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ABSTRACT  
 
We present the seventh report on the performance of methods for predicting the atomic 

resolution structures of protein complexes offered as targets to the community-wide initiative 

on the Critical Assessment of Predicted Interactions (CAPRI). Performance was evaluated on 

the basis of 36114 models of protein complexes submitted by 57 groups – including 13 

automatic servers – in prediction Rounds held during the years 2016-2019 for 8 protein-

protein, 3 protein-peptide, and 5 protein-oligosaccharide targets with different length ligands.  

Six of the protein-protein targets represented challenging hetero-complexes, due to factors 

such as availability of distantly related templates for the individual subunits, or for the full 

complex, inter-domain flexibility, conformational adjustments at the binding region, or the 

multi-component nature of the complex. The main challenge for the protein-peptide and 

protein-oligosaccharide complexes was to accurately model the ligand conformation and its 

interactions at the interface.  Encouragingly, models of acceptable quality, or better, were 

obtained for a total of 6 protein-protein complexes, which included 4 of the challenging 

hetero-complexes and a homo-decamer. But fewer of these targets were predicted with 

medium or higher accuracy. High accuracy models were obtained for 2 of the 3 protein-

peptide targets, and for one of the protein-oligosaccharide targets. The remaining protein-

sugar targets were predicted with medium accuracy.  Our analysis indicates that progress in 

predicting increasingly challenging and diverse types of targets is due to closer integration of 
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template-based modeling techniques with docking, scoring and model refinement procedures, 

and to significant incremental improvements in the underlying methodologies. 
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INTRODUCTION 
 

Proteins carry out their function by interacting with other proteins, and with macromolecular 

components such as DNA or RNA 1. The disruption or deregulation of these interactions often 

leads to disease 2,3. Charting these interactions and characterizing their biochemical, 

biophysical, and structural properties therefore remains an important goal in molecular 

biology and medicine.  

 

Experimental and computational techniques have played a decisive role in pursuing this goal.  

Proteomics techniques have been providing increasingly more comprehensive descriptions of 

the protein interaction landscape of specific cellular processes, of cell types, and entire 

organisms 4,5.  These descriptions yield information on the identities of the interacting 

proteins, and the compositions of multi-protein assemblies, or complexes, but offer little 

information on the stoichiometry of the interactions, or their molecular details.   

 

Over the last 5 decades, structural biology techniques such as X-ray crystallography and 

Nuclear Magnetic Resonance (NMR) have been very effective in charting the 3D structure 

repertoire of individual proteins, with the data deposited in the PDB (Protein DataBank) 6. But 

so far these techniques have been slow in providing information on the 3D structures of 

macromolecular complexes, in particular those of larger assemblies that are active in the cell 

and can be detected by modern proteomics and other methods 7,8. But this is changing rapidly 
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thanks to recent spectacular advances in single molecule cryo-EM techniques, specifically 

geared at determining the structure of large macromolecular assemblies to atomic resolution 

9,10.  

 

Computational methods have been playing an important role in efforts to populate the 

uncharted landscape of protein assemblies, by exploiting the rapidly increasing body of data 

on protein sequences and three-dimensional structures of individual proteins and their 

complexes stored in public databases 11. In recent years these methods are often cast into a 

wider framework of the so-called ‘hybrid’ or ‘integrative’ modeling techniques 12,13, whereby 

larger macromolecular assemblies are modeled by integrating sequence information and 

structural data at various levels of resolution, with various other types of data.  

 

An important role in these recent developments is played by methods for modeling the atomic 

structure of macromolecular assemblies, starting from the structures of the individual 

components of these assemblies. These are the so-called ‘‘docking’’ algorithms and the 

associated scoring schemes, the energetic criteria for singling out stable binding modes 14-16. A 

key factor fueling progress in docking algorithm and more generally in methods for modeling 

protein assemblies has been the Critical Assessment of PRedicted Interactions (CAPRI) 

(http://pdbe.org/capri/; http://www.capri-docking.org/). CAPRI is a community-wide 

initiative established in 2001, offering computational biologists the opportunity to test the 
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performance of their computational procedures in blind predictions of experimentally 

determined 3D structures of protein complexes, the ‘targets’, provided to CAPRI prior to 

publication.  CAPRI initially focused on targets representing protein-protein complexes. Over 

the years its focus broadened by including targets representing complexes of proteins with 

other molecules (including peptides, nucleic acids and sugars) 17, tackling the problem of 

predicting protein binding affinities 18,19 and modeling the positions of water molecules in 

protein-protein interfaces 20. 

 

Since CAPRI’s inception the task of modeling the atomic structure of protein complexes has 

likewise evolved.  Initially, this task involved mainly classical docking procedures, which 

sample and score putative binding poses of two or more proteins using as input the known 

unbound structures of the individual interacting components [see ref 14]. With the growing 

ease with which structural templates can be found in the PDB, docking calculations now 

routinely accept as input homology-built models of individual protein components of an 

assembly, with a growing rate of success 21,22. Furthermore, it is not uncommon to find 

templates for the full protein assembly.  This is most often the case for assemblies of identical 

subunits (homo-dimers, or higher order homo-oligomers), because closely related proteins 

tend to adopt the same assembly mode (or oligomeric state) 23,24.  In such instances, classical 

docking calculations may no longer be required because the protein assembly can be modeled 

directly from the template, a task also called ‘template-based docking’ 11,25,26.    
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Methods for predicting the 3D structures of proteins ab-initio – from sequence information 

alone and in absence of available templates – have also come a long way. By leveraging the 

information on protein sequences, it is now possible to predict residues that make contacts in 

the protein 3D structure and therefore facilitate its prediction 27-29.  Also, information on 

structure and sequence features of proteins (see for examples 30-32) is being exploited much 

more efficiently, thanks to new developments in Artificial Intelligence Deep Learning 

techniques 33,34, enabling the prediction of the 3D structure of proteins from sequence 

information alone, as demonstrated recently in the ab-initio structure prediction challenge in 

CASP (Critical Assessment of protein Structure Prediction) 35.  As these methods progress, one 

would hope that they will ultimately be successfully integrated with assembly prediction 

procedures, and efforts in this direction have been undertaken by a close collaboration 

between CAPRI and CASP 22,36-38.   

 

Here, we present the prediction results for the 16 targets of CAPRI Rounds 38-45 that took 

place during the years 2016-2018. These targets comprised protein-protein, protein-peptide 

and protein-oligosaccharide complexes.  Protein-peptide complexes are a growing focus of 

CAPRI given the important role the recognition of short peptide motifs plays notably in 

regulatory processes 39,40, whereas protein-sugar complexes represent an important category 

of complexes where method developments are needed.  Prediction results for these targets 
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were presented at the 7th CAPRI evaluation meeting held in April 2019 at the EBI (the 

European Bioinformatics Institute) (see https://bioexcel.eu/7th-capri-evaluation-meeting/).  

An additional prediction Round (Round 46) was run in collaboration with CASP during the 

CASP13 prediction challenge in the summer of 2018, with results described in a separate 

publication 38.     

 

The results reported here were analyzed on the basis of a total of 36114 evaluated models, 

submitted by 57 participating groups including 13 automatic servers. The challenges posed by 

the different targets are discussed and the extent to which current modeling procedures were 

able to address them is evaluated.  This evaluation is furthermore used to assess emerging 

trends in modeling protein complexes, and to evaluate progress in the field. 
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THE CAPRI TARGETS OF ROUNDS 38-45 
 
Information on the 16 CAPRI targets of Rounds 38-45 for which predictions are evaluated here 

is summarized in Table I. These targets comprise 8 protein-protein complexes, 3 protein-

peptide complexes and 5 protein-oligosaccharide complexes. For all these complexes the 

prediction task involved modeling the 3D conformation of the different components (protein 

subunits, bound peptides or oligosaccharides) as well as the detailed binding mode between 

the components.  The level of difficulty of these targets hence depended on the availability of 

templates for the individual subunits, or in some cases, for the hetero-complex as a whole, and 

on the ability to identify the correct binding mode and optimize the corresponding interface. 

 

Protein-protein complexes (T122-125, T131-T133, T136) 

This category of targets comprised 7 hetero-complexes, including 1 heterotrimer, 5 

heterodimers and one homo-decamer (depicted in Figure 1). In the following they will be 

described in the order they were offered in CAPRI Rounds. 

 

The first 3 targets T122, T123, T124 were offered in Round 39. T122 was the x-ray structure 

of the human cytokine-receptor heterotrimer complex (IL23/IL23R) determined at 2.8 Å 

resolution, contributed by Savvas Savvides, Ghent University, Belgium 41.  The stoichiometry of 

the complex was experimentally verified to consist of 1 receptor monomer (IL23R) comprising 

330 residues bound to 1 cytokine heterodimer (IL23A/IL12B) (comprising respectively 198 
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and 328 residues).   In the 3D structure of the complex the receptor binds both chains of IL-23, 

forming interfaces that bury a total of 2330 Å2. This was in principle a medium difficulty 

target. Templates adopting somewhat different conformations were available for the receptor, 

(e.g.  PDB code 2d9q, displaying 3.78 Å backbone rmsd relative to the bound receptor), and an 

unbound structure for the IL23 cytokine heterodimer was provided by the authors (later 

released as PDB code 5mxa; with a 3.59 Å backbone rmsd relative to the bound structure). 

Nevertheless, the inter domain flexibility of the IL12B moiety and the IL23 receptor 

represented a challenge for the docking procedures. 

 

T123 and T124, offered by Alain Roussel, Université Aix Marseille, France, were X-ray 

structures of the complexes between, respectively, the N-terminal (174 residues) and C-

terminal (202 residues) domains of PorM, a component of the type 9 secretion system (T9SS), 

from bacteria (Porphyromonas gingivalis), and Camelid nanobodies: nb-02 (121 residues) and 

nb-130 (141 residues). These complexes, determined at the resolution of 2.5 Å (PorM-Nt/nb-

02) and 2.15 Å (PorM-Ct/nb-130) 42, featured reasonable size interfaces of respectively 1240 

Å2 and 1120 Å2. These were difficult targets because although several good templates were 

available for the nanobodies, none were available for either of the PorM domains.  The PorM-

Nt domain is helical and adopts an up-down fold, but was missing the N-terminal trans-

membrane helix, whereas the PorM-Ct domain is a domain-swapped dimer, containing 

predominantly β-strands 42. T124 was offered as two challenges, separated into the PorM-Ct 
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dimeric structure, and the complex between a PorM-Ct monomer with the nanobody molecule. 

To predict the structure of these complexes the PorM domains had to be modeled ab-initio, a 

challenging task with which CAPRI participant have very limited expertise. The PorM-Ct dimer 

was offered as target T0907 in the CASP12 structure prediction Round 43,44, but no acceptable 

structures were produced then. 

T125, offered in Round 40 was the multi-protein assembly of the extracellular domain of the 

Lectin-like transcript 1 (LLT1) (protein A, 135 residues) with the extracellular domain of its 

inhibitor NKR-P1 (protein B, 146 residues). The structure was determined at 1.9 Å resolution 

by Ondřej Vaněk, Charles University, Prague, Czech Republic (PDB code 5mgt). According to the 

authors, the stoichiometry of the complex is A2B4, e.g. a homodimer of protein A, bound to 2 

homodimers of protein B, forming a total of 5 distinct interfaces sized between 440 and 775 Å2 

of buried area (Table I). Two interfaces are those of the A2 and B2 homodimers, respectively, 

two other interfaces are formed between LLT1 and NKR-P1 proteins and a fifth small contact 

is formed between the NKR-P1 proteins (see Figure 1).  This stoichiometry was however 

questioned by predictor groups, based on an analysis of various interfaces of the target 

structure (PDB code 5mgt) (see Dapkunas et al. this issue).  A good quality template was 

available for the LLT1 homodimer, and a more distantly related template was available for the 

LLT1-NKR-P1 hetero-dimer.   The main difficulty of this target likely resided in building the 

full assembly, given the uncertainty concerning the announced stoichiometry of this target. 
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The main interfaces of this target, i.e. the A2, B2, and AB interfaces, were therefore assessed 

separately. 

