic dispersal

(S) (Fig. 7). Species that showed little adaptation to fire

(low) had higher AUC and TI values than those with

medium and high levels of fire adaptation (Fig. 7).

Lastly, AUC and TI values had a discernible quadratic

relationship (F test; P , 0.06) to commonness (test of a

linear relationship was not significant based on F test; P

. 0.1).

Results from regression models relating TI to

ecological traits are summarized in Table 3. Endemism,

dispersal, and fire adaptation were significant in single-

term models. Commonness had a marginal effect (P ¼
0.06). These fixed terms remained significant in a linear

mixed-effects regression model (Table 3). Residuals

from this model were normally distributed (Shapiro-

Wilks normality test; P ¼ 0.30).

DISCUSSION

Are SDM projections transferable in time?

Internal evaluation metrics of SDM performance are

consistently higher than model projection accuracy for

both forecasting and hindcasting when assessed using

TABLE 2. Mean AUC values for 133 vascular plant species by four modeling approaches, internal and external evaluation
(forecasts and hindcasts), and sample stratification.

Model
approach

Internal evaluation, IE

External evaluation, EE

Forecast, by sample type Hindcast, by sample type

t1 t2

Full
sample

Analog
sample

Non-analog
sample

Full
sample

Analog
sample

Non-analog
sample

GAM 0.90 0.90 0.82 0.83 0.80 0.83 0.83 0.81
GBM 0.88 0.91 0.80 0.80 0.79 0.81 0.81 0.78
GLM 0.89 0.90 0.80 0.82 0.77 0.82 0.82 0.79
RF 0.89 0.92 0.78 0.79 0.78 0.79 0.79 0.79

Mean 0.89a 0.91b 0.81c 0.80c 0.78c 0.81c 0.81c 0.80c

Notes: Key to abbreviations: AUC, area under the curve statistic; GAM, generalized additive modeling; GBM, generalized
boosting models; GLM, generalized linear modeling; and RF, random forest. Historical (t1) and present-day (t2) data are used for
IE. For ‘‘full sample’’ there is no sample stratification; for the analog sample, the climate space of the samples overlap between the
historical and modern periods; for the non-analog sample, the climate space of the samples does not overlap for either the forecast
or hindcast. See Methods for further detail.

All pairwise comparisons of IE vs. EE are significantly different based on paired Wilcoxon-signed rank tests (P , 0.001).
Columns with different superscript letters have model-averaged AUC values that are statistically different based on Wilcoxon
signed-rank tests (P , 0.001) for paired comparisons and the Tukey hsd test (a¼ 0.05) for comparisons involving three or more
groups.
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temporally independent validation data. During a 75-

year period, this bias is on the order of 15%

overestimation. We expect that differences between IE

and EE would be even greater for SDMs based on future

climate scenarios, given that we used measured and

interpolated climate values over the study period as

opposed to climate simulations that are likely to contain

even higher uncertainty (Palmer 2000, Murphy et al.

2004). These findings are not entirely surprising, as

validation based on temporally and spatially indepen-

dent data is likely to result in more realistic (and lower)

estimates of model skill (Araújo et al. 2005, Randin et al.

2006). Our findings for plants are consistent with

previous studies for birds (Araújo et al. 2005) and

butterflies (Kharouba et al. 2009). This suggests that for

a broad range of taxa, IE may overestimate the skill of

SDMs for generating projections under future climate

scenarios.

The average transferability of SDMs in this study was

fair to good. We found that mean AUC values based on

EE were consistent with those reported elsewhere

(Araújo et al. 2005). Despite this, 20% of the species

that we modeled had weak transferability based on our

first criterion (AUC , 0.7). This is indicative of the high

level of variability in measures of EE, variability that

was substantively underestimated by IE. Greater vari-

ability in measures of EE as compared to IE was also

observed by Boyce et al. (2002) and Araújo et al. (2005)

when examining temporal transferability, and by Ran-

din et al. (2006) when examining spatial transferability

of SDMs. These results suggest that SDMs can become

erratic when transferring projections in space and time

(Kharouba et al. 2009).

