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Chapter 1

General Introduction

In the late 19th century a considerable amount of the individuals admitted to
asylums in Europe suffered from a single crippling condition (Kraepelin, 1913;
Davis, 2008). Patients experienced symptoms such as fatigue, headaches, insom-
nia, mental deterioration, personality changes and loss of social inhibitions. In
later stages, they completely lost control over their mind and body, and finally
died of paralysis (Swain, 2018). This condition, now called “general paresis of
the insane” (GPI), has been first characterized as a distinct disease in 1822 by
the French physician Antoine Laurent Bayle, and further characterized as a dis-
ease of brain pathology with a predictable clinical history in the 1860s. However,
throughout the 19th century, all efforts to identify a single cause for the condi-
tion remained futile. In the absence of a clear cause for the disease, the common
view became that the causes of GPI are multifactorial and rooted in the negative
influences of the urban environment (Davis, 2008).

This view changed radically in the first decade of the 20th century, when Ger-
man zoologist Fritz Schaudinn and dermatologist Erich Hoffmann discovered
the bacterium Treponema pallidum as the root cause for syphilis in 1905, and it
became clear that GPI was in fact a manifestation of late-stage syphilis. Sub-
sequently, German chemist Paul Ehrlich and Japanese bacteriologist Sahachiro
Hata made a drug later to be known as Salvarsan, which cured syphilis and GPI
by treating syphilis, its root cause. Salvarsan with its many side effects was re-
placed by Penicillin in the 1940s, and today syphillis (and GPI) is detected by a
simple blood test and treated with a single dose of antibiotics (Swain, 2018).

The discovery of the single cause of GPI and its effective treatment with an-
tibiotics is possibly the biggest success story in the history of psychiatry. As such,
it had a major influence on the further course of the field in the 20th century: It
set the expectation that mental disorders can be defined by a single root cause
and treated by removing that root cause. This view was reinforced by the then
predominant “germ theory” in medicine, which posits that diseases are caused
by pathogens. This disease model triggered a golden age of medical bacteriol-
ogy in the first half of the 20th century which led to the discoveries of causes
and cures for many diseases such as smallpox, measles, and cholera (Blevins &
Bronze, 2010; Hyland, 2011). Given this historical context, it was perhaps not
unreasonable to expect the same kind of discoveries for psychopathology.

However, in the following hundred years no such discoveries have beenmade.
No further pathogens have been found to be the cause of any major mental disor-
ders, no single psychological mechanism has been discovered that fully explains
any mental disorder, and also the emerging fields of (neuro-)biology and genetics
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1. General Introduction

failed to identify any single causes (Kendler, 2019, 2005; Consortium et al., 2009;
Shi et al., 2009; Wray et al., 2012; Hek et al., 2013; Ripke et al., 2013). Instead,
a plethora of biological, psychological, and social risk factors with typically tiny
effect sizes has been identified for each mental disorder (Kendler, 2012; Kapur,
Phillips, & Insel, 2012). For example, a recent meta analysis found 44 genetic
risk variants for major depression, each of which with an extremely small effect
size (Wray et al., 2018). The current empirical evidence therefore suggests that
there is no single cause to be discovered for any mental disorder.

But, then, where domental disorders come from? In response to this question,
several authors have suggested a different conceptualization of mental disorders:
Instead of viewing them as a disease on some biological or psychological level,
they should be seen as complex, mutually reinforcing networks of causal mech-
anisms (Borsboom, 2008; Kendler, Zachar, & Craver, 2011). In addition to being
more consistent with the data, this new perspective also opens up new research
agendas, and better reflects clinical practice: For example, Fried andNesse (2015)
showed that many risk factors are differentially related to individual symptoms,
while previous studies trying to find single causes focused on finding risk factors
for the symptom sum score; and the idea of dynamic, reinforcing mechanisms
is the core principle of one of the most effective treatments, cognitive behavioral
therapy (e.g., Beck, 1979). Interestingly, the field of medicine adopted a multifac-
torial disease model when it shifted its focus from infectious diseases to chronic
diseases such as diabetes and hypertension in the second half of the 20th century.
The field of psychiatry, however, kept on pursuing single causes for their major
disorders (Kendler, 2019).

This alternative conceptualization has been formulated in more detail as
the “network approach to psychopathology” (e.g., Borsboom & Cramer, 2013;
Schmittmann et al., 2013; Borsboom, 2017). In this approach, symptoms are not
caused by an underlying disorder, but rather the symptoms themselves and the
causal interactions among them constitute the disorder. Such interactions are
often plausible: For example, loss of appetite leads to loss of weight, insomnia
brings about tiredness, and guilt predisposes suicidal ideation. However, also
longer causal chains and loops seem likely, such as sleeping problems→ fatigue
→ concentration problems → worrying → sleeping problems. The explanation
for the occurence of mental disorders in this approach is that the system of symp-
toms is “pushed” into a state of elevated activation, for example by an adverse
life event; and then the activation is maintained by the reinforcing causal effects,
even if the negative outside influence is removed (Borsboom, 2017).

This new framework struck a chord with applied researchers and led to
a surge of empirical studies analyzing empirical data with statistical network
models, which capture statistical dependencies between pairs of symptoms, and
thereby embrace the “network approach” (for reviews see e.g., Robinaugh, Hoek-
stra, & Borsboom, 2019; Contreras, Nieto, Valiente, Espinosa, & Vazquez, 2019).
These studies revealed fairly stable patterns of statistical relations between symp-
toms, and these patterns are often difficult to explain with an unknown single
disease acting as the common cause of all symptoms (e.g., Fried, van Borkulo,
et al., 2016), suggesting that a different explanatory framework is needed. This

2



emerging literature is heavily based on a methodological toolbox which made
estimation routines and visualizations for statistical network models (i.e., data
models) available to applied researchers (e.g., Epskamp et al., 2012; Van Borkulo
et al., 2014; Epskamp, Borsboom, & Fried, 2016; Epskamp, Waldorp, Mõttus, &
Borsboom, 2018; van Borkulo et al., 2016).

The first part of this dissertation extends this toolbox of data models. While
applied researchers were initially only able to estimate the Ising model (only bi-
nary variables) or the multivariate Gaussian distribution (only continuous vari-
ables), I created the R-packagemgmwhich allows one to estimate networkmodels
in which variables can be continuous, count, or categorical with any number of
categories (Chapter 2). Many early network studies only reported a visualization
of the model parameters, which made it hard to judge how well the model fits
the data and therefore how relevant the estimated relationships are. To address
this issue I suggested to compute and visualize the predictability of each variable
(Chapter 3) and I compared the predictability of symptom networks of different
mental disorders in a reanalysis of the early network literature (Chapter 4). All
network models discussed so far were pairwise models, which means that all in-
teractions are independent of the values of all modeled variables. This means that
one cannot model moderation effects. However, moderation effects are plausible
for many psychological phenomena and often the very topic of study. I there-
fore introduced Moderated Network Models (MNMs) which allow relationships
between pairs of variables to be moderated by all remaining variables (Chapter
5).

In addition to cross-sectional data, also time-series data have been analyzed
from a network perspective. The most popular model in this context is the Vec-
tor Autoregressive (VAR) model, in which each variable is a linear function of all
variables (including itself) at previous time points. In Chapter 7, I discuss the
topics of bias-variance trade-off and model selection in the context of selecting
between the VAR and the simpler AR model, and map out how well the VAR
model can be estimated in typical psychological applications. A central assump-
tion of the VARmodel is that its parameters remain constant over time. However,
in the network approach the key interest lies on the interactions between symp-
toms and how they change when transitioning from being healthy to having a
mental disorder. To capture such change over time within an individual, I im-
plemented a method to estimate time-varying VAR models (Chapter 6). Finally,
in Chapter 8 I discuss the subtleties involved in interpreting and using the Ising
model as a dynamic within-person model.

The wealth of empirical network studies provided a more detailed picture
of the empirical phenomenon of mental disorders by uncovering the patterns of
statistical relations between symptoms and related variables. Together with re-
search on treatments and the myriad of results on biological, psychological and
social risk factors, this picture makes it extremely unlikely that any major dis-
order can be explained by a single cause. This suggests that adopting a complex
systems view on mental disorders is more promising and that, in order to ex-
plain mental disorders, we need to piece together a complex web of causal effects
across biological, psychological and societal levels. This is a daunting task which
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requires a strong framework of formalized theory. However, so far only few for-
mal theories of mental disorders exist (e.g., Dujmić, Machielse, & Treur, 2018;
von Kentzinsky, Wijtsma, & Treur, 2019; Burger et al., 2019); and it is generally
unclear how to construct such theories from empirical data in the context of psy-
chopathology. Developing formal theories based on empirical data is therefore a
largely uncharted territory for research on mental disorders.

The second part of this dissertation explores this territory. In Chapter 9, I
use a bistable dynamical system for emotion dynamics to illustrate the general
difficulty of inferring a formal theory from data models, and the problem of ob-
serving a system operating on a fast time scale with low frequencymeasurements.
This chapter shows that it is very unlikely that formal theories of mental disor-
ders can be directly inferred from data, and that researchers have to engage in a
more general theory development procedure that is typical in fields with a strong
tradition in formal modeling. In Chapter 10 I present a formal theory for Panic
disorder, in whose development I participated. This theory illustrates the many
benefits of formalization such as making explicit what is unknown, facilitating a
collaborative and cumulative science, and making specific, testable predictions.
The development of this formal theory further highlights the fact that good for-
mal theories of mental disorders are unlikely to take the form of data models
that can be estimated directly from data. Finally, in Chapter 11 I attempt to con-
nect the worlds of data models and formal theories by discussing how to use the
former to obtain the latter. As a result of this discussion I put forward an ab-
ductive approach to theory construction that puts formal theories at the heart of
theory development. In Chapter 12 I conclude by reflecting on how my thinking
about modeling psychopathology changed in the course of my PhD and suggest-
ing three directions for future research.
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Chapter 2

Estimating Mixed Graphical

Models

Abstract

We present the R-package mgm for the estimation of k-order Mixed
Graphical Models (MGMs) andmixed Vector Autoregressive (mVAR) mod-
els in high-dimensional data. These are a useful extensions of graphi-
cal models for only one variable type, since data sets consisting of mixed
types of variables (continuous, count, categorical) are ubiquitous. In ad-
dition, we allow to relax the stationarity assumption of both models by
introducing time-varying versions MGMs and mVAR models based on a
kernel weighting approach. Time-varying models offer a rich description
of temporally evolving systems and allow to identify external influences on
the model structure such as the impact of interventions. We provide the
background of all implemented methods and provide fully reproducible
examples that illustrate how to use the package.