 

T131 and T132, the next two protein-protein complexes offered in Round 42, were x-ray 

structures of host-pathogen complexes of the cell adhesion protein CEACAM1 from human 

(hCEACAM1 N-terminal domain; 108 residues), bound to the cell adhesion proteins of 

Helicobacter pylori, HopQ Type I (HopQ-I; 404 residues), and HopQ Type II (HopQ-II; 418 

residues), respectively. These structures were solved to 2.8 Å and 2.59 Å resolution by Han 

Remaut, Free University of Brussels, and the Flemish Institute for Biotechnology, Brussels 

Belgium 45.  The HopQ-I and HopQ-II are rather closely related (sequence ID ~60%), and 

engage in similar binding modes with the CEACAM1 protein. However HopQ-I features four 

loops, which contribute to the binding interface with the host protein, without altering the 

binding location.  Excellent templates were available for the HopQ components (displaying 

backbone rmsd values as low as 1.0 Å, relative to HopQ-I). But none include the extra loop of 

HopQ-I. Excellent templates were also available for the host protein domain (rmsd below 1 Å). 

T131 (HopQ-I/CEACAM complex) was a more challenging target than T132, since the missing 

loops had to be modeled.  

 

T133, offered in Round 43, was a particularly interesting case. It represents a redesigned 

version of the wt Colicin E2/DNase-Im2 complex from E.coli (PDB code 3u43), which was 
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previously a CAPRI target (T47) 17. The redesigned version, contributed by Sarel Fleishman 

and Ravit Netzer from the Weizmann Institute, Israel, is denoted as Edes3/Imdes3 (referring to a 

specific version of the designed complex, where both components have been redesigned). Its 

structure was determined at high resolution 46 and shown to contain two complexes per 

asymmetric unit, which displayed only marginal differences. However, residues at the 

interface, and residue-residue contacts of both versions differed more relative to those of the 

wt complex (possibly as a result of a small rigid body rotation). The authors also indicated that 

the affinity of the redesigned complex was 73 nM (Kd), and that the latter complex displays 

high specificity relative to ‘chimeric’ versions, which contain one wt component, e.g. Edes3/Im2 

and E2/Imdes3, which display 3 orders of magnitude lower affinity, and could therefore be used 

as controls for ‘non-binders’.  

 

Considering the relatively small differences between the designed and wt complexes, this was 

not a classical CAPRI prediction problem, because the challenge here was not to identify the 

correct association mode, which was well known, but to correctly identify the structural 

perturbation relative to the wt complex, which resulted in the gain in affinity.   

 

T136, offered in Round 45, was the lysine decarboxylase LdcA (751 residues), from 

Pseudomonas aeruginosa, a homo-decamer adopting D5 symmetry, determined by cryo-EM to 

4.5 Å resolution. The target was contributed by Irina Gutsche, Institut de Biologie Structurale, 
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Grenoble, France (personal communication), and was the first CAPRI target representing a 

cryo-EM multi-protein complex. The homo-decamer is composed of 2 rings, comprising 5 

subunits each. These rings are packed on top of each other, such that subunits interact 

between rings, as well as within rings.   This arrangement displays 3 distinct interfaces:  a very 

large interface (5600 Å2 of buried area) involving interactions between the subunits within 

and between rings, and two smaller interfaces of 1100 Å2 and 800 Å, respectively, between 

subunits mainly within rings.  This was in principle as easy target, since a 2.4 Å resolution x-

ray structure of a related enzyme, the arginine decarboxylase AdiA from E. coli (PDB code 

2vyc; backbone rmsd 2.33 Å; sequence identity, 40%) was available, and could therefore be 

used as template for building the structure of the full target complex. 

 

Protein-peptide complexes (T121, T134, T135) 

The protein-peptide complexes of targets T134 and T135 are depicted in Figure 2; T121 

cannot be displayed at this time due to confidentiality reasons. The amino acid sequences of 

the peptides ligands of all 3 targets are provided in Figures 2 and 7.   

With 8 protein-peptide complexes offered as targets in previous CAPRI Rounds 21, and the 

important role these complexes play in regulating many cellular processes, the CAPRI 

community has been working hard to meet the particular challenge of accurately predicting 

the 3D structure of such complexes. Protein-peptide complexes are indeed significantly 

different from protein-protein complexes. Their binding interface is usually much smaller, not 

exceeding 1000 Å2, reflecting the lower affinity of the corresponding associations. In addition, 

This article is protected by copyright. All rights reserved.



                

the bound peptides tend to retain a significant degree of conformational flexibility, such that 

often only a portion of the peptide becomes structured upon binding and the remaining 

residues remain too flexible to be visible in the X-ray structure.  Since the protein moieties in 

these complexes generally undergo small conformational changes upon peptide binding 47, the 

main challenge for predictors is to accurately model the bound conformation of the peptide 

and the corresponding protein-peptide interactions, including the side-chain conformations at 

the interface. This in turn required tightening the parameters used by the assessors to define 

model accuracy levels, as described below. 

 

Target T121, offered in Round 38, was the complex between the TolAIII domain, a small C-

terminal domain from the periplasmic protein TolA of P. aeruginosa (115 residues), and the 13 

residue N-terminal peptide of P. aeruginosa TolB.  The solution structure, solved by NMR, was 

contributed by Colin Kleanthous, University of Oxford UK (personal communication). The 

peptide used for the structure determination had an unblocked N-terminus and the C-

terminus blocked with an amide group. This was the most difficult target of this category.  

While an unbound x-ray structure was available for the TolAIII domain (PDB code 1lr0, 

backbone rmsd 1.7 Å relative to the target NMR average conformation), the buried interface in 

this solution structure was quite extensive for this type of targets (1400 Å2). Correctly 

predicting the conformation of the otherwise flexible peptide and its interactions with the 

globular domain was therefore challenging.  Regrettably, not much else can be revealed about 
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this target at this point, since the target structure is still on-hold at the PDB, and cannot be 

described in any detail at this time. 

 

Targets T134, T135, the two other protein-peptide complexes, were offered as targets in 

Round 44. These targets are complexes of the Dynein Light Chain subunit 8 (DLC8) from 

human (a homodimer) with segments from the cognate L-MAG protein (Figure 2), and were 

contributed by Petri Kursula, University of Bergen Norway 48. The two complexes were 

crystallized starting from, respectively, a 50-residue segment of the cognate protein, and a 12-

residue peptide from the same segment, with the resulting complexes adopting very similar 

structures, burying respectively 1540 Å2 and 1640 Å2 in the protein-peptide interface.  For 

T134 the challenge was two-fold. Predictors were given the sequence of the full 50-residue 

segment and asked to predict the 12-residue peptide of this segment that actually binds DLC8, 

and to model the resulting complex. For Target 135, predictors were given the sequence of 

the 12-residue peptide whose DLC8-bound structure was determined.  The main challenge for 

the latter target was to produce an accurate model for the protein-peptide complex.  Overall 

these were easy targets, given the conserved binding mode of diverse peptides to the DLC8 

homodimer 49 in structures available in the PDB. Furthermore, the DLC8 component of the 

target was the same as that of the PDB entry 1f3c (100% sequence identity). 

 

Protein-oligosaccharide complexes (T126-130) 
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CAPRI Round 41 offered 5 targets representing protein-oligosaccharide complexes, which 

were contributed by Shifra Lansky and Gil Shoham, Hebrew University of Jerusalem.  Four of 

these targets were complexes of the same protein the arabino-oligosaccharide-binding protein 

AbnE (an ABC transporter-bound periplasmic protein from Geobacillus stearothermophilus, 

involved in arabinose import), bound to arabino-oligosaccharide chains of decreasing lengths. 

These chains were A6 (arabinohexaose, 6 sugar units) for T126 through A3 (arabinotriose, 3 

sugar units) for T129.  The fifth target, T130, was the complex of a mutant (E201A) of the 

intracellular arabinanase AbnB, an enzyme involved in the degradation of intra-cellular 

arabino-oligosaccharides, bound to A5 (arabinopentaose, 5 sugar units). This was the second 

time protein-oligosaccharide complexes were offered as targets in CAPRI. The first such target 

was T57, a complex between the bacterial surface protein Bt4661 and a fragment of heparin 

comprising 6 sugar units, offered in CAPRI Round 27, over 6 years ago 17. 

 

A number of templates were available for all 5 targets.  Templates representing both the apo 

(3CU9) and holo forms of the AbnB enzyme were available for T130. The holo forms included 

two mutant enzymes, one (D147A) bound to arabinobiose (PDB code 3d61) and another 

(E201A) mutant bound to arabinotriose, but none were found to bind longer oligosaccharides, 

such as the arabinopentaose ligand of T130.  For T126-T129, structures of AbnE homologs 

bound to various ligands with 6-membered sugar rings were available. These ligands included 
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trigalacturonid acid, galactose, mannitol, tagatopyranose, glucose, but none featured the 5-

membered sugar rings of arabinose.     

 

These templates were clearly helpful in guiding the challenging task of docking and modeling 

the association modes of these flexible sugar ligands, but only to a point, given that they bind 

different sugar ring moieties.  On the other hand, valuable insights into the binding modes of 

arabinose ligands of different sizes were ultimately obtained from analyzing the experimental 

structures of T126-T129, which cannot be displayed at this time due to confidentiality 

reasons. Examining these structures revealed that arabinohexaose occupies binding sites 1-6 

of the enzyme, arabinopentaose occupies sites 1-5 and arabinotetraose binds to sites 1-4.  

Furthermore, the A4-A6 sugars in T126-T128 were seen to occupy the same 4 binding 

pockets (sites 1-4), whereas the A5 and A6 sugars occupied in addition the same pocket at site 

5.  This in turn suggests that the binding of any additional arabinose ring can be readily 

modeled by attaching it to the bound structure of the shorter sugar, or vice versa, namely, that 

the binding mode of a shorter sugar can be modeled by deleting the extra sugar ring (s) from 

the bound structure of the longer version. But the latter didn’t seems to apply to T129, as 

shortening the sugar ligand below A4 seems to brake this ‘rule’ by leading to a shift within the 

enzyme binding pocket. Indeed the arabinotriose (A3) ligand of T129 occupies binding sites 2-

4 and not 1-3. Interestingly, the sugar rings bound to sites 2-4 feature lower atomic 

fluctuations (lower crystallographic B-factors) than the arabinose rings bound to the other 
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sugar binding sites on the enzyme, which may be indicating tighter binding at this site.  Details 

of the 5 protein–oligosaccharide complexes can unfortunately not be displayed, since the 

structures of the 5 complexes have not been released at this time. 

 
 
 

TARGET AND PARTICIPATION STATISTICS 

A total of 57 groups participated in the 8 CAPRI Rounds evaluated here (Rounds 38-45).  

The overall participation statistics for the 8 prediction rounds, including scorer and server 

participation are summarized in Table II.  The target participation statistics and the number 

of models submitted for the 8 prediction rounds are summarized in Table S1 of the 

Supplementary Material.  It is noteworthy that 13 automatic servers, a larger number than in 

previous assessments 21,22, participated in Rounds 38-45. Nearly half of these servers 

submitted predictions for all targets – including the protein-peptide and protein sugar 

complexes – and 5 servers also submitting scoring predictions for certain targets (see Table 

S2 of the Supplementary Material). 

