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Modeling Prosodic Features With Joint Factor
Analysis for Speaker Verification

Najim Dehak, Pierre Dumouchel, and Patrick Kenny

Abstract—In this paper, we introduce the use of continuous
prosodic features for speaker recognition, and we show how they
can be modeled using joint factor analysis. Similar features have
been successfully used in language identification. These prosodic
features are pitch and energy contours spanning a syllable-like
unit. They are extracted using a basis consisting of Legendre
polynomials. Since the feature vectors are continuous (rather than
discrete), they can be modeled using a standard Gaussian mixture
model (GMM). Furthermore, speaker and session variability
effects can be modeled in the same way as in conventional joint
factor analysis. We find that the best results are obtained when
we use the information about the pitch, energy, and the duration
of the unit all together. Testing on the core condition of NIST
2006 speaker recognition evaluation data gives an equal error rate
of 16.6% and 14.6%, with prosodic features alone, for all trials
and English-only trials, respectively. When the prosodic system is
fused with a state-of-the-art cepstral joint factor analysis system,
we obtain a relative improvement of 8% (all trials) and 12%
(English only) compared to the cepstral system alone.

Index Terms—Joint factor analysis, Legendre polynomial,
prosodic features, speaker recognition.

I. INTRODUCTION

ALARGE majority of speaker verification systems are based
on cepstral coefficients such as Mel frequency cepstral

coefficients (MFCCs). Several models have been proposed for
these kinds of features [1]–[3]; however, in the last ten years, we
have observed the use of prosodic information for speaker verifi-
cation [4]–[7]. Prosodic information characterizes the speaker’s
intonation and speaking style. An interesting characteristic of
prosodic features, such as pitch and unit duration (for phonemes
and syllables), is that they are less sensitive to channel effects
than cepstral features. Prosodic systems are especially effective
when large amounts of data are available to train speaker models
[5], [8]. In these situations, systems that fuse both types of fea-
tures (cepstral and prosodic features) give better results than the
cepstral systems alone [7], [9].

Frequently used prosodic parameters are based on pitch and
energy contours statistics. For example, in [4], Sönmez et al.
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show that pitch has a log normal distribution, and they pro-
pose a speaker verification system based on distances between
pitch histogram values. The same authors propose a pitch con-
tour stylization technique [10] based on the segmentation of the
pitch contour. In each segment, they extract a set of parameters,
such as the median, the slope of the pitch contour, and the seg-
ment feature duration. Each feature is modeled with a Gaussian
distribution.

In [5], Adami et al. used an -gram approach for modeling
segments obtained by pitch and energy contour stylization. The
objective of the -gram approach is to model the speaker’s
speaking style. The authors also proposed the application of
dynamic time warping between pitch contours extracted from
two different recordings with the same context (same word
or sentence). This approach gives better results but it requires
both word alignment and word detection. The work presented
in [7] by Kajarekar et al. introduces a novel approach called
nonuniform extraction region features (NERFs). A NER is
a region from the utterance between two consecutive pauses
larger than a threshold. The pause duration threshold generally
used is 500 ms. In [7], the authors extract a set of 32 features
from each NER (although not all features can be extracted in
all cases). This feature set corresponds to statistics of pitch
contour evolution, and information concerning phone durations
(or higher level units). The advantage of using NERFs comes
from the extraction of long-term speaker characteristics. The
suggested model for these features is a Gaussian mixture model.
A drawback of this approach is that the features extracted by
Kajarekar et al. [7] use information concerning phone durations
in each NER, and this requires a phonetic alignment.

Another variant of NERFs uses syllables as the basic unit.
This variant, named syllable-based nonuniform extraction re-
gion features (SNERFs), was introduced by Shriberg et al. and
applied in [9] and [11]. The syllabic segmentation is obtained
using a speech recognition system. This approach consists of
discretizing the prosodic syllable features using several bins.
The features are then modeled with a support vector machine
(SVM) with an -gram kernel. The results obtained with
SNERFs [11] are given only on the English trials of the NIST
speaker recognition evaluation dataset because the authors used
an English speech recognition system. (The approach could be
extended to other languages by using, in parallel, several speech
recognition systems with various languages; an approach sim-
ilar to parallel phone recognition language modeling (PPRLM)
for language identification [12].) This approach represents the
state-of-the-art in prosodic feature modeling, and fusing this
system with a cepstral based system improves the performance
of the latter [11].