Our understanding of the nature of prediction errors

made by SDMs is also affected by whether our

inferences are based on IE or EE. Based on the IE of

our historical models, we would assume that model

errors were random, with similar false negative and false

positive error rates. In contrast, validated projections

from these historical models suggest that model errors

were not random, with higher false negative error rates

FIG. 5. Box plots for AUC (area under the curve statistic) values for internal evaluation (IE) and external evaluation (EE) by
sample stratification (see Methods) for forecast (t1 model) and hindcast (t2 model) projections. AUC values for four modeling
approaches (GAM, generalized additive models; GBM, generalized boosting models; GLM, generalized linear models; RF, random
forest) for 133 species are presented. Boxes delimit the interquartile range, with girdles at the median and notches to indicate the
median’s 95% confidence intervals. Horizontal lines denote mean AUC values across model types.

FIG. 6. Box plot of transferability index (TI) values by
sample stratification (see Methods) for each of 133 species.
Boxes delimit the interquartile range, with girdles at the median
and notches to indicate the median’s 95% confidence intervals.
Different lowercase letters indicate significantly different groups
as determined using the Tukey hsd test (a ¼ 0.05).
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than false positive rates. This may be due to the

persistence of long-lived woody species in regions that

are no longer ‘‘climatically suitable.’’ It could also be due

to underestimating the breadth of the fundamental niche

of the species examined. Further analysis is needed to

decouple these causes. Notwithstanding, we urge cau-

tion when examining error types made by SDMs,

because the relative proportion of error types is highly

sensitive to the probability threshold chosen for

converting probability of presence to categorical outputs

(Liu et al. 2005).

Sampling bias.—Sampling bias was apparent between

the two periods used in this study. As the modern data

were collected in an opportunistic fashion and we

cannot augment historical data, we developed an

approach to identify sampling bias and its influence on

transferability. We anticipated that sampling bias would

be lowest in the analog sample, increasing with the full

sample, and greatest in the non-analog sample. Conse-

quently, we expected models to perform more poorly in

the non-analog and full samples as compared to the

analog sample, because the former involved making

projections into climatic space that was not encountered

in the model calibration. We found that there were no

discernible differences in AUC values between the full

and analog samples. Further, we found that, although

there was evidence that the non-analog sample had

lower mean EE values than the full and analog samples,

these differences were not statistically significant.

Instead, for the forecast direction, the variance in

AUC values for the non-analog sample was significantly

greater than that of the full and analog samples. This

was not the case for the hindcast direction, suggesting

that there were forms of asymmetry in transferability

between time periods in our study. This asymmetry was

expected because the historical model was calibrated

with data that encompassed a narrower range of

sampled climatic space than the modern data (Fig. 4).

Thus, forecasts from historical models encountered a

greater challenge to transferability than modern models

FIG. 7. Plots illustrating the influence of species ecological traits on temporal transferability, characterized using EE AUC
values and the transferability index (TI). The width of each boxplot is proportional to the sample size of that group. Different
lowercase letters denote significantly different groups as determined using pairwise comparisons of groups based on a Wilcoxon
signed-rank test (P , 0.01). Categories for physiognomy are deciduous (D) and evergreen (E); for dispersal, wind dispersed (A),
animal dispersed (E), gravity dispersed (G), ballistically dispersed (S); for fire adaptation, plants with thin bark and no postfire
sprouting have low adaptation, plants with facultative sprouting and medium to thick bark for trees have medium adaptation, and
plants with obligate postfire seeding and high level of serotiny have high adaptation. Relationships between commonness (log-
transformed prevalence) and AUC and between commonness and TI are shown using a quadratic relationship (F test, P , 0.05).
Further details are provided in Methods.

TABLE 3. Proportion of variance explained for single-term
linear models relating transferability index (TI) values to
species ecological traits and effects test for a linear mixed-
effects (LME) regression model.

