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Abstract 

United States Air Force energy resiliency goals are aimed to increase renewable 

energy implementation among its facilities. Researchers at the Air Force Institute of 

Technology designed, manufactured, and distributed 37 photovoltaic test systems to Air 

Force installations around the world. This research uses two types of modeling 

techniques, multivariate linear regression and random forest machine learning, to 

determine which technique will better predict power output for horizontal solar panels. 

Many previous solar panel prediction studies use solar irradiation data as an input. This 

study does not use irradiation as an input and aims to predict power output with input 

variables that are more readily available. If power output of a horizontal solar panel can 

be predicted using available weather data, then assessing the possibility of utilizing 

horizontal panels in any global location becomes possible. Input variables used for each 

model was latitude, month, hour, ambient temperature, humidity, wind speed, cloud 

ceiling, and altitude. The variance each model accounted was used as a comparison 

measure. The multivariate linear regression model accounted for 56.2% of the variance in 

a sample validation dataset. The random forest machine learning model accounted for 

65.8% variance. The random forest model outperformed the multivariate linear regression 

model by accounting for 9.6% more variance. The most important variable in reducing 

the random forest model mean squared error was the month of the year, closely followed 

by cloud ceiling. Wind speed was the least important variable in reducing model error. 

More predictor variables are needed to increase predictability of horizontal solar panel 

power output if irradiation is not present as an input. 
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MODELING POWER OUTPUT OF HORIZONTAL SOLAR PANELS USING 
MULTIVARIATE LINEAR REGRESSION AND RANDOM FOREST MACHINE 

LEARNING   

 

I.  INTRODUCTION 

Clean and renewable energy as a means to supplement power is currently being 

utilized on Air Force installations in order to align with the Air Force’s strategic energy 

goal to improve resiliency [1]. Solar photovoltaic panels, also known as solar panels, are 

one form of renewable energy. This technology converts solar irradiance into electricity. 

Solar irradiance defines the output of energy from the sun onto a given area on the 

surface of the Earth [2]. The research presented in this thesis builds upon prior work 

aimed at determining how temperature and humidity affect the power output of horizontal 

solar panels in multiple different climate regions [3-4]. This study analysis encompasses 

a longer timeframe, incorporates more climatic factors into the analysis, and utilizes two 

separate modeling techniques. This study aims to broaden the knowledge of the effects of 

weather variables on horizontal solar panels and explore available modeling techniques. 

The remainder of this chapter discusses the general issue and background information 

behind this research, the problem statement driving the study, research questions this 

study is aiming to answer, assumptions regarding items outside of the researcher’s 

control, research scope, a brief methodology overview, and materials and equipment 

utilized for data collection.  



 

2 

 

General Issues and Background 

The Air Force accounts for 48% of all energy consumed by the Department of 

Defense (DoD) [1]. In the 2017 Air Force Energy Flight Plan, the Department 

emphasizes three energy goals: improve resiliency, optimize demand, and assure supply 

[1]. Under the goal to assure the Air Force energy supply, a strategic objective is to 

increase facility use of clean energy by 25% by fiscal year 2025. To achieve this goal, a 

variety of clean energy options must be considered. According to the Flight Plan, clean 

energy includes renewable sources. Multiple sources of renewable energy options, such 

as wind and hydropower, exist and are heavily used. Although these options may help the 

Air Force achieve its energy goals in its own ways, this study focuses on solar energy 

because of its availability across a wide range of locations.  

One form of technology used to capture solar energy is solar photovoltaic (PV) 

panels. Capturing solar energy via solar PV panels is a clean and renewable source of 

energy production. PV panels are becoming more available, less expensive, and more 

efficient [5]. The panels can be arranged as an array in a field and oriented horizontally, 

vertically, or tilted toward the sun’s path at a specific location to capture solar irradiation 

and convert it to usable energy. Several Air Force installations began using solar PV 

panels to produce renewable energy for their power needs. As an example, Nellis Air 

Force Base and the United States Air Force Academy currently utilize large PV arrays. 

Each of these arrays has hundreds of PV panels spread over 140 acres and 43 acres [6-7]. 

This method takes up acres of space and not all Air Force installations have the available 

land to install a solar array on their base. Horizontal solar panels used in ways other than 

field arrays can broaden the possibilities of where and how solar energy can be converted 
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to electricity on Air Force installations. Solar roadways are one such possible use for 

horizontal solar panels. This option utilizes previously allocated space and does not have 

to use any additional space. The work currently conducted in the field of solar roadways 

and solar pavements is further explored in Chapter II.   

Problem Statement  

Numerous PV system performance prediction models sponsored by the 

Department of Energy (DoE) have been developed, including the Solar Advisory Model, 

PVWATTS, and PVFORM [8]. The models were developed for tilted panel array 

applications and were validated using tilted panels at Sandia Laboratory in Albuquerque, 

NM. These models are effective in predicting the power output of PV arrays because the 

behavior of latitude-tilted panels that are elevated on racks is generally well known to 

modelers [8]. External factors affecting the behavior of horizontal solar panels are seldom 

studied across numerous locations and climate regions.  

As mentioned previously, tilted solar PV panel arrays often take up acres of land 

space. As a result, not all Air Force installations have the space for a PV array that will 

yield a high enough return to meet their energy requirements. Horizontal solar panels 

may be used in novel ways, such as solar PV pavements or atop certain types of flat 

roofs. However, it is not fully known whether horizontal solar PV panels will produce a 

sufficient amount of power generation to justify their investment. Therefore, factors that 

have the most influence on the horizontal panel’s ability to convert solar energy into 

electricity must be explored to apply that information in future modeling efforts.  
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Materials and Equipment 

The materials utilized for this study include monocrystalline PV panels, 

polycrystalline PV panels, Raspberry Pi computer systems, Pelican cases, CAT cables, 

power cables, and SD cards. All of these items comprise the test system at each location. 

Some locations also needed an external power source, in the form of a battery.  

Methodology 

Previous researchers designed and constructed 40 test systems for this study [3-4], 

[9]. The systems are designed to measure solar PV panel power output, temperature, 

humidity, and other data. This data was recorded at each site, for two panel types, every 

15 minutes using a Raspberry Pi computer system and an SD card. The computer system 

is stored in a waterproof Pelican case and plugged into the PV panels and the 

temperature/humidity probe. These test systems were distributed to Air Force 

installations around the world in order to understand the effects different climate 

characteristics, locations, and ambient conditions have on horizontal solar PV panel 

power output. Data from a weather station near each test system location was also 

incorporated into the analysis. 

Using the collected data, two types of models were developed: multivariate linear 

(MLR) regression and random forest (RF) machine learning. The validation R-squared 

values of each model were compared in order to determine which model accounts for 

more variance in its predictions. MLR was utilized to determine the relationship between 

multiple independent variables and one dependent variable: instantaneous power output. 

The following dependent variables were used to predict power output: latitude, month, 
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hour, humidity, ambient temperature, wind speed, cloud cover, and altitude. The RF 

model was used to determine which input factors are most effective in reducing the mean 

squared error when predicting solar panel power output. 

Research Questions  

 This study consists of three research questions. Each question’s objective is to 

contribute to current research in order to further the field’s understanding of horizontal 

solar PV panels and photovoltaic modeling techniques.  

1. Which model type accounts for more variance in power output of horizontal 
solar PV panels when irradiation is unknown: linear regression or random 
forest machine learning?  

2. Which input variables reduce mean squared error the most in predicting the 
power output of horizontal solar panels when irradiance is unknown? 

3. What is the relationship of input factors, such as temperature and humidity, 
with power output of horizontal solar panels? 

Assumptions 

Assumptions were made to facilitate the study’s operation and achieve research 

objectives. The equipment will perform in a manner consistent with the manufacturer’s 

specifications for the duration of the study. Each of the geographical site’s weather 

activity will meet expectations for the particular location’s climate for the duration of the 

study. It is also assumed that data gaps will not adversely affect the model. Examples of 

potential causes are power outages, extremely cold temperatures, and system damage. It 

is also assumed that the site monitors will be reactive and responsive to any issues 

regarding the test systems they are monitoring. The site monitors will inform the 
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researchers of any issues with the systems and assist in rectifying the situation in a timely 

matter.  

Scope 

Two types of photovoltaic panels were tested out of many available in the market, 

as the two types comprised a majority of the solar panel market at the time of this study 

[10]. Due to funding limitations, spare parts were not always supplied and some systems 

had to be decommissioned due to irreparable damage. This was accounted for by utilizing 

redundant sites.  

As mentioned earlier, there are many renewable energy technology options 

available for use. Not only are there other ways to harness solar energy aside from PV 

panels, there are also ways to harness other forms of energy, such and tidal and wind 

energy. The scope of this study only covers solar energy being harnessed via PV panels.  
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II. LITERATURE REVIEW 

Introduction 

Chapter II discusses solar photovoltaic panels, the concept and application of 

horizontally oriented solar photovoltaic (PV) panels, and current studies and models 

surrounding them. This research is important because solar energy technology 

traditionally requires an abundance of land to be utilized. However, not everyone has an 

abundance of land available; therefore, other options for using solar energy technology 

should be sought. This chapter provides an overview of the general issues and objectives 

surrounding the subject of this research. It will also give background on what solar PV 

panel technology is and how it is used today. Additionally, photovoltaic pavements will 

be discussed as an application for solar PV technology. The reader can expect an 

overview of what factors affect the performance of solar PV panels and current models 

incorporating these factors.   

General Issues  

Fossil fuel energy dependence raises concerns regarding energy security for the 

Department of Defense (DoD). The need to reduce the DoD’s dependence on fossil fuels 

was identified in a 2006 study conducted by JASON, an independent scientific advisory 

group [11]. The study concluded that there is a need to reduce fuel use due to the 

logistical requirements of procuring the fuel [11]. In conjunction with the current use of 

fossil fuels and future energy demand reduction, renewable energy technology 

implementation can assist countries to achieve energy security at a national level. Fossil 

fuel supplies are finite; one method to mitigate future energy shortages is supplementing 

power production with renewable sources of energy [12]. As the cost of renewable 
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energy components continues to decrease and their performance continues to increase, 

implementation of renewable energy alongside fossil fuels is more cost efficient and 

effective than ever before [12].  

Energy usage, efficiency, resilience, and sustainability are critical issues for the 

DoD. In 2009, the DoD was the largest consumer of energy in the world [13]. 

Furthermore, DoD energy use accounts for 80% of all US federal government energy use, 

and energy sustainability is also a DoD strategic goal [14]. According to the US 

Department of Energy, energy sustainability is defined as the ability to operate without a 

decline in operational capability [15]. Renewable energy resources are sustainable, due to 

their theoretically endless supply, and this goal can be achieved by utilizing renewable 

energy technologies across a wide range of locations and facilities.  

Air Force Energy Objectives  

The US Air Force will play a large part in the achievement of the DoD’s energy 

goals due to the magnitude of energy that the Air Force requires for its operations. The 

US Air Force makes up 48% of the total DoD energy use and 11% of that is allotted for 

installation energy [1]. The installations mentioned are located both in the continental 

United States and overseas. Homeland installations primarily rely on commercial 

electricity grids, which are vulnerable to a number of threats including natural hazards 

and terrorism [14]. The military is addressing these vulnerabilities by implementing plans 

for increased use of renewable energy and ensuring access to reliable energy [14]. 