This chapter has been adapted from: Haslbeck, J. M. B., &Waldorp, L. J. (2020). mgm: Estimating
Time-Varying Mixed Graphical Models in High-Dimensional Data. Journal of Statistical Software.
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2.1 Introduction

We present mgm, an R-package for the estimation of (time-varying) k-order
Mixed Graphical Models (MGMs) and (time-varying) mixed Vector Autoregres-
sive (mVAR)models with a specified set of lags. The package is available from the
Comprehensive R Archive Network (CRAN) at http://CRAN.r-project.org/.
In this chapter we introduce these models, discuss algorithms to estimate them,
and present a number of fully reproducible code examples that show how to use
the implementations provided by mgm.

Graphical models have become a popular way to abstract complex systems
and gain insights into relational patterns among observed variables in a large
variety of disciplines such as statistical mechanics (Albert & Barabasi, 2002), bi-
ology (N. Friedman, Linial, Nachman, & Pe’er, 2000), genetics (Ghazalpour et al.,
2006), neuroscience (Huang et al., 2010) and psychology (Borsboom & Cramer,
2013). In many of these applications the dataset of interest consists of mixed
variables such as binary, categorical, ordinal, counts, continuous and/or skewed
continuous amongst others. One example is internet-scale marketing data, where
it is of interest to relate variables such as clicked links (categorical), time spent
on websites (possibly exponential), browsing history (categorical), social media
postings (count), friends in social networks (count), and many others. In a medi-
cal context, one could be interested in interactions between person characteristics
such as gender (categorical) or age (continuous), frequencies of behaviors (count),
taking place of events (categorical) and the dose of a drug (continuous).

If measurements are taken repeatedly from a system, one can be either inter-
ested in relations between variables at the same time point or in relations between
variables across time points. The former relations are modeled by MGMs, the lat-
ter relations are modeled by Vector Autoregressive (VAR) models, which relate
variables over a specified set of time lags. For both types of models it may be
appropriate in some situations to relax the assumption of stationarity, such that
its parameters are allowed to vary over the measured time period. These time-
varyingmodels provide additional information for understanding and predicting
organizational processes, the diffusion of information, detecting vulnerabilities
and the potential impact of interventions. An example is the developmental cy-
cle of a biological organism, in which different genes interact at different stages
of development. In a medical context, the aim could be to study the impact of an
intervention on the dependencies between a large number of physiological and
psychological variables that capture the health of a patient. Yet another example
can be found in the field of psychiatry, where one might be interested in the in-
teraction of negative life events, social contacts and symptoms of psychological
disorders such as major depression.

2.1.1 Implementation and functionality

The mgm package is written in R and uses the glmnet package (J. Friedman,
Hastie, & Tibshirani, 2010) to fit penalized Generalized Linear Models (GLMs)
to perform neighborhood selection (Meinshausen & Bühlmann, 2006). The glm-
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net package is written in Fortran and is optimized for computational efficiency.
In addition, mgm depends on the packages matrixcalc, stringr, Hmisc, gtools and
qgraph.

The main functionality of the mgm package is to estimate Mixed Graphical
Models (MGMs) and mixed Autoregressive (mVAR) Models, both as stationary
models (mgm() and mvar()) and time-varying models (tvmgm() and tvmvar()).
In addition, we provide the S3 methods print() to summarize model objects
and predict() to compute predictions and nodewise errors from all types of
models, and the function resample() to determine the stability of estimates via
resampling. Furthermore, mgm provides functions to sample from all four mod-
els in full flexibility in order to enable the user to investigate the performance of
the estimation algorithms in a particular situation. The output of all estimation
functions is designed to allow a seamless visualization with the qgraph package
(Epskamp et al., 2012) and we therefore do not provide our own plotting func-
tions.

2.1.2 Related implementations

Several packages are available to estimate Gaussian Graphical Models (GGMs):
the R-packages glasso (J. Friedman & Tibshirani, 2014) and huge (Zhao et al.,
2015; Zhao, Liu, Roeder, Lafferty, & Wasserman, 2012) implement the graphical
lasso (Banerjee, El Ghaoui, & d’Aspremont, 2008; J. Friedman, Hastie, & Tibshi-
rani, 2008b) which maximizes a ℓ1-penalized Gaussian log-likelihood. The huge
package also allows to estimate GGMs via neighborhood selection (Meinshausen
& Bühlmann, 2006), in which the neighborhood of each node is estimated sep-
arately and then the local estimates are combined to obtain the (global) graph-
ical model. The R-package IsingFit (van Borkulo, Epskamp, & Robitzsch, 2014;
van Borkulo, Borsboom, et al., 2014) implements a neighborhood selection based
method to estimate the binary-valued Ising model (see e.g. Wainwright & Jordan,
2008; Ravikumar, Wainwright, & Lafferty, 2010). The XMRF package (Wan et al.,
2015) allows to estimate Markov Random fields of the Multivariate Gaussian dis-
tribution, Ising models, log-linear Poisson based graphical model, regular Pois-
son graphical models, truncated Poisson graphical models and sublinear Poisson
graphical models (Yang, Ravikumar, Allen, & Liu, 2015, 2013).

For VARmodels, the vars package Pfaff (2008b) allows to fit VARmodels with
Gaussian noise. The BigVAR package (Nicholson, Matteson, & Bien, 2017) al-
lows to fit VAR models and structured VAR models with Gaussian noise with
structured ℓ1- penalties. The mlVAR package (Epskamp, Deserno, & Bringmann,
2017) implements multilevel VAR models with Gaussian noise. Graphical VAR
models (Wild et al., 2010), in which lagged coefficients and contemporaneous ef-
fects are estimated simultaneously, can be estimated with the graphicalVAR pack-
age (Epskamp, 2017).

For time-varying graphical models, there is a Python implementation of the
SINGLE algorithm of R. P. Monti et al. (2014) for time-varying Gaussian graphical
models (R. Monti, 2014) and GraphTime (Immer & Gibberd, 2017), a Python im-
plementation of time-varying (dynamic) graphical models based on the (group)
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fused-lasso as presented by Gibberd and Nelson (2017). The R package tvReg al-
lows to estimate linear VAR models using kernel smoothing (Casas & Fernandez-
Casal, 2018).

mgm goes beyond the above mentioned packages in that it allows one to es-
timate k-order MGMs and mVAR models (with any set of lags), compute pre-
dictions from them and assess model stability via resampling, while the above
packages only allow one to do this for special cases. In addition, the output of
mgm is designed to allow a seamless visualization of estimated models using the
R-package qgraph (Epskamp et al., 2012). Finally, mgm is the first package that
allows to estimate time-varying MGMs and mVAR models.

2.1.3 Overview of the chapter

In Section 2.2, we introduce Mixed Graphical Models (MGMs) (Section 2.2.2) and
mixed Vector Autoregressive (mVAR) models (Section 2.2.4), and discuss how to
estimate these models in their stationary (Section 2.2.3) and time-varying (Sec-
tion 2.2.5) versions. In Section 2.3, we illustrate how to use the mgm package to
estimate parameters, compute predictions from and visualize stationary MGMs
(Section 2.3.1), stationary mVAR models (Section 2.3.2), time-varying MGMs
(Section 2.3.3) and time-varying mVAR models (Section 2.3.4). All presented ex-
amples are fully reproducible, with code either shown in the chapter or provided
in the online supplementary material.

2.2 Background

In this section we provide basic concepts related to graphical models (Section
2.2.1), introduce the model classes Mixed Graphical Models (MGMs) (Section
2.2.2) and mixed Vector Autoregressive (mVAR) models (Section 2.2.4), and show
how to estimate these models in their stationary (Section 2.2.3) and time-varying
(Section 2.2.5) versions.

2.2.1 Graphical Models

Undirected graphical models are families of probability distributions that respect
a set of conditional independence statements represented in an undirected graph
G (Lauritzen, 1996). This connection between probability distribution and graph
G is formalized by the Global Markov Property, which we define after introducing
some notation.

An undirected graph G = (V ,E) consists of a collection of nodes V =
{1,2, . . . ,p} and a collection of edges E ⊂ V × V . A subset of nodes U is a node
cutset whenever its removal breaks the graph in two or more nonempty subsets,
which is equivalent to U being the set such that all paths from disjoint node sets
S and Q go through U (Lauritzen, 1996). A clique is a subset C ⊆ V such that
(s, t) ∈ E for all s, t ∈ C where s ! t, and is called a maximal clique if inclusion
of any other node would make it not a clique. The neighborhood N (s) of a node
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2.2. Background

s ∈ V is the set of nodes that are connected to s by an edge,N (s) := {t ∈ V |(s, t) ∈ E}.
Throughout the chapter we use the shorthand X\s for XV \{s}.

To each node s in graph G we associate a random variable Xs taking values
in a space Xs. For any subset A ⊆ V , we use the shorthand XA := {Xs,s ∈ A}. For
three disjoint subsets of nodes, A, B, and U , we write XA ⊥⊥ XB|XU to indicate
that the random vector XA is independent of XB when conditioning on XU . We
can now define graphical models in terms of the Markov property (see e.g. Loh
& Wainwright, 2012):

Definition 1 (Global Markov property). If XA ⊥⊥ XB|XU whenever U is a node cutset
that breaks the graph into disjoint subsets A and B, then the random vector X :=
(X1, . . . ,Xp) is Markov with respect to the graph G.

Note that the neighborhood set N (s) is always a node cutset for A = {s} and
B = V \ {s∪N (s)}.

In the remainder of this chapter we focus on exponential family distri-
butions, which are strictly positive distributions. For these distributions the
Global Markov property is equivalent to the Markov factorization property by the
Hammersley-Clifford Theorem (Lauritzen, 1996). Consider for each clique C in
the set of all clique sets C a clique-compatibility function ψC (XC ) that maps con-
figurations xC = {xs, s ∈ C} to R+ such that ψC only depends on the variables XC
corresponding to the clique C.

Definition 2 (Markov factorization property). The distribution of X factorizes ac-
cording to G if it can be represented as a product of clique functions

P(X) ∝
∏

C∈C
ψC (XC ). (2.1)

This equivalence implies that if we have distributions that are represented as
a product of clique functions, then we can represent the conditional dependence
statements in this distribution in a graph G. This is the case for the exponential
family distributions we use in the present chapter

P(X) = exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

C∈C
θCφC (XC )−Φ(θ)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (2.2)

where the functions φC (XC ) = logψC (XC ) are sufficient statistic functions spec-
ified by the exponential family member at hand (e.g. Gaussian, Exponential,
Poisson, etc.), θC are parameters associated with the clique functions and Φ(θ) is
the log-normalizing constant

Φ(θ) = log

∫

X

∑

C∈C
θCφC (XC )ν(dx),

where depending on the distribution of X, the measure ν is a counting measure
or Lesbesgue measure (for details see Wainwright, Jordan, et al., 2008).
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2. Estimating Mixed Graphical Models

The graph G represents a family of distributions because its edges do not in-
dicate the strength of the dependency and the nodes can represent different con-
ditional distributions. Hence there is a one to one mapping from the density to
the graph, but a one to many mapping from graph to densities.