Term

Single-term
regression

Fixed effects
from LME

R2 P F P

Physiognomy 0.01 0.22
Endemism 0.03 0.038 6.53 0.013
Dispersal 0.10 0.005 6.48 0.0008
Fire adaptation 0.10 0.001 3.39 0.041
Poly(commonness, 2) 0.04 0.06 3.22 0.047
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encountered when hindcasting: historical models had to

make projections not only into a novel time period, but

also had to extrapolate into unsampled climatic regions.

This resulted in greater variance in model performance

and lower TI values (Fig. 6).

The use of temporally independent data raises the

likelihood of encountering what Phillips (2008) describes

as ‘‘geographic sampling bias’’ between time periods.

This kind of bias will be a greater problem for presence-

only modeling approaches as compared to presence/

absence approaches because, in the former, bias will

affect presence data but not background (pseudo-

absence) data (Phillips et al. 2009). Further, this type

of bias will probably affect studies conducted at local to

regional scales more than studies conducted at broad

scales. Studies with smaller extents and finer grains are

more likely to capture a subset of the species–

environment relationship as compared to broadscale

studies (Fielding and Haworth 1995, Thuiller et al.

2004), forcing models to extrapolate to conditions they

were not calibrated on. However, from a management

and conservation perspective, climate change impacts

are intrinsically local (Wiens and Bachelet 2010) and

there is an increasing awareness of the limitations of

coarse-scaled analysis for forecasting climate change

responses (Luoto and Heikkinen 2008, Randin et al.

2009a, Seo et al. 2009, Wiens and Bachelet 2010).

Reduced transferability may also be due to making

projections into novel ‘‘non-analog’’ climates. This could

have occurred if novel climates (sensu Williams et al.

2007) were encountered in the modern period that were

not encountered in the historical period. We examined

the entire climate space of California in both the

historical and modern periods (using the same bivariate

approach described for identifying sample bias; results

not shown) and found that few regions in the state

experienced novel climates. Our climate data suggest

that temperature has increased in California between the

historical and modern periods by 0.458C and 0.808C for

annual mean and minimum temperature, respectively.

These values are consistent with observations of earlier

snowmelt in the western United States (Dettinger and

Cayan 1995, Cayan et al. 2001) and with evidence of an

extended summer drought period in western states

(Westerling et al. 2006). However, this level of warming

is small in comparison to the total amount of climatic

variation present in the study region. Novel climates

appear to be localized to the hottest environments in the

state (deserts), and few of the species examined here

were likely to have encountered climate that was novel

over the 75-year study period: climatic conditions that

were not experienced somewhere else in the species

range.

Does temporal transferability relate

to species ecological traits?

Many studies have demonstrated that our ability to

model species–environment relationships in a single time

period varies by species traits (Kadmon et al. 2003,

Guisan et al. 2007, McPherson and Jetz 2007, Syphard

and Franklin 2010). To our knowledge, the work of

Kharouba et al. (2009) was the first study that examined

the influence of species traits on temporal transferability.

These authors related temporally independent estimates

of SDM projection accuracy for butterflies to niche

breadth and wing size (a measure of dispersal ability)

and found that transferability declined for widely

distributed species and showed inconclusive results for

wing size. We expand this type of analysis to vascular

plants.

The temporal transferability of SDM projections

varied as a function of dispersal capacity, level of fire

adaptation, endemism, and commonness. Although

there were statistical differences between the forecast

and hindcast directions with respect to specific group

comparisons, the qualitative relationships observed

between transferability and species traits were similar

whether using AUC values or TI values (Fig. 7). Our

results support our expectation that dispersal strategies

with the longest distances (wind dispersed, animal

dispersed) have the highest transferability, presumably

due to an improved capacity to track shifting climate.

The capacity of species to track climate change through

dispersal has received much attention, as studies have

shown that SDM forecasts under varying dispersal

assumptions (e.g., limited vs. unlimited dispersal) have

different outcomes (Dirnböck and Dullinger 2004,

Engler et al. 2009, Morin and Thuiller 2009). This study

provides evidence that dispersal capacity in plants

influences the temporal transferability of SDMs through

time.