Installation energy, while vulnerable to electricity grid risks, is the primary beneficiary of 

solar energy initiatives within the Air Force. To achieve base energy resilience, 
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installation dependence on electrical grids must be mitigated, which occurs through the 

use of renewable energy such as solar PV panels.  

One of the Air Force’s energy goals is to assure its energy supply. A strategic 

objective relating to that goal is to increase facility clean energy use by 25% by FY 2025 

[1]. This objective aligns with the Air Force Strategic Master Plan vector to ensure a full-

spectrum-capable, high-end force. The Air Force has made efforts to decrease energy 

consumption in recent years. In fiscal year (FY) 2016, Air Force square footage increased 

while energy production and intensity decreased from FY 2015 baselines [16]. 

Additionally, 6.8% of the Air Force’s total energy consumption was supplied by 

renewable energy sources that year. This percentage continued to grow as over 300 

renewable energy projects at over 100 different sites were in construction or in operation 

as of the start of FY 2017 [16]. Even with these accomplishments, additional work is 

required to meet the DoD’s and Air Force’s energy goals.  

Clean energy contains many mechanisms, such as wind, solar, and hydropower. 

This study focuses on harnessing solar energy as a form of clean energy production for 

the Air Force to help the department meet its energy goals. By focusing on developing 

clean energy on-site, the Air Force can protect its facilities from grid failure and energy 

supply disruptions. On-site clean energy use and production can provide economic and 

environmental benefits as well by providing consistency in energy pricing and avoiding 

greenhouse gas emissions [1].   

Air Force Solar Energy Initiatives  

Nellis Air Force Base, located in Nevada, completed a 140-acre solar array in 

2007 [7]. This tilted, open-frame array uses single-axis tracking that allows the panels to 
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laterally track the sun across the sky [7]. The array also uses cleaning robots as opposed 

to manual cleaning conducted by human workers [17]. Following installation, the array 

was expected to save the base $1M in energy costs annually and provide 25% of the 

base’s power needs [7]. 

A 180-acre solar array was installed in 2016 at Air Force Plant 42, a 

manufacturing plant in Palmdale, California [18]. The array is similar to the Nellis array 

in that the panels are tilted and have single-axis tracking. The array is designed to 

produce 20 megawatts of power per year, which would power over 3,000 homes. This 

project was part of a lease agreement between the Air Force and NRG Solar Oasis LLC at 

no cost to the Air Force [18]. 

Davis-Monthan Air Force Base, located in Arizona, unveiled a 170-acre solar 

array in 2014 [19]. This array was expected to generate 35% of the base’s electricity 

energy needs and exceeded expectations a year later at over 40%. The base’s electricity 

costs went from 8.6 cents per kilowatt-hour to only 4.6 cents per kilowatt-hour [19]. 

Each of these projects was power purchase agreements (PPAs) between the Air 

Force and a private company. There are multiple types of PPAs; the PPA mentioned 

above can be described as a government agency allowing the use of government land by 

a private company [20]. This private company uses the land to produce power and sell 

some of that power to the government agency. In this case, the government agency is the 

Air Force and the power produced from solar PV panels is installed and maintained by a 

private company.  

In these examples, the Air Force provided land to solar energy companies in 

exchange for some of the energy produced by the array at a lower price than purchasing 
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from the local energy grid. All of these arrays utilize a considerable amount of area. 

These panels are elevated and tilted; therefore, each panel must be spaced far enough 

from the others to avoid shading, which can significantly decrease the panel output [21]. 

Solar panels arranged horizontally can use ground area more efficiently because they can 

be positioned directly next to each other. This feature validates the practice of installing 

such panels on bases that do not have hundreds of unused acres of land. 

Photovoltaic Technology Overview 

This section presents an overview of how solar energy is harnessed using solar 

PV panels. The exact science of what is occurring internally for each type of panel used 

in this study will not be discussed.  

The sun emits energy in the form of radiation [22]. The sun’s radiation reaches 

the earth’s atmosphere and some of it strikes the surface of the earth. The amount of solar 

radiation that reaches the surface of the earth depends on many factors. Some of those 

factors include the amount of water vapor in the atmosphere and the angle of the sun’s 

position in the sky in relation to the horizontal plane of the surface of the earth. 

Photovoltaic arrays are made up of solar panels, with each panel composed of numerous 

solar cells. A silicon solar cell is a semiconductor that can harness a fraction of the sun’s 

energy. The sun’s energy striking the surface of the panel allows for an internal flow of 

electric current through the panel. This current can be directed to an external circuit to 

supply power [22].  
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Types of Solar PV Panels  

Crystalline silicon is the most common material solar PV cells are made out of 

today, with almost 90% of the world market’s photovoltaics made with silicon [10]. The 

two types of solar PV cells used in this study are types of crystalline silicon: 

monocrystalline silicon and polycrystalline silicon. At the time of this publication, solar 

PV cells made of monocrystalline silicon are typically 15-20% efficient in converting the 

sun’s energy to usable electrical energy. Polycrystalline silicon solar PV cells are 13-16% 

efficient and less expensive than monocrystalline silicon. Furthermore, polycrystalline 

silicon PV cells have worse performance in higher temperatures when compared to 

monocrystalline silicon cells. This is a result of fabricating monocrystalline cells with 

higher grade silicon. The third type of solar PV cell is thin-film, which is made of various 

materials, instead of primarily silicon. Thin-film solar PV panels typically need more 

surface area to produce the same amount of power as monocrystalline silicon PV panels 

due to a lower efficiency of range of 7-13%. Thin-film is less expensive than both of its 

silicon counterparts [10]. Thin-film is not utilized in this study due to its lower efficiency 

and large space requirements.  

Orientation of Solar PV Panels 

Solar irradiance describes the amount of solar energy incident to the surface of the 

earth on a particular area [2]. A solar panel produces the most power when the panel is 

perpendicular to the solar irradiance being cast upon it by the sun during solar noon [23]. 

This orientation involves positioning the panel at a specific tilt angle relative to the 

horizontal plane and rotating the panel to track the sun’s path of travel throughout the day 
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[23]. A rule of thumb for panel orientation was established for locations in the northern 

hemisphere. This standard, dating back to the 1980s, stated to tilt the panel the same 

number of degrees from horizontal as the latitude of the panel location and to face the 

panel due south [24-25].  

Cloudy Days and Overcast Conditions  

 The ideal orientation mentioned previously for a solar PV panel refers to clear sky 

conditions. Studies have found that diffuse solar irradiation, which is irradiation scattered 

by water droplets suspended in the atmosphere, is best captured when a solar PV panel is 

oriented horizontally [23], [26-27].  

The continental United States was the focus of another study that concluded that 

the optimal tilt angle is also a function of cloudiness, in addition to latitude. This finding 

challenged the latitude tilt angle rule of thumb and found that some optimal tilt angles 

can be up to 10 degrees less than latitude for locations in the continental United States 

due to seasonal weather patterns, such as winter clouds [23].  

A study in Milford, MI stated that when the majority irradiance in an area is 

diffused, horizontally aligned solar PV panels will provide maximum solar irradiance 

when compared to tilted panels [26]. Using a horizontally oriented panel alongside 

tracking panels, the researchers predicted that positioning panels horizontally during 

overcast conditions could increase yearly yield by 1% [26]. A study in Europe found that 

a PV system that tracks the sun’s path will have a 3% increase in annual yield if the 

panels are moved to a horizontal position during overcast conditions [27].  
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Array Self-Shading  

A study investigating a phenomenon known as self-shading discusses the issue of 

panels in an array shading each other [27]. This issue causes damaging hot spots and 

lower performance. One way to solve this problem is to increase the distance between 

each of the array’s rows so they do not shade each other during sunrise and sunset. Since 

arrays currently use an abundance of land, this solution would decrease the energy 

density of an array’s area, declaring it infeasible. The researchers solved this problem by 

positioning the panels horizontally during sunrise and sunset because shadows affect 

yield more than non-optimal tilt angles [27]. This is possible because the array in the 

study has a sun tracking system that can be programmed to a certain angle at a specific 

time of day. 

Horizontal Solar Panel Application: Pavements 

Solar PV technology may be used in ways that will not take up as much space as a 

traditional array. Solar panels can be arranged more densely when placed flat on the 

ground. When installed in such a manner, this technology may be used as solar 

pavements. The remainder of this section discusses solar PV technology used as 

pavement systems. 

A study conducted in 2017 aimed to evaluate the feasibility of solar roads as a 

sustainable energy source [28]. Two prototypes, each of which used monocrystalline 

silicon panels, were constructed with two different cover layers: a polycarbonate sheet 

and a porous rubber sheet. These cover layers were necessary because they increased the 

friction on the surface of the panel to mimic the friction needed to prevent slipping while 
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driving on roads. The supplied energy, surface safety movement, and structural 

performance were evaluated for each design. Both designs performed well in the skid 

resistance test and one design handled more load than the other. Each design had a 

percent decrease in power generation of 26 percent and 50 percent. This decrease is due 

to the cover layers that allows the panels to be used as pavements. This study concluded 

that solar roadways can provide benefits in the form of reduced fossil fuel consumption, 

reduced pollution, and access to electricity generated from solar energy [28]. 

A 70-meter solar bike path was installed in the Netherlands in 2015 [29]. The 

solar bike path consisted of 54 polycrystalline silicon modules embedded in concrete and 

covered in an anti-skid layer. The power output of the solar road was estimated to 

produce an annual efficiency of 9.08%. This prediction was slightly lower than that of a 

polycrystalline panel installed in the same area as the bike path at optimal tilt and 

orientation but is still an appealing amount of PV potential [29]. The researchers noted 

that using monocrystalline silicon cells could potentially increase the annual yield by 1.5 

times. Furthermore, annual yield can also increase for different locations other than 

where this bike path was installed. Due to this application being a bike path, as opposed 

to a road for motorized vehicles, structural and weight bearing considerations were not 

considered. Using this application, the researchers concluded that the energy density 

potential justifies further exploration of solar roadway technology [29]. 

Temperature and Humidity Effects on Solar PV Panels 

Existing solar PV panel power prediction equations use temperature as a function 

to describe efficiency and power output. The functions that incorporate ambient 
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temperature account for more variance in the prediction models than the functions that 

omit ambient temperature [30]. Current literature highlighted 24 efficiency functions and 

27 power output functions that utilize temperature as one of their factors [30]. Both 

efficiency and power equations are described in detail in Tables 1 and 2, respectively.  

In 2008, a study compared the prediction performance of current photovoltaic 

models to empirical data [8]. The study included four radiation models, three module 

performance models, an inverter model, the PVWATTS model and PVMod models. 

After a temperature coefficient was incorporated into the models, solar panel output 

prediction accuracy improved between 2.1% and 10.4%, respectively [8]. 