2.2.2 Mixed Graphical Models

In this section we first introduce the general class of Mixed Graphical Mod-
els (2.2.2.1), and then provide the Ising-Gaussian model as a specific example
(2.2.2.2).

2.2.2.1 General Mixed Graphical Models

In this section, we introduce the class of Mixed Graphical Models (MGMs), which
are a special case of the distribution in Equation 2.2 that allow one to combine
an arbitrary set of conditional univariate members of the exponential family in a
joint distribution (Yang, Baker, Ravikumar, Allen, & Liu, 2014a; S. Chen, Witten,
et al., 2015).

Consider a p-dimensional random vector X = (X1, . . . ,Xp) with each variable
Xs taking values in a potentially different set Xs, and let G = (V ,E) be an undi-
rected graph over p nodes corresponding to the p variables. Now suppose the
node-conditional distribution of node Xs conditioned on all other variables X\s is
given by an arbitrary univariate exponential family distribution

P(Xs |X\s) = exp{Es(X\s)φs(Xs) +Bs(Xs)−Φ(X\s)}, (2.3)

where the functions of the sufficient statistic φs(·) and the base measure Bs(·)
are specified by the choice of exponential family and the canonical parameter
Es(X\s) is a function of all variables except Xs. (Wainwright et al., 2008) make
these functions explicit for a number of exponential family distributions.

These node-conditional distributions are consistent with a joint distribution
over the random vector X as in (2.1), that is Markov with respect to graph G =
(V ,E) with the set of cliques Ck of size at most k, if and only if the canonical
parameters {Es(·)}s∈V are a linear combination of products of univariate sufficient
statistic functions {φ(Xr )}r∈N (s) of order up to k

θs +
∑

r∈N (s)

θs,rφr (Xr ) + ...+
∑

r1,...,rk−1∈N (s)

θr1,...,rk−1

k−1
∏

j=1

φrj (Xrj ), (2.4)

where θs· := {θs,θs,r , ...,θsr2...rk } is a set of parameters and N (s) is the set of neigh-
bors of node s according to graph G (Yang et al., 2014a). Factorizing p conditional
distributions as in Equation 2.3 gives the joint distribution
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2.2. Background

P(X) = exp

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

s∈V
θsφs(Xs) +

∑

s∈V

∑

r∈N (s)

θs,rφs(Xs)φr (Xr )+

· · ·+
∑

r1,...,rk∈C
θr1,...,rk

k
∏

j=1

φrj (Xrj ) +
∑

s∈V
Bs(Xs)−Φ(θ)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

,

(2.5)

where Φ(θ) is the log-normalization constant.
The dimensionality of the parameter vector θ depends both on the type of

modeled variables and the order of interactions. If one only models continuous
variables with pairwise interactions (k = 2), the MGM simplifies to the multivari-
ate Gaussian distribution which is parameterized by a 1 × p vector of intercepts
and a p × p matrix of

(p
2

)

partial correlations. Including all 3-way interactions
would lead to an additional

(p
3

)

parameters, etc. At the end of Section 2.2.2, we
discuss the dimensionality of the parameter vector in the presence of categorical
variables.

Necessary conditions for the mixed density in Equation 2.5 to be normaliz-
able are discussed in Yang et al. (2014a). S. Chen et al. (2015) show constraints
on the parameter space to ensure normalizability for a number of MGMs with
at most pairwise interactions. mgm does not allow one to implement the con-
straints, since the underlying glmnet package does not support the specification
of these constraints. However, Trip and van Wieringen (2018) recently proposed
an algorithm that allows to estimate pairwise MGMs with these constraints.

2.2.2.2 Example: The Ising-Gaussian Model

We take the Ising-Gaussian model as a specific example of the joint distribution
in Equation 2.5. Consider a random vector X := (Y,Z), where Y = {Y1, . . . ,Yp1 } are
univariate Gaussian random variables, Z = {Z1, . . . ,Zp2 } are univariate Bernoulli
random variables and we only consider pairwise interactions between sufficient
statistics. For the univariate Gaussian distribution (with known variance σ2) the

sufficient statistic function is φY (Ys) =
Ys
σs

and the base measure is BY (Ys) = −
Y2
s

2σ2s
.

The Bernoulli distribution has the sufficient statistic function φZs
= Zs and the

base measure BZ (Zs) = 0. From the MGM joint distribution in Equation 2.5 fol-
lows that this mixed density is given by

P(Y,Z) ∝ exp

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

s∈VY

θs
σs

Ys +
∑

r∈VZ

θrZr +
∑

(s,r)∈EY

θs,r
σsσr

YsYr+

∑

(s,r)∈EZ

θs,rZsZr +
∑

(s,r)∈EYZ

θs,r
σs

YsZr −
∑

s∈VY

Y 2
s

2σ2
s

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

,

(2.6)
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where the first two terms are thresholds for Gaussian and Bernoulli variables,
the third term represents pairwise interactions between Gaussians, the fourth
term represents pairwise interactions between Bernoulli variables, the fifth term
represents pairwise interactions between Gaussians and Bernoulli variables, and
the last term sums over the base measures for the Gaussians.

When the conditional distribution is a Bernoulli random variable Zr , it is
given by

P(Zr |Z\r ,Y ) ∝ exp

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

θrZr +
∑

s∈N (r)Z

θs,rZsZr +
∑

s∈N (r)Y

θs,r
σr

ZrYs

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (2.7)

Note that the conditional distribution in Equation 2.7 has the same form as the
distribution of a single variable conditioned on all remaining variables in an Ising
model plus one additional term for interactions between Bernoulli and Gaussian
random variables.

When the conditional distribution is a Gaussian random variable Ys, it is given
by

P(Ys |Y\s,Z) ∝ exp

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

θs
σs

Ys +
∑

r∈N (s)Y

θs,r
σsσr

YsYr +
∑

r∈N (s)Z

θs,r
σs

YsZr −
Y 2
s

2σ2
s

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.

Now, let σ = 1, factor out Ys and let µs = θs +
∑

r∈N (s)Y
θs,rYr +

∑

r∈N (s)Z
θs,rZr .

Finally, when taking
µ2s
2 out of the log normalization constant, we arrive with

basic algebra at the well-known form of the univariate Gaussian distribution with
unit variance

P(Ys |Y\s,Z) =
1
√
2π

exp

{

−
(Ys −µs)2

2

}

.

2.2.2.3 Relationship between model parameters and edges in graph

For pairwise MGMs (size of cliques is at most k = 2), a pairwise interaction be-
tween two continuous variables s and r is parameterized by a single parameter
θs,r . Now, whether the edge between s and r is present depends on whether θs,r is
zero or not, that is, (s, r) ∈ E ⇐⇒ θs,r ! 0. Thus, if only pairwise interactions be-
tween continuous variables are modeled, any given edge is a function of a single
parameter. This implies that a weighted graph fully represents the parameteriza-
tion of interactions in the underlying model (or the full parameterization minus
the threshold parameters). Interactions between categorical variables withm > 2,
however, are specified by more than one parameter. For instance, a pairwise
interaction between two categorical variables with m and u categories is parame-
terized by R = (m−1)×(u−1) parameters associated with corresponding indicator
functions for all R states (e.g., Agresti, 2003). A pairwise interaction between a
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categorical variable withm categories and a continuous variable has R = 1×(m−1)
parameters associated with m−1 indicator functions multiplied with the contin-
uous variable. In this case, θz

s,r is a parameter defining the interaction between
the nodes s and r indexed by z ∈ {1, . . . ,R}. In such a situation, an edge is present
between s and r if all parameters do not have the same value, indicating that
not all states have the same probability. In mgm we use the parameterization for
multinomial regression of glmnet, which models the probability of each state of
the predicted variable, and codes the first category of the predictor variable as the
reference category that is absorbed in the intercept (for details see J. Friedman et
al., 2010). This results inm× (u−1) parameters, wherem indicates the number of
categories of the predicted variable. In this parameterization, an edge is present
if any of the parameters in θs,r are nonzero, that is, (s, r) ∈ E ⇐⇒ ∃r : |θz

s,r | > 0.
Therefore, depending on which variables an edge connects it is defined with re-
spect to one or several parameters.

For general k-order MGMs, an edge between nodes s and r is a function of all
cliques of size up to k that include both s and r. Therefore, for instance, it is not
clear from the graph G whether the edge (s, r) is due to a pairwise interaction or
from higher order interactions (cliques) that include s and r, or both. The number
of parameters associated to each clique discussed above for pairwise interactions
extends to k-order interactions. An interaction between k continuous variables
is parameterized by a single parameter θr1,...,rk−1 and an interaction between k
categorical variables is parameterized by (m1−1)× · · ·×(mk−1) parameters, where
m1,m2, . . . ,mk are the number of categories of each categorical variable.

In this chapter we focus mainly on the estimation of pairwise MGMs, where
each edge is a function of the parameter(s) of a single pairwise interaction. How-
ever, in Section 2.3.1 we estimate a higher order MGM and visualize the depen-
dency structure in a factor graph. The factor graph representation has the advan-
tage one can still see on which set of cliques a dependency between two nodes
depends (Koller & Friedman, 2009).

2.2.3 Estimating Mixed Graphical Models

In this section, we discuss how to estimate the parameters of a joint distribution
of the form as in Equation 2.5 from observations. The graphical model G is then
obtained from the parameter estimates as discussed in the previous section.

We know that the joint distribution in Equation 2.5 can be represented as a
factorization of univariate conditional distributions. Thus, if we estimate the p
univariate conditional distributions with the parameterization in Equation 2.4,
we obtain the joint distribution. Since all univariate conditional distributions
are members of the exponential family, it is possible to estimate the joint dis-
tribution in Equation 2.5 by a series of p regressions in the Generalized Linear
Model (GLM) framework (see e.g., Nelder & Baker, 1972). From a graphical mod-
els perspective this means that we estimate the neighborhood N (s) of each node
s ∈ V and then combine all neighborhoods to obtain an estimate of the graph G
(Meinshausen & Bühlmann, 2006).

In order to obtain parameter estimates that are exactly zero (and thereby im-
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ply absent edges in the graph) we minimize the negative log-likelihood −L(θ,X)
together with the ℓ1-norm of the parameter vector

θ̂ = argmin
θ
{−L(θ,X) +λ||θ||1} , (2.8)

where ||θ||1 =
∑J

j=1 |θj |, J is the length of the parameter vector θ, and λ is the

regularization parameter that determines the relative weight of the negative log
likelihood and the ℓ1-norm of the parameter vector. The log-likelihood L(θ,X)
is defined by the exponential family distribution of the node at hand. In the
Gaussian case, minimizing the negative log-likelihood is equivalent to minimiz-
ing the squared loss −L(θ,X) = ||Xs −X\sθ||22. In other words, we are performing
an ℓ1-penalized (LASSO) regression in the GLM framework with a link-function
appropriate for the node at hand (see e.g., Nelder & Baker, 1972). The ℓ1-penalty
ensures that the model is identified in the high-dimensional setting p > n, where
we have more parameters than observations (Hastie, Tibshirani, & Wainwright,
2015).