1558-7916/$25.00 © 2007 IEEE
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The majority of the methods that we have mentioned are
based on discrete modeling of pitch and energy contours. In this
paper, we propose to use continuous modeling of these contours.
The advantage of a continuous prosodic contour model is that
continuous models already developed in the speaker recognition
literature can be applied. In particular, factor analysis [2] can
be used to treat the effects of the speaker and intersession vari-
ability in prosodic features. Continuous prosodic contour mod-
eling based on Legendre polynomial expansions has been suc-
cessfully used in the field of language identification [13] and in
quantitative phonetics [14].

We extract pitch and energy at 10-ms intervals, and we break
the contours into pseudosyllabic units (or segments for short).
We approximate the pitch and energy contours in each segment
by Legendre polynomial expansions. The Legendre polynomial
coefficients for pitch and energy together with segment duration
form the prosodic feature set. We calculate one feature vector
for each pseudosyllable. We then model these features using
Gaussian mixture models (GMMs) and compensate for speaker
and session variability effects using joint factor analysis. The
speaker factors play a crucial role here since the number of fea-
ture vectors corresponding to the given enrollment utterances
(400 on average) may be too small for the classical maximum
a posteriori (MAP) estimation to perform reliably. In our ini-
tial investigations, our segmentation into pseudosyllable units
does not rely on the output of a speech recognition system as
is the case with the SNERF approach, and the results obtained
with our modeling are in the range of the results obtained with
SNERF systems.

The structure of this paper is as follows. Section II-A defines
the prosodic features used in our system. Section II-B summa-
rizes the joint factor analysis model. Experiments and results are
presented in Section III. The fusion of the prosodic and cepstral
systems is done in Section IV. Section V presents the conclu-
sion.

II. PROSODIC FEATURES AND JOINT FACTOR ANALYSIS

A. Feature Extraction

We extract log pitch and log energy values calculated at 10-ms
intervals using the Praat package [15]. Pitch is calculated with
the autocorrelation method proposed in [15] and is undefined in
unvoiced regions. The Praat pitch extraction function settings
are given in Table I. We used only the voiced part of the speech
signal in our modeling. Log energy is normalized on an utter-
ance basis by subtracting the maximum value for the whole ut-
terance.

We now describe how pitch and energy contours (containing
more than one syllable) are segmented into several pseudosyl-
lables using only the energy contour.

1) Segmentation: In order to model the prosodic contours
based on the syllable as a unit, we segment the long prosodic
contours into syllable-like regions in the same way as in [13].
This method is based on detecting the valley points of the energy
contour. In general, these valley points serve as segment bound-
aries, but we impose a minimum duration constraint of 60 ms.
(This enables us to calculate Legendre polynomial expansions

TABLE I
PRAAT PITCH EXTRACTION ARGUMENTS

Fig. 1. Example of segmentation of the log pitch and normalized log energy
contours extracted from voiced speech.

with six terms.) An example of log pitch and normalized log en-
ergy segmentation is given in Fig. 1.

We will show in the next paragraph how the pitch and energy
contours (based on pseudosyllable units) are approximated by
Legendre polynomials.

2) Approximation and Time Normalization: In each segment
obtained, we carried out an approximation of the pitch and en-
ergy contour by taking the leading terms in a Legendre poly-
nomial expansion. That is, each contour (where represents
time) is approximated as

(1)

where is the th Legendre polynomial, and we set
in our implementation. Fig. 2 shows how Legendre polynomials

model a log pitch contour. Each coefficient models a par-
ticular aspect of the contour. For example, is interpreted as
mean of the segment, is the slope, gives information about
the curvature of the segment, and model the fine de-
tail.

However, in order for these coefficients to be comparable
across segments, it is important to carry out a time normal-
ization. All the segments must be scaled and mapped onto the
same interval . This technique of approximation of the
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Fig. 2. Approximation of the log pitch contour using Legendre polynomials with different order.

prosodic contours has been successfully applied in quantitative
phonetics [14] and in engineering applications [13].

For each segment, we used six coefficients to represent the
pitch contour and six coefficients to represent the energy con-
tour. These pitch and energy features, with the addition of the
segment duration, produced a 13-dimensional feature vector for
each segment. These are the prosodic feature vectors that we
used for GMM and factor analysis modeling. Note that since
we used only the voiced part of the speech signal and we im-
posed a pseudosyllable minimum duration of 60 ms, the total
number of feature vectors within an utterance (an utterance is a
5-min telephone conversation) was much less than in the corre-
sponding MFCC frames. (There is an average of 400 prosodic
vectors per utterance.)