Humidity is known for influencing PV performance. A primary example of this is 

the direct effect of water droplets diverting incoming sunlight through refraction, 

diffraction, and reflection [31].  Indirectly, humidity also affects dust build-up on panels 

due to the formation of dew increasing coagulation of dust. Mekhilef et al. (2012) 

reviewed previous studies conducted across multiple climates and reported differing solar 

PV panel performance drops for the studied climates [31]. As an example, a study 

conducted in the United States reported a peak efficiency drop of 4.7 % while a study in 

Saudi Arabia reported as much as 40 % performance degradation due to dust build-up on 

the surface of the panels [31]. 
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Table 1. Competing equations describing solar PV panel efficiency with respect to temperature [30]. 
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Table 2. Competing equations describing solar PV panel power output with respect to temperature 

[30]. 
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The study conducted by Mekhilef et al. (2012) concluded that dust accumulation 

is affected by both humidity and wind speed, with higher humidity increasing the 

accumulation and higher wind speed decreasing accumulation. Solar PV panels with 

higher tilt angle have less dust accumulation than those with lower tilt angles, which is a 

drawback for horizontal PV arrays [31].  

The United States Department of Energy supports models produced by Sandia 

National Laboratories that predict the performance of PV panels based on solar radiation 

and weather data. Tests used to further validate these models against empirical data use 

panels tilted at latitude and facing toward the sun. Therefore, these models may not be 

sufficient for use with horizontally oriented panels because horizontal panels may 

respond differently to various weather effects. For example, wind may cool tilted panels 

more effectively than horizontal panels because the horizontal panels would be placed 

close to the ground where the air from the wind may not reach the back side of the panel 

as easily.  

Other Factors Affecting Solar Panels 

In order to predict the power output or efficiency of a panel, researchers have 

modeled experimental data utilizing the following input variables: irradiation, 

temperature, humidity, solar elevation angle, wind speed, wind direction, month, and 

others [31–34]. Furthermore, every model has not focused on the same factors, which can 

impact the results on short, medium, and long timescales.  

Table 3 summarizes four photovoltaic studies mentioned throughout this 

document, including the study discussed, for comparison purposes. Table 3 highlights 
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that numerous factors are the subject of any single photovoltaic study, depending on the 

research objectives surrounding the work.  

Busquet et al. (2015) studied how the environment and the age of the solar panel 

affected the daily energy output using factors such as aging and soiling, with aging not 

commonly used by other studies [32]. Aging describes the amount of time the panel has 

been installed and exposed to the elements. Soiling describes the dust build-up of the 

panel’s surface. Kayri et al. (2017) and Lahouar et al. (2017) forecasted solar panel 

power output and used short-term factors such as solar elevation angle and wind 

direction, they, however, did not include longer-term factors such as aging [33-34]. 

Mekhilef et al. conducted a review primarily interested in the effects of dust, humidity, 

and air velocity, such as water droplets trapped inside the cell and dew causing dust 

accumulation [31]. 

Solar irradiance is one common factor that the four studies used. The research this 

paper describes does not use solar irradiation as an input but instead uses other predictor 

variables to account for that unknown. For instance, the hour of day may account for 

solar elevation angle and latitude. Climatic variables, such as pressure, may indicate the 

presence of rain, which decreases the amount of solar irradiation a panel receives. Solar 

irradiation data is not widely available and often needs to be found using previously 

developed models and global radiation data as an input. This study aims to investigate the 

viability of predicting horizontal solar panel power output using available data, such as 

position, time, and weather. If the power output of a solar panel can be reasonably 

predicted without including irradiation as an input, then assessing the possibility of 

utilizing horizontal panels in any global location becomes possible. Such a model would 
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accurately predict power output for horizontal panels with the use of readily available 

inputs, such as location and weather data.  

Table 3. A summary of various studies factors of interest and other details of the studies, such as the 

type of panel and location. Data from Busquet [32], Kayri [33], Lahouar [34], and Mekhilef [31]. 

study author GP3L Study Model Busquet Kayri Lahouar Mekhilef

analysis type

random forest 
linear regression

least-square 
linear regression

multiple linear regression
random forest
artificial neural network

random forest
forcasting

case 
study

type of panel monocrystalline many unknown unknown many

orientation horizontal 20 deg tilt unknown unknown many

location over 20 Hawaii Turkey Australia many

output power daily energy power max power efficiency

factors impact

hour of day short x

month med x x

humidity short x x x x

ambient temperature short x x x x

wind speed / air velocity short x x x x x

visibility short x

atmospheric pressure short x

cloud ceiling short x

altitude long x

latitude long x

soiling (dust) med x x x

aging long x

solar elevation angle short x

solar irradiation short x x x x  

 

Irradiation 

In the numerous photovoltaic studies that utilize modeling, irradiation is found to 

be the most important factor on solar panel power output [33-34]. Cloud cover and the 

angle of the sun in relation to the Earth affects the irradiation of that area at a specific 

time [35]. Once the irradiation reaches a panel, other factors will then affect the power 

output of that panel. The panel’s individual efficiency (as determined by the technology 

used), the age of the panel, and the soiling of the panel will all affect the power output 

[32]. Furthermore, the ambient temperature surrounding the panel will influence the 
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surface temperature of the panel and high temperatures generally lead to decreased panel 

efficiency [36-37]. 

In order to predict the irradiation that strikes the horizontal plane in a specific area 

of the earth’s surface, studies have developed models that use various datasets as input 

factors including ground weather, satellite remote-sensing, and sun position. Unlike 

studies concerned with the efficiency of a solar panel and its performance once the 

irradiation reaches the panel, these studies forecast the amount of irradiation that reaches 

the tilted panels.  

A study in Taiwan used surface solar radiation forecasting to estimate solar 

irradiation for solar panels [38]. The study developed machine learning models to 

forecast surface solar radiation and the solar irradiation received by solar panels at 

different tilt angles. Alongside the satellite and sun position data, the following ground 

weather variables were used: atmospheric pressure, wind speed, precipitation, 

temperature, and relative humidity. The researchers also included radiation, an objective 

weather variable. This data was recorded on an hourly basis using a weather station on 

the ground. The researchers used these variables in their models to predict both the direct 

and diffuse horizontal irradiance striking the surface of the earth. They then estimated the 

global irradiance within the next hour with the solar panel set at a tilted position. The 

model was validated using a solar panel positioned at the same tilt angle of the estimated 

model. Using the study’s global predicted values of the total annual global irradiance 

received by panels at various tilt angles between 0 degrees and 41 degrees, the 

researchers were able to determine the optimal tilt angle for panels in that region [38]. 

This experiment excluded an empirical study involving input data from a physical solar 
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panel, but developed its models using available weather and radiation data then compared 

the model outputs to panels in the field.   

Another study estimating solar radiation was conducted in Sfax, Tunisia [35]. 

Using a numerical method, the researchers aimed to calculate the global hourly irradiance 

for a range of tilted surfaces in Sfax. The range of tilts was from 0 degrees to 90 degrees 

increasing in increments of 10 degrees. The inputs included the monthly average solar 

radiation on a horizontal surface, the tilt angle of the panel, the panel location (latitude 

and longitude), and the albedo of the area surrounding the panel. The monthly average 

solar radiation on a horizontal surface was obtained from NASA, Surface Meteorology 

and Solar Energy. The predicted average global irradiance outputs for each tilt angle were 

compared to the Photovoltaic Geographical Information System (PVGIS) and there was a 

3% difference [33]. This study did not use the weather variables the previous study did 

because the values for the solar irradiation on a horizontal surface were measured values 

from NASA instead of being obtained via model predictions.  

Studies conducted in 1991 by Faine et al. and in 2016 by Eke et al. discuss the 

factors that have the most profound effect on solar spectral irradiance [39-40]. Spectral 

irradiance is the power density at a particular wavelength and affects the performance of 

solar panels. Spectral irradiance is primarily affected by the following variables: air mass 

(AM), clouds, turbidity, water vapor, and surface pressure. Turbidity describes aerosol 

effects. AM describes the path length of the solar beam through the atmosphere. The 

standard test conditions for a solar panel include an AM value of 1.5. Under that 

condition, the sun is at a deflection angle of 48.2 degrees [39]. In real-world outdoor 

conditions, the AM value will deviate from the standard condition and the solar panel 
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performance will be influenced by the real-time AM at any given moment [40]. AM 

values increase with longer path lengths. The longer the path length of the sun’s 

radiation, the more likely scattering and absorption of solar radiation will occur by 

variables such as clouds, aerosols, and water vapor. The path length is determined by the 

sun angle which varies with latitude, time of day, and the day of the year [39-40]. 

Therefore, controlling for AM in the LM and RF models to the best extent possible will 

be imperative to each model’s accuracy and predictability.  

External Effects and Internal Losses 

Busquet et al (2015), was primarily interested in the power output of the panel in 

relation to both external and physical factors affecting its ability to output power [32]. 

These factors included the age of the panel, the soiling level of the panel, and temperature 

and wind speed of the area surrounding the panel. These factors, along with irradiation as 

an input, gave Busquet insight into how such factors will affect the panels ability to 

convert the irradiation it receives into usable electricity. Factors such as aging describe 

the long-term degradation of the panel’s power output over its lifetime. While 

temperature and humidity affect the instantaneous energy output of the panel, soiling 

decreases the energy output of the panel and is improved when rain washes off the dust 

and debris causing the soiling. By using irradiation as an input, Busquet was able to focus 

on parameters that are affecting the panel’s performance.  

A study conducted in Hong Kong in 2007 developed a model that is dependent on 

solar intensity and model temperature. The experimental set-up involved a solar panel 

placed under a 3-phase array of lamps that simulates sunlight. The incident solar 

irradiance on the plane of the solar panel was measured using a pyrometer. The following 
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six parameters were measured: solar irradiance, solar panel temperature, short-circuit 

current, open circuit voltage, and the maximum power point current and voltage. Using 

an experimental set-up, the researchers were able to isolate the panel affects to only that 

of the energy coming into the panel and the temperature of the panel. When the model, 

using the size parameters mentioned above, was validated against real-world solar panels 

in Hong Kong, and an R-squared of 0.98 was achieved for sunny conditions and 0.96 for 

cloudy conditions. This study confirmed that weather, especially panel temperature and 

solar irradiance, strongly influences the irradiation that affects solar PV panel 

performance [41].  

NOAA Weather Data  

The National Oceanic and Atmospheric Administration (NOAA) hosts a website 

where weather and climatic data from all over the world can be accessed [42]. This 

extensive repository of data can be used to determine weather norms in an area, track 

weather trends, plan for future renewable energy projects, predictive modeling, and a 

multitude of other applications. The NOAA has access to airport weather stations in the 

United States and some overseas locations. The following weather variables were 

gathered from airport weather stations for this study: wind direction, wind speed, cloud 

ceiling, visibility, outdoor temperature, dewpoint temperature, and station pressure. This 

work uses NOAA data in its analysis and how it is extracted and used will be discussed in 

Chapter III. A description of each weather variable, as described by the NOAA, can be 

seen in Table 4.  The starred variables were chosen as initial input variables. 



 

26 

 

Table 4. Data descriptions for NOAA weather data used in this study. Seven variables were used 

from the dataset.  The starred variables were chosen as input variables. 

Measurement Description

Wind Direction
Wind direction in compass degrees, 990 = variable, 
0 when air is calm (speed will then be 0)

*Wind Speed Wind speed in miles per hour

*Cloud Ceiling
Cloud ceiling--lowest opaque layer with 5/8 or greater 
coverage, in hundreds of feet, 722 = unlimited

*Visibility Visibility in statute miles to nearest tenth 

Outdoor 
Temperature

Temperature in Fahrenheit

Dewpoint 
Temperature

Dew point in Fahrenheit

*Atmospheric 
Pressure

Station pressure in millibars to nearest tenth
 

 

Photovoltaic Statistical Modeling  

Multivariate Linear Regression 

Regression is a statistical evaluation that focuses on the relationship between 

independent and dependent variables  A regression is done by employing a model 

developed using observed variable values [43]. One regression technique, known as 

linear regression, is used for variable relationships that are linear between the 

independent and dependent variables. Multivariate linear regression (MLR) is used when 

more than one independent variable is included in the model. In an MLR model, the 

dependent variable (Y) is described as a linear function of the independent variables (Xn). 