The design matrix is defined with respect to the conditional distribution of
node s in the k-order MGM. For example, if k = 2, the design matrix for the
regression on node s contains all other variables or the corresponding indicator
functions (for categorical variables). If k = 3, the design matrix for the regression
on node s contains all other variables or the corresponding indicator functions,
plus the products of all pairs of variables in V\s, or the (m − 1)× (u − 1) indicator
functions in the case of categorical variables with m and u categories.

To give non-asymptotic guarantees of false and true positive rates for the ℓ1-
regularized regression estimator it is necessary to put a lower bound τ on the
size of the parameters in the true model. This assumption is often called the
beta min condition (see e.g., Hastie et al., 2015). By thresholding estimates at
τ, we approximately enforce this condition (see e.g., Loh & Wainwright, 2012).
For estimating the joint distribution in Equation 2.5 we show in (Haslbeck &
Waldorp, 2015) that

τ ≍ s0

√

log
p

n
≤ s0λ, (2.9)

where s0 is the true number of neighbors. If all variables are continuous, the
number of neighbors is equal to the number of nonzero parameter estimates
s0 = ||θ∗||0, where θ∗ is the true parameter vector. In the case of categorical
variables, interactions are parameterized by several parameters. In this case the
categorical neighbor is present if at least one of the parameters defining the in-
teraction is nonzero. Since the true parameter vector θ∗ is unknown, we plug
in the estimated parameter vector θ̂ to obtain the estimated number of neighbors
ŝ0 = ||θ̂||0. For interactions involving more than one parameter, we plug in the
aggregated parameter (see Algorithm 1). Note that mgm allows to switch off this
thresholding (see Section 2.3.1). Of course, switching off the thresholding gives a
solution that does not have the guarantees of false and true positive rates.

We determine whether an edge is present or not as described in Section 2.2.2.
In addition, we compute a weight from the set of parameters of each interaction.
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If the interaction only involves continuous variables there is only one parameter
and we take its value. If the interaction involves categorical variables, we take
the mean of the absolute value of all parameters as the weight of the edge. From
the nodewise regressions we obtain k edge-weights for each k-order interaction.
For example, for a a pairwise interaction (k = 2) between nodes s and r, we obtain
one parameter θs,r from the regression on s and θr,s from the regression on r. To
obtain a final conditional dependence graph G we need to combine these into a
final weight. This can be done either by using the OR-rule (take arithmetic mean
of k parameter estimates) or the AND-rule (take arithmetic mean of k parameter
estimates if all parameter estimates are nonzero, otherwise set the parameter to
zero). Algorithm 1 summarizes this procedure:

Algorithm 1 (Estimating Mixed Graphical Models via Neighborhood Regression)

1. For each s ∈ V

(a) Construct design matrix defined by k, the order of the MGM

(b) Solve the lasso problem in Equation 2.8 with regularization parameter λ

(c) Threshold the estimates at τ

(d) Aggregate interactions with several parameters into a single edge-weight

2. Combine the edge-weights with the AND- or OR-rule

3. Define G based on the zero/nonzero pattern in the combined parameter vector

The regularization parameter λ can be selected using cross-validation or a
model-selection criterion such as the Extended Bayesian Information Criterion
(EBIC):

EBICγ (θ̂) = −2L(θ̂) + ŝ0 logn+2γ ŝ0 logp, (2.10)

where L is the log likelihood of the conditional density specified by the esti-
mated parameter vector θ̂, ŝ0 is the number of nonzero neighbors in the candi-
date model, and γ is a tuning parameter. Note that if γ = 0 the EBIC is equal to
the BIC (Schwarz et al., 1978). The EBIC has been shown to perform well asymp-
totically in selecting sparse graphs (Foygel & Drton, 2010, 2014) for any value of
γ . In practice, the choice of γ will control the trade-off between sensitivity and
precision. (Foygel & Drton, 2010) used values γ ∈ {0, .25, .5, .75,1} and showed
that increasing γ from 0 to 0.25 led to a considerable decrease in false positives,
without increasing false negatives too much. We therefore adopted γ = 0.25 as a
default value. However, to make an optimal choice for γ , it is necessary to take
into account the true model, the number of available observations and the cost of
false positives and false negatives. While the true model is unknown in real data,
a reasonable γ can be selected by running a simulation study roughly reflecting
the scenario at hand and choosing the γ with the most desirable performance. To
this end we provide flexible sampling functions (see Section 2.3).

The computational complexity of Algorithm 1 is O(p log(p2k−1)). Thus the
algorithm does not scale well for large k, the order of interactions in the MGM.
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However, in most situations k will be small, because interactions with a high
order are increasingly difficult to interpret and therefore often not of interest.

Note that using a single regularization parameter λ for a model including dif-
ferent edge types may lead to a different penalization for different edge types.
This is because edge-parameters are scaled with the sufficient statistic they are
associated with and this scaling can differ across exponential family members.
While we can bring Gaussian variables on the same scale by substracting their
mean and dividing by their standard deviation, this is not possible for categor-
ical or Poisson random variables. A potential solution would be to introduce a
different penalization parameter for each edge type. But this would make the
selection of regularization parameters λ considerably more complicated, because
now a u-dimensional space of λ values has to be searched, where u is the number
of different edge types. This is why we currently do not have a procedure in mgm
that allows different penalties for different edge types.

The performance of Algorithm 1 depends on the number of variables, the
order of interactions, type of variables, the size of parameters relative to the vari-
ance of associated variables, the sparsity of the parameter vector and the struc-
ture of the dependency graph. The best way to determine the performance for a
given situation is therefore to obtain it with a simulation study. To this end mgm
provides a flexible function to sample from MGMs such that the performance of
Algorithm 1 in a given situation can be evaluated via simulations.

2.2.4 Mixed Autoregressive Models

In Vector Autoregressive (VAR) models, each node s at time point t is modeled as
a linear combination of all variables (including s) at a set of earlier time points.
The standard VAR model is defined with a Gaussian noise process, such that the
model can be split up into p conditional Gaussian distributions (see e.g. Hamil-
ton, 1994; Pfaff, 2008a). Instead of a univariate conditional Gaussian distribu-
tion, one can also associate other univariate exponential family members with a
given node. This leaves us with an almost identical model and estimation prob-
lem as discussed in the previous section (Section 2.2.3). The only difference is
that the canonical parameter of the node-conditional at hand is not a function of
parameters associated with interactions of variables at the same time point, but a
function of parameters associated with variables at previous time points. To distin-
guish this VAR model over mixed variables from the VAR model that is typically
defined with only Gaussian variables, we call this model mixed Autoregressive
(mVAR) model.

The mVAR model can be estimated by estimating the parameters of the con-
ditional probability of each variable s as a function of all variables (including
itself) at a set of specified previous time points, denoted by L. For example,
L = {1,2,3} specifies a VAR model with lags 1, 2 and 3. We introduce a time index
as a superscript t for all variables since we are now dealing with time-ordered
observations. We then define the canonical parameter Et

s (X) of the conditional
distribution P(Xt

s |Xt−1,Xt−2,Xt−3) at time t
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Et
s (X) = θs +

∑

j∈L

∑

r∈N (s)

θ
t−j
s,r φr (X

t−j
r ). (2.11)

We only included pairwise interactions because mgm does not implement
higher order interactions for mVAR models. The canonical parameter function
in Equation 2.11 defines the log-likelihood L(θ,X) in Equation 2.8 and we can
therefore use Algorithm 1 with two modifications: first, we define the design
matrix as a function of the included lags L instead of the maximal order of the
interactions, which we here fix to k = 2 (only pairwise interactions). Second, we
do not apply an AND/OR rule, because the cross-lagged effect of Xt−1

s on Xt
r is a

different effect than the cross-lagged effect of Xt−1
r on Xt

s and thus no parameter
is estimated twice. Here we state the modified algorithm explicitly:

Algorithm 2 (Estimating mixed VAR models via nodewise regression)

1. For each s ∈ V

(a) Construct design matrix defined by L, the set of included lags

(b) Solve the lasso problem in Equation 2.8 with regularization parameter λ

(c) Threshold the estimates at τ

2. Define the directed graphsDj based on the zero/nonzero pattern in the combined
parameter vector for each lag j ∈ L.

The computational complexity of Algorithm 2 is O(p log(p|L|)). Similarly to
Algorithm 1, the regularization parameter λ can be selected using cross valida-
tion or an information criterion such as the EBIC.

Note that the directed graphs in the p×p× |L| array D are not encoding condi-
tional independence statements as the graph G for MGMs. But they are a useful
summary of the parameters of the mixed VARmodel, especially because it allows
a visualization as a series of directed networks (see Section 2.3.1 for illustrations).

Note that the performance of Algorithm 2 depends on the number of vari-
ables and the number of lags, the type of variables, the size of parameters relative
to the variance of associated variables, the sparsity of the parameter vector and
the structure of the dependency graph. mgm offers a flexible function to sample
from mixed VAR models such that the performance of Algorithm 2 in a given
situation can be evaluated via simulation studies. (Haslbeck, Bringmann, & Wal-
dorp, 2020) report the performance of Algorithm 2 in recovering VAR models
with Gaussian noise process in a variety of situations.

2.2.5 Estimating time-varying models

For both MGMs (Section 2.2.2) and mixed VAR models (Section 2.2.4) for time
series data, we assumed so far that the models are stationary. This means that
the observations at each time t point are generated from the same distribution
parameterized by θ. In time-varying models we relax this assumption, such that
the parameters θt can be different at each time point t ∈ Tn = { 1n ,

2
n , . . . ,1}, where
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n is the number time points in the time series. Note that we use n to denote the
number of observations both for cross-sectional data (observations are measure-
ments of different systems from some population) and time series data (repeated
measurements of the same system).

Since one cannot estimate a model from a single time point, we have to make
assumptions about how the parameters of the true model vary as a function of
time. These assumptions are usually assumptions about local stationarity (e.g.,
Zhou, Lafferty, & Wasserman, 2010a) and come in one of two flavors: we either
assume that there exists a partition B of Tn in which time points are consecutive
and in each of the subsets B ∈ B the model is stationary, that is, ∀i, j ∈ B : θi =
θj . These piecewise constant time-varying models can be estimated with a fused
lasso penalty, which puts an additional penalty on parameter changes from one
time point to the subsequent time point (see e.g., R. P. Monti et al., 2014; Kolar &
Xing, 2012; Gibberd & Nelson, 2015, 2017).