 

Starting in Round 39 (target T122 onwards), CAPRI participants were requested to submit up 

to 100 models by the prediction deadline directly to the CAPRI-EBI website. This eliminated 

the extra step of uploading 100 models to the Lille site, as done previously.  Predictors and 

servers were nevertheless asked to rank the first 10 models of their set, which were assessed 
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as usual, whereas all the 100 models were pooled with those submitted by other participants 

for each target and offered for the scoring experiment, after anonymizing their origins, as 

usual 17. 

 

Overall, a total of 36114 models were evaluated for the 8 CAPRI Rounds. Depending on the 

target, 28-35 predictor groups submitted models. As previously, a smaller number of groups 

(16-20) submitted models for the scoring predictions. Overall 4835 and 2830 models were 

assessed for predictors and scorers, respectively. Scoring Rounds were offered for all targets, 

including the 3 protein-peptide and 5 protein-oligosaccharide complexes.  This is the first time 

scoring Rounds have been offered for these categories of targets.   

 

ASSESSMENT CRITERIA AND PERFORMANCE RANKING 

Distinct assessment criteria were applied for the different categories of targets.  

The classical CAPRI evaluation and ranking protocol 50,51 was applied to models submitted for 

targets of hetero- and homo- protein-protein complexes. This protocol was complemented 

with the DockQ score 52, a continuous quality metric that integrates the main quality measures 

of the standard CAPRI protocol, as detailed below. Modified protocols were used to evaluate 

the protein-peptide and protein-sugar complexes. 
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The quality of the modeled 3D structure of individual protein subunits was also evaluated by 

computing the ‘molecular’ root mean square deviation, M-rms, of backbone atoms of the 

model versus the target. It was used mainly to gauge the influence of the quality of subunit 

models on the predicted structure of the assembly. 

 

Assessment of protein-protein complexes 

The classical CAPRI evaluation and ranking protocol uses three main parameters, L_rms, i_rms 

and f(nat), to derived the quality score of a predicted model 50,51.  f(nat) represents the fraction 

of native contacts in the target that is recalled in the model. Atomic contacts below 3 Å are 

considered clashes and predictions with too many clashes are disqualified (for the definition 

of native contacts, and the threshold for clashes see ref 50. L_rms represents the backbone 

rmsd (root means square deviation) over the common set of ligand residues after the receptor 

proteins have been superimposed, and i_rms represents the backbone rmsd calculated over 

the common set of interface residues after the structural superposition of these residues. An 

interface residue is defined as such, when any of its atoms (hydrogen atoms excluded) are 

located within 10 Å of any of the atoms of the binding partner.  On the basis of the values of 

these 3 parameters models are ranked into 4 categories of quality scores: high quality, 

medium quality, acceptable quality and incorrect (as previously described 36 and listed in 

Table III).   
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Considering the uncertainty associated with the stoichiometry of the hetero-hexamer target 

T125, prediction results for the three main interfaces of this target, the homodimeric LLT1 

and NKR-P1, T125.2 and T125.4, respectively, and the two heterodimeric LLT1/NKR-P1 

interfaces, T125.1 and T125.3, were evaluated independently. For T124, the PorM-Ct 

homodimer interface and the binding interface of the PorM-Ct monomer with the nanobody 

were considered as representing separate modeling problems and were therefore evaluated 

separately. For the homo-decamer target (T136) with 3 distinct interfaces, the quality score 

(or CAPRI category) for the assembly as a whole was taken as the score of the best-predicted 

individual interface for the assembly. This criterion was used in evaluating models in the 

recent CASP13-CAPRI challenge 38 and is more lenient than criteria applied in earlier Rounds, 

where the score for the entire assembly was taken as that of the worst predicted interface. 

Schemes of intermediate leniency, representing linear combinations of weighted scores for 

individual interfaces of the assembly were also tested, but found not to affect the performance 

ranking for these 3 targets. 

 

Assessment of protein-peptide complexes 

In protein-peptide complexes the interfaces are usually small. Only a portion of the bound 

peptide makes specific interactions with the protein, whereas the remainder of the peptide 

often remains very flexible. Therefore, for the predicted interface to be sufficiently 

informative, its accuracy needs to be higher than that of a protein-protein interface.  To meet 
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this requirement we used the modified evaluation and ranking criteria approved by the CAPRI 

Management Committee and successfully applied to models of protein-peptide targets in 

previous CAPRI Rounds 21. The modifications were as follows: 1) an 8 Å distance cut-off on Cβ 
atoms is used to define interface residues; 2) a 4 Å distance atom-atom cut-off is used to define 

native contacts; 3) at least 90% of the sequence of the peptide has to be recovered in the 

model (compared to at least 70% for the protein). Moreover, parameter values for classifying 

model quality as ‘incorrect’, ‘acceptable’, ‘medium’ and ‘high’, have been tightened (see Table 

III for details). 

 

For target T134, the ability of predictors to correctly identify the correct 12-peptide that 

actually binds the DLC8 domain from the full 50-residue segment of the MAG protein was also 

evaluated.  For this target, models lacking the 10 central residues of the segment that forms 

the protein-peptide interface were considered as incorrect. This is slightly more lenient than 

the 90% sequence coverage for the peptides, mentioned above and applied to T135. 

 

Assessment of protein-oligosaccharide complexes 

The protein-oligosaccharide complexes, although not an entirely new category of targets in 

CAPRI, remain a challenging modeling problem for predictors and assessors alike, owing to the 

particularities of the sugar moieties.   In an attempt to standardize the format of the submitted 

models, participants were invited to use the following conventions: 1) use the PDB HETATM 
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records for the atomic coordinates of the arabinose oligosaccharide moieties; 2) the chain 

identifier for the sugar moieties should be the same as for the protein chain; 3) sugar residue 

numbering should start at 1. Participants were also provided with examples of oligosaccharide 

structures in the PDB, which listed the correct atomic numbering conventions. 

 

While the requested format conventions were more or less followed, departures from the 

correct residue and atom number conventions were all too common. These included reversing 

the sugar residue numbering; wrong atom names, e.g. using O1’ instead of O5’ and attaching 

this oxygen to the wrong (previous) residue; using the same residue numbering for all sugar 

residues; using two different residue numbers for a single monoarabinose; first listing all 

carbons, then all oxygens, and numbering them sequentially; and finally, submitting models to 

the wrong target (e.g. AbnE/A6 submitted to T129, the AbnE/A3 complex, instead of to 

T126).  

 

With a few exceptions, these problems could fortunately all be corrected through visual 

inspection followed by rule-based customized scripts, applied to all the models submitted by 

individual predictor groups.  However models submitted by scorer groups required a special 

treatment. Since these groups used pooled models from multiple predictors, and adopted 

either the source (predictor) format or their own, two transformations were applied to each 

Scorer submission in order to carry out the assessment.  One transformation was applied to 
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convert the scorer submission to the correct standard representation. In addition, thanks to 

the CAPRI tracking code, the provenance (source) of models in the uploaded set was identified 

and a second transformation was applied to models contributed by the same predictor group 

to the set. Both transformations were applied separately and the resulting models were 

evaluated. The more favorable evaluation was then assigned to the scorer submission. This 

convoluted protocol finally led to the rejection of only a handful of models over all five sugar 

targets. 

 

We assessed only models where all the required sugar residues were present. The sugar atoms 

C1’, O4’, C4’ and C5’ were defined as backbone atoms. These atoms were used to perform the 

structure superimpositions. In addition, light of the small size of the protein-sugar interaction 

interface, which resembles the situation in protein-peptide interfaces, the following changes 

with respect to the assessment of protein-protein complexes were implemented: the threshold 

distance to determine interface residues was reduced to 6 Å, and the threshold distance for 

ligand-receptor contacts was reduced to 4 Å (Table III).  However, the standard protocol (e.g. 

the standard definitions and thresholds for f(nat), L-rms and I-rms) was used for classification 

into the by now well-known categories of ‘incorrect’, ‘acceptable’, ‘medium’ and ‘high’ quality, 

models.  Figure 2b illustrates model versus target fits of high, medium, and acceptable quality 

arabinopentaose models submitted for target T127 (AbnE/A5 complex). 
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Additional assessment measures 

To enable a higher-level analysis of the performance across targets, we used a continuous 

quality metric, as formulated by the DockQ score, to evaluate each modeled interface 52 : 

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = [𝑓𝑓(𝑛𝑛𝑛𝑛𝑛𝑛) +  𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐿𝐿𝑟𝑟𝑟𝑟𝑠𝑠, 𝑑𝑑1) +  𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖𝑟𝑟𝑟𝑟𝑠𝑠, 𝑑𝑑2)]/3 

with                       𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1/[1 + (
𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑖𝑖 )2]     

where f(nat), i_rms, and L_rms are as defined above. The rmsscaled represents the scaled rms 

deviations corresponding to either L_rms or i_rm, s and di is a scaling factor, d1 for L_rms and d2 

for i_rms, which were optimized to fit the CAPRI model quality criteria, yielding d1 = 8.5 Å and 

d2 = 1.5 Å  (see  ref 52). 

 

Performance ranking    

The performance of predictors scorers and servers for individual targets was ranked on the 

basis of a per-target score (Score_T).  This score was computed as the weighted sum of the 

number of models in each of the 3 CAPRI categories (acceptable, medium and high) submitted 

by a given group as part of their top 5 ranking models, as follows: 

 

                                                      𝑆𝑆𝐷𝐷𝐷𝐷𝑟𝑟𝑆𝑆_𝑇𝑇 =   𝜔𝜔1𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜔𝜔2𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 + 𝜔𝜔3𝑁𝑁𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 
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where NACC, NMED and NHIGH are the number of models of acceptable-, medium- and high- 

quality, respectively, submitted for a given target  (among the top 5 models); the values of the 

weights ‘ω’ were taken as ω1=1, ω2=2 and ω3=3. 

 

The performance of predictors, scorers and servers across targets was ranked on the basis of 

their best quality model in the 5-model submission for each target. The global score assigned 

to a group or a server, denoted as Score_G, has the same form as the score for individual 

targets shown above. Only this time, NACC, NMED and NHIGH are the number of targets for which 

the best model (among the top 5) was of acceptable, medium and high quality, respectively. 

For both the per-target and across target ranking we also discuss the rankings for the top 1 

and top 10 submitted models. 

 

This ranking protocol, introduced recently for the CASP13-CAPRI challenge 38, differs from 

previous protocols, where priority was given to the number of targets for which medium or 

high quality models were submitted, and then to the number of targets with acceptable 

models. The new protocol leads to fairer ranking of groups, as it also takes into account the 

number of acceptable models that they submitted, especially for the more challenging targets. 

  

 

PREDICTION RESULTS 
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In the following we summarize the prediction results for the different categories of targets, 

and present the global performance ranking across groups and automatic servers. The 

performance of predictors, scorers and servers was ranked on the basis of the top 5 

submissions for each target, but results for the top 1 and top 10 submitted models are also 

discussed, whenever appropriate.  The ranked group performance for individual interfaces of 

the targets of Round 38-45 are provided in the supplementary Tables S3-S18, and the full 

account of all the results for these targets are available at the official CAPRI website 

(https://www.ebi.ac.uk/msd-srv/capri/).  