Adaptation to fire also influenced SDM transferabil-

ity. As hypothesized, species with high levels of fire

adaptation, those most dependent on fire for reproduc-

tion, showed the lowest level of transferability. In

particular, fire-obligate seeders had lower transferability

than species that exhibited little to no fire adaptation.

The distribution of fire will likely be the predominant

factor that influences the distribution of fire-adapted

species (Dobrowski et al. 2008, Syphard and Franklin

2010), and over 75 years, many of the regions sampled in

our data sets have burned. For instance, we determined

that roughly 42% of the historical plot locations (5810

plots) burned at least once during the study period; and

many burned several times, based on an historical fire

atlas for the state (available online).6 Given that SDMs

do not account for dynamic disturbance processes such

as fire, the lack of this process will differentially affect

fire-adapted species (particularly fire-obligate seeders)

more than other species. Disturbance in general is a

nonequilibrium condition and is poorly handled using

static SDM approaches (Guisan et al. 1999, Guisan and

Thuiller 2005, Randin et al. 2009b). Consequently, in

fire-prone regions, we should view SDM approaches for

6 hhttp://frap.cdf.ca.gov/i
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projecting climate change impacts with caution, partic-

ularly given contemporary and projected future trends

toward larger, more frequent, and severe fires (Wester-

ling et al. 2006, Miller et al. 2008).

As expected, species with intermediate levels of

prevalence exhibited the highest transferability (Fig.

7). Common species in our study were widespread

generalist tree species (e.g., Pseudosuga menziesii, Pinus

ponderosa). Rare species tended to be habitat specialists.

Prevalence has been shown to affect model performance,

with models of common species yielding more false

positive predictions, and models of rare species yielding

more false negative predictions (Fielding and Bell 1997).

Species rarity can reduce the amount and quality of data

for model building if the detection of species is low

(Kadmon et al. 2003, McPherson and Jetz 2007).

Further, SDMs for common species with broad ecolog-

ical tolerances have been shown to exhibit lower skill

(Kadmon et al. 2003, McPherson and Jetz 2007,

Syphard and Franklin 2010) because it may be difficult

to distinguish between suitable and unsuitable environ-

ments for habitat generalists. This suggests that species

with intermediate levels of prevalence may be optimal in

terms of IE and for optimizing transferability.

Contrary to expectations, endemic species exhibited

lower transferability than non-endemics (Fig. 7). Our

presumption that models for endemic species would

exhibit greater transferability than non-endemics was

not consistent with our results. Instead, this finding is

best explained by the fact that endemic species tend to

have covarying suites of traits. Mediterranean-type

climatic regions (including most of California) present

a common set of strong selective forces (e.g., fire,

drought, high dry-season temperatures, unpredictable

rainfall, general mineral deficiencies) that have resulted

in convergence toward common life-forms, life-history

traits, and fire response strategies in many plant lineages

(Mooney and Dunn 1970, Ackerly 2003, Syphard and

Franklin 2010). Results from a contingency table

analysis suggest that endemics in our analysis have a

higher incidence of ballistic dispersal strategies and

obligate seeding after fire than would be expected, given

their proportion in the data set (results not shown).

Similarly, species with high fire adaptation have higher

incidence of ballistic dispersal than would be expected

otherwise (results not shown). Similar results were

presented by Syphard and Franklin (2010). Species with

ballistic dispersal and high fire adaptation had the

lowest values of transferability examined here; thus, the

significance of the test on endemism may be a

consequence of the fact that SDM transferability was

low for this suite of interdependent traits. When

endemism was included in a multiple regression model

with both dispersal and fire adaptation as predictors of

TI, its effect remained significant (Table 3). However, we

caution against the overinterpretation of this result due

to potential collinearity between the terms. Environ-

mental tolerances, physiological adaptations, and life

history tend to covary with disturbance response

functional types (Keeley 1998, Syphard and Franklin

2010). The classification of species with similar distur-

bance response strategies has proven to be a useful

framework for analysis in plant community ecology and

evolutionary ecology (Ackerly 2003, Pausas and Lavorel

2003, McGill et al. 2006) as well as niche modeling

(Syphard and Franklin 2010). Disturbance response

functional types may also prove to be a useful

classification framework for assessing SDM transfer-

ability.