Regression coefficients (bn) for each independent variable is computed by the model as 

well as the regression line intercept (bo). The subscript n represents the number of  
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independent variables used to produce the model.  The function is as follows:  𝑌 = 𝑏𝑜 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑛𝑋𝑛 

The value of each regression coefficient (bn) is the amount of change in the dependent 

variable (Y) for every unit change in the independent variable (Xn) [43].  

 Linear models have been applied in many ways since their conception and are 

widely used. One example of its applications in the photovoltaic field is in a study by 

Hammad et al. published in 2018 [44]. The research was on the effects of dust 

accumulation and ambient temperature on photovoltaic performance. An MLR model 

was developed to estimate the solar panel conversion efficiency given experimental data 

of exposure time to natural dust and ambient temperature. The model was then applied to 

recommend the cleaning frequency needed for the optimal power output of a PV system 

installed in North Africa [44]. 

 One advantage of an MLR model is that coefficients given for each predictor 

variable can reveal how that variable affects the independent variable. For example, in an 

MLR model with solar panel power output as the response variable and six different 

predictor variables, including temperature, Kayri et al. (2017) found that the temperature 

coefficient was positive [33]. The researchers concluded that temperature has a positive 

effect on solar panel power output for their experimental context. Wind speed, on the 

other hand, had a negative coefficient and as airspeed increased, power output decreased, 

with all other variables held constant [33]. 

 A disadvantage to MLR is its sensitivity to outliers. If one or more outliers are 

present in the dataset used to develop the model, it may disproportionally affect the 
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regression and may also improperly suggest a lack of fit [45]. This is primarily a concern 

in smaller datasets where one outlier can have a more profound effect on the model [45].  

 Furthermore, multiple assumptions regarding the predicted variables error terms 

must be met in order for the model to be considered valid. If some or all of the 

assumptions are not met, more data may need to be gathered or different modeling 

techniques may need to be considered. The definition of these assumptions and how they 

are tested will be discussed in Chapter III.  

Random Forest Regression 

Random forest (RF) regression is a nonparametric machine learning model 

formulation technique developed by Breiman [45-46]. A nonparametric model does not 

have assumptions regarding the form of the function the model is fitting. Therefore, an 

RF model has the possibility to fit a wider range of functions than a parametric model 

[48]. An RF model is composed of an ensemble of decision trees. Each decision tree uses 

binary splitting in order to output a numerical estimation of the output value given the 

inputs. The sample is chosen at random from the dataset, with replacement. Given the 

number of total input variables, p, each decision tree will try a number of input variables 

less than p at each node in order to create a split. This number, mtry, is typically p/3 

depending on the problem and can be seen as a tuning parameter [48]. The value of the 

predictor is the average of the numerical outcome given by the decision trees. With 

hundreds of decision trees using a set of variables less than the total amount of variables 

to make predictions, the model is robust and overfitting is seldom [49]. Robust models 

perform well with data drawn from a distribution other than normal [45]. Overfitting is 

seldom because the decision tree is not always given the option to use the best predictor 
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to split the first node of a tree and it forces other predictors to be used. Thus, the trees are 

uncorrelated and the average predicted output has less variation and higher reliability 

than highly correlated trees that used the primary predictor variable to make an estimate 

[48].  An example of a decision tree that could be used to classify an animal based on 

information given regarding the physical characteristics of the animal can be seen in 

Figure 1. The characteristics are both numerical, such as how big the animal is, and 

categorical, such as whether or not the animal has horns.  

 

Figure 1. A decision tree used to classify an animal based on information given regarding the 

physical characteristics of the animal. The characteristics are both numerical, such as how big the 

animal is, and categorical, such as whether or not the animal has horns. [46] 

 

In addition to the advantages mentioned above, RF models output relative 

variable importance for all model input variables [49]. The model will output the rank of 

every input variable based on how well each variable decreases the mean squared error.  

The primary disadvantage of RF models is their interpretability. The results of an RF 

model are not easily interpretable and conclusions cannot easily be drawn regarding the 

meaning of the RF regression model [46]. 
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Studies Comparing Modeling Techniques 

A study done in Turkey by Kayri et al. (2017) compared three modeling 

techniques using photovoltaic and atmospheric data [33]. The photovoltaic data consisted 

of the power output of a panel located in Turkey. The three modeling techniques were 

MLR, RF, and artificial neural network (ANN). The researchers used the following input 

factors in order to predict the power output of a photovoltaic module using each of the 

three models: global radiation, ambient temperature, humidity, wind speed, wind 

direction, and solar elevation angle. The researchers found that when comparing the 

correlation coefficients of the real and estimated values of each model, the ANN 

performed the best (r = 0.997) and the RF (r = 0.986) outperformed the MLR (r = 0.963).  

In a study conducted by Lahouar et al. (2017), photovoltaic power forecasting was 

carried out using an RF regression model [34]. Using PV sites located at the University of 

Queensland in Australia, the researchers compared the power output of the actual panels 

to their forecast model’s predicted power output. Of the model’s inputs, solar irradiance 

was the most important variable followed by humidity and then temperature. This was a 

forecasting model and the researchers used only future temperature, future humidity, and 

current power values to forecast future power output. The forecasted output was 

compared to the actual data. In this case, the prediction results for three different 

techniques were compared: persistence (PER), ANN, and RF. Without any parameter 

tuning or optimization, the RF outperformed the PER and ANN when comparing the 

model’s mean absolute error (MAE), root mean squared error (RMSE), and mean 

absolute percentage error. 
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Researchers in Taiwan compared four different modeling techniques used to 

forecast solar irradiation striking a tilted panel. The four techniques were: multilayer 

perception (MLP), RF, k-nearest neighbor (kNN), and MLR. When the RMSE, the MAE, 

and the correlation coefficient (r) were compared for every model, it was determined that 

MLR had the worst prediction performance and did not apply to such a study. It was 

thought that this was due to linear models creating errors when applied to nonlinear 

problems. The researchers did not specify which component or variable from this study 

was not linear. MAE values for RF and kNN were similar and MLP had the least stable 

prediction results as the forecast horizon increased. 

Photovoltaic Model Variable Importance 

Kayri et al. (2017) noted the most important variables in their MLR, RF, and 

multilayer perception artificial neural network (MLP-ANN) models [33]. For this study, 

photovoltaic power of a solar panel is the dependent variable and six independent 

atmospheric factors were used: global radiation, temperature, wind speed, wind direction, 

relative humidity, and solar elevation angle. For the three models, all six predictors were 

meaningful and global radiation was the most important factor. For the MLR, humidity 

was the next important, then temperature. Elevation angle was the least important factor 

for the MLR. The RF and MLP-ANN had different factor rankings. Solar elevation angle 

followed and wind direction was the least important for each of those two models. 

Furthermore, temperature was more important than humidity in each, as opposed to the 

opposite in the MLR [33]. 
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III. METHODOLOGY 

Introduction 

 The purpose of this investigation is to provide further insight into the most 

important input factors for predicting power output for solar PV panels in a horizontally 

oriented position. Of the input factors, irradiation will not be included. This investigation 

will explore the relationships between numerous climatic factors and power output for 

solar PV panels across multiple locations using one year of empirical field data. The 

benefits of investigating these input factors and their relationships enable future 

researchers to determine the viability of solar pavement technology and begin developing 

predictive performance models for PV technology. 

Materials and Equipment 

 The hardware and software for this study’s test system were designed by Captain 

John Nussbaum and the Electrical Engineering Department located at the Air Force 

Institute of Technology (AFIT) [3]. Captain Joseph Applebee and Captain Cory Booker 

manufactured the 40 test systems at Tec^Edge Works located in Dayton, OH [4-5]. An 

example of one of the test systems assembled in the field can be seen in Figure 1. Within 

this system, an external power source was not present to power the recording devices. 

Therefore, an external battery (bottom right corner of the figure) and a third panel to 

charge the battery (top right corner) were included. The systems were sent to Air Force 

installations around the world. Site monitors at each location set up their respective 

system. The global location of the 37 initial test sites can be seen in Figure 2. 
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Figure 2. The assembled test system in the field. The polycrystalline solar panel is positioned at the 

top right with the monocrystalline panel below it. The yellow waterproof case is present as well. The 

external battery and the third panel to charge the battery are each in the bottom right and top right 

of the photo, respectively. [4], [9] 

 

 

Figure 3. The planned location of each test system at the inception of the study. 37 test sites are 

shown in this figure. [9] 

 

The test systems were comprised of the following equipment: a Renogy 50-watt, 

12-volt, monocrystalline solar PV panels; an ALEKO 25-watt, 12-volt, polycrystalline 

solar PV panels; Raspberry Pi 3, model B, version 1.2 computer systems; waterproof 

Pelican cases, CAT cables, power cables, and SD cards. The Raspberry Pi computer 

system gives the test system the ability to record the panels power outputs, temperature 

and humidity readings, date, and time, in 15-minute intervals. The SD card in the 
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computer was retrieved by the site monitors and downloaded every month and the dataset 

was sent to the researchers. Site monitors at each location were given instruction to clean 

off the panel whenever dust or snow cove was observed. Although this was performed 

daily for some locations, others were cleaned off less frequently. The infrequency of 

panel cleaning at some locations may have an affect on the modeling efforts being 

pursued by this study. Not having the ability to account for this affect has been identified 

as a limitation of this research.  

Procedures and Processes  

 The geographical location of each test systems was also determined by Captain 

John Nussbaum. He conducted a statistical Analysis of Variance (ANOVA) of the 

latitude and longitude coordinates of 1,763 Air Force installations, dividing the world 

into five latitude and five longitude bins [3]. A Pareto analysis was conducted on all of 

the sites using the Koppen-Geiger climate classification system and the 25 regions 

identified by an ANOVA. The Pareto analysis allowed for prioritized placement of test 

systems by identifying which regions represented a majority of Air Force installations 

[3]. Therefore, the effects of climatic conditions are being determined in the regions 

where most Air Force installations exist. 

During the experimental set-up phase, a few incidents occurred. One site received 

a cracked panel which was replaced soon after notification of the damage [4], [9]. As a 

result, this site started gathering data at a later date. Two sites decided to forego 

participation in the study.  
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Data Compilation and Exclusions 

Both panels for each location’s system outputted the power data as separate 

measurements of voltage and current. For every fifteen-minute interval, voltage and 

current were simultaneously measured every ten seconds, 64 times. Power, in watts, was 

calculated by multiplying voltage and current together. The maximum value from the 64 

measurements for each fifteen-minute interval was found. This resulted in four power 

measurements for every hour. The date (YYYYMMDD), time (HHMM), ambient 

temperature, and humidity was recorded once every 15 minutes and corresponded to each 

power measurement. Each location’s name, latitude, and longitude were added to the 

dataset. Latitude and longitude were recorded to two decimal places. It was determined 

which locations had at least eight months of recordings. All locations that met the cutoff 

were combined into one dataset.  At this point, it was determined that the monocrystalline 

solar panel measurements were inconsistent and unreliable and would not be used for 

modeling. For example, the monocrystalline panel at the United States Air Force 

Academy, in Colorado, recorded data above 400 watts, much outside of the panel’s 25-

watt rating. The two sites in Hawaii and Florida did not record any power values above 

10 watts, which is an unexpectedly low output for locations known for sunny weather. 