B. Joint Factor Analysis as a Model of Prosody

The joint factor analysis is a model of speaker and session
variability in GMMs. Although it is traditionally used with cep-
stral-type features, it can be applied with any type of continuous
features for which Gaussian mixture modeling is appropriate.

As usual, we assume that each speaker is represented by the
means, covariances, and weights of a mixture of multivariate
diagonal-covariance Gaussian densities defined in a continuous
feature space of dimension . The GMM for a target speaker is
obtained by adapting the parameters of a universal background
model (UBM) trained using a large number of utterances. In
joint factor analysis [16], [17], the basic assumption is that a
speaker and channel-dependent supervector1 can be decom-

1A GMM supervector is the concatenation of GMM means vectors.

posed into a sum of two supervectors: a speaker supervector
and a channel supervector :

(2)

where and are normally distributed. The motivation for as-
suming this type of decomposition is explained in [16] and [17].
Kenny et al. described how the speaker-dependent supervector
and channel-dependent supervector can be represented in low-
dimensional spaces. The first term in the right-hand side of (2)
is modeled by assuming that if is the speaker supervector for
a randomly chosen speaker then

(3)

where is the speaker- and channel-independent supervector
(which can be taken to be the UBM supervector), is a diagonal
matrix, (which contains the eigenvoice) is a rectangular matrix
of low rank, and and are independent random vectors having
standard normal distributions. In other words, is assumed to be
normally distributed with mean and covariance matrix

. The components of are the speaker factors. The speaker
space is the affine space defined by translating the range of
by m. If , then all speaker supervectors are contained in
the speaker space and if , the term serves as a residual
which compensates for the fact that it may not be possible in
practice to estimate reliably [17].

The channel-dependent supervector which represents the
channel effect in an utterance is assumed to be distributed ac-
cording to

(4)
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TABLE II
RESULTS (ON EQUAL ERROR RATE) OBTAINED ON ALL TRIALS OF THE CORE

CONDITION OF THE FEMALE SUBSET OF THE NIST 2006 EVALUATION DATASET
USING PROSODIC JOINT FACTOR ANALYSIS WITH SEVERAL CONFIGURATIONS

where is a rectangular matrix of low rank, is also normally
distributed. This is equivalent to saying that is normally dis-
tributed with zero mean and covariance . The components
of are the channel factors in the factor analysis model.

In cepstral factor analysis modeling, the term “channel
variability” is used to represent the variability between several
recording sessions of a given speaker because in the majority
of the cases, this variability is caused by channel effects.
However, for the high-level features as our modeling, the term
“intersession variability” is probably more appropriate than
channel variability.

For this paper, joint factor analysis with prosodic features is
implemented essentially in the same way as standard joint factor
analysis with cepstral features (only the features are different).

III. EXPERIMENTS WITH PROSODIC FEATURES

A. Database

We carried out our experiments on the core condition of the
NIST 2006 speaker recognition evaluation (SRE) [18]. This
evaluation set contains 350 males, 461 females, and 51 448 test
utterances. For each target speaker model, a 5-min recording
is available containing roughly 2 min of speech for a given
speaker. We also tested our approach on the eight conversation
training condition of the NIST 2006 SRE dataset [18]. This
dataset contains 298 males, 402 females, and 32 509 test files.
We used a UBM which contains 512 Gaussians, trained on the
(13-dimensional) prosodic features extracted from the NIST
2004–2005 SRE datasets. The same data was also used to train
the factor analysis model. In the factor analysis framework, it is
necessary to use this kind of dataset to model intersession vari-
ability because each training speaker has to be recorded several
times (ideally under a wide variety of recording conditions).
Verification scores were normalized using zt-norm normaliza-
tion with 100 t-norm models and 100 z-norm utterances from
the NIST 2004 SRE. The zt-norm technique has proved to be
useful in the factor analysis framework [16], [19].

B. Factor Analysis With Prosodic Features

The objective of the experiments carried out in this section
is to find the best configuration of the factor analysis model
(i.e., the optimal number of speaker and intersession factors) for
the 13-dimensional prosodic features presented in Section II-A.
The results obtained on the female subset of the core condition

Fig. 3. DET curves showing the results on all trials of the core condition of the
female subset of the NIST 2006 evaluation dataset using prosodic joint factor
analysis with several configurations.