 

Results per target category 

Protein-protein complexes (Targets T122-T125; T131-T133, T136) 

T122, the x-ray structure of the human cytokine-receptor complex, comprised the IL23 hetero 

dimers (IL23A/IL12B) bound to its receptor protein IL23R.  This turned out to be a medium 

difficulty target, since templates were available for both the IL23 hetero dimer and the IL23R 

receptor protein. But the flexibility of the inter domain arrangements in IL12B and the IL23R 

receptor differed sufficiently to affect the prediction performance. Probably as a result only a 

small number of groups were able to submit medium quality models for this target. A total of 

three predictor groups (Venclovas, Seok, Kozakov/Vajda) submitted such models among their 

top 5 ranking ones.  The best of these models is illustrated in Figure 3.  An additional 7 groups 

(including the CLUSPRO server) submitted only acceptable models. The scorer performance 
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was lower, with some scorer groups either ranking lower (e.g. among their top 10 submission) 

or missing altogether the medium quality models they themselves ranked higher (top 5) as 

predictors. The scorer performance improves when considering the top 10 ranking 

submissions.  

 

The prediction results for T123 and T124, the PorM-Nt/nb-130 and PorM-Ct/nb-02 complex 

respectively, were very poor, due to the absence of templates for the two PorM domains. With 

predictors attempting and failing to model the PorM protein ab-initio – as during the CASP12 

round for T0907 – only incorrect models were submitted for these targets, by the ~30 

participating predictor groups and servers.  However, one acceptable model was produced for 

T123 by the group of Andreani/Guerois. This model was ranked too low to be considered a 

predictor submission, but was available in the scoring set, where it was unfortunately not 

recognized by any of the scorer groups. 

 

Mitigated results were obtained for T125, the LLT1/NKR-P1 multi-protein hetero assembly, 

where the announced stoichiometry consisted of 1 homodimer of LLT1 binding 2 homodimers 

of NKR-P1, forming a hexamer with a total of 5 interfaces. Prediction results were evaluated 

only for 4 interfaces, which buried areas between 540 and 775 Å2.  These interfaces, numbered 

from 1-4, include the LLT1-NKR-P1 main hetero-dimer interface (interface 1), the LLT1 

homodimer interface (interface 2), the NKR-P1 homodimer interface (Interface 4) and an 
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alternate binding mode of the hetero-dimer (Interface 3), see Table I and Figure 4. Models of 

acceptable quality or higher were submitted only for the 2 largest interfaces, for which 

templates were available.  The very small size of the remaining interfaces, and the fact that 

consistent models featuring these interfaces were difficult to generate, are reasons for 

doubting the complex stoichiometry defined by the author, as mentioned above.   

 

Eleven groups including 2 servers submitted at least 1 models of medium quality or better 

among their 5 top ranking models for interface 1. The two best performing groups for this 

interface were those of Pierce and Venclovas, with respectively 5 and 3 high quality models 

among their top 5 submissions.  Moreover, the Pierce group had 8 high quality models among 

their 10 best predictions, whereas Venclovas had 5 high quality and 4 medium quality models 

among their top 10 predictions.  It is also noteworthy that CLUSPRO and MDOCKPP, the 2 

servers with correct predictions for this interface, each submitted 5 medium quality models. 

 

Superb performance was achieved for the LLT1 homodimer (interface 2), with  the majority of 

the predictor groups obtaining at least 1 high quality model among their top 5 submissions, 

and as many as 12 groups generating 5 high quality models among the top 5 submissions. The 

latter set of best performing groups comprised those of Bates, Fernandez-Recio, Gray, Moal, 

Shen, Weng, Zacharias, Huang and Grudinin, and included in addition the HADDOCK, 

PYDOCKWEB and SWARMDOCK servers.  The vast majority of predictor groups also had a high 
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quality model as their single top prediction for this homodimer, and 10 groups including the 3 

servers had high quality models for all their top 10 submissions. 

 

Echoing the prediction performance for the different interfaces of T125, scorer groups 

submitted models of acceptable quality or higher only for interfaces 1 and 2. The scorer 

performance was good for interface 1, and excellent for interface 2, but overall lower than that 

of predictors (human & servers), for both interfaces.  Whereas 14 scorer groups submitted at 

least 2 medium quality models for interface 1, only the group of Gray submitted high quality 

models for this interface (1 among their top 5 predictions and 2 among their top 10). The best 

scoring performance for this interface was by the LZERD server and the Bates group, each 

submitting 5 medium quality models, followed by the groups of Kihara (the authors of LZERD), 

Weng and Bonvin, with 4 medium quality models.   

 

For the well predicted interface 2 of T125 as many as 16 scorer groups submitted at least 1 

high quality model among their top 5 predictions. Among these groups, those of Laine, Moal 

and Carbone submitted 4 such models, whereas Zou, Gray, and Bonvin submitted 3 high 

quality models among their top 5 predictions. 

 

The prediction performance was rather weak for targets T131 and T132, the hetero- 

complexes of human CEACAM1 N-terminal domain with, respectively, the related bacterial cell 
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adhesion proteins HopQ-I and HopQ-II, despite the availability of templates for both the 

bacterial HopQ components and the human CEACAM1 domain. For T131 (CEACAM1/HopQ-I 

complex), the lower performance may be explained by the presence of extra loops in the pylori 

HopQ-I protein, which contributes to the binding interface, but were absent in the available 

HopQ templates.   Of the 30 predictors and servers groups submitting models for this target, 

only the group of Kozakov/Vajda submitted 1 medium quality model among their 5 top  (and 

top 10) ranking ones. The results were only marginally better for T132, the complex with 

HopQ-II that did not contain the extra loops, and therefore should have been easier to model.  

Here, only the LZERD server and the group of Moal submitted 1 medium quality, and 1 

acceptable quality model, respectively. The best model submitted for T131 is shown in Figure 

5a)   

 

The scorer performance for T131 and T132 was only somewhat better than that of predictors, 

with the group of Carbone submitting a medium quality model as their top submission, in 

addition to one acceptable model among their top 5 submissions. 

 

T133, the redesigned version of the Colicin E2/DNase-Im2 complex (Edes3/Imdes3), was a non-

classical CAPRI target, where predictors had to accurately model the structural perturbations 

produced by redesigned residues in the wt complex.   In order to gauge the effect of these 

perturbations on the CAPRI model quality criteria, we assessed the wt complex (PDB 3u43) 
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used as input for the design calculations, against T133. This yielded a medium-quality model 

(f(nat) 0.698; L-rms 2.043; i-rms 1.207), just like those submitted here by a good number of 

groups.  Therefore, the fact that no high quality models were submitted for T133 indicates 

that predictors, servers and scorer groups were all unable to reproduce the finer details of 

interface of the redesigned complex. Ten predictor groups, those of Venclovas, Kozakov/Vajda, 

Birini, Bonvin, Seok, Takeda-Shitaka, and Kihara, and 3 servers, INTERPRED, HADDOCK, 

LZERD, each submitted at least 2 medium quality models among their top 5 submissions. 

Whereas, 3 groups (Venclovas, Kozakov/Vajda and Brini, a recent CAPRI participant, 

submitted 5 such models. The best model obtained for this target, and the corresponding 

CAPRI quality measures, is illustrated in Figure 5b.  Overall however, as many as 28 groups, of 

which 9 were servers, submitted at least 1 acceptable, or medium quality model among their 

top 5 predictions.  

 

The scorer performance for this target was likewise good, with 7 scorer groups submitting at 

least 2 models of medium quality of better among their top 5 predictions, and 2 groups, the 

LZERD server and Bates, submitting 5 acceptable models of which 3 were of medium quality. 

 

The 8th protein-protein target, T136, was the 4.5 Å resolution cryo-EM structure of the lysine 

decarboxylase (LdcA) homo-decamer, determined by cryo-EM to 4.5 Å resolution. This 

decamer comprises 3 distinct interfaces. A very large interface, involving interactions between 

This article is protected by copyright. All rights reserved.



                

the subunits within and between rings (Interface 1), and 2 smaller, yet sizable, interfaces: 

interface 2 between subunits within the ring, and interface 3, again between subunits of 

different rings.  This was in principle an easy target that could be predicted using ‘template-

based modeling’ using as template the high-resolution x-ray structure of a related arginine 

decarboxylase (PDB code 2vyc) as template.  It is therefore not surprising that good prediction 

results were obtained for all three interfaces, with the best results obtained for interface 1, 

followed by that for interfaces 2 and 3.  Indeed, 18 groups, including 5 servers, submitted 5 

medium quality models as their top prediction for interface 1, with another 6 groups 

(including 1 server) submitted at least 2 medium quality models for this interfaces.  For 

interface 2, only 6 groups (including 1 server) submitted medium quality models for all their 

top 5 predictions, whereas for interface 3, the best performance was by the GALAXYPPDOCK 

server and the Vakser group, each submitting 4 medium quality models among their top 5 

predictions.  The best overall model obtained for this target is illustrated in Figure 6. 

 

Not too surprisingly, the performance of scorer groups (and servers) reflected that of 

predictors but was in general lower, with a very good performance by groups such as 

Venclovas, Seok, and the LZERD server.  

 

The low resolution of the target cryo-EM structure, or the genuine differences between the 

target structure and the available template(s), or both factors, may have contributed to the 
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absence of high-quality models for any of these interfaces, and therefore for the homo 

decamer as a whole.  

 

Protein-peptide complexes (T121, T134, T135) 

Target T121 was the solution structure of the complex between the TolAIII domain and the 

13-residue N-terminal peptide of P. aeruginosa TolB. This turned out to be a difficult target, 

although, as already mentioned, a 1.94 Å resolution x-ray unbound structure was available for 

the TolAIII domain. The prediction performance for this target was very poor for predictor 

and server groups, and consequently also in the scoring challenge. In total, only 3 groups 

submitted 4 acceptable models among their 5 top ranking predictions: Seok submitted 2 such 

models, with Bates and Zou submitting 1 acceptable model each.  The groups of Schueler-

Furman and Kozakov/Vajda did however submit a medium quality model among their 10 top 

predictions.   

 

As to the scorer performance, the LZERD server and 5 additional scorer groups submitted 

acceptable models for this complex, with LZERD, Kihara and Seok each submitting 1 

acceptable model as their top prediction. However, 1 medium quality model and an additional 

15 acceptable models were among the 10 best models of as many as 8 scorer groups.   
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The only 3 medium quality models were submitted for T121 by the groups of Schueler-

Furman, Kozakov/Vajda (predictors) and Moal (scorer) among their top 10 best models. These 

models displayed i-rms values of 2.5 Å, 2.8 Å, and 3.7 Å, respectively. Interestingly, the 

uploaded models (100 models submitted per participating group), displayed larger i-rms 

values than the predictor set (only from T122 onward were all predictor submissions 

automatically included in the uploaded set), with none below 3 Å, and the single medium 

quality model submitted by Moal scorer group represented an improvement upon its source 

model from the uploaded set. 

 

Among the possible reasons for the generally poor performance may have been the flexibility 

of the peptide, of which only a small segment was predicted to adopt a β-strand conformation. 

The latter possibility may have been compounded by a conformational change of the TolAIII 

domain relative to the available template. With the target structures still on-hold, as this 

report is being written, we cannot comment on which of these two possibilities played any 

role.  

 

Not too surprisingly, very good results were obtained for Targets T134 and T135, the 

complexes of the DLC8 homodimer with a 12-residue peptide from the cognate L-MAG protein. 