The other type of local stationarity, which we focus on in this chapter, requires
that the model θt is a smooth function of time. In this case we can combine
observations close in time for estimation, because we know that their generating
models are similar. This idea is implemented by fitting local models θ̂te across
the time series, which only give high weight to data points close to the given
estimation point te. The weight function is usually non-negative and symmetric
over te (see e.g., Song, Kolar, & Xing, 2009; Zhou, Lafferty, & Wasserman, 2010b;
Kolar, Song, Ahmed, & Xing, 2010; Kolar & Xing, 2009; Tao, Huang, Wang, Xi, &
Li, 2016; X. Chen & He, 2015). The full time-varying model is then the set of all
local estimates {θe1 ,θe2 , . . . ,θ |E|} at estimation points E = {te1, t

e
2, . . . , t

|E|}, where the
entries in E are usually equally spaced across the time series and the number of
estimation points |E| is chosen depending on how fine-grained one would like to
describe θt as a function of time t.

Stating the above formally, we estimate the model θte at time point te by min-
imizing a weighted version of the loss function in Equation 2.8 in Section 2.3.1.1

θ̂te = argmin
θ

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 1
∑n

t=1w
te
t

n
∑

t=1

wte
t L(θ,Xt) +λ||θ||1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (2.12)

where wte
t is a function of t defined by a kernel centered over te. Specifically, we

define the weight function wte
t to be a Gaussian kernel, normalized such that the

largest weight is equal to one (Zhou et al., 2010a)

wte
t =

Zt

max(t∈Tn) {∪tZt}
, where Zt =

1
√
2πσ

exp

{

− (t − t
e)2

2σ2

}

. (2.13)

This particular scaling of the weight function has the convenient property
that the sum of all weights nσ ,te =

∑n
t=1w

te
t (or the area under the curve) used

at a given estimation point te indicates amount of data used for estimation at te

relative to the full time series (the full rectangle). Note that we indexed nσ ,te also
with the estimation point te, because less data is used at the beginning and the
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2.2. Background

end of the time series, where the weighting function is truncated (see left panel
Figure 2.1).

The example in Figure 2.1 illustrates this estimation procedure. Here we have
a time series of n = 10 measurements of p continuous variables, and we would
like to estimate the model at time point te = 3. To this end we first define a kernel
function wte

t as in Equation 2.13. The bandwidth σ of the kernel, which is here
equal to the standard deviation of the Gaussian distribution, indicates how many
observations close in time we combine to estimate the node at estimation point
te.
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Figure 2.1: Illustration of two kernel weighting functions with different bandwidth parameter de-
fined for the estimation point te = 3; left panel: weights as a function of time; right panel: equivalent
representation of the weights across time, combined with the time series data.

Figure 2.1 displays the kernel function wte
t for two different choices of band-

width, σ = 0.05 and σ = 0.2. The kernel function with σ = 0.05 gives only time
points very close to te = 3 a nonzero weight, while other time points get a weight
close to zero and have therefore almost no influence on the parameter estimated
at te = 3. In contrast, the kernel function with σ = 0.2 distributes weights more
evenly, which implies that also time-points quite distant from te = 3 influence the
parameter estimates at te = 3. The values of both weighting functions at the mea-
sured time points are also illustrated together with the data matrix in the right
panel of Figure 2.1.

The choice of bandwidth involves a trade-off between the sensitivity to time-
varying parameters and the stability of the estimates: if we combine only a
few observations close in time (small bandwidth σ) the algorithm can detect
parameter-variation at small time scales, however, because we use little data, the
estimates will be unstable. If we combine many observations around the esti-
mation point (large σ), parameter-variation at small time scales will be lost due
to aggregation, however, the estimates will be relatively stable. Note that if we
keep increasing the bandwidth σ , the weights on [0,1] will converge to a uniform
distribution and give the same estimates as the stationary version of the model,
thereby becoming relatively stable, but losing all sensitivity to detect changes in
parameters over time.
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2. Estimating Mixed Graphical Models

The ideal bandwidth σ∗ results in the estimated parameter vector θ̂t which
minimizes the distance to the true time-varying model θ̂t∗ as a function of σ .
We can estimate the ideal bandwidth σ∗ using a time-stratified cross-validation
scheme, where one searches a specified σ-sequence and selects the σ which min-
imizes the mean (across folds and variables) out of sample prediction error (see
Section 2.3.3 for a description of the time-stratified cross-validation scheme).

So far we assumed that the measurements in the time-series are taken at equal
time intervals. But this need not be the case, because measurements can be miss-
ing randomly or by design. Simply treating the time points as equally distributed
leads to an incorrect estimate of the time-varying model. Figure 2.2 illustrates
this issue:
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(b) Include true time points

Figure 2.2: Left panel: the weighting function is computed by assuming that the true time points are
equally spaced. Since the true time points are not equally spaced, this creates a mismatch between
the time scale of estimation points and the true time scale; right panel: the true time interval is used
to compute the weights and hence the two scalings match.

Here we have a time series with n = 10 time points, measured at irregular time
intervals. In Figure 2.2(a) we distribute these time points evenly across the time
interval, which results in that the assigned time points in the normalized time
interval [0,1] do not correspond to the true time points (values in red). Now if we
estimate the time-varying model at time point te = 0.5, we see that the true time
point 0.7 gets the highest weight. Thus, the model at te = 0.5 is more strongly
influenced by the observations at the true time point 0.7 than by the observations
at time point 0.5. Clearly, this is undesirable.

In Figure 2.2(b) we avoid this problem by using the true time points in order
to define the weighting function wte

t . We again estimate the model at te = 0.5
and see that the time scale of the estimation point is now aligned with the true
time scale. This results in a different amount of data used for estimation nσ ,te ,
depending on how many measurements are available around a given time point.
If there is less data available, the algorithm becomes more conservative, since we
plug in nσ ,te for n in the τ threshold in Equation 2.9. In the extreme case where
there is no data close to an estimation point, nσ ,te will be extremely small, which
implies that the algorithm sets all estimates to zero. This makes sense, because if
there is no data available close to a given estimation point te, we cannot expect to
obtain reliable estimates at te.
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2.2. Background

Note that the only difference between the stationary models and the time-
varying models is that we introduce a weight for each time point in the cost func-
tion in Equation 2.12 and repeatedly estimate the model at different estimation
points. Therefore we can easily adapt the estimation algorithms for the stationary
MGM (Algorithm 1) and mixed VAR model (Algorithm 2) to their time-varying
versions. We first state the algorithm for time-varying MGMs.

Algorithm 3 (Estimating time-varying MGMs via kernel-smoothed neighborhood re-
gression)

1. For each estimation point te ∈ E

(a) For each variable s ∈ V
i. Construct design matrix defined by k, the order of the MGM

ii. Solve the weighted lasso problem in Equation 2.12 with regularization
parameter λ and the weighting function wte defined by te and band-
width σ

iii. Threshold the estimates at τnσ ,te

(b) Combine the parameter estimates with the AND- or OR-rule

(c) Define Ge based on the zero/nonzero pattern in the combined parameter
vector θe

Thus we obtain a parameter vector θte of the MGM in Equation 2.5 and a
graph Gte defined by θte , for each estimation point te ∈ E . From Algorithm 1
follows that Algorithm 3 has a computational complexity of O(|E|p log(p2k−1)).

Similarly, we can adapt Algorithm 2 for the estimation of time-varying mixed
VAR models:

Algorithm 4 (Estimating time-varying mixed VAR models via kernel-smoothed
neighborhood regression)

1. For each estimation point te ∈ E

(a) For each variable s ∈ V
i. Construct design matrix defined by the L, the set of included lags

ii. Solve the weighted lasso problem in Equation 2.12 with regularization
parameter λ and the weighting function wte defined by te and band-
width σ

iii. Threshold the estimates at τnσ ,te

(b) Define the directed graphs De
j based on the zero/nonzero pattern in the

parameter vector θe for each lag j ∈ L.

Here we obtain a parameter vector θte of the mVAR model and a directed

graph D
tej for each lag, defined by θte , for each estimation point te ∈ E .

From Algorithm 2 follows that Algorithm 4 has a computational complexity of
O(|E|p log(p|L|)). Haslbeck et al. (2020) report the performance of Algorithm 4 in
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2. Estimating Mixed Graphical Models

recovering time-varying VAR models with Gaussian noise process for a variety of
situations.

Fitting a time-varying model with the above method requires to specify an ap-
propriate bandwidth parameter σ . In Section 2.3.3, we describe a time-stratified
cross-validation scheme to select σ in a data-driven way. The EBIC is not suit-
able to select σ . The reason is that threshold (intercept) parameters are neither
included in the ℓ1-penalty, nor in the EBIC. This results in the EBIC selecting
always the model with the smallest specified bandwidth, which includes no in-
teraction parameters, but achieves an extremely good fit through highly local
(time-varying) thresholds (intercepts). This problem is avoided when using a
cross-validation scheme, where fitting local means leads to high out-of-fold pre-
diction error.

Note that the performance of Algorithm 3 and 4 depends on the number of
variables, the type of variables, the size of parameters relative to their variance,
the sparsity of the parameter vectors, the structure of the dependency graph and
the how non-linear the parameters vary as a function of time. The best way to
obtain the performance of Algorithm 3 and 4 is to set up a suitable simulation
study. To this end mgm offers flexible functions to sample from time-varying
MGMs and time-varying mVAR models.

2.3 Usage and Examples

The mgm package can be installed from the Comprehensive R Archive Network
(CRAN) (http://CRAN.r-project.org/):

install.packages("mgm")

library(mgm)

In the following sections, we show for each of the four model types how to

1. sample observations from a specified model

2. estimate the model from data

3. make predictions from an estimated model

4. visualize the estimated model

5. and assess the stability of estimates.

The sampling functions are included to enable the user to determine the per-
formance of the estimation algorithm in a specific situation via simulations. All
used datasets are loaded automatically with the mgm-package. All analyses in
the chapter are fully reproducible, and the necessary code is either shown in
the chapter or can be found in the online supplementary material or the Github
repository https://github.com/jmbh/mgmDocumentation. For all code exam-
ples we use the mgm version 1.2-9 and R-version 3.6.
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2.3. Usage and Examples

2.3.1 Stationary Mixed Graphical Models

In this section we first use a simulated data set to show how to estimate a pairwise
MGM, compute predictions from it, visualize it and assess the stability of its
parameters. Then we fit a pairwise MGM to a larger empirical data set related
to Autism Spectrum Disorder (ASD). Finally, we give an example of a higher-
order MGM by showing how to estimate a k = 3 MGM to a data set consisting of
symptoms of Post-traumatic Stress Disorder (PTSD).