Fig. 4. Eigenvalues of (the speaker eigenvalues, upper curve) and the
eigenvalues of (the intersession eigenvalues, lower curve) obtained by
fitting the factor analysis model to the NIST2005 and 2004 SRE using prosodic
features.

(all trials) of the NIST 2006 SRE dataset are summarized in
Table II.

We found that the best configuration was 50 speaker factors
and 20 intersession factors (see lines 1, 2, and 3 of Table II).
The detection error tradeoff (DET) curves given in Fig. 3 show
the results obtained in these experiments. An explanation for
these results can be given by observing Fig. 4, which shows how
the prosodic factor analysis model fits the training data (i.e., the
female portion of the NIST 2004 and 2005 evaluation datasets).

Note that for both speaker and intersession eigenvalues, there
is a very rapid decrease initially and an exponential decrease
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thereafter. This suggests an explanation as to why large num-
bers of speaker and intersession factors are not helpful. Note
also that the speaker variability (as measured by the sum of the
eigenvalues) is much greater than intersession variability. This
confirms that our prosodic features are less sensitive to interses-
sion effects, but vary considerably from one speaker to another.

In order to show the effectiveness of the speaker and interses-
sion factors, we carried out three experiments with and without
speaker and intersession factors. The results are given in lines
4, 5, and 6 of Table II.

• Line 4 of Table II corresponds to an experiment where
we did not use the speaker and intersession factors

. This is quite equivalent to the standard
GMM-UBM approach for speaker verification [1]. The re-
sults in line 1 and 4 of Table II show that when we did not
use speaker and intersession factors, there is a very large
degradation in performance [15.9% equal error rate (EER)
with speaker and intersession factors versus 29.2% EER
without speaker and intersession factors].

• Line 5 of Table II corresponds to an experiment which con-
sists of using only 50 speaker factors and no intersession
factors . This modeling is a combi-
nation of eigenvoice MAP and classical MAP. The purpose
of this experiment is to show the importance of the inters-
ession factors. The results given in line 1 and 5 of Table II
show that the use of intersession factors improves the per-
formance from an EER of 28.0% (without intersession fac-
tors) to 15.9% (with intersession factors).

• Line 6 of Table II corresponds to an experiment which
consists of using classical MAP adaptation for enrollment,
intersession factors, but no speaker factors

. The purpose of this experiment is to verify the
contribution of the speaker factor component. The results
given in line 1 and 6 of Table II show that the use of speaker
factors improves the performances from an EER of 25.6%
(without speaker factors) to 15.9% (with speaker factors).

We conclude from the last experiment that the speaker factors
play an important part in enrolling target speakers. An explana-
tion of the result is that in our approach, we have few feature
vectors to estimate a target speaker model (an average of 400
vectors per enrollment). It is important to note that in classical
MAP adaptation, only the Gaussians observed in the enrollment
data are adapted. (This is because in traditional MAP adaptation,
the GMM supervector covariance matrix is assumed to be diag-
onal. There is no correlation between the Gaussians in GMM
model.) However, in factor analysis modeling, the GMM super-
vector covariance matrix was given by with diagonal
matrix and low rank rectangular matrix . The matrix takes
into account the correlations between the Gaussians in a speaker
model. (Gaussians which are not observed in the enrollment data
are also adapted by using statistics of the other Gaussians.) The
number of speaker factors whose values have to be estimated
in enrollment is much less than the number of parameters esti-
mated in classical MAP adaptation. Thus, the method is effec-
tive even with very small amounts of enrollment data.

The use of the intersession factors proves to be important in
our approach because they model session variability (see lines 1
and 5 of Table II). Our prosodic factor analysis system gives the

TABLE III
RESULTS (ON EQUAL ERROR RATE) OBTAINED ON ALL TRIALS

OF THE CORE CONDITION OF THE FEMALE SUBSET OF THE NIST
2006 EVALUATION DATASET USING JOINT FACTOR ANALYSIS

WITH SEVERAL TYPES OF PROSODIC FEATURES

best results when we use both the speaker and intersession fac-
tors. The following section shows the effectiveness of Legendre
polynomials for modeling the prosodic contours and the impor-
tance of the information given by energy for speaker modeling.