The traits that make a species amenable to making

predictions in a single time period may not be useful for

achieving transferability between time periods. As a

particularly relevant example of this, we summarize

findings from Syphard and Franklin (2010), who

modeled 45 species in southern California using the

same historical data source that we used in this analysis.

These authors demonstrate that species with the

strongest internal prediction accuracies are species that

exhibit the greatest site fidelity: obligate seeders with

persistent seed banks and short dispersal distances.

Indeed, species with these traits may be most amenable

to modeling in a single time period because, as the

authors argue, species with these traits are most easily

detected and have the narrowest ecological tolerances.

However, our results suggest that these same traits make

these species the least likely to be transferable in time

because they strain the assumption of species–environ-

ment equilibrium and expose a weakness of the SDM

approach: the inability to account for disturbance

processes. Given that our data included the same plot

data set, dispersal classification, and a similar fire

classification system (in fact we corroborated our

classification against that published by these authors

for the subset of species used in their analysis), we

believe that these divergent results are indicative of what

Peterson et al. (2007) describe as the contrasting

challenges faced by SDMs: making accurate predictions

in a well-sampled region in a single time period, and a

very different challenge: making accurate projections

into novel regions and time periods. The contrasting

results of these two studies is notable as it suggests that

results from studies that relate species traits to measures

of model skill in a single time period may not be

applicable to assessing transferability in time.

Variability in model performance (EE) was driven

predominantly by differences among species as opposed

to differences in model approach, time period (forecast

or hindcast), or sample stratification. Differences in

these latter factors were in some cases statistically

significant; for example, there were differences in

performance among model algorithms, but the magni-

tude of these differences was small compared to the

variability in EE observed across species. This highlights

the importance of testing transferability on a large

number of species in order to understand constraints on

transferability (Randin et al. 2006). It also brings into
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question the pervasive attention that model comparisons

have received in the SDM literature (e.g., Elith et al.

2006). Certainly, there were differences in EE intro-

duced by model algorithm, but our findings suggest that

these differences may not be strategically important in

understanding transferability (Guisan et al. 2007,

Syphard and Franklin 2010).

Despite our attempts at identifying and ameliorating

the effects of sample bias between time periods, its

influence may still persist in our analysis. Our approach

assessed bias as a function of sampled climate space; i.e.,

the analog sample ensured that models were calibrated

and evaluated on samples representing the same climatic

domain. However, we did not guard against geographic

bias. Challenges to transferability may arise when

projecting models into novel geographic regions inde-

pendent of climate, because the influence of geographic

bias may relate to a host of factors including localized

adaptations of species (ecotypes), edaphic factors,

source populations, and geomorphic features that are

region specific (Randin et al. 2006). The influence of this

effect is not easily characterized, but we rule out the

possibility that systematic geographic biases can account

for our results. If such bias could explain the linkage

between transferability and species ecological traits, then

these biases would have to have been consistent between

our historical and modern data, as both were used in

calculating the TI metric. This is unlikely, because these

data sets were collected independently.