Other sites, such as Camp Murray, had measurements that were almost double the panel 

rating. The distributions for these four sites can be seen in Figure 4. After identifying 

these discrepancies across many sites, it was decided to proceed using only the 

polycrystalline panel data.   
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Figure 4. Examples of Monocrystalline power output distributions. USAFA had extremely high 

measurements (> 400 watts). Kahului and JDMT had unusually low measurements (<10 watts). 

Camp Murray had power outputs more than double the panel’s 25-watt rating.  

 

Each location’s time was recorded using Greenwich Mean Time (GMT) and the 

time column for every location was adjusted to its respective local time. Using the date 

and time column, hour and month columns were added to the dataset. A time stamp in the 

following format was also calculated: YYYYMMDDHHMM. This timestamp was 

needed to add weather variables from the National Oceanic and Atmospheric 

Administration’s (NOAA) datasets, which use the same timestamp. The dataset discussed 

above will be referred to as the system dataset for the remainder of this chapter because 

all measurements in this dataset were derived from the test systems in the field at each 

location.  

One site is located in the southern hemisphere and was removed from the system 

dataset. This removal was because the seasons are inverted for the southern hemisphere. 

USAFA (Colorado) Kahului (Hawaii) 

JDMT (Florida) 
Camp Murray (Washington) 
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The variation between the two hemispheres could not be accounted for in the models and 

the scope was limited to the northern hemisphere.  

Temperature values unexplainedly jumped from -28.3 degrees Celsius to -39.3 

degrees. Furthermore, the temperature will not read temperatures less than -40 degrees 

Celsius. Once -40 was reached, humidity values and power output values were 

predominantly recorded as zeros. There was no way of knowing whether or not the zeros 

were a legitimate measurement for power values less than -39, so those data points were 

removed.  

A few of the locations had an initial period in data collection where the power 

output was improbably high. This phenomenon occurred for Camp Murray, Curacao, 

Grissom, Lajes, MNANG, Offutt, and Spangdahlem. An example of this can be seen in a 

plot of Camp Murray’s months versus power output in Figure 5. This plot was built in 

JMP Pro statistical software [50].  June - October all outputted power values above the 

rest of the year. Furthermore, the panel is rated for 50 watts and June was outputting 

power values near 70 watts. Between 3-5 months of data was removed from the sites 

mentioned above due to high outputs such as the ones produced by Camp Murray.  
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Figure 5. Camp Murray months vs. power output. June – October all showed abnormally high power 

outputs and datasets in those months were ultimately removed from the final dataset. 

 

For the remaining locations, the nearest available airport weather station was 

found from the NOAA’s website and a weather dataset containing the following variables 

was downloaded: wind direction, wind speed, cloud ceiling, visibility, temperature, 

dewpoint temperature, and atmospheric pressure. Each weather station was within five 

miles of the test system location. There was no weather station near Curacao and as a 

result that location was also excluded from the final dataset.  

The weather data timestamp column was also recorded in GMT and was adjusted 

in the same manner the system dataset times were. Each weather station recorded data at 

different times and time intervals. This resulted in a time mismatch between when the 

weather stations recorded data and when the test systems recorded data. The 

programming language known as R was used to combine the system dataset and the 

weather station data [51]. The timestamps were used to determine the weather data points 
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that were within plus or minus seven minutes of the system data points. For example, if a 

site in the system dataset recorded on 201802071345 and the closest reading for weather 

data occurs at 201802071342, then that weather data point will be loaded in. If a weather 

data point was recorded more than 7 minutes before or after the test system, then no 

weather variables were matched to that data point. Subsequently, test system data points 

missing any weather variables from the weather station were removed from the final 

dataset. This resulted in Spangdahlem having zero weather data points and it was fully 

removed.  

 A time window was chosen to ensure that power readings were only occurring 

when the sun was up at every location. Therefore, only data for times between 1000 and 

1545 were used for model building. A wider window was chosen initially (0600 – 1945) 

that was later tightened due to short winter days in the northern areas.  

Furthermore, data points with power output readings less than 1% of the 

polycrystalline rating were removed. Low solar panel power output may be caused by 

legitimate events, such as heavy overcast. However, low power output could also be a 

result of snow cover, excessive dust, low temperatures, electrical shorts, and system 

malfunction. It could not be reasonably determined whether or not low power values 

were actual measurements or errors. As a result, power outputs less than 0.25 watts 

would not be included in predictive modeling. After all exclusions mentioned above, 

Lajes was left with only 2 data points and was subsequently removed as well. The full 

dataset was split 50/50 at random, with half of the data being used to develop the model 

and half of the data used to validate the model. These two datasets will respectively be 

identified as the training dataset and validation dataset for the remainder of this study.  
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 All data exclusions, as well as the training and validation dataset split, are listed in Table 

5. A tabulated list of the locations in the final dataset, the states each are located in, and 

their respective latitudes and longitudes can be seen in Table 6. The location of each site 

whose data was used in the study can be seen in Figure 6Error! Reference source not 

found.. There are two sites in Colorado that are near each other and appear as only one 

red dot on the map in Figure 6. The remaining 12 sites were all in the northern 

hemisphere and were predominately located in the continental United States. 

 

Table 5. Data exclusions that led to the final dataset used for modeling.  

Data Points

Initial compiled (16 sites) 528569

Exclusion 1: Southern Hemisphere -21087

Exclusion 2: Ambient Temperature < = -39 -3802

Exclusion 3: Hours outside of 6 - 19 (10 hours) -214338

Exclusion 4: Bad months -38901

Final without weather station data 250441

Weather station data added

Exclusion 1: Datapoints missing weather variables -193425

Exclusion 2: Hours outside 10 - 15 (8 hours) -32278

Exclusion 3: Power <= 0.25 Watts -3691

Exclusion 4: Lajes -2

Final dataset with weather station variables (12 sites) 21045

Training dataset 10522

Validation dataset 10523  
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Table 6. Final locations, the state each is located in, and their respective latitudes and longitudes. 

Data Name State Lat Long

Camp Murray Washington 47.11 -122.57
Grissom Indiana 40.67 -86.15
JDMT Florida 26.98 -80.11
Kahului Hawaii 20.89 -156.44
Malmstrom Montana 47.52 -111.18
March California 33.9 -117.26
MNANG Minnesota 44.89 -93.2
Offutt Nebraska 41.13 -95.75
Peterson Colorado 38.82 -104.71
Hill Weber Utah 41.15 -111.99
Travis California 38.16 -121.56
USAFA Colorado 38.95 -104.83  

 

Figure 6. Each site whose data was used in the study is denoted by a red dot on the map. There are 

two sites in Colorado that are near each other and appear as only one red dot. 

 

Model Development 

Two types of models were developed: multivariate linear regression (MLR) and 

random forest regression (RF). The R programming language was used for model 

development [51]. RStudio is an R script editor used for the coding process [52]. Within 



 

42 

 

R, a package known a Rattle was used to initiate the model construction. Rattle stands for 

the R Analytical Tool To Learn Easily and is an open source graphical user interface 

(GUI) meant to facilitate data mining in R without requiring extensive knowledge of 

programming and/or statistics [53]. While the interface is used to analyze data, a log of 

the R code used in the background of the GUI can be viewed and copied to RStudio. The 

R commands from the Rattle interface log was put into RStudio and altered by the 

researcher. Through accessing the log, all the packages and processes used by the Rattle 

package in forming an RF can be known to the researcher and necessary alterations can 

be implemented.  

Model Input Variable Selection 

Based on the information discussed in Chapter II, output variables from the 

experimental set-up, and available weather variables, ten predictor variable candidates 

were chosen. A list of the variable and why each was chosen is as follows: 

• Latitude: the latitude of each location will dictate the sun deflection angle. In 
clear sky conditions, the sunlight deflection angle will affect the amount of 
sunlight the panel receives. This variable controls for the sun angle as it 
relates to the panel’s position on the globe; 

• Month: when the sun rises and sets and how high it will appear in the sky at 
any location on the earth is, in part, determined by the time of year at that 
location. This phenomenon is what month is meant to control for in the model; 

• Hour: the time of day determines how high the sun is in the sky, or whether or 
not it is present at all. Hour controls for the sun’s position in relation to the 
time of day; 

• Humidity: as mentioned previously, humidity can physically affect a solar 
panel’s power output. Humidity can also indicate the possible presence of rain 
and/or clouds. This variable is controlling for both how the panel is physically 
affected by humidity and for certain weather phenomenon that may be 
occurring in the area; 
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• Temperature: the power output of a panel can be affected by temperature. If 
the temperature is very high, power output may actually decrease. This effect 
is meant to be controlled for in the model by including temperature as an input 
variable;  

• Wind speed: the temperature of the panel may be affected by the speed of the 
wind surrounding the panel, which will subsequently affect the power output 
of the panel due to power output’s dependence on panel temperature; 

• Visibility: this variable is a measurement of the distance at which a light can 
be seen and identified [54]. Visibility will primarily affect how much 
irradiation reaches the panel and can have a negative effect on power output if 
visibility is low during daylight hours; 

• Pressure: this variable has not been extensively explored in solar panel power 
output literature. Pressure may have an effect on the panel by indicating a 
weather occurrence, such as a storm [55]; 

• Cloud Ceiling: the presence of clouds in the sky above the panel will affect 
the irradiation that reaches the panel. A cloud ceiling measurement will occur 
when at least 5/8th of the sky contains clouds [56]. Therefore, this form of 
measurement also accounts for cloud cover; and 

• Altitude: there is less atmosphere for the sun to travel through at locations 
with higher altitudes. Those locations may be receiving more irradiation on 
clear days than locations closer to sea level.  

For model simplicity, every available weather variable was not used. Three 

examples of this are the following variables that could not be justified by theory to be 

included in the model or were redundant measurements:  

• Outdoor Temperature measured at the weather station: each solar panel set-up 
already has an ambient temperature measurement;  

• Dewpoint Temperature: due to the time period chosen for the study, 1000-
1500, the dewpoint will not be reached [57]. Including the dewpoint 
temperature cannot be justified for this model; and  

• Wind Direction: the presence of wind speed controls for the effects of wind 
and wind direction is not necessary for this investigation.  
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In order to address correlated variables, the correlation of every numeric input 

variable was checked using R prior to model development. Removing highly correlated 

variables ensures that the effect of the highly correlated variables is not overemphasized 

in the model. The only variables with a high correlation coefficient were altitude and 

pressure with a coefficient of -0.997. Pressure and power output had a correlation 

coefficient of 0.07. Altitude and power output had a correlation coefficient of -0.08. Out 

of the two highly correlated variables, pressure was subsequently removed due to its 

lesser correlation with power output. The correlation coefficients for all numeric input 

variables are in Figure 7. 

 

Figure 7. Correlation coefficients for all numeric input variables. Pressure and altitude and highly 

negatively correlated.  