The additional task of having to identify the 12-residue segment that binds to the DLC8 dimer 

in T134 led to a generally lower prediction performance for this target, compared to T135 
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where the sequence of the 12-residue peptide was provided. In order to be evaluated, models 

submitted for T134 had to feature a sufficient overlap (of at least 10 residues, with only one 

residue out of phase) between the bound peptide segment and the 12-residue segment of the 

target complex. Only 10 out of the 31 predictors groups (including servers) achieved this goal, 

including 6 groups that were able to identify exactly the 12-residues segment of the target 

complex (Figure 7). Among the predictor and server groups whose models for T134 were 

evaluated, 7 groups (but no servers) had at least 1 model of medium or higher quality among 

their top 5 submissions. Of these groups the best performance was obtained by the group of 

Schueler-Furman (3 high quality and two medium quality model) followed by 4 other groups 

(Andreani-Guerois, Venclovas and Moal) each submitting 1 high quality model.  For T135, as 

many as 14 predictor groups including 3 servers (HDOCK, CLUSPRO, and GALAXYPPDOCK) 

produced at least 1 model of medium or higher quality for this target among their top-5 

submission, with several of these groups submitting 3 or 4 such models.  The 5 best 

performers for this target were those of Schueler-Furman, with high quality models for all 

their top-5 submission, and the groups of Huang, Zacharias, Andreani/Guerois and the HDOCK 

sever, with only high and medium quality models among their top-5 submissions.  

The scorer performance for these targets was quite good as well.  As many as 11 groups, 

including the HDOCK and LZERD servers, submitted at least 1 medium quality model among 

their top-5 submissions for T134, with the groups of Venclovas, Oliva and Kihara submitting 

in addition between 1 and 5 high quality models.  For T135, at least 1 medium quality model 
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or better was submitted by as many as 14 groups, with the 3 best performing groups also 

submitting higher quality models:  4 such models were submitted by the group of Venclovas, 2 

by Fernandez-Recio and 1 by the HDOCK server. 

The most accurate models submitted for the DLC8-peptide complex (by both predictor and 

scorer groups) is depicted in Figure 8. 

 

Protein-oligosaccharide complexes (T126-T130) 

The prediction results for the 5 protein-oligosaccharide complexes were quite interesting 

because they provide insight into the challenges that CAPRI groups faced in modeling these 

complexes. For Targets 126 and 127, the 2 complexes of AnbE with the longer-chain 

arabinohexaose (A6) and arabinopentaose (A5) ligands, respectively, only the HDOCK server 

submitted a medium quality model (for T127), whereas all other predictor and scorer groups 

submitted only acceptable models among their top 5 submissions. The total number of groups 

submitting such models was however quite high (15 for T126 and 23 for T127; see Figure 9).  

 

On the other hand, higher quality models were obtained for T128 and T129, the AbnE 

complexes with the shorter sugars, arabinotetraose (A4) and arabinotriose (A3). Indeed, a 

number of groups (7 for T128 and 6 for T129) submitted at least one medium quality model 

for these targets, with many more groups submitting acceptable models among their top 5 

predictions. The number of groups with this performance increased to 9 or 10, depending on 
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the target, when the top 10 submissions were tallied (Figure 9). Five groups (Bonvin, 

Andreani/Guerois, Zacharias, Kihara and the LZERD server) performed best for T128 and 6 

groups (Gray, Seok, Chang, Huang, Andreani/Guerois , and the HDOCK server) performed best 

for T129. 

 

These results indicate that predictors performed better in modeling the AbnE complexes with 

the shorter chain arabinose sugars than the longer versions. Interestingly furthermore, they 

were marginally more successful in modeling the complex with arabinotriose (A3), which 

binds to sites 2-4 of the AbnE binding pocket, and not sites 1-3, as might have been expected 

from the binding modes adopted by the longer chain arabinose sugars (A4-A6). The likely 

reason for this trend is that the available templates consisted of complexes of AbnE homologs 

bound only to 6-membered sugar ligands. These complexes were helpful in more or less 

correctly positioning the flexible longer arabinose oligosaccharides in the AbnE binding 

pocket, but they provided limited guidance for optimizing the bound sugar conformation and 

protein-sugar contacts. To perform such optimizations predictors had to rely on various 

modeling and refinement procedures. These procedures may not have been very effective in 

sampling the conformational landscape of the larger bound sugars moieties, but produced 

better results for the smaller sugars, owing to the fewer degrees of freedom that need to be 

sampled. This seems to have allowed predictor groups, including several servers, to produce 

medium quality models also for AbnE/A3, where the arabinotriose occupies sites 2-4. 
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The 5th sugar target, T130, the complex of AbnB with arabinopentaose, was the easiest of the 

lot, because templates representing the holo and apo forms of the enzymes were available, 

although the holo forms only bound shorter arabinose oligosaccharides. This was the only 

target of this category where high quality models were submitted.  Nine predictor groups, 

including 2 servers (HADDOCK and LZERD), submitted such models among their top 5 

predictions, and 5 of these groups (Venclovas, Chang, Grudinin, Seok, and Carbone) had a high 

quality model as their top ranking submission. Over 20 groups submitted at least one medium 

quality model for T130, either among the top 5 or top 10 submissions. 

 

Lastly, as expected, the scorer performance mirrored that of predictors. It was relatively poor 

and roughly on par with those of predictors for T126 and 127; it was better and again 

essentially on par for T128 and 129, and excellent for T130.  

 

Performance across predictor groups scorers and servers. 

Groups (predictors, servers and scorers) were ranked according to their prediction 

performance for the 16 targets evaluated here. This ranking represents the official 

performance ranking for Rounds 38-45. We also ranked the performance of predictor groups 

and servers for each of the 3 categories of targets separately, as these categories represent 

distinct modeling problems. But these rankings are only presented for analysis purposes, as 

This article is protected by copyright. All rights reserved.



                

the number of targets per category was too small for such ranking to be sufficiently 

informative.  

All the rankings presented followed the revised ranking protocol, which uses a more balanced 

weighting scheme for models of different accuracy levels, as detailed in the section on the 

assessment and ranking procedures. 

 

For a full account of the results obtained by each group the reader is referred to the CAPRI 

web site (http://pdbe.org/capri). 

 

 

Performance of predictor groups  

The consolidated ranking of predictor groups (including servers) across all 16 targets 

assessed in this report (Table IV.a), shows the 5 best performing groups to be those of 

Andreani/Guerois, Seok, Venclovas, Kozakov/Vajda, and Zacharias.  The first 5 groups 

submitted correct models for 11-13 targets, which included high quality models (4 by 

Andreani/Guerois and Venclovas; 3 by Zacharias, 2 by Seok and 1 by Kozakov/Vajda), as well 

as medium quality models (8, 7, 5, 4 and 3, by Kozakov/Vajda, Seok, Andreani/Guerois, 

Venclovas and Zacharias, respectively). The first server in the ranked list is CLUSPRO, with 10 

correctly predicted targets, including 6 medium quality ones. 
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It is furthermore noteworthy that the three top ranking groups (Andrani/Guerois, Seok, and 

Venclovas) also rank highest when considering their single best ranking models for each 

target (top 1); and that the same 5 groups remain the top performers, when considering their 

top 10 ranking models for each target (Table IV.a), as was the practice in earlier CAPRI 

evaluations.  This supports the current more stringent approach of ranking the performance 

on the basis of the top 5 submitted models per target. 

 

Performance of scorer groups 

As already observed for the prediction results for individual targets, the across target 

performance of scorer groups is also somewhat weaker than that of predictors. The 

consolidated ranking of scorer across all targets (Table IV.c) lists 7 top performing scorer 

groups, as those submitting correct models for at least 11 of the 16 evaluated targets. In order 

of their rank, these groups are: Kihara, Zou, Bonvin and Seok, followed by the servers 

MDOCKPP and LZERD, and the group of Bates. The models submitted by these groups included 

a sizable fraction of targets for which medium quality models were submitted (7 targets by 

Zou, 6 by Bonvin, Seok, Huang and the LZERD server, and 5 by Kihara).  On the other hand, the 

5 best performing groups obtained high quality models for only 1 or 2 targets, whereas the 

group of Venclovas, which ranks lower in the list, did obtain high quality models for 3 targets, 

but overall submitted correct predictions for only 10 targets. 
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On the whole scorer rankings were less consistent, when considering also the top 1 or top 10 

submitted models for each target (Table IV.c). 

 

Performance of prediction servers  

Like in the last CAPRI assessment 21, the overall performance of prediction servers in Rounds 

38-45  (Table IV.b) is lower than that of human predictor groups, most likely due to their 

lower performance on the protein-peptide and protein-sugar complexes. These complexes – 

more particularly the protein sugar complexes – represent relatively recent target categories 

in CAPRI, for which automatic servers still need to be optimized. 

 

Nonetheless, the CLUSPRO server maintains its high-ranking performance of previous CAPRI 

assessments, and is closely followed by those of HDOCK, a server that also performed very 

well in the recent CASP13-CAPRI challenge 38, MDOCKPP, LZERD, and the veteran HADDOCK 

server. CLUSPRO loses its high ranking position when considering only the single best 

predicted model (top 1), but ranks second (after HADDOCK) when the top 10 submitted 

models for each target are considered. 

 

It is satisfying to see that as many as 20 predictor groups (and servers) submitted correct 

models for 8 to 12 targets (out of the 16 total), including models of medium quality or better, 

for between 4 to 9 targets (Table IV.a).  The performance of predictor and scorer groups did 
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display some differences between the 3 target categories.  While the top ranking predictor 

groups across all 16 targets were also among the best performers in each of the 3 target 

categories (see Supplementary Tables S19-S21), depending on the target category, a few 

additional groups percolated to the top of the rank.  For example, the group of Pierce moved to 

the 3rd position for the protein complexes, and the groups of Zacharias and Schueler-Furman, 

rose to the 1st and 2nd position in the ranking for the protein-peptide complexes. These 

differences are clearly not statistically significant, but they seem to correlate with the 

proficiency of the group or server in tackling the modeling problem of the corresponding 

target category. 

 

 

General trends and factors influencing prediction performance 

The 16 targets of Round 38-45 comprised 3 very different categories of complexes 

representing distinct modeling challenges.  Furthermore, with the exception of LdcA homo-

decamer (T136), all the targets were hetero-complexes, where the partners are different 

proteins, a protein and a peptide or a protein and an oligosaccharide.  

 

The prediction performance for these targets critically depended on several factors. For the 7 

protein hetero-complexes, and considering the increased reliance of predictor groups on 

template-based modeling rather than on classical docking procedures, an important role was 
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played by their ability to leverage information on the binding modes and interfaces in 

structures of related hetero-complexes, and use this information to model the structure of the 

complex directly or to guide docking calculations.  For all three target categories – but more 

particularly for the protein-peptide and protein-oligosaccharide complexes – a decisive factor 

was the successful optimization of the interactions at the binding interfaces by sampling both 

internal and rigid-body degrees of freedom of the interacting partners. 

 

A convenient overview of how these challenges were met by predictor groups and servers 

across all three categories of targets is presented in Figure 10. This Figure plots the DockQ 

quality scores, color-coded by the CAPRI model quality categories for all the interfaces in 

individual models submitted by predictors (human and severs) for all the 16 targets of Rounds 

38-45.  These scores are contrasted with those obtained for the best of the 5 models submitted 

by CLUSPRO, the top performing automatic server in this evaluation. These models are used 

here as the baseline performance, analogous to that produced by the ‘naïve’ predictions 

considered previously 22, which employ ‘off the shelf’ standard modeling tools, although, given 

the consistently good performance of this server, this may put the bar for baseline 

performance rather high.   