C. Importance of Energy, Duration, and Pitch

In order to compare with other approaches to prosodic fea-
ture extraction and modeling, we performed three experiments
on the female subset of the NIST 2006 evaluation data (core
condition, all trials), varying the feature set as follows.

• In the first experiment, we computed, for each segment,
the slope and curvature of the pitch and energy contours
as well as duration of the segment as features in a manner
similar to [5]. Note that the slope and curvature correspond
to the coefficients and of (1). The result is given in
line 1 of Table III.

• In the second experiment, we used as segment features the
Legendre polynomial coefficients of the pitch contour (all
six coefficients) and the duration of the segment. The en-
ergy contour was not used. This modeling was similar to
[4]. Line 2 of Table III gives the results of this experiment.

• In the last experiment, we used all 13 prosodic features, as
described in Section II-A. The result of this experiment is
given on line 3 of Table III.

Our best performance with the various prosodic feature sets
was obtained with the full 13-dimensional feature set (see line
3 of Table III). The energy contour clearly adds a substantial
amount of information to the pitch contour (a 4% absolute re-
duction in EER, comparing the results of the lines 2 and 3 of
Table III). The same conclusion is found in SNERF modeling
[11]. Shriberg et al. found that using information about the pitch,
energy, and duration of different units give the best performance.
We can see in Table III that the slope and curvature representa-
tion of the pitch and energy contour is not as good as using all
of the Legendre polynomial coefficients, (comparing the results
for line 1 and 3 of Table III).

D. Results for Both Genders

We tested the factor analysis model with the 13 prosodic co-
efficients for both genders on the core condition of the NIST
2006 speaker recognition evaluation dataset. We used the same
factor analysis configuration for each gender (50 speaker factors
and 20 intersession factors). The UBM size is 512 Gaussians for
each gender. The decision scores are normalized with zt-norm.
The results obtained (under the two conditions: English only,
and all trials) are given in Table IV.
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TABLE IV
RESULTS (ON EQUAL ERROR RATE) OBTAINED WITH GENDER-DEPENDENT

PROSODIC FACTOR ANALYSIS ON THE CORE CONDITION OF THE
NIST 2006 EVALUATION DATASET

TABLE V
RESULTS (ON EQUAL ERROR RATE) OBTAINED WITH GENDER-DEPENDENT

PROSODIC FACTOR ANALYSIS ON THE EIGHT CONVERSATION TRAIN AND ONE
CONVERSATION TEST CONDITION OF THE NIST 2006 EVALUATION DATASET

The results show that these prosodic features give better
results for the female cases compared to the male ones. The
opposite is also true for our cepstral-based factor analysis
system. Ferrer et al. have recently published EERs in the range
12.3%–14.2% on the English subset (both genders) of the NIST
2006 evaluation data obtained with three systems based on the
SNERF approach with an SVM classifier [20]. If we restrict
ourselves to the English subset of the NIST 2006 speaker
recognition evaluation dataset then our equal error rate is quite
similar, namely 14.6% (rather than 16.6% on the core condition
as a whole).

Thus, the results obtained by our prosodic system are com-
parable to the results obtained with other systems based on the
SNERF approach. The advantage of our approach is that the
segmentation into pseudosyllabic units is carried out in an unsu-
pervised manner by using only the energy contour. On the other
hand, a speech recognition system is needed for the SNERF ap-
proach. Although the results obtained by these systems are re-
ported only on the English trials, our system is not limited by
language restrictions.

In order to compare with other approaches, Queensland
University of Technology (QUT) gave us the results of their
prosodic system,2 which is based on an approach similar to that
proposed by Adami et al. [5]. On the core condition of NIST
2006 speaker recognition evaluation dataset, EERs of 21.1%
(English trials) and 22.5% (all trials) were obtained. It is clear
that our approach produces better results.

E. Prosodic Factor Analysis on the Eight Conversation Train
and One Conversation Test Task

We tested the factor analysis model with the 13 prosodic coef-
ficients for both genders on the eight conversation train and one
conversation test condition of the NIST 2006 speaker recogni-
tion evaluation dataset. We used the same factor analysis con-
figuration for each gender as used on the last experiment (50
speaker factors, 20 intersession factors). The gender-dependent
UBM contains 512 Gaussians. The decision scores are normal-
ized with zt-norm. The results obtained (under the two condi-
tions: English only, and all trials) are given in Table V.