 



 

45 

 

Multivariate Linear Regression 

Data analysis was conducted prior to building the model. Histograms of each 

variable may indicate how each variable could be treated in the model. Scatterplots of the 

response variable versus each of the predictor variables can help determine their 

univariate relationships, as well as each predictor variable against each other [45].  

Hypothesized Model 

Scatterplots and correlation coefficients of the full dataset were used to 

understand how each variable may be related to power output. Humidity versus power 

output was fairly spread-out but may have a negative relationship. As humidity increases, 

power output decreases. The humidity versus power output scatter plot can be seen in 

Figure 8. Wind speed, shown in Figure 9, also appeared to have a negative effect on 

power output. Ambient temperature (Figure 10) and visibility (Figure 11) appeared to 

each have a positive relationship with power output. As temperature increased and/or 

visibility improved, power output increased. The relationship between power output and 

altitude (Figure 12), cloud ceiling (Figure 13), and latitude (Figure 14) were not clear in 

the plots. The correlation coefficients for every numeric variable can be seen in Figure 7. 

Altitude’s correlation coefficient revealed a slightly negative correlation of -0.08. Cloud 

ceiling had a positive correlation coefficient of 0.42; the higher the cloud ceiling, the 

more power output. Latitude had a correlation coefficient of -0.42 with power output. As 

the latitude increased (moves north of the equator), power output decreased.  
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Figure 8. Scatterplot of humidity vs. power output using the full dataset. The plot indicates a possible 

negative relationship. 

 

 

Figure 9. Scatterplot of wind speed vs. power output using the full dataset. The plot indicates a 

possible negative relationship. 
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Figure 10. Scatterplot of ambient temperature vs. power output using the full dataset. The plot 

indicates a positive relationship. 

 

 

Figure 11. Scatterplot of visibility vs. power output using the full dataset. The plot indicates a positive 

relationship. 
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Figure 12. Scatterplot of altitude vs. power output using the full dataset. The relationship between 

the variables in this plot is not clear. 

 

 

Figure 13. Scatterplot of cloud ceiling vs. power output using the full dataset. The relationship 

between the variables in this plot is not clear. 
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Figure 14. Scatterplot of latitude vs. power output using the full dataset. The relationship between 

the variables in this plot is not clear. 

 

These relationships were used to develop the hypothesized model in Equation 1. It 

was hypothesized that the estimated coefficients for latitude, humidity, and altitude 

would all be negative. Month and Hour were each coded as categorical variables in the 

model because they are controlling for sun position. It was assumed that sun position did 

not need to be known for every day or minute, but that each month and hour would 

suffice. Due to these variables being classified as categorical, they each had their own 

coefficient associated with every month and hour value. There will be 11 coefficients for 

month because month 1 will be the baseline for the model and will not be assigned a 

coefficient. The same is true for hour 10.  
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Power Output =𝛽𝑜 + 𝛽1𝐿𝑎𝑡 ± +𝑀𝑜𝑛𝑡ℎ ± 𝛽13−17𝐻𝑜𝑢𝑟 + 𝛽18𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 +𝛽19𝐴𝑚𝑏𝑖𝑒𝑛𝑡𝑇𝑒𝑚𝑝 + 𝛽20𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑 + 𝛽21𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 + 𝛽22𝐶𝑙𝑜𝑢𝑑 𝐶𝑒𝑖𝑙𝑖𝑛𝑔 +𝛽23𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒  

Equation 1. The hypothesized linear model including all initial input variables. 

 

Assumption Checks 

Because MLR is a parametric model, key assumptions regarding the residuals of 

the model must be met in order to apply the MLR to this investigation. The residuals are 

the error values of the predicted power value versus the actual values, given the input 

variables. There are a number of assumptions that can be checked qualitatively and/or 

quantitatively. The first assumption addressed is that of constant variance of the residuals. 

Qualitative tests for this assumption involve plotting the residuals versus predicted power 

values and observing whether or not the variance is increasing or decreasing in a 

systematic manner. If such a pattern is observed, then a quantitative test will be 

conducted to confirm or dispute the qualitative test. If the residuals appear to be normal, 

then the Breusch-Pagan will be conducted. The null hypothesis for that test states that the 

variance of the residuals is constant. A p-value less than 0.05 will reject the null because 

a significance level of 0.05 was chosen for this model. 

Lastly, coerrelation of the residuals must be addressed. This is done by checking 

the residuals for autocorrelation. If the residuals are correlated, then they are not 

independent of each other. Autocorrelation is common in time series data similar to the 

data used in this research. A residual versus time plot is used to evaluate autocorrelation 

qualitatively and a Durbin-Watson test is used for quantitative assessment. The null 
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hypothesis for the Durbin-Watson test is that autocorrelation of the residuals is zero and a 

p-value close to zero rejects the null. If autocorrelation of the residuals exists then a 

Cochrane-Orcutt transformation can be attempted. A Cochrane-Orcutt transformation is 

meant to correct for first-order autocorrelation [45]. First-order meaning that each 

residual is only correlated with the residual immediately proceeding it. 

If either assumption mentioned above is not met, then the estimated regression 

coefficients are still unbiased, but may no longer be efficient [45]. By not being efficient 

the coefficients no longer have minimum variance and the MSE may underestimate the 

variance of the error terms. The true standard deviation of the estimated regression 

coefficient will also be underestimated [45]. Furthermore, the t distributions used to 

determine the significance of the input variables are no longer applicable. In place of the 

underestimated standard errors outputted from the model, robust standard errors can be 

used to allow for model inferences that would have otherwise been invalid. Robust 

standard errors can be found in R and allow for valid t-tests. The robust standard error 

estimation procedure in R uses the sandwich package and is called the Heteroskedasticity 

and Autocorrelation Consistent Covariance Matrix Estimation [58].  

 Normality of the residuals is another assumption that applies to linear models. In 

this case, however, any deviation from normality will not be a concern because the 

dataset for this study is considered large [44]. 

Model Iterations 

Model iterations were conducted to meet model assumptions, decrease prediction 

standard error, or increase variance accounted for. After addressing model assumptions, 

insignificant variables were removed from the model. A significance level of 0.05 was 
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chosen for this model, which dictated which predictor variables were significant. Then 

dependent variable transformations and interactions were explored in order to optimize 

the model’s predictability. The finalized model was validated using the validation dataset.  

Random Forest Regression 

RF is a nonparametric modeling technique and no assumptions were required to 

be met. The same training dataset used to develop the MLR was used for the RF. 

Iterations for the RF model involved adjusting two model tuning parameters. The first 

tuning parameter is how many trees need to be developed in order to reduce prediction 

error as much as possible. The second tuning parameter, known as mtry, is how many 

variables will be tried at each node within every tree. Tuning these two parameters will 

reduce model error and increase the amount of variance the model can account for. 

Variable importance is an output of the model and can help dictate whether or not certain 

variables can be removed from the model with little change to model performance. 

Removing variables that are not helping the model is desired in order to simplify the 

model. The finalized model was validated using the same validation dataset that was used 

for the MLR.  

Comparing the Two Models 

The same training dataset and validation dataset were used for development and 

validation of the MLR and the RF. Each model began its development with the same 

initial predictor variables. Within each model’s development process, predictor variables 

may be removed due to insignificance in the model. Therefore, some variables may 

remain in one model and not in the other. Furthermore, MLR models will often involve 
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variable transformation or interactions while a random forest model will not change its 

input variables in this manner.  

 Each model was used to predict the power output of the validation set. Each 

model’s prediction will estimate an R-squared value. This output describes the percentage 

of variance in the data the model can account for. For instance, if the R-squared value is 

0.3, then 30% of variance in the output is accounted for in the model.  These R-squared 

values were compared to decide which model better predicted the power output for the 

validation dataset. 

Sources of Error 

The data measurement equipment is a source of error in this study. Sensitive 

components, such as the computer system, was in a weatherproof case at each site. 

However, condensation may still get inside the case and cause malfunctions in the 

system. Additionally, extensive snow coverage and/or extremely cold temperatures may 

cause data outages. Some sites did not begin reading consistent data until a few months 

into the investigation and erroneous data from that break-in period may have not been 

filtered out of the dataset completely. The weather stations were not co-located with the 

test systems and were up to five miles away. Additionally, a slight measurement error 

between the weather station data points and the system data points may be present. This 

error was because some of the measurements at the weather station were recorded up to 

seven minutes before or after the system data was measured.   
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IV. RESULTS AND ANALYSIS 

Quality of Data 

The final dataset used for analysis has 9 input variables and is composed of data 

from 12 different locations. Each location had a minimum of 780 data points and as many 

as 2,746. The number of data points for each location can be seen in Table 7.  

 

Table 7. The number of data points each location has in the final dataset. The locations are arranged 

in descending of data points order from left to right. 

Travis Peterson USAFA
Hill 

Weber
March 
AFB

JDMT
Malm-
strom

Grissom
Camp 

Murray
Kahului Offutt MNANG

2746 2640 2573 2384 2204 1779 1517 1487 1113 941 881 780  

 

Descriptive statistics for each variable are shown in Table 8. Visibility and cloud 

cover are predominantly reporting clear skies (722) and high visibility (10). This large 

number of repeated values could lead to the variable being insignificant in either model. 

 

Table 8. Descriptive statistics for each quantitative variable.  

Power 
Output

Latitude Humidity Temp
Wind 
Speed

Visibility
Cloud 
Cover

Altitude

Units watts degrees percent Celsius mph miles 100 feet meters

Min. 0.26 20.89 0 -19.98 0 0 0 1

1st Qu. 6.40 38.16 17.53 21.92 6 10 140 2

Median 13.80 38.95 33.12 30.29 9 10 722 458

Mean 12.98 38.12 37.12 29.29 10.32 9.7 516 798.8

3rd Qu. 18.86 41.15 52.59 37.47 14 10 722 1370

Max. 34.29 47.52 99.99 65.74 49 10 722 1947  
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 Data point exclusions affected the number of data points for each hour and month. 

The earliest hour in the timeframe, hour 10, has the least amount of data points, as can be 

seen on the bar chart in Figure 15. The amount of data points for each month appears to 

be affected the most by data point exclusions. October (month 10) has the least amount of 

data points with 903 while July (month 7) had the most with 2,929 data points. It is not 

known why October had the least data points. However, it may be expected for fall and 

winter months to have the least due to data errors associated with cold temperature, snow 

cover, and system dropouts. The bar chart for months can be seen in Figure 16.   

 

 

Figure 15. Bar chart of hours within the timeframe set for the analysis. The hours are shown in 

succession from left to right. The dataset count is shown near the top of each bar. 

 

2,957 
3,251 
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3,814 
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Figure 16. Bar chart of months. October has the least amount of data points and July has the highest 

number of data points. 

 

Modeling 

Linear Regression Model 

The hypothesized model was run in R using the stats package [59]. The initial R-

squared value for the hypothesized model was 0.525. The residual plots of the 

hypothesized model indicated that the residual variance is not constant. According to the 

residual versus predicted plot in Figure 17, as the predicted power values increased, so 

did the variance of the residuals. The constant variance assumption had to be addressed 

before optimizing the model prediction.  
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Figure 17. Residual versus fitted plot for the hypothesized MLR model. Non-constant variance of the 

residuals can be seen in this plot.  