 

Examining the DockQ scores for the 7 protein-only hetero-complexes (T122-T125 and T131-

T133), most of which are also deemed to be difficult targets, confirms that the prediction 
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performance, measured as the fraction of models of acceptable quality or higher submitted 

across the ~40 human predictor and server groups, was uneven, and generally on the weak 

side. This global trend reflects the inherent difficulty of these targets. For predictors 

employing ab-initio docking approaches of various flavors, the availability of mostly distantly 

related templates for the individual subunits was often an important limitation, which allowed 

groups relying on template based modeling of the entire complex to gain some advantage.  An 

exception was the well-predicted LLT1/NKR-P1 interface of T125, with several high accuracy 

models submitted for this complex, despite its relatively small size interface (775 Å2).  For this 

set of hetero-complex targets the baseline performance of the CLUSPRO server was often 

comparable to those of the best performing manual predictors. Other times however, the base 

line performance was also significantly lower, like for T131, T132, and for the targets or 

interfaces for which only incorrect models were submitted. The better performance for T133 

(the redesigned DNAse/Im2 complex) and the homo-decamer target T136, the easier targets 

for which adequate templates were available for the entire complex, illustrates the advantage 

that such targets represent for the modeling task. This advantage is likewise witnessed by the 

relatively good baseline performance of the CLUSPRO server. Nonetheless the failure to 

produce high quality models for these targets suggest that the modeling procedures remain in 

general limited in their ability to further optimize the initial near-correct models that are 

being generated.   
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Not much can be concluded from the performance trends for the 3 protein-peptide targets. 

The poor results obtained for T121 cannot be analyzed here due to confidentiality 

requirement at this time, whereas the good performance for T134-T135, the DLC8-peptide 

complexes, is not particularly revealing, given the accurate template available for the DLC8 

dimer, and the well conserved peptide binding site of this protein.  Interestingly nevertheless, 

for T134, the poor performance of CLUSPRO and a good fraction of predictor groups, is mainly 

due the failure to identify the correct 12-residue that binds DLC8 from the sequence of a 50-

residue peptide, a task which most groups performed using template based methods. These 

methods involved leveraging information on known structures of complexes of DLC8 with 

other peptides, aligning the sequences of these peptides and looking for conserved motif(s) 

that match the target sequence. On the other hand, the reason that only medium quality 

models where obtained for T135, where the exact sequence of the MAG peptide was provided, 

may be explained by the fact that the C-terminal leucine residue of the peptide is stabilized by 

crystal contacts rather than by interactions with the DLC8 domain (Khramushin et al., this 

issue). The effects of such contacts on peptide conformation may need to be accounted for in 

future assessments. 

 

Lastly, the performance trend across the 5 protein-oligosaccharide targets (T126-T130) 

confirms the conclusions reached by examining the per-target results, namely that the main 

bottleneck for both predictors and servers was the limited ability to optimize the binding 
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modes of the larger sugar ligands, the arabinopentaose (A5) and arabinohexaose (A6), due to 

their high degree of conformational flexibility.  

 

To gain insight into the factors contributing to the quality of predicted models we examined 

the relationships between the quality of these models and 2 important parameters: the 

accuracy of the 3D structures of individual subunits in the predicted complexes and the 

accuracy of side chain conformations of interface residues in these complexes. Figure 11b 

displays the distributions of the M-rms values (the backbone rms values of the individual 

subunits of the submitted models versus those of the target), color-coded by the CAPRI model 

quality categories for all the interfaces in individual models submitted by predictors (human 

and severs) for the evaluated targets. For each target/interface, distributions are displayed for 

the ligand (L) and receptor (R) components of each complex (see legend of Figure 11 for 

definition).  These distributions reveal interesting trends. The M-rms values of models 

submitted for individual targets span a wide range, even within models of the same CAPRI 

quality category. As expected, the lower M-rms values (< 1 Å) are generally observed for the 

high quality models (interfaces 1 and 2 of T125, the protein-peptide complexes T134 and 

T135, and the protein sugar complex T130), confirming that accurately modeling the 3D 

structures of the individual subunits contributes to the accuracy of the predicted complex.  For 

some targets however, submitted models ranked at different CAPRI quality levels comprise 

components that feature very similar M-rms values.  For example, models submitted for T122 
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and ranked as medium-quality, acceptable, or incorrect, all feature very similar M-rms values 

for the component proteins. This indicates in turn that accurately modeling the 3D structure of 

the individual subunits, while helpful, is not sufficient for accurately, or even correctly, 

predicting the resulting complex. A similar conclusion can be drawn for the more poorly 

predicted interfaces of T125 (interfaces 3, the alternate LLT1/NKR-P1 interface). 

Interestingly, the low M-rms values for interface 2 of T125 are not reproduced in the LLT1 

homodimer (interface 1 of T125), most likely because submitted models were derived from 

better templates for this homodimer. 

A less equivocal relationship is observed between the accuracy of the modeled side chains of 

interface residues in predicted complexes and the quality level of these complexes, as 

illustrated in Figure 11a. This Figure displays the distributions of the root mean square 

deviation of side chain atoms  (S-rms) of interface residues, color-coded by the CAPRI model 

quality categories for all the interfaces in individual models submitted by predictors (human 

and servers) for the evaluated targets. These distributions reveal that for the vast majority of 

the target or interfaces, the S-rms values decrease as the model quality level improves, 

highlighting the close relationship between the CAPRI model quality measures, which notably 

evaluate inter-residue contacts at the binding interface, and the accuracy with which the side 

chains of residues at this interface are modeled.  On the other hand, S-rms values remain in 

general rather high (up to 2.4 Å) even for high quality models, and may span a wide range 

among models with similar quality level.  This indicates that even in models of high quality, 
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according to CAPRI criteria, side chain conformations of interface residues may not be 

modeled at high enough accuracy for quantitative downstream applications such as rational 

protein or drug design. 

 

Lastly, having noticed that some predicted complexes evaluated in previous Rounds, notably 

in the recent CASP13-CAPRI challenge, tended to feature a significant fraction of non-native 

residues at the interface 38 and hence to over-predict the interface regions, we examine if this 

also occurs in predicted complexes for the 16 targets evaluated in this study.  To this end we 

plotted the quantity f(non-nat) in models submitted by predictor and scorer groups for 

individual targets, as a function of the DockQ score of the corresponding  models, which are 

color coded according to the CAPRI model quality category (see Figure 12).  f(non-nat) 

represents the fraction of contacts formed between residues the interface of predicted 

complexes, which are not found in the interface of the target. This quantity is routinely 

computed in CAPRI assessments, but has so far not been used for model ranking. 

 

As one would hope, the scatter plots of Figure 12 reveal a clear linear inverse correlation 

between f(non-nat) and the DockQ score of models submitted by predictor groups (including 

servers) (Figure 12a; Pearson Correlation –0.915), and by scorers (Figure 12b; Pearson 

Correlation –0.912). These plots also show quite a good correspondence of the plotted 

quantities with the 4 CAPRI model quality categories, each of which can be characterized by a 
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pair of f(non-nat) and DockQ values.  But values for individual models display a significant 

spread, with those of f(non-nat) spreading systematically toward higher values across models 

of all 4 CAPRI quality categories. Most strikingly, a majority of the medium quality models and 

a large fraction of the high quality models in Figure 12 feature f(non-nat) values of 40% or 

higher. Thus, even though interfaces in this fraction of high quality models recall between 60-

95% of the native contacts of the target complexes, nearly half of all the predicted contacts in 

some of these interfaces are incorrect. As a result, the interfaces are of limited predictive value 

for any downstream application, as the probability of picking a native contact in such 

interfaces is only slightly above random.   

 

Upon closer inspection we could verify however, that the high quality models displaying this 

behavior, numbering 60 in total, were all submitted for interface 2 of T125 (that of the LLT1 

homodimer) by different scorer and predictor groups (including servers). With several 

templates available for this homodimer, it is reasonable to assume that most of these high 

quality models were generated by template-based modeling protocols, but that these 

protocols probably involved limited subsequent model refinement. Interestingly, the 

HADDOCK prediction server, and the scorer group of Bonvin, the developer of this server, 

submitted 2 high quality models each, for this complex. These models featured, in contrast, a 

very small fraction (< 10%) of non-native contacts, demonstrating that it was possible to reach 

a high predictive value for this complex. 
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NEW TRENDS AND FUTURE DIRECTIONS 

This 7th CAPRI report presented the evaluation of 36114 models of predicted protein 

complexes and their interfaces, submitted by about 60 groups, for 16 targets in CAPRI Round 

38-45.  These targets belonged to 3 different categories: protein-protein, protein-peptide and 

protein-oligosaccharide complexes, each representing distinct modeling challenges.   

 

Of the 8 protein-protein complexes, most of which were hetero-complexes, at least 5 turned 

out to be non-trivial modeling problems. For T122, the IL23/IL23R complex, a bottleneck was 

the inter-domain flexibility of 2 of the subunits of this hetero-trimer and their homologs, 

requiring additional information and human expertise to guide the modeling. For T123 and 

T124, the C-ter and N-ter PorM domain/nb complexes, the complete absence of templates for 

the PorM moieties was the reason that no correct models were submitted. For T131 and 

T132, the CEACAM1/HopQ-Type I and II complexes, differences between the interface region 

in the target and templates, and more particularly the presence of several loops contributing 

to the interface of T131, that were absent in the templates, represented the major challenge 

for these targets.  

Not too surprisingly, the prediction performance was overall poor for these targets, with only 

a relatively small number of groups submitting models of acceptable quality or better for most 

of these targets. As can be seen from the reports of individual groups in this issue, the groups 
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that performed best for these difficult targets used increasingly sophisticated ‘integrative’ 

template-based modeling techniques. These techniques leveraged information not only on 

templates for the individual subunits of the complex, but also on templates for the complex as 

a whole, whenever available, and on the interfaces of these templates. Information from 

different templates and interfaces was often also combined. Furthermore, in cases where the 

templates suggested several competing solutions to the modeling problem, these solutions 

were prioritized using additional approaches such as re-docking of the modeled subunits, 

sometimes guided by biochemical information (Padhorny et al., Burman et al., this issue), or 

computing various model quality scores (Dapkunas et al., this issue) including approximate 

binding affinities, (Park et al., this issue) to evaluate and rank the corresponding interfaces.    

 

So far, similar but in general more straightforward template-based modeling of the entire 

complex has been successfully applied to predict the structure of homo-oligomer targets, such 

as those commonly offered in the CASP-CAPRI challenges 22,38. It is therefore quite 

encouraging to see that this type of template-based modeling in its augmented and more 

‘integrative’ forms is making important headway in the prediction of hetero-complexes, even 

for difficult targets. It hence comes as no surprise that these methods performed particularly 

well for 2 of the interfaces of T125, and for T133, where excellent templates were available 

for the binary complexes of the corresponding assemblies.    
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Nevertheless, the integrative template-based modeling of the full complex still falls short of 

generating accurate models in cases where more consequential conformational adjustments 

or remodeling part of the interface are necessary (like for T131, CEACAM1/HopQ-Type I, and 

T133 the redesigned DNase/Im2 complex).  Other limitations reside in the fact that crystal 

structures of hetero-complexes of related proteins are more prone to displaying different 

binding modes than homomeric protein assemblies, owing to their transient nature and to the 

influence of other protein components (e.g. nanobodies as well as additional native 

interactions partners), with whom they may be co-crystallized.  A related issue played out in 

the prediction of the LLT1/NKR-P1 hetero complex (T125), where inconsistencies between 

the announced stoichiometry of the target and the interfaces formed in available templates, 

adversely affected the prediction performance of the complex as a whole. 