2[Online]. Available: http://research.ee.sun.ac.za/srefusion/index.php/QUT

We see an improvement of the results obtained by our
prosodic system in this task compared to the core condition
of the same dataset. However, the results of the prosodic
systems based on a SNERF approach [20] are in the range
4.8%–5.2% on the eight conversation train and one conversa-
tion test condition of NIST 2006 speaker recognition evaluation
dataset (English trials). If we compare these results with the
results obtained with our prosodic system (9.8% in EER), it
is clear that the prosodic systems based on SNERF approach
give better results under this condition of NIST 2006 evalua-
tion. A probable explanation to this phenomenon is that it is
necessary to increase the number of the speaker factors and
intersession factors to better model the speaker variability and
the intersession variability. In cepstral factor analysis system,
the best results are obtained when a large number of speaker
factors is used in [16, Table VII]. Exploring this will require
using large quantities of training data for the prosodic factor
analysis model since the target speaker model adaptation tends
to saturate quickly with the actual corpus (speaker eigenvalues
decrease very quickly to zero; see Fig. 4). Unfortunately, at this
point, we do not have sufficient data to train this large number
of speaker factors.

IV. FUSION OF PROSODIC AND CEPSTRAL FEATURES

Prosodic systems are usually combined with a baseline cep-
stral system. To combine our prosodic system with a cepstral
system, we carried out a linear combination of the scores of
these two systems with equal fusion weights for both systems
(prosodic system and baseline system). This fusion technique
(often referred to as naive Bayes) was compared with other tech-
niques in [21]. The results show that this approach gives equiv-
alent performance to those obtained with the neural network.
Since the fusion weights are assumed equal, it is not necessary
to use development data to optimize them. In our experiments,
it was impractical to divide the training corpus into training and
development corpus, because we have insufficient data to train
the factor analysis model with prosodic features. (We only used
the voiced speech part and we imposed a minimum duration
of 60 ms for the pseudosyllables. The total number of obser-
vations vectors used to train the UBM and the factor analysis
is about three million observations for each gender). The tests
were carried out in the core condition and in the eight conver-
sation train and one conversation test condition of NIST 2006
speaker recognition evaluation (all trials and English trials). The
following section describes the baseline system.

A. Baseline System

The speaker verification baseline system is the CRIM system
used for NIST 2006 speaker recognition evaluation campaign.
The system uses factor analysis on cepstral based system. It
uses 300 speaker factors and 75 intersession factors. The UBM,
which contains 2048 Gaussians, was trained with Linguistic
Data Consortium (LDC) releases of Switchboard II, Phases 1,
2, and 3; Switchboard Cellular, Parts 1 and 2; the Fisher Eng-
lish Corpus, Part 1 and Part 2; and NIST 2004 evaluation data.
The factor analysis model was trained on the LDC releases of
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TABLE VI
FUSION RESULTS (ON EQUAL ERROR RATE) BETWEEN THE BASELINE
SYSTEM AND PROSODIC FACTOR ANALYSIS ON THE CORE CONDITION

OF THE NIST 2006 EVALUATION DATASET

TABLE VII
FUSION RESULTS (ON EQUAL ERROR RATE) BETWEEN THE BASELINE SYSTEM
AND PROSODIC FACTOR ANALYSIS ON THE EIGHT CONVERSATION TRAIN AND

ONE CONVERSATION TEST OF THE NIST 2006 EVALUATION DATASET

Switchboard II, Phases 1, 2, and 3; Switchboard Cellular, Parts
1 and 2; and the NIST 2004 and 2005 evaluation data.

The features are extracted using a 25-ms Hamming window.
Twelve Mel frequency cepstral coefficients together with log
energy are calculated every 10 ms. This 13-dimensional fea-
ture vector is subjected to feature warping [22] using a 3-s
sliding window. Delta coefficients are then calculated using a
five-frame window giving a 26-D feature vector. The resulting
decision scores using these features are normalized using
zt-norm.