CONCLUSIONS

Forecasts of species responses to future climate

change scenarios based on SDMs are alarming (Thomas

et al. 2004, Iverson et al. 2007, Loarie et al. 2008). These

projections play a critical role in informing resource

management and conservation strategies (e.g., Cutko

2009) aimed at mitigating climate change impacts on

biota (Wilson et al. 2005). The work presented here

demonstrates that the predictive performance of future

projections from SDMs (EE) is likely to be lower and

more variable than what IE estimates suggest. Further,

SDM temporal transferability is sensitive to species

traits and violations of the equilibrium assumption of

the approach. In light of these findings, we outline three

areas that we feel are important to advancing the field:

First, greater attention should be paid to the

assessment of SDM transferability in climate change

impact studies. To these ends, emphasis should be

placed on the use of historical data and spatially

independent data sets for use in evaluating SDM

projections. Examples of methods for applying and

evaluating SDMs across multiple timeframes are lack-

ing. Related to this is the need for appropriate methods

for identifying sampling bias in multi-temporal data sets

and an assessment of its effect on transferability.

Sampling bias is an issue that invariably affects SDM

projections made within a single time period (Phillips et

al. 2009), although it is unclear how large an effect this

has, as there has been surprisingly little research

examining how to quantify and ameliorate sampling

bias. However, the influence of sampling bias is likely to

be even more pronounced when examining the transfer-

ability of SDMs, as it can lead to erroneous projections

through time and space and compromise our ability to

estimate the skill of these projections (Peterson et al.

2007, Phillips et al. 2009).

Second, there is a need for further research that relates

species functional traits to metrics of transferability. It is

clear from multiple studies that differences between

species are the largest driver of variability in SDM

performance within a single time period. Our findings

suggest that species traits and disturbance response

strategies influence SDM transferability as well. In

addition to interspecific variability in functional traits,

there is also evidence suggesting that intraspecific

variability in functional traits measured along environ-

mental gradients relates to the accuracy of habitat

suitability estimated using SDMs, although the pattern

is not generalizable in all cases (Thuiller et al. 2010). To

date, much of the research relating functional traits to

SDM performance has been exploratory or correlative,

whereas there have been fewer attempts to ground this

research in a more theoretical framework. Future

research should provide a priori hypotheses about the

transferability of SDMs based on life-history strategies

(e.g., Grime 1977) or plant functional traits (Westoby et

al. 2002), and should assess these hypotheses with

observed performance. Progress in this area would help

to link niche modeling to other ecological disciplines

including community, functional, and evolutionary

ecology (Ackerly 2003, Pausas and Lavorel 2003).

Third, a consensus is emerging that efforts should be

made to develop ways to quantify the level of

uncertainty in SDM projections (Wiens et al. 2009).

This is a critical first step in providing managers with

information that can be tactically used for interpreting

SDM-derived climate change impact projections. Un-

certainty in SDM projections can arise from many

sources including (but not limited to) errors in climate

data, scale uncertainties, uncertainty in occurrence

records, and errors in model specification (Barry and

Elith 2006). Studies employing SDM ensembles have

demonstrated that model approach and GCM scenario

greatly influence projection uncertainty (e.g., Diniz-

Filho et al. 2009, Buisson et al. 2010). There are far

fewer examples of studies that characterize multiple

sources of uncertainty in a single SDM approach (see

Latimer et al. [2006] for an example involving a Bayesian

hierarchical model that incorporates spatial random

effects). As a consequence, we have a limited under-

standing of the intrinsic utility of this tool in conserva-

tion and management applications. We highlight this

point by noting that multi-temporal analyses are one of

the only means to directly quantify the actual skill with

which SDMs can identify suitable habitat through time.

The use of temporally independent validation data with
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SDM uncertainty projections should greatly improve

our understanding of the relative importance of the

sources of uncertainty in SDM development and the

nature of the prediction errors they create. From a

conservation and management perspective, the nature of

prediction errors is particularly important, as there are

disparate costs associated with consistently making

errors of omission vs. commission (Wiens et al. 2009).

Despite the myriad of assumptions, limitations, and

challenges with using SDMs for forecasting climate

change responses, they remain the most plausible means

by which we can translate climate change scenarios to

ecological outcomes. As such, it is important that we

understand the transferability of these models and the

factors that influence their generality. Advances in these

areas are likely to help focus our research efforts,

improve the skill of SDMs, and result in a greater

understanding of their ability to predict the effects of

climate change on biota.
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