 

Template-based modeling also played an important role in the successful predictions for T134 

and T135, the DLC8-peptide complex, and for the 5 protein-oligosaccharide complexes (T126-

T130).  Nevertheless, for the AbnE/arabinose oligosaccharide complexes (T126-T129), the 

available templates featured different sugar ligands, and could therefore serve mainly to guide 

the modeling procedures. The latter involved various strategies, including specialized flexible 

docking and model refinement methods, which alternate conformational perturbations of the 

sugar ligand with side chain adjustments of the protein binding pocket (see e.g. Burman et al. 

this issue). 
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Highlighting the progress in template-based modeling of the full protein-protein of protein-

ligand complex should not be taken to mean that docking algorithms, which use as input 

homology built models of individual subunits of the complex, have not been holding their own 

in terms of prediction performance. Indeed, these algorithms have significantly progressed in 

their ability to speed up costly computations by using for example GPU (Graphic Processing 

Unit) processors. A number of algorithms are now able to more efficiently incorporate 

conformation flexibility during the docking calculations (Glaschagen et al.; Torchala et al.; 

Burman et al., this issue), and to employ more accurate scoring functions to prioritize docking 

solutions, allowing their authors to rank prominently among the top performing groups.  

Docking procedures, and the criteria they use to score docking poses are also particularly 

helpful in augmenting the performance of template-based modeling (Burman et al.; Padhorny 

et al.; Park et al., this issue), and they clearly remain the only viable approach when templates 

are available only for the individual subunits of the complex.    

 

In cases where such templates cannot be found, even if only for one of the interacting 

components the prediction task cannot be tackled, as was the case for T123 and T124, the C-

ter and N-ter PorM/nb complexes. Hopefully this may change in the not too distant future, if 

Deep Learning techniques confirm their recent successful performance in predicting the 3D 
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structure of individual protein subunits 35, and these ab-initio predicted subunits are taken as 

input for docking procedures to generate useful models for the full assembly. 
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FIGURE CAPTIONS 

Figure1: The 8 protein-protein targets of CAPRI Rounds 38-45.  

The eight protein-protein complexes (see Table 1) are labeled by their CAPRI target numbers. 

Different protein chains in each target are displayed using ribbon diagrams of different colors; 
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redundant subunit copies in T136 are depicted in grey.  For the multi-protein complexes of 

T125 and T136, dashed lines indicate the inter-subunit interfaces that were evaluated (see 

text and Table 1 for target descriptions and further details).   

 

Figure 2: Pictorial tips on protein-peptide and protein-oligosaccharide targets of  

CAPRI Rounds 38-45. 

(a) Components of T121, the complex between TolAIII domain (represented by the crystal 

structure of the unbound form (PDB code 1lr0), and the amino acid sequence of the TolB N-

terminal peptide.  The structure of the target against which models were evaluated could not 

be shown.  (b) T134/T135 the DLC8-peptide complex (see Table 1 and text for details). (c-e) 

Superimposition of the arabinopentaose ligands of AbnE in predicted versus target complexes 

for T127, illustrating the match obtained for different CAPRI model quality categories: 

acceptable (e) medium (d) and high (c). The corresponding CAPRI quality measures are listed 

alongside each model. The full complex of T127 could not be shown for confidentiality 

reasons.    

 

Figure 3:  Overview of the prediction results for T122, the Il23/Il23R complex. 

(a) Shown is T122, the complex of IL23 (Il23A/IL12B) bound to the IL23R receptor, with 

individual subunits depicted in ribbon representations of different colors. The dots 

surrounding the complex are the positions of the geometric centers of the ‘ligand’ (here the 
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IL23R subunit) in the models submitted by predictors, relative to each ‘receptor’ subunit (here 

the IL23 hetero complex). The geometric centers of incorrect models (the majority) are 

colored yellow; acceptable models among the top 10 submissions, including the one by the 

group of Venclovas, detailed in (b), are colored light blue. (b) The acceptable model for T122 

submitted by the group of Venclovas, superimposed onto that of the target. Shown are the 

positions of the IL23R subunit in the submitted mode (blue), versus that of the target (green), 

relative to the ‘receptor’ (e.g. the IL23 subunits) used as reference. 

    

Figure 4:  T125, the LLT1/NKR-P1 complex and its best predicted model. 

(a) The author-announced A2B4 stoichiometry for the LLT1/NKR-P1 complex, with individual 

subunits shown in ribbon representations. Dashed lines illustrate the 4 evaluated inter-

subunit interfaces (see Table 1, and the text for details). (b) The best, high quality, model 

submitted for this target by the group of Pierce, illustrating the correspondence between the 

LLT1 homodimers in the model versus the target (interface 2 in (a)) and between the LLT1 

homodimer and the NKR-P1 subunit (interface 1 in (a)); the other, incorrectly placed, subunits 

are not shown. 

 

Figure 5: Prediction results for T131, and T133. 

(a) The best predicted model for T131, the CEACAM1/HopQ-Type-I complex submitted by 

Kozakov/Vajda, superimposed onto the target structure. The correspondence between the 
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predicted and target interfaces is illustrated in the inset (the target backbone, with the extra 

loop of HopQ-Type_I subunit, is colored bright red). (b)Close up of the best medium quality 

predicted model for T133, the redesigned E2 DNase/Im2 complex, submitted by the group of 

Venclovas. 

 

Figure 6: Prediction results for T136, the   LdcA homo-decamer. 

(a) The best medium quality model submitted for the full LdcA homo-decamer, by the group of 

Andreani/Guerois, superimposed over the target complex. (b) Close-up of the subunit of the 

same model, superimposed over its equivalent in the target. 

 

Figure 7:  Overview of the results on identifying the 12-residue peptide of the MAG protein 

that binds DLC8 in the protein-peptide complex of targets T134/T135. 

The amino acid sequence of full 50-residue segment from the MAG protein that was used in 

the co-crystallization experiment of T134 is listed above the top line, with the 12-residue 

segment that binds the DLC8 dimer highlighted in red fonts. The sequences of various putative 

peptide segments, predicted to bind DLC8 in the submitted models for T134, are listed in 

subsequent rows. The last 3 columns of the Table, list the number of models containing the 

listed sequence, the number of predictor groups, and the number of scorer groups that 

submitted models with the listed sequence, respectively. Sequence segments depicted in red 

fonts correspond to the segment that forms the protein-peptide interface in the complex with 
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the DLC8 dimer. Only models featuring at least the center 10 residues of this segment were 

evaluated for T134 (see text). 

 

Figure 8: Best model(s) for T134-135, superimposed on the target complex. 

The DLC8 dimer is depicted in ribbon representation (red). The best high quality model of the 

bound peptide submitted by the group of Schueler-Furman (light blue) is shown 

superimposed onto the 12-residue bound peptide in the target structure. 

 

Figure 9: Overview of the results obtained by predictor and scorer groups (including servers) 

for the protein-oligosaccharide targets T126-T130. 

Plots showing the cumulative number of predictor (including servers) and scorer groups that 

submitted correct models of acceptable quality or better (color coded according to the CAPRI 

model quality, as indicated in the legends), for each of the 5 protein/arabinose oligosaccharide  

complexes of T126-T130.  The numbers of such models are tallied separately for the top 1, top 

5 and top 10, submissions respectively.  Performance ranking was performed only on the basis 

of the top 5 submitted models. 

 

Figure 10: DockQ scores for models submitted for targets/interfaces of Rounds 38-45. 

Shown are the distributions of the DockQ scores computed for the top 5 models submitted by 

all predictor groups for individual targets or interfaces of Rounds 38-45. Targets are labeled 
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by their CAPRI target number, with the additional digit referring to individual interfaces (see 

Table 1 and text for details). The target category (protein-protein, protein-peptide, and 

protein-oligosacharide) is listed at the top. Individual points are color-coded according to the 

CAPRI model quality category; yellow: incorrect; blue: acceptable; green: medium; red: high. 

For each target, a baseline-level prediction, represented by the best model of the top-

performing automatic server (CLUSPRO, see Table 4b), is represented by black triangles. The 

box-plot distributions (with whiskers at 9th and 91st percentiles) of each target and prediction 

category are shown on the lower panel; color-coding is as for the upper panel, but with a 

lighter shade of blue for better visibility. 

 

Figure 11: Model quality of individual subunits, and of sidechain conformations of interface 

residues in models submitted for targets of Rounds 38-45. 

(a) Distributions of the S-rms values (the sidechain rms values of interface residues of the 

submitted models versus those of the target) for all the targets and association modes in 

individual models submitted by predictors (human and severs) for the evaluated targets. (b) 

Distributions of the M-rms values (the backbone rms values of the individual subunits of the 

submitted models versus those of the target) for all the targets and association modes in 

individual models submitted by predictors (human and servers) for the evaluated targets. For 

each target/interface, distributions are displayed for the ligand (L) (left column) and receptor 

(R) (right column) components of each complex. For target T122, the IL23 hetero-complex is 
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considered as the ‘receptor’ moiety, where the IL23R subunit is taken as the ‘ligand’. 

Individual points in (a) and (b) are color-coded according to the CAPRI model quality 

category; yellow: incorrect; blue: acceptable; green: medium; red: high. 

 

Figure 12:  f(non-nat) versus DockQ scores for models submitted for targets of Rounds 38-45. 

Scatter plots of the quantity f(non-nat) in models submitted by Predictor (left plot) and Scorer  

(right plot) groups for individual targets, as a function of the DockQ score of the corresponding  

models, color coded according to the CAPRI model quality category; yellow: incorrect; blue: 

acceptable; green: medium; red: high.  f(non-nat) represents the fraction of contacts formed 

between residues of the interface of predicted complexes, which are not found in the interface 

of the target, and represent the extent to which an interface may have been over-predicted; 

the DockQ score is the consolidated quality score of submitted models as detailed in the text. 

The plots show that some models ranked as high quality by the CAPRI criteria (and DockQ 

scores >0.7), feature f(non-nat) values between 50-60%, indicating in turn that while the 

predicted interfaces contain the majority (between 60-95%) of the native contacts,  half of the 

predicted contacts are non-native. Interestingly, this occurs mainly in high quality models 

submitted for interface 2 (that of the LLT1 homodimer) of target 125 (see text for details). 
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Table I

Target Stoich. #Int. Area (Å2) #Res. PDB      Difficulty  level Description

Protein-Protein complexes
T122 A1B1C1 1 2330 198/328/330 5mzv  Difficult Human cytokine hetero-

dimer/receptor complex

IL23/IL23R

T123 A1B1 1 1240 174/121 6ey0 Difficult PorM-Nt/nb(02)

T124 A1B1 1 1120 202/141 6ey6 Difficult PorM-Ct/nb(130)

T125 A2B4 5 775 (a)

630 (b)

540 (c)

540 (d)

440 (e)

135/146 5mgt Difficult Hetero-hexamer

of LLT1/NKR-P1

(extra-cellular domains)

T131 A1B1 1 2030 108/404 6gbg Difficult Human CEACAM1/HopQ-

Type-I H. pylori

T132 A1B1 1 1860 108/418 6gbh Medium Human CEACAM1/hopQ-

Type-II H. pylori

T133 A1B1 1 1600 69/95 6ere Easy Redesigned Colicin E2 

DNase/Im2 complex

T136 A10 3 5600 (a)

1100 (b)

800 (c)

751 N/A Easy LdcA P. aeroginosa

Protein-Peptide complexes
T121 A1B1 1 1440 115/13     N/A Difficult P.aeroginosa TolAIII 

domain/N-terminus 

P. aeruginosa TolB

T134 A2B1 1 1540 88/50 6gzj Easy DLC8 dimer/MAG 50-

residue fragment

T135 A2B1 1 1640 88/12 6gzl Easy DLC8 dimer (Rat)/MAG 12-

residue fragment

Protein Oligosaccharide complexes
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T126 A1B1 1 1340 415/6 N/A  Difficult Arabino-oligosaccharide 

binding protein,G 

stearothermophilus, with

AbnE/A6

T127 A1B1 1 1220 415/5 N/A Difficult Arabino-oligosaccharide 

binding protein,G 

stearothermophilus, with

AbnE/A5

T128 A1B1 1 810 415/4 N/A Medium Arabino-oligosaccharide 

binding protein,G 

stearothermophilus, with

AbnE/A4

T129 A1B1 1 820 415/3 N/A Medium Arabino-oligosaccharide 

binding protein,G 

stearothermophilus, with

AbnE/A3

T130 A1B1 1 1160 315/5 6f1g Easy Arabino-oligosaccharide 

binding protein,G 

stearothermophilus, with

AbnB/A5

Table I – The targets of CAPRI Rounds 38 – 45.