 

In order to confirm what is being observed in the residual plots, a Breusch-Pagan 

test was conducted in R using the lmtest package [60]. The null hypothesis for this test 

states that the variance of the residuals is constant. The p-value for the Breusch-Pagan 

test for this model was < 2.2e-16. This p-value is below 0.05 so the null hypothesis is 

rejected and the variance of the residuals is non-constant.  

One option used to remedy non-constant variance is transforming the dependent 

variable, power output. Three transforms were considered based on their normalizing 

influence on the distribution of power output. The distribution of power output can be 

seen in Figure 18. Power output is slightly bimodal and appears to be right-skewed. The 

distribution of each transform applied to the power output are also presented in the titles 

of Figure 18. The first transform was logarithmic. This transform made the distribution 
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unimodal but caused a left skew. Taking the square root of power output moved the 

distribution closer to normal with less of a left skew than a logarithmic transform. The 

third transform was decided using a Box-Cox transformation method that estimates 

which power value would be the most effective in stabilizing the residuals [45]. The Box-

Cox method was performed in R using the caret package [61]. The power value was 

found to be 0.7. Each of these transformations was considered because they each 

transformed the power output distributions differently. 

 

Figure 18. Distributions of power output untransformed and power output with three 

transformations applied.  
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All three of the residuals versus fitted plots were similar to the hypothesized 

model. It was evident that non-constant variance was still present in each of the 

transformed models. Shown by the residuals versus fitted plots in Figure 19, the 

logarithmic transform over-corrected and the two other transforms still showed increased 

variance for increasing fitted values. 

 

  

Figure 19. Hypothesized model residual versus fitted values plots for all transformed and 

untransformed power outputs. 

 

Correcting for non-constant variance by transformation proved ineffective. 

Robust standard errors will have to be applied before making any inferences. The effects 

of non-constant variance will be addressed after checking the rest of the assumptions.  

Autocorrelation of the residuals was assessed next.  Evidence of autocorrelation 

can be seen in the residual versus index plot in Figure 20. This plot was produced in R 
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using the ExPanDar package [62]. The data points are indexed by location alphabetically. 

Within each location, the data points are ordered by date/time from earliest to latest. For 

example, all data points for the location Camp Murray appear first in the index and 

correspond to X=1 to X=1113 and all Camp Murray data points are ordered by date/time. 

Following Camp Murray are all data points for Grissom, also ordered by date/time.  

 

 

Figure 20. Hypothesized model residual vs. index plot. A pattern can be seen, indicating 

autocorrelation of the residuals. 

 

The possibility of autocorrelation was confirmed using the Durbin-Watson (DW) 

test in R with the lmtest package [60]. The null hypothesis for the DW test states that the 

residual autocorrelation is zero. The alternative hypothesis states that the autocorrelation 

is greater than zero. The p-value for the Durbin-Watson test was < 2.2e-16. This value is 

close to zero and the null hypothesized is rejected. The autocorrelation of the residuals is 

not zero.  
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One cause of autocorrelation in the residuals is the absence of one or more key 

predictor variables that have time-ordered effects on power output [45]. Given the scope 

of this research, additional predictor variables could not be added to the model. Another 

remedial measure is to transform the model variables using a procedure known as 

Cochrane-Orcutt. The procedure will only work for first-order autoregression; each 

residual is correlated with the residual immediately proceeding it [45]. The 

autocorrelation for this model is more complicated than a first-order autoregression. 

Autocorrelation is present in the residuals, but the exact structure of the data causing the 

autocorrelation is unknown. Therefore, the autocorrelation cannot be remedied using 

Cochrane-Orcutt.  

Because the model has failed two assumptions, the model outputs must be 

adjusted to account for both the non-constant variance and autocorrelation of the 

residuals. Once the t-tests must be assessed, the new standard errors will be used. In the 

meantime, model formulation continued.  

Although non-constant variance could not be remedied by transforming power 

output, the model adjusted R-squared value can be increased using a y-transformation. 

Adjusted R-squared takes into account the number of variables in the model. The square-

root transformation increased the hypothesized model adjusted R-squared value by 

0.0117. Table 9 shows the adjusted R-squared value of each transformation.  

Table 9. Adjusted R-squared values are the hypothesized model and each of the transformed models. 

PolyPwr log(PolyPwr) sqrt(PolyPwr) (PolyPwr) 0.7

Adjusted
R-Squared

0.525 0.5041 0.5367 0.5356
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Once an appropriate Y-transform was applied, the significance of the variables 

must be assessed in order to determine if each predictor should remain in the model. 

However, the t-statistic of each variable is not valid because the residuals have non-

constant variance and are autocorrelated. Robust standard errors were used to perform a t-

test of the coefficient in order to determine which variables are significant in determining 

the power output. The robust standard error estimation was performed in R and does not 

change the coefficient estimates, just the standard errors and the t-test p-values. From the 

robust standard error, visibility was shown to have a p-value of more than 0.05; the 

significance level chosen for this study. The t-test null hypothesis states that the 

relationship between the dependent and independent variables is zero. When the p-value 

is above 0.05, then the null hypothesis is failed to be rejected and there is not enough 

evidence to conclude that a non-zero relationship exists. As a result of the hypothesis test 

visibility was removed from the model and the model was re-fit.  

With insignificant variables now removed from the model, independent variable 

transformations were explored. Transforming the independent variables can increase the 

adjusted R-squared value. The scatter plots of each dependent variable versus the square-

root of the power output revealed possible transformations. By transforming a dependent 

variable, the relationship between the independent and the dependent variable may 

become more linear and increase the adjusted R-squared. Humidity showed a tighter 

grouping in its scatter plot when a square root transformation was applied. The 

scatterplots of humidity against the square root of power output before and after the 

transformation can be seen in Figure 21 and Figure 22, respectively. Transforming 
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humidity caused the R-squared to decreased by 0.011 and error increased by 0.009. As a 

result, humidity remained untransformed for the remainder of model optimization.  

Input variable transformations were also pursued in an effort to further optimize 

the model. In the scatterplot of humidity versus ambient temperature, seen in Figure 23, 

the two variables appeared to be related. This was also confirmed with their correlation of 

-0.57 in Figure 7. As a result, ambient temperature and humidity were interacted and this 

improved the model. R-squared increased by 0.0031 and error decreased by 0.0028.  

 

 

Figure 21. Humidity vs. sqrt(PolyPwr).  
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Figure 22. Sqrt(humidity) vs. sqrt(PolyPwr). The data points appear to have moved slightly closer 

together and the relationship may be more linear than before humidity was transformed.  

 

 

Figure 23. Scatterplot of humidity vs. ambient temperature. There appears to be a slightly negative 

relationship between the two variables.  
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Latitude and altitude are both variables meant to control for the amount of 

irradiance the panel receives. Latitude is controlling for the angle of the sun in relation to 

each location, which affects how much atmosphere the sun’s energy must travel through 

before reaching the ground. Altitude also controls for how much atmosphere the sun’s 

energy must go through based on the fact that higher altitude locations have less 

atmosphere. When these two terms are interacted, the model improves by an R-squared 

increase of 0.0118 and an error decrease of 0.01.  

This interaction marked the final manipulation of the model. The final model R-

squared value was 0.5516, meaning 55.16% of the variance in the power output was 

accounted for in the model. Each coefficient estimate, its standard error, and its robust 

standard error can be seen in Table 10. The percent difference between the standard 

errors and the robust standard errors are also included in Table 10. Many robust standard 

errors increased from the original standard errors in order to account for the non-constant 

variance and autocorrelation of the residuals. The standard errors for all quantitative 

variables increased by at least 50% and as much as 82.9%. This change signifies how 

much of an effect the non-constant variance and autocorrelation has on the estimation of 

the population distribution.  
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Table 10. Coefficient estimates, standard errors, robust standard errors, and the percent difference 

between the standard errors. Standard error increased for all quantitative variables by at least 50% 

and as much as 82.9%. 

Coefficient Estimate
Standard 

Error
Robust

Std. Error
% Diff.

Intercept 3.6607 0.1021 0.1693 65.8
Latitude -0.0393 0.0018 0.0019 5.6
Month 2 0.2986 0.0429 0.0787 83.4
Month 3 0.6587 0.0404 0.0802 98.5
Month 4 0.7559 0.0394 0.0772 95.9
Month 5 0.7233 0.0404 0.0749 85.4
Month 6 0.7249 0.0407 0.0708 74.0
Month 7 0.5993 0.0412 0.0733 77.9
Month 8 0.5029 0.0407 0.0723 77.6
Month 9 0.2845 0.0402 0.0710 76.6
Month 10 0.1529 0.0468 0.0775 65.6
Month 11 -0.0573 0.0414 0.0742 79.2
Month 12 -0.2229 0.0422 0.0765 81.3
Hour 11 0.2845 0.0270 0.0239 -11.5
Hour 12 0.4109 0.0270 0.0271 0.4
Hour 13 0.4172 0.0271 0.0293 8.1
Hour 14 0.3169 0.0275 0.0308 12.0
Hour 15 0.0573 0.0274 0.0315 15.0
Humidity -0.0162 0.0008 0.0008 0.0
Ambient Temp 0.0197 0.0014 0.0012 -14.3
Wind Speed 0.0057 0.0012 0.0018 50.0
Cloud Ceiling 0.0009 0.00003 0.00005 66.7
Altitude -0.0025 0.0001 0.0001 0.0
Ambient Temp * Humidity 0.0002 0.00003 0.00005 66.7
Latitude*Altitude 0.00006 0.000004 0.000006 50.0  

 

The hypothesized model began with 9 input variables and the final model 

eliminated one, visibility. Power output was transformed and two sets of variables were 

interacted with each other in the final model. Due to these changes, model interpretation 

is no longer straight forward. As an example, this is an explanation of the relationship 



 

67 

 

ambient temperature and humidity have with power output in the final model: with all 

else held constant, for every unit increase of both ambient temperature and humidity, the 

square root of the power output will increase by 0.00023 watts0.5. The model does not 

have any meaningful interpretation regarding its relationships due to how much the 

model had to be manipulated to produce better predictability. However, a comparison 

between this model and the RF model can be conducted. Also, the general relationships 

in the model can be discussed.  

Temperature, wind speed, and cloud ceiling each have a positive relationship with 

power output. Latitude, humidity and altitude each have a negative relationship with 

power output. As temperature and humidity both increase, power output follows. For 

locations with higher altitude and at higher latitude, power output increases. Months 11 

and 12 (November and December) were the only months with negative coefficients in the 

model. This may indicate that these months produced the least amount of power output 

than the rest of the year. 

 The final MLR model was validated using the validation dataset. The MLR 

model was used to predict the square root of the power output due to the y-transformation 

that was applied. The resulting R-squared value describes how well the model predicted 

the power output of the validation dataset. The R-squared value of the validation was 

0.5620. This means that the model was able to account for 56.20% of the variance in the 

validation dataset. The R-squared of the validation was 1.04% higher than the final 

model’s R-squared value. Figure 24 shows the model validation predicted versus 

observed plot. The solid red line is the fit line for the prediction. The dashed red line 
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represents a theoretical perfect-fit with an R-squared value of 1.0. Predicted values in the 

top left and bottom right of the plot pulled the fit line away from the theoretical fit. 

 

Figure 24. Linear regression validation predicted vs. observed plot. The solid red line represents the 

fit line. The dashed red line represents the fit line if the model R-squared value was 1.0.  