2.3.1.1 Estimating Mixed Graphical Models

In this section we show how to use the function mgm() to estimate a pairwise
MGM to a data set with n = 500 observations of two continuous, and two cate-
gorical with m = 2 and u = 4 categories, respectively. The true model includes
the pairwise interactions 1-4, 2-3 and 1-2. For the exact parameterization of the
true model and for a description of how to sample from this MGM using the
mgmsampler() function see the section on sampling below.

Next to the data, we specify the type of each variable ("g" for Gaussian, "p"
for Poisson, "c" for categorical) and the number of levels of each variable (1 for
continuous variables by convention). Here we use the example data mgm_data
which is automatically loaded with mgm. Next, we indicate the order of the
graphical model: we choose k = 2, which corresponds to a pairwise MGM (con-
taining at most 2-way interactions). If we specified k = 3, we would fit an MGM
including all 2-way and all 3-way interactions, k = 4 would include all 2-way,
3-way and 4-way interactions, etc. After that, we specify how we select the pe-
nalization parameter λ in Algorithm 1. The two available options are the EBIC or
cross-validation. Here we choose cross-validation with 10 folds. If not otherwise
specified via the argument lambdaSeq, the considered λ-sequence is determined
as in the glmnet package: a sequence is defined from λmax, the smallest (data de-
rived) value for which all coefficients are zero, and λmin, a fraction of λmax, which
is 0.01 in the high-dimensional setting (n < p) and 0.0001 if n > p. Finally, in-
dicate that estimates across neighborhood regressions should be combined with
the AND-rule. Since we use cross-validation, we set a random seed outside the
function to ensure that the analysis is reproducible.

set.seed(1)

fit_mgm <- mgm(data = mgm_data$data,

type = c("g", "c", "c", "g"),

levels = c(1, 2, 4, 1),

k = 2,

lambdaSel = "CV",

lambdaFolds = 10,

ruleReg = "AND")

The function mgm() returns a list with the following entries: fit_mgm$call
returns the call of the function; fit_mgm$pairwise contains the weighted ad-
jacency matrix and the signs (if defined) of the parameters in the weighted ad-
jacency matrix; fit_mgm$interactions— contains a list that shows all recov-
ered interactions (cliques) and a list that returns the parameters associated with
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2. Estimating Mixed Graphical Models

all cliques; fit_mgm$intercepts stores all estimated thresholds/intercepts and
fit_mgm$nodemodels is a list with the p glmnet objects from which all above
results are computed. We inspect the weigthed adjacency matrix stored in
fit_mgm$pairwise$wadj

round(fit_mgm$pairwise$wadj, 2)

> [,1] [,2] [,3] [,4]

> [1,] 0.00 0.53 0.00 0.46

> [2,] 0.53 0.00 0.09 0.00

> [3,] 0.00 0.09 0.00 0.00

> [4,] 0.46 0.00 0.00 0.00

and see that we correctly recovered the pairwise dependencies 1-4, 2-3 and 1-2.
The list entry fit_mgm$pairwise$signs indicates the sign for each interaction, if
a sign is defined. By default, a sign is only defined for interactions between non-
categorical variables (Gaussian, Poisson). Interactions involving categorical vari-
ables with m > 2 categories are defined by more than one parameter and hence
no sign can be defined. The function showInteraction() provides an alternative
way to inspect a given interaction. For instance, one can obtain the details about
the interaction 1-4 like this:

showInteraction(object = fit_mgm,

int = c(1,4))

> Interaction: 1-4

> Weight: 0.4586544

> Sign: 1 (Positive)

We use the glmnet package to fit the regularized nodewise regressions, which
directly models the probabilities of categorical variables instead of the ratio rel-
ative to a reference category. This is possible, because the regularization en-
sures that this model is identified (for details see J. Friedman et al., 2010).
This means that an interaction between two categorical variables X1 ∈ {1, . . . ,m}
and X2 ∈ {1, . . . ,u} has m × (u − 1) parameters in the regression on X1 and
u × (m − 1) parameters in the regression on X2. In addition, all estimation func-
tions in mgm also allow an overparameterization (specified via the argument
overparameterize = TRUE), where an indicator function is defined for each state
of the categorical predictor variable. In the previous example of a pairwise in-
teraction, this leads to m × u parameters specifying the interaction between X1
and X2. The overparameterization is useful when one is interested in parameters
associated with indicator functions that are otherwise absorbed by the threshold
(intercept) parameters (also called reference category). We give an example for
estimating a k = 3 order MGM at the end of this section.

If the argument binarySign is set to TRUE, all binary variables have to be
coded as {0,1} and a sign is defined in the following way: for an interaction be-
tween two binary variables X1,X2 ∈ {0,1}, if the parameter associated with the
indicator function IX2=1 in the equation modeling P(X1 = 1) has a positive sign
(which implies that the parameter associated with IX2=1 in the equation model-
ing P(X1 = 0) has a negative sign, see (J. Friedman et al., 2010)), then we assign
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a positive sign to the binary-binary interaction. For an interaction between a bi-
nary variable X1 and a continuous variable X2 we take the sign of the parameter
associated with X2 in the equation modeling P(X1 = 1). In addition, it is possible
to specify a weight for each observation via the argument weights to perform
weighted regression.

In the example above we used an ℓ1-penalized GLM to estimate the MGM,
which implies that we assume that the true MGM is sparse. However, a different
penalty may be appropriate in some situations. Via the argument alphaSeq one
can specify any convex combination of the ℓ1- and ℓ2-penalty (the elastic net
penalty, see (Zou & Hastie, 2005)). alphaSeq = 1 corresponds to the ℓ1-penalty
(default) and alphaSeq = 0 to the ℓ2-penalty. If a sequence of values is provided
to alphaSeq, the function will select the best α value based on the EBIC or cross
validation, specified via the argument alphaSel.

2.3.1.2 Making Predictions fromMixed Graphical Models

We now use the predict() function to compute predictions and nodewise errors
from the model estimated in the previous section. This function takes the model
object and data of the same format as the data used for estimation as input. It also
allows to specify which error functions should be used to compute nodewise pre-
diction errors. The error functions F(ŷ, y) for continuous and categorical variables
are specified via the errorCon and errorCat arguments, respectively. Here we
specified the Root Mean Squared Error ("RMSE") and the proportion of explained
variance ("R2") as error functions for the continuous variables, and the propor-
tion of correct classification (or accuracy, "CC") and the normalized proportion
of correct classification ("nCC") for categorical variables. "nCC" is the increase in
accuracy beyond the intercept model, divided by the maximal possible increase,
and thereby captures how well a node is predicted by other nodes beyond the
intercept model. Specifically, letA = 1

n

∑n
i=1 I(yi = ŷi ) be the proportion of correct

classifications, and let p0,p1, . . .pm be the marginal probabilities of the categories,
where I is the indicator function for the event Ri = R̂i . In the binary case these
are p0 and p1 = 1− p0. We then define normalized accuracy as

Anorm =
A−max{p0,p1, . . . ,pm}
1−max{p0,p1, . . . ,pm}

.

For details see (Haslbeck & Waldorp, 2018). If one is not interested in com-
puting nodewise prediction errors, the arguments errorCon and errorCat can
be simply ignored.

We provide the mgm fit object and the data as input arguments and a choice
of prediction error measures to the predict() function:

pred_mgm <- predict(object = fit_mgm,

data = mgm_data$data,

errorCon = c("RMSE", "R2"),

errorCat = c("CC", "nCC"))
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The output object pred_mgm is a list that contains the function call, the pre-
dicted values, the predicted probabilities of each category in case the model in-
cludes categorical variables, and a table with nodewise prediction errors. Here
we print the nodewise error table in the console:

pred_mgm$errors

> Variable Error.RMSE Error.R2 Error.CC Error.nCC

> [1,] 1 0.781 0.389 NA NA

> [2,] 2 NA NA 0.842 0.225

> [3,] 3 NA NA 0.342 0.000

> [4,] 4 0.855 0.268 NA NA

The RMSE and R2 are shown for the two continuous variables, the accuracy
and normalized accuracy are shown for the two categorical variables. It is possi-
ble to provide an arbitrary number of customary error functions for both contin-
uous and categorical variables to predict(), for details see ?predict.mgm.

In this example we used the same data for estimation and prediction, which
means that we computed within sample prediction errors. In order to evaluate
how well the model generalizes out of sample, the predictions have to be made
on a fresh test data set. This can be done by providing new data of the same
format to the predict() function.

2.3.1.3 Visualizing Mixed Graphical Models

We visualize interaction parameters of the pairwise model together with the
nodewise errors using the qgraph package (Epskamp et al., 2012). To this end
we first install and load the qgraph package and compute a vector containing the
nodewise errors we would like to display:

install.packages("qgraph")

library(qgraph)

errors <- c(pred_mgm$errors[1, 3],

pred_mgm$errors[2:3, 4], pred_mgm$errors[4, 3])

Here we decided to display the proportion of explained variance for the con-
tinuous variables and the accuracy for the categorical variables. In order to plot
the model, one provides the weighted adjacency matrix and the errors to the
function qgraph(). We also provide a matrix of edge colors that specify the sign
of each interaction (green = positive, red = negative, grey = undefined) that is
stored in the mgm fit object. Finally we provide colors for the different error
measures and variable names for the legend.

qgraph(fit_mgm$pairwise$wadj,

edge.color = fit_mgm$pairwise$edgecolor,

pie = errors,

pieColor = c("lightblue", "tomato", "tomato", "lightblue"),

nodeNames = c("Gaussian", "Categorical; m = 2",

"Categorical; m = 4", "Gaussian"),

legend = TRUE)
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Figure 2.3 shows the resulting visualization:

1

2

3

4

1: Gaussian
2: Categorical; m = 2
3: Categorical; m = 4
4: Gaussian

Figure 2.3: Visualization of the edge-parameters and nodewise errors of the estimated MGM. Green
edges indicate positive relationships. Grey edges indicate pairwise interactions for which no sign is
defined (interactions involving categorical variables). The width of the edges is proportional to the
absolute value of the associated edge-parameter.

The green edge between variable 1 and variable 2 indicates a positive linear
relationship between the two Gaussian variables and the two grey edges indicate
relationships between categorical variables, for which no sign is defined. The
exact nature of these interactions can be found by inspecting them using the out-
put object of the showInteraction() function. The width of the edges is propor-
tional to the size of the corresponding edge-parameter. The blue rings indicate
the proportion of variance explained by neighboring nodes for the Gaussian vari-
ables, and the red rings indicate the accuracy of the categorical nodes.