B. Fusion Results

The fusion results of the baseline system and our prosodic
factor analysis system are given in Table VI. These results show
that, on the core condition of NIST 2006 speaker recognition
evaluation dataset, our prosodic features bring additional infor-
mation to the cepstral parameters. The combination of the two
systems gives an 8% and 12% relative reduction in EER for all
trials and English trials, respectively. On the eight conversation
train and one conversation test condition of NIST 2006 speaker
recognition evaluation, naive Bayes fusion between prosodic
system and baseline system does not improve the performance
(see Table VII). An explanation of these performances is that
the results obtained with cepstral factor analysis system are ex-
tremely good and it would be very hard to improve them. This
low EER may be due to the fact that a part of the data used on
the eight conversation train and one conversation test condition
of the NIST 2006 SRE came from the NIST 2005 SRE dataset,
and in addition, factor analysis was also trained on NIST 2005
SRE. If we compare the cepstral factor analysis results (EERs
of 1.4% on English trials and 2.0% on all trials) with those of
the MIT-LL/IBM [23] obtained by fusing several cepstral and
high-level systems (EERs of 1.5% on English trials and 2.6% on
all trials), it is clear that the cepstral factor analysis performance
is better than the fusion of several systems.

The DET curves [24] given in Fig. 5 show the performance
of the baseline system and fused systems on the English subset
of the core condition of NIST 2006 Evaluation data as well as
on all trials.

V. CONCLUSION AND PERSPECTIVES

Although the most successful approach to speaker recogni-
tion relies on short-term spectral features such as MFCCs, it

Fig. 5. DET curves showing the fusion results between the baseline system
and prosodic factor analysis on the core condition of the NIST 2006 Evaluation
dataset.

has long been recognized that prosodic contours contain com-
plementary information which is much more likely to be robust
to the intersession effects which make the speaker recognition
problem so challenging. In order to exploit prosodic informa-
tion, many systems have been developed which use sophisti-
cated modeling techniques such as -gram modeling of styl-
ized pitch contours [5], or complex language-dependent fea-
tures, which can only be extracted with the aid of a speech recog-
nizer [7], [11]. However, recent work in language identification
[13] and quantitative phonetics [14] has shown that a simple ap-
proach to prosodic feature extraction, namely fitting pitch and
energy contours with Legendre polynomial expansions, can be
very effective. In this paper, we have explored the application
of this type of prosodic feature extraction to speaker verifica-
tion, and we have shown how a prosodic feature-based system
fuses well with a state-of-the-art cepstral system; giving a rela-
tive EER reduction of 12% on the NIST 2006 set (core condi-
tion, English trials). This type of performance improvement is
comparable with the best results that have been obtained using
any type of prosodic feature modeling. An interesting charac-
teristic of our modeling is that the prosodic features performed
better on females than on males (the opposite is true of our cep-
stral-based system).

A key aspect of the coefficients in the Legendre polynomial
expansion is that they define a continuous rather than a dis-
crete feature set. Thus, they are amenable to modeling with the
methods that have already been developed for modeling cepstral
features in state-of-the-art speaker recognition systems, such as
Gaussian mixture modeling [1] and factor analysis [17]. Given
the Legendre coefficients, no new algorithmic development is
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required to implement a prosodic factor analysis speaker recog-
nition system. All that is needed is to run a series of experiments
to determine how best to configure the factor analysis model:
the number of Gaussians in the universal background model, the
number of speaker factors, and the number of intersession fac-
tors. Our experiments showed that both speaker factors and in-
tersession factors play a useful role. Speaker factors are helpful
because the number of prosodic feature vectors available for en-
rolling a target speaker is relatively small. (There is only one
feature vector per pseudosyllable, rather than one vector per 10
ms for cepstral features.) Intersession factors are useful because
the Legendre coefficients are not entirely robust to session vari-
ability. We intend to explore these issues more fully in future
work. It would be interesting to test these prosodic features on
the auxiliary microphone tasks of the NIST speaker recognition
campaign (where channel conditions in enrollment and testing
are radically different).

The results of our experiment on eight conversation train and
one conversation test of the NIST 2006 SRE are not satisfactory
compared with those obtained on the core condition. A probable
explanation to this performance is that it is necessary to increase
the number of the speaker factors and intersession factors to
better model the speaker variability and intersession variability.
Exploring this will require using large quantities of training data
which we do not have at this point.

In extracting prosodic features, we have used the pseudo-
syllable as the basic unit. Although this has the virtue of sim-
plicity, other possibilities need to be explored such as the NERF
and SNERF approaches [7], [11] (with or without word condi-
tioning). In [25], the authors used features quite similar to us
but the task was language identification, and they modeled their
features using a continuous HMM (rather than a memoryless
GMM as in our case) to capture longer term prosodics. Their
results using the HMM are better than using only a GMM [13],
[25], which suggests that using HMMs might also be a good
idea for speaker recognition.
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