 

Random Forest Model 

The initial RF model included the same input variables as the hypothesized MLR. 

Month and hour were also coded as categorical variables. The initial model was built 

using 500 trees and an mtry of 3. A forest of 500 trees sufficiently decreased model error 

Fit Line 

R-sqr. = 1.0 
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as shown in the number of trees versus error rate plot in Figure 25. Adding more than 500 

trees would not reduce the error any further.  

 

 

Figure 25. The number of trees versus error plot. 500 trees are shown to sufficiently reduce the error 

of this model. Adding more than 500 trees would not significantly reduce the error. 

 

Other mtry values were tried in order to reduce model error. Each mtry value and 

the associated model mean squared error (MSE) is shown in  

Table 11. MSE was minimized when mtry was 3. Model analysis continued with 

500 trees and an mtry of 3.  

 

Table 11. Model MSE for mtry from 1-5. An mtry of 3 had the highest reduction in MSE.  

mtry 1 2 3 4 5

MSE 20.56 17.58 17.54 17.62 17.76
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Variable importance is listed in Table 12. Variable importance was measured by 

how much each variable decreased the model MSE. This measure is found by calculating 

the MSE of the portion of the data not used to build the decision tree. The MSE is 

calculated again after permuting each predictor variable. Then each MSE are subtracted 

from each other. This is done for every tree in the forest. The average change in MSE for 

each predictor variable permutation is found for the whole forest. By this measurement, 

ambient temperature is the most important variable and visibility is the least important. 

Ambient temperature decreased the prediction MSE by 23.87% when it was not 

permuted. Visibility decreased the prediction MSE by 0.45% 

 

Table 12. Variable importance ranked in descending order by reduction in MSE. 

Variable
MSE 

Reduction

Ambient Temp 23.87
Month 15.72
Humidity 11.91
Cloud Ceiling 11.83
Latitude 9.7
Altitude 7.41
Hour 5.59
Wind Speed 1.63
Visibility 0.45  

 

Another way to rank the variables is to divide the MSE reduction by the variable’s 

standard error. By scaling the values, the ranking takes the error of each variable into 

account and may change each variable’s relative importance. The scaled rankings can be 

seen in Table 13. Cloud ceiling is now the most important variable in reducing model 
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error and visibility is still the least important. This raking is by relative importance and 

each individual variable may remain quintessential in reducing model error.  

 

Table 13. Variable importance scaled by dividing the MSE reduction by each variable’s standard 
error. 

Variable
Scaled 

Importance

Cloud Ceiling 132.57
Month 131.34
Hour 110.34
Ambient Temp 69.76
Humidity 80.49
Latitude 59.23
Altitude 54.79
Wind Speed 43.52
Visibility 24.14  

  

How visibility affects the full model MSE can be determined by re-running the 

model without it and comparing the MSE to the model with it included. Removing 

visibility from the model increased MSE from 17.56 to 17.60. That increase in error is 

small and for the purposes for model simplicity, visibility was dropped from the final 

model. Removing the next lowest ranking variable, wind speed, was also considered. 

However, wind speed was ultimately left in the model due to its 0.3 error increase when 

removed. 

The final model was developed using 8 of the initial 9 input variables: latitude, 

humidity, ambient temp, month, hour, wind speed, cloud ceiling, and altitude. The 

number of variables tried at each node was 3 and the number of trees in the forest was 
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500. MSE was 17.60 and the variance accounted for was 65.34%. Variable importance 

was recalculated after removing visibility and can be seen in Table 14. The scaled 

variables importance rankings can be seen in Table 15.  

 

Table 14. Final model variable importance ranked in descending order from the top. 

Variable
MSE 

Reduction

Ambient Temp 24.7
Month 16.01
Humidity 12.37
Cloud Ceiling 11.01
Latitude 10.06
Altitude 7.29
Hour 5.66
Wind Speed 1.63  

 

Table 15. Final model scaled variable importance ranked in descending order from the top. 

Variable
Scaled 

Importance

Month 133.74
Cloud Ceiling 133.43
Hour 112
Ambient Temp 95.95
Humidity 79.89
Latitude 63.17
Altitude 56.68
Wind Speed 45.71  

 

The top three variables most important in reducing RF model MSE were ambient 

temperature, month, and humidity. When the variable importance is scaled, the top three 
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most important variables were month, cloud ceiling, and hour. Cloud ceiling also takes 

cloud cover into account, and is measured when at least 5/8 of the sky view above the 

weather station is covered by clouds – cloud ceiling data is presented in Table 4. 

Therefore, cloud ceiling has an effect on how much sun can reach a solar panel and that 

effect is realized in the RF model. Month and hour were each included in the model in 

order to account for seasonal weather changes and the sun’s position in the sky. The three 

least important variables in reducing MSE were latitude, altitude, and wind speed. 

Latitude is known to affect the angle at which the sun’s energy reaches the surface of the 

earth and, in turn, the amount of irradiation that reaches a horizontal solar panel [23], [62-

65]. This variable may be ranked low because of the limited latitudes included in the 

model. Latitudes in the northern hemisphere range from 0 degrees (the equator) to 66 

degrees (the start of the arctic circle). The latitude range for this study was from 20.89 

degrees to 47.52 degrees. That is about 1/3 of the total latitude band from the equator to 

the arctic circle. Subsequently, the effect that latitude may have on power output may not 

be strong for this study’s range of latitudes.  

The final RF model was validated using the same dataset as the MLR model. The 

RF model was used to predict the power output of the validation dataset. With an R-

squared value of 0.6580, the model was able to account for 65.80% of the variance in the 

validation dataset. The R-squared of the validation was 0.46% higher than the final 

model’s R-squared value. Figure 26 shows the model validation predicted versus 

observed plot. The solid red line is the fit line for the prediction. The dashed red line 

represents a theoretical perfect-fit with an R-squared value of 1.0. Similar to what 
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happened with the MLR, the predicted values in the top left and bottom right of the plot 

pulled the fit line away from the theoretical fit.  

 

Figure 26. Random forest validation predicted vs. observed plot. The solid red line represents the fit 

line. The dashed red line represents the fit line if the model R-squared value was 1.0. 

 

Model Comparison 

Following the MLR model iterations and RF model tuning, each model used the 

same 8 predictor variables to predict power output. The MLR model accounted for 

56.20% of the variance in the power output of the validation dataset. The RF model 

accounted for 9.6% more variance, outperforming the MLR. When each model was used 

to predict the power output for every location, the RF model was able to account for as 

much 13.24 % more variance than the MLR model. Travis Air Force base in California 

Fit Line 

R-sqr. = 1.0 
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had the highest predictability using the RF model with 78.91% variance accounted for. 

The location with the lowest predictability was Kahului airport with 39.32% variance 

accounted for. Every locations predictability using each model can be seen in Table 16. 

 

Table 16. Each locations predictability using each model as well as the difference in percent variance 

accounted for. 

Camp 
Murray

Grissom
Hill 

Weber
JDMT Kahului

Malm-
strom

March 
AFB

MNANG Offutt Peterson Travis USAFA

RF 74.99 64.87 67.35 49.53 39.32 62.94 60.03 71.08 56.60 60.74 78.91 48.87

MLR 73.73 51.99 65.07 38.10 26.08 55.43 53.06 63.18 54.27 50.90 74.41 38.46

Difference 1.26 12.88 2.28 11.43 13.24 7.51 6.97 7.90 2.33 9.84 4.50 10.41   

 

An example of a 3-day prediction summary for Travis Air Force base using each 

model can be seen in Figure 27. This prediction took place from 1000 on July 2nd, 2018 

to 1500 July 4th, 2018. The RF model slightly overpredicted on July 2nd, was close to the 

observed power outputs on July 3rd, and slightly underpredicted on July 4th. The MLR 

model slightly underpredicted a majority of the time for all three days.  

 

Figure 27. A 3-day prediction summary for Travis Air Force base using each model from 1000 on 

July 2nd, 2018 to 1500 July 4th, 2018. 
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V. CONCLUSIONS 

The researched aimed to contribute to the US Air Force goals of increased clean 

and renewable energy implementation in the future. Horizontal solar panel 

implementation may help achieve renewable energy goals for the future and increase 

energy resilience across the DoD. This aim is partially achieved by contributing to future 

modeling efforts of horizontal solar panels. This modeling effort focused on predicting 

power output without irradiation as an input. If a horizontal solar panel model can predict 

power output with the use of readily available inputs, such as location and weather data, 

then assessing the possibility of utilizing horizontal panels in many global locations 

becomes possible. 

Research Question 1: Prediction ability based on model type 

The random forest (RF) machine learning outperformed the multivariate linear 

regression (MLR) model. The RF model accounted for 65.8% of the power output in the 

validation dataset while the MLR model accounted for 56.2%, a difference of 9.6%. The 

RF model also accounted for up to 13.24% more variance when predicting power output 

for each location in the study.  

Research Question 2: Input variable importance ranking 

Given the 8 input variables used, ambient temperature is the most important input 

variable in reducing the mean squared error of the RF model. When the importance 

rankings are scaled, the month of the year is the most important variable in predicting 

power output of a horizontal solar panel when irradiation is not present. Month was one 
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the top three most important variables for both the scaled and unscaled importance 

measurements. Therefore, month is controlling for factors that have a high impact on the 

panel performance. Cloud cover closely followed month in scaled variable importance. 

This result makes intuitive sense because the amount of clouds present above a panel will 

affect how much of the sun’s energy it will receive.  

Research Question 3: Relationships between input factors and power output 

The correlation coefficients of humidity, latitude, and altitude in Figure 7 indicate 

a negative relationship with power output. As humidity increases, power output 

decreases. More northern locations with higher latitudes have lower power outputs than 

locations closer to the equator. Locations with higher altitudes have lower power output 

than locations closer to sea level. Wind speed and cloud ceiling each have a positive 

relationship with power output. Increased wind speed increases power output. Higher 

cloud ceilings also lead to higher power outputs. These relationships are also present in 

the estimated coefficients of the MLR model.  The model’s interacted variables estimated 

coefficients indicate that as humidity and temperature each increase, so does power 

output. Also, power output increases for locations with increased latitude and altitude.  

Recommendations for Future Research 

 The month of the year is an important variable in the RF model. Further work can 

be done to study which additional factors month may be controlling for within the model 

aside from sun position. Exploring the possibility of adding more predictor variables to 

account for irradiation may help increase model accuracy. Solar irradiation data was not 

available for use in this study. For future studies, adding an instrument to measure 



 

78 

 

irradiation to the experimental set up will allow for the efficiency of the panel in various 

weather conditions to be analyzed. This can also point to meaningful relationships 

between the weather conditions and the panel performance. Adding parameters that 

account for soiling may also be beneficial in future work. Factors such as time since last 

rainfall may indicate the last time dust was cleaned off of the panel by rain. Including a 

factor that controls for soiling may increase model predictability by controlling for low 

power output that is due to dust cover on the panel.  

 Additionally, other modeling techniques and parameters can be used in an effort 

to better capture the relationship between the input variables and the power output of a 

horizontal solar panel. Within the MLR model, there may be fixed effects or random 

effects that the model may be able to control for. Future researchers can consider the 

possibility of utilizing a fixed effect or random effect model for this experimental 

context. Researching modeling techniques for time series data and/or panel data may also 

help better characterize the relationships within the data. 
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