2.3.1.4 Bootstrap Sampling Distributions

Obtaining the sampling distributions for parameter estimates can be useful if
one is interested in the stability of estimates (Hastie et al., 2015). The func-
tion resample() obtains empirical sampling distributions with the nonparamet-
ric bootstrap (Efron, 1992; Efron & Tibshirani, 1994). Its input is the mgm
model object fit_mgm (the output of the function mgm(), see above), the data, and
the desired number of bootstrap samples B via the argument nB. The argument
quantiles specifies lower/upper quantiles of the sampling distributions, which
are added to the output. Here we choose quantiles = c(.05, .95). Finally, we
set a random seed to make the analysis reproducible.

set.seed(1)

res_obj <- resample(object = fit_mgm,

data = mgm_data$data,

nB = 50,

quantiles = c(.05, .95))

The bootstrapped sampling distributions of the edge weights can be found in
a B × p × p array stored in the list entry res_obj$bootParameters. For example,
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the vector of length B with the bootstrapped sampling distribution of the weight
of the edge 3-4 is stored in the entry res_obj$bootParameters[, 3, 4]. The
output object res_obj also contains the specified lower/upper quantiles of each
sampling distribution, the function call, the B estimated models and the running
time for each bootstrap sample. The function plotRes() provides a plot that
summarizes the bootstrapped sampling distributions. For each edge weight, it
displays the proportion of nonzero estimates across all B models, printed at the
arithmetic mean of the sampling distribution. In addition, it displays specified
lower/upper quantiles. Here we choose the 5% and 95% quantiles by setting
quantiles = c(.05, .95).

plotRes(object = res_obj,

quantiles = c(.05, .95))

The resulting plot is displayed in Figure 2.4. It shows that the sampling distri-
butions for the edges 1-2 and 1-4 are located far from zero, have a small standard
deviation and 100% of the B estimates were nonzero. For the edges 3-4, 2-3 and
1-3 that are absent in the true graph, the sampling distribution is close to zero
and the proportion of estimated nonzero effects is much smaller.
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Figure 2.4: Summaries of bootstrapped sampling distributions separately for the weight of each edge.
The value indicates the proportion of nonzero estimates across the B bootstrap samples and is plotted
on the airthmetic mean of the sampling distribution. The black horizontal lines indicate the 0.05 and
0.95 quantiles of the bootstrapped sampling distribution.

While bootstrapped sampling distributions are useful to determine the sta-
bility of estimates, they are not suited for performing hypothesis tests, for in-
stance, against the null null hypothesis that the population parameter is equal to
zero. The reason is that the sampling distributions of parameters obtained with
ℓ1-regularized regression have a zero mass around zero (Bühlmann, Kalisch, &
Meier, 2014). The R-package bootnet (Epskamp, Borsboom, & Fried, 2018) also
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implements a bootstrap scheme for mgm objects and provides similar plotting
options.

2.3.1.5 Sampling fromMixed Graphical Models

Here we illustrate how to use the function mgmsampler() to create the dataset
mgm_data that was used for estimation above. These data were created by speci-
fying an MGM consisting of two continuous-Gaussian nodes ("g"), and two cat-
egorical nodes ("c") with m = 2 and u = 4 categories, and three pairwise interac-
tions between these four variables. A third option in mgmsampler() are Poisson
nodes ("p"). Note that we use the overparameterized representation of interac-
tions between categorical variables to specify the model, which means that the
pairwise interaction between the categorical variables has m × u parameters. We
begin by specifying the type and number of categories for each node. By conven-
tion, for continuous variables we set the number of categories to 1.

type <- c("g", "c", "c", "g")

level <- c(1, 2, 4, 1)

Next, we specify a list containing the thresholds for each variable:

thresholds <- list()

thresholds[[1]] <- 0

thresholds[[2]] <- rep(0, level[2])

thresholds[[3]] <- rep(0, level[3])

thresholds[[4]] <- 0

We specify a zero threshold (intercept) for the two Gaussian nodes, and for
each of the categories of both categorical variables. Thresholds correspond to the
first summation in the joint MGM density in Equation 2.5. Next, we specify a
vector containing the standard deviations for the Gaussian variables:

sds <- rep(1, 4)

The entries in sds corresponding to non-Gaussian nodes (here 2 and 3) are
ignored. Finally, we specify three pairwise interactions between the variables 1-
2, 2-3 and 1-4 in two steps: first, we create a matrix, in which each row indicates
one pairwise interaction:

factors <- list()

factors[[1]] <- matrix(c(1,4,

2,3,

1,2), ncol = 2, byrow = T)

We assign the matrix to the first list entry factors[[1]], which contains pair-
wise interactions. The second list entry factors[[2]] contains a q × 3 matrix of
q 3-way interactions, the third entry contains a w × 4 matrix of w 3-way interac-
tions, etc. Since we only specify pairwise interactions in this example, we only
use the first entry. A description and examples of how to specify higher order
interactions are given in the help file ?mgmsampler. In a second step, we specify
the parameters of the three interactions:
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interactions <- list()

interactions[[1]] <- vector("list", length = 3)

# 2-way interaction: 1-4

interactions[[1]][[1]] <- array(.5, dim = c(level[1], level[4]))

# 2-way interaction: 2-3

int_2 <- matrix(0, nrow = level[2], ncol = level[3])

int_2[1, 1:2] <- 1

interactions[[1]][[2]] <- int_2

# 2-way interaction: 1-2

int_1 <- matrix(0, nrow = level[1], ncol = level[2])

int_1[1, 1] <- 1

interactions[[1]][[3]] <- int_1

The interaction between the continuous variables 1-2 is parameterized by one
parameter with value 0.5. The interaction between the two categorical variables is
specified by a 2×4 parameter matrix. We give the entries (1,1) and (1,2) a value of
1, whichmeans that these two states have a higher probability than the remaining
states, which are associated with a value of 0. Finally, we specify the interaction
between the continuous-Gaussian node 1 and the binary node 2, which has two
parameters associated with the two indicator functions for the binary variable
multiplied with the continuous variable. Now we provide these arguments to the
mgmsampler() function, together with n = 500, which samples 500 observations
from the model:

set.seed(1)

mgm_data <- mgmsampler(factors = factors,

interactions = interactions,

thresholds = thresholds,

sds = sds,

type = type,

level = level,

N = 500)

The function returns a list containing the function call in mgm_data$call and
the data in mgm_data$data. For more details on how to specify k-order MGMs
we refer the reader to the help file ?mgmsampler.

2.3.1.6 Application: Autism andWell-being

Here we show how to estimate an MGM on a real data set consisting of responses
of 3521 individuals from the Netherlands, who were diagnosed with Autism
Spectrum Disorder (ASD), to 28 questions on demographics, psychological as-
pects, conditions of the social environment and medical measurements (for de-
tails see Begeer, Wierda, & Venderbosch, 2013; Deserno, Borsboom, Begeer, &
Geurts, 2017). The dataset is included in the mgm package and loaded automat-
ically. It includes continuous variables, count variables and categorical variables
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(see autism_data_large$type), and the latter have between 2 and 5 categories
(see autism_data_large$level))

We choose a pairwise model (k = 2) and select the regularization parameters
λ using the EBIC with a hyperparameter γ = 0.25:

fit_ADS <- mgm(data = autism_data_large$data,

type = autism_data_large$type,

level = autism_data_large$level,

k = 2,

lambdaSel = "EBIC",

lambdaGam = 0.25)

The 28 × 28 weighted adjacency matrix is too large to be displayed here.
Instead, we directly visualize it using the qgraph package. In addition to the
weighted adjacency matrix and the matrix containing edge colors that indicate
the signs of edge parameters, we also provide a grouping of the variables into the
categories Demographics, Psychological, Social environment and Medical measure-
ments as well as colors for the grouping, both of which are contained in the data
list autism_data_large. The remaining arguments are chosen to improve the
visualization, for details we refer the reader to the help file ?qgraph.

qgraph(fit_ADS$pairwise$wadj,

layout = "spring", repulsion = 1.3,

edge.color = fit_ADS$pairwise$edgecolor,

nodeNames = autism_data_large$colnames,

color = autism_data_large$groups_color,

groups = autism_data_large$groups_list,

legend.mode="style2", legend.cex=.4,

vsize = 3.5, esize = 15)

The resulting visualization is shown in Figure 2.5. The layout of node po-
sitions was computed with the Fruchterman Reingold algorithm, which places
nodes such that all the edges are of more or less equal length and there are as few
crossing edges as possible (Fruchterman & Reingold, 1991). Green edges indicate
positive relationships, red edges indicate negative relationships and grey edges
indicate relationships involving categorical variables for which no sign is defined.
The width of the edges is proportional to the absolute value of the edge-weight.
The node color indicates to the different categories of variables.

We observe a strong positive relationship between age and age of diagnosis,
which makes sense because the two variables are logically connected. The nega-
tive relationship between number of unfinished educations and satisfaction at work
seems plausible, too. Well-being is strongly connected in the graph, with the
strongest connections to satisfaction with social contacts and integration in society.
These three variables are categorical variables with 5, 3 and 3 categories, respec-
tively. In order to investigate the exact nature of these interactions, one can look
up all parameters using the function showInteraction().
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Figure 2.5: Visualization of the MGM estimated on the autism dataset. Green edes indicate pos-
itive relationships, red edges indicate negative relationships and grey edges indicate relationships
involving categorical variables for which no sign is defined. The width of the edges is proportional
to the absolute value of the edge-parameter. The colors of the nodes map to the different domains
Demographics, Psychological, Social Environment and Medical.

2.3.1.7 Estimating higher-order Mixed Graphical Models

In the previous section, we focused on the estimation of pairwise (k = 2) MGMs.
Here, we show how to estimate an MGM of order k = 3 to a dataset consisting of
Post-traumatic Stress Disorder (PTSD) symptoms reported from 344 survivors of
the Wenchuan earthquake in China reported in McNally et al. (2015). The data
is loaded automatically with mgm and includes the following symptoms:

PTSD_data$names

> [1] "intrusion" "dreams" "flash" "upset" "physior" "avoidth"

We first specify the data, type, levels and the desired method to select the
regularization parameter λ, similarly to the pairwise MGM. But here we specify
with k = 3 to estimate all pairwise and all 3-way interactions.