The target list is subdivided into categories: protein-protein (R39:T122-T124; R40:T125; R42:T131,T132; R43:T133; R45:T136), 

protein-peptide (R38:T121; T44:T134,T135) and protein-polysaccharide (R41:T126-T130). Columns 1 – 3 list the CAPRI target 

ID, its stoichiometry and the number of assessed interfaces; columns 4 – 6 the buried surface area per interface, the number of 

residues and the PDB ID (if available); column 7 lists the target difficulty and column 8 contains a textual description of the target.
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Table II

Total Human Server

Predictors 51 40 11

Scorers 29 24 5

All 57 44 13

Table II – CAPRI Rounds 38 – 45 participation statistics.

The table shows the number of registered Predictor and Scorer groups, both human and server.
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Table III.a – CAPRI criteria for ranking models of protein-peptide complexes

f(nat) incorrect < 0.2 ≤ acceptable < 0.5 ≤ medium < 0.8 ≤ high
L-rms incorrect > 5.0 ≥ acceptable > 2.0 ≥ medium > 1.0 ≥ high
i-rms incorrect > 2.0 ≥ acceptable > 1.0 ≥ medium > 0.5 ≥ high

Table III.b – CAPRI criteria for ranking models of protein-protein and protein-polysaccharide complexes

f(nat) incorrect < 0.1 ≤ acceptable < 0.3 ≤ medium < 0.5 ≤ high
L-rms incorrect > 10.0 ≥ acceptable > 5.0 ≥ medium > 1.0 ≥ high
i-rms incorrect > 4.0 ≥ acceptable > 2.0 ≥ medium > 1.0 ≥ high

Table III.c – CAPRI distance and sequence conservation criteria for complexes

protein-protein protein-peptide protein-polysaccharide

d(interface) 10 Å 8 Å 6 Å
d(contact) 5 Å 4 Å 4 Å
Sequence identity 70% 90% 90%

Table III – CAPRI criteria used to rank submitted models for protein-protein, protein-peptide and
protein-polysaccharide complexes. Ranking is performed using three parameters: two for interface
accuracy, f(nat) and i-rms, and one for ligand positioning, L-rms. The distance threshold for f(nat)
contacts is d(contact), the distance threshold for i-rms calculation is d(interface). For further details
we refer to the text and references therein.
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Table IV.a – Predictor group ranking (human and servers)

top 1 top 5 top 10

Rank Group name #targets rank performance rank performance rank performance

1 Andreani/Guerois 19 3 10/1***/5** 1 12/4***/5** 1 12/4***/6**
2 Seok 19 1 11/1***/5** 2 13/2***/7** 2 13/2***/8**
3 Venclovas 16 1 9/3***/3** 3 11/4***/4** 3 11/5***/3**
4 Kozakov/Vajda 18 5 9/1***/4** 4 12/1***/8** 3 13/1***/9**
5 Zacharias 19 4 11/2***/1** 5 12/3***/3** 5 12/3***/3**
6 Zou 18 8 8/1***/2** 6 11/1***/4** 11 11/1***/4**
6 Moal 16 19 4/1***/3** 6 10/2***/3** 7 11/2***/3**
6 Huang 17 6 8/2***/2** 6 9/2***/4** 7 10/2***/4**
9 Kihara 19 8 9/1***/1** 9 10/1***/4** 6 11/1***/6**
9 CLUSPRO 18 22 5/2** 9 10/6** 13 10/6**
11 Shen 19 15 6/1***/2** 11 10/1***/3** 11 11/1***/4**
11 HDOCK 15 22 4/1***/1** 11 8/1***/5** 13 9/1***/5**
11 Gray 16 15 6/1***/2** 11 9/1***/4** 16 9/1***/4**
11 Fernandez-Recio 19 15 6/1***/2** 11 10/1***/3** 13 10/1***/4**
11 Bonvin 19 8 6/1***/4** 11 7/2***/4** 7 9/2***/5**
16 Pierce 11 8 6/2***/2** 16 7/2***/3** 19 7/2***/3**
16 MDOCKPP 18 12 7/1***/2** 16 9/1***/3** 19 9/1***/3**
16 LZERD 19 12 8/3** 16 8/1***/4** 17 8/1***/5**
16 HADDOCK 19 15 5/1***/3** 16 8/2***/2** 7 11/2***/3**
16 Chang 19 12 6/2***/1** 16 8/2***/2** 13 9/2***/3**
21 Grudinin 19 7 7/2***/2** 21 7/2***/2** 19 8/2***/2**
22 Takeda-Shitaka 14 19 6/1***/1** 22 7/1***/2** 24 7/1***/2**
23 GALAXYPPDOCK 16 22 5/2** 23 6/4** 23 7/1***/3**
23 Bates 19 19 6/1***/1** 23 7/1***/1** 19 10/1***/2**
25 Vakser 17 26 4/2** 25 6/1***/1** 26 6/1***/1**
25 SWARMDOCK 19 22 4/1***/1** 25 6/1***/1** 25 7/1***/1**
27 Carbone 10 28 3/1*** 27 4/1***/1** 27 5/1***/1**
28 Weng 11 26 3/1***/1** 28 3/1***/1** 29 3/1***/1**
28 Schueler-Furman 3 28 2/1***/1** 28 2*** 27 3/2***/1**
30 PYDOCKWEB 14 33 1*** 30 3/1*** 29 4/1***
31 Wolfson 7 30 2/1*** 31 2/1*** 32 2/1***
31 Del Carpio 18 30 3/1** 31 3/1** 29 5/1**
31 Brini 3 30 2** 31 2** 32 2**
34 Ritchie 7 33 2/1** 34 2/1** 32 2**
34 Laine 3 33 1*** 34 1*** 35 1***
36 Negi 9 36 2 36 2 36 2
36 Iwadate 1 36 1** 36 1** 36 1**
36 INTERPRED 1 36 1** 36 1** 36 1**
39 UUcourse 1 39 1 39 1 36 1**
39 Czaplewski 3 39 1 39 1 36 2
41 ZDOCK 1 41 0 41 0 41 0
41 Wang 1 41 0 41 0 41 0
41 Wallner 5 41 0 41 0 41 0
41 Tuffery 1 41 0 41 0 41 0
41 Schneidman 1 41 0 41 0 41 0
41 Sanner 1 41 0 41 0 41 0
41 Niv 1 41 0 41 0 41 0
41 GRAMM-X 3 41 0 41 0 41 0
41 Gong 1 41 0 41 0 41 0
41 Carazo 1 41 0 41 0 41 0
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Table IV.b – Server group ranking

top 1 top 5 top 10

Rank Group name #targets rank performance rank performance rank performance

1 CLUSPRO 18 4 5/2** 1 10/6** 2 10/6**
2 HDOCK 15 4 4/1***/1** 2 8/1***/5** 2 9/1***/5**
3 HADDOCK 19 3 5/1***/3** 3 8/2***/2** 1 11/2***/3**
3 LZERD 19 1 8/3** 3 8/1***/4** 4 8/1***/5**
3 MDOCKPP 18 1 7/1***/2** 3 9/1***/3** 5 9/1***/3**
6 GALAXYPPDOCK 16 4 5/2** 6 6/4** 6 7/1***/3**
7 SWARMDOCK 19 4 4/1***/1** 7 6/1***/1** 7 7/1***/1**
8 PYDOCKWEB 13 8 1*** 8 3/1*** 8 4/1***
9 INTERPRED 1 9 1** 9 1** 9 1**
10 ZDOCK 1 10 0 10 0 10 0

Table IV.c – Scorer group ranking (human and servers)

top 1 top 5 top 10

Rank Group name #targets rank performance rank performance rank performance

1 Kihara 19 1 11/6** 1 13/2***/5** 4 13/2***/6**
2 Zou 18 8 8/1***/2** 2 12/1***/7** 8 12/1***/7**
2 Bonvin 19 3 8/5** 2 11/2***/6** 2 13/2***/7**
4 Seok 18 3 8/5** 4 12/1***/6** 4 13/1***/8**
4 Huang 18 3 8/5** 4 10/2***/6** 4 12/2***/7**
6 Venclovas 19 3 6/2***/3** 6 10/3***/3** 2 12/4***/4**
6 MDOCKPP 15 9 7/1***/2** 6 11/2***/4** 9 12/2***/4**
6 LZERD 19 2 10/5** 6 13/6** 7 13/1***/7**
9 Gray 15 3 8/1***/3** 9 9/2***/3** 12 11/2***/3**
9 Chang 17 11 6/4** 9 9/1***/5** 9 10/2***/6**
11 HDOCK 12 12 6/3** 11 8/2***/3** 13 9/2***/4**
11 Fernandez-Recio 18 15 4/1***/1** 11 8/2***/3** 1 13/2***/10**
11 Bates 19 13 6/2** 11 11/4** 11 12/1***/5**
14 Grudinin 17 18 4/2** 14 8/2***/2** 15 8/3***/1**
15 Carbone 11 9 6/2***/1** 15 7/2***/2** 14 9/2***/3**
16 Oliva 14 15 5/1*** 16 6/1***/2** 15 9/2***/2**
16 Moal 11 13 4/1***/2** 16 6/1***/2** 17 6/1***/4**
18 Weng 10 18 3/1***/1** 18 4/1***/3** 18 4/1***/3**
18 QASDOM 8 15 4/1***/1** 18 6/1***/1** 18 6/1***/1**
20 Takeda-Shitaka 10 20 3/2** 20 3/1***/1** 18 4/1***/3**
21 Yan 6 21 2** 21 2** 22 2**
21 Xue 2 21 2** 21 2** 22 2**
23 Laine 3 23 1*** 23 1*** 21 2/1***/1**
24 ISCORE 1 24 1 24 1** 24 1**
25 Wallner 5 25 0 25 1 25 1
26 Wolfson 2 25 0 26 0 26 0
26 Wang 1 25 0 26 0 26 0
26 Anashkina 1 25 0 26 0 26 0

Table IV – Predictor and Scorer performance rankings in Rounds 38 – 45. (a) lists all Predictor groups,
human and server combined; (b) lists only the automatic servers; (c) lists all Scorer groups, human and server
combined. For all groups, the model of highest quality in their top 5 submission for every target is considered,
and ranking is performed following the formula for Score G as outlined in the text. Groups are listed by the
name of the corresponding PI. Servers are listed by their acronym. The performance is listed by the number
of targets for which a model of acceptable quality or better was produced, followed by the number of these
models that were of high (***) and/or medium (**) quality. The total number of “#targets” to score was
19, three more than the actual 16 targets, because the PorM-Ct dimeric interface (T124.2) and the interfaces
1, 2 and 4 of T125 were considered independent and are therefore counted separately.
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