In addition, we choose to use the overparameterized version of the represen-
tation of categorical variables by setting overparameterize = TRUE. This results
in that all states of categorical variables up to degree k are modeled explicitly.
This overparameterization is possible due to the ℓ1-penalization (for details see
J. Friedman et al., 2010). The standard and the overparameterized parameteriza-
tion are statistically equivalent and therefore one has to choose one over the other
based on which parameterization lends itself to the most useful interpretation in
a given application: if it is more sensible to compare all categories to a reference
category the standard parameterization is preferable. If one is interested in all
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categories equally, the overparameterization might be better. We call mgm() with
the above discussed specifications:

fit_mgmk <- mgm(data = PTSD_data$data,

type = PTSD_data$type,

level = PTSD_data$level,

lambdaSel = "EBIC",

lambdaGam = 0.25,

k = 3,

overparameterize = TRUE)

The output object fit_mgmk has the same structure as the pairwise MGM
discussed above. We still find the pairwise interactions in fit_mgmk$pairwise
but these do not represent the full parameterization anymore, since we also
estimated 3-way interactions. All interactions that have been estimated to
be nonzero can be found in the list fit_mgmk$interactions: the entry
fit_mgmk$interactions$indicator contains a list showing all nonzero esti-
mated interactions, separately for each order (here 2 and 3):

fit_mgmk$interactions$indicator

[[1]]

[,1] [,2]

[1,] 1 2

[3,] 4 5

[[2]]

[,1] [,2] [,3]

[1,] 1 3 4

[2,] 1 3 5

[3,] 2 3 4

[4,] 3 5 6

[5,] 4 5 6

The output indicates that we estimated two nonzero pairwise interactions,
and five nonzero 3-way interactions. For example, the third row in the second list
entry indicates that there is a 3-way interaction between variables 2-3-4 (Dreams,
Flashbacks and Upset). The list fit_mgmk$interactions also contains additional
entries for the strength of each interaction, and all parameters specifying the
interaction (more than one parameter in case of categorical variables, see Section
2.2.1).

If we were to visualize the dependency structure of this k = 3-order MGM
in a common undirected graph, we would lose the information about on which
interaction(s) a dependency (edge) is based on. For instance, an edge between the
nodes 1 and 2 could either be due to a pairwise interaction between 1 and 2, or
due to any 3-way interaction including the nodes 1 and 2, or both. A visualization
that allows to represent different orders of interactions is the factor graph (e.g.
Koller & Friedman, 2009). A factor graph is a bipartite graph that includes nodes
for variables on the one hand, and nodes for interactions on the other hand. We
use the function FactorGraph() to plot such a factor graph
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FactorGraph(object = fit_mgmk,

labels = PTSD_data$names,

PairwiseAsEdge = FALSE)

which results in Figure 2.6 (a). The six circle nodes represent the six variables
in the dataset. The red square factor nodes indicate pairwise interactions and the
blue square factor nodes indicate 3-way interactions. Each factor node connects
to two (pairwise) or three (3-way) variables, indicating an interaction between
the respective variables. The width of the edges are proportional to the absolute
value of the weight of the corresponding interaction.
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Figure 2.6: (a) Factor graph visualization of the estimated k = 3 MGM. The circle nodes refer to
variables, the quadratic nodes refer to factors over two variables, and the triangle nodes refer to
factors over three variables. The width of the edges is proportional to the strength of the factor; (b)
the marginal sample probability cross-table of Dreams and Upset, and the same table conditioned
on the two states of Flashbacks. We see that the relationship between Dreams and Upset depends on
Flashbacks

We have a closer look at the 3-way interaction 2-3-4 (Dreams, Flashbacks, and
Feeling Upset) in Figure 2.6 (b): First look at the marginal probability cross-table
of the variables Dreams and Upset, which shows unequal cell probabilities and
hence an interaction between those two variables. Now we condition on the two
states of a third variable Flashbacks and see that the interaction between Dreams
and Upset considerably depends on whether an individual has Flashbacks or not.

Interpreting a k-way interaction by interpreting the k − 1 way interaction for
several levels of one the variables Xj in the interaction can be seen as a modera-
tion by Xj . In Haslbeck, Borsboom, andWaldorp (2019) we explain this approach
of interpreting k = 3 interactions as moderation in more detail, and provide fur-
ther examples for estimating and interpreting higher-order MGMs for the special
case of continuous variables.
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2.3.2 Stationary mixed VAR models

In this section, we first show how to estimate a mixed VAR model, compute pre-
dictions from it and visualize it based on simulated data. Then we show how to
specify and sample from a mixed VAR model in order to generate the data used
earlier for estimation. We then fit a mixed VAR model of oder 3 to resting state
fMRI data.

2.3.2.1 Estimating mixed VAR models

Here we show how to use the function mvar() to fit a mixed VAR model to a time
series of six variables, consisting of four categorical variables (with 2, 2, 4 and
4 categories) and two Gaussian variables. In the true mVAR model from which
the time series was sampled, there are effects of lag order 1 from variable 6 on 5,
from 5 on 1 and from 3 on 1. The exact parameterization of these interactions is
shown in below in this section, where we create this data set with the function
mvarsampler().

We provide the data (which is an example dataset automatically loaded with
mgm), and specify the type of each variable in type, where "g" stands for Gaus-
sian, "p" for Poisson, and "c" for categorical. Next, we provide the number of
levels for each variable via levels, where we choose 1 for continuous variables
by convention. We specify a lag of order 1 and select the regularization parame-
ters λ using the EBIC with tuning parameter γ = .25:

fit_mvar <- mvar(data = mvar_data$data,

type = c("c", "c", "c", "c", "g", "g"),

level = c(2, 2, 4, 4, 1, 1),

lambdaSel = "EBIC",

lambdaGam = .25,

lags = 1)

The function mvar() returns a list with several entries: fit_mvar$wadj is
a p × p × |L| array of edge weights, where |L| is the number of specified lags.
For example, fit_mvar$wadj[3, 5, 1] corresponds to the parameter for the
crossed lagged effect of 5 on 3 over the first lag specified in lags (in this
example we only specified one lag). fit_mvar$signs has the same dimen-
sion as fit_mvar$wadj and contains the signs of all parameters, if defined.
fit_mvar$rawlags contains the full parameterization of the cross-lagged ef-
fects. If the mixed VAR model contains only continuous variables, the infor-
mation in fit_mvar$wadj and fit_mvar$rawlags is equivalent. Similarly to
mgm(), the entry fit_mvar$intercepts contains all thresholds (intercepts) and
fit_mvar$nodemodels contains the p glmnet models of the p neighborhood re-
gressions. Here we show the interaction parameters of the fitted VAR model for
the single specified lag of order 1:

round(fit_mvar$wadj[, , 1], 2)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 0 0.33 0.06 0.41 0.00
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[2,] 0 0 0.00 0.00 0.00 0.00

[3,] 0 0 0.00 0.00 0.00 0.00

[4,] 0 0 0.00 0.00 0.00 0.00

[5,] 0 0 0.00 0.00 0.00 0.31

[6,] 0 0 0.00 0.00 0.00 0.00

The autoregressive effects are on the diagonal and the cross-lagged effects are
on the off-diagonal. We use a representation in which columns predict rows,
which means that the entry fit_mvar$wadj[5, 3, 1] corresponds to the cross-
lagged effect of 3 on 5 at lag 1. Comparing the estimates with the true cross-
lagged effects indicated above, we see that that all three true cross-lagged effects
have been recovered and all other effects are correctly set to zero.

The additional arguments that can be provided to mvar() are similar to the
ones in mgm(): the regularization parameter λ can be selected using the EBICwith
a specified hyperparameter γ or with cross-validation with a specified number of
folds. The candidate λ sequence is computed as in mgm() (see Section 2.3.1). The
α in the elastic-net penalty can be selected with the EBIC or cross validation,
similarly to how λ is selected. Again similarly to mgm(), the weights argument
allows to weight observations, binarySign allows signs for interactions involving
binary variables, threshold defines the type of thresholding (see Section 2.2.3)
and overparameterize allows to choose the preferred type of parameterization
of interactions involving categorical variables. For additional input arguments
see ?mvar.

In many situations, one fits a VAR model to data that do not consist of a se-
quence of measurements that are equally spaced in time. The reason for this
can be (randomly) missing measurements and gaps implied by the measurement
process: for instance, in an experience sampling study, individuals may be asked
to respond to questions about symptoms 6 times a day at equal time intervals of
three hours. A mixed VAR model would then show how the presence of a symp-
tom at a given time point is related to the presence of that and other symptoms at
earlier time points (3h ago, 6h ago, etc.). However, because the individual sleeps
at night, there are gaps in the time series. If one did not take this information
into account, every seventh data point in the time series would represent a lag
with the length of the night-gap, whereas the other six are representing a lag of
three hours. This problem can be avoided by providing an integer sequence via
the argument consec, which indicates whether measurements are consecutive.
For instance if one has a time series with 12 time points (2 days of measurements
in the above example), one would provide the vector c(1,2,3,4,5,6,1,2,3,4,5,6).
If one specifies a lag of order 1, mvar() then excludes the time step (over night)
from measurement 6 to 7. Alternatively one can specify the notification num-
ber and the day number via the arguments beepvar and dayvar, respectively.
Then the consec variable is computed internally. If a larger number of lags is in-
cluded, more measurements are excluded accordingly. Information about which
cases were excluded as well as the final data matrix used for estimation can be
found in mvar$call. For more details see ?mvar and the application example for
the time-varying mVAR model below.
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2.3.2.2 Making Predictions from mixed VAR model

Here we show how to use the predict() function to compute predictions and
nodewise errors from the model estimated in the previous section. We provide
the fit object mvar_fit and the data as arguments:

pred_mgm <- predict(object = fit_mvar,

data = mvar_data$data,

errorCon = c("RMSE", "R2"),

errorCat = c("CC", "nCC"))

pred_mgm$call contains the function call, pred_mgm$predicted
the predicted values for each row in the provided data matrix, and
pred_mgm$probabilities contains the predicted probabilities for categori-
cal variables. pred_mgm$errors contains a table of nodewise errors. Similarly to
Section 2.3.1 we specified the Root Mean Squared Error (RMSE) for continuous
variables and the (normalized) accuracy for categorical variables:

pred_mgm$errors

> Variable RMSE R2 CC nCC

> 1 1 NA NA 0.754 0.495

> 2 2 NA NA 0.523 0.000

> 3 3 NA NA 0.302 0.000

> 4 4 NA NA 0.266 0.000

> 5 5 0.916 0.157 NA NA

> 6 6 0.998 0.000 NA NA

Node 1 has the highest normalized accuracy, which makes sense because is
predicted by three other nodes at the previous time point. Nodes 2, 3 and 4 have
a normalized accuracy of 0, because they are not predicted by any other node.
Node 6 has a proportion of explained variance of 0, because it is not predicted
by any other node, and node 5 has a nonzero proportion of explained variance
because it is predicted by node 6.

One can also provide customary error functions via the errorCon and
errorCat arguments. For details, see ?predict.mgm.

2.3.2.3 Visualizing mixed VAR model

We visualize the lagged interaction parameters of the mixed VAR model esti-
mated above together with the nodewise errors computed in the previous section.
Specifically, we visualize the proportion of explained variance for the two contin-
uous variables, and the normalized accuracy for the four categorical variables:

errors <- c(pred_mgm$errors[1:4, 5], pred_mgm$errors[5:6, 3])
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qgraph(t(fit_mvar$wadj[, , 1]),

edge.color = t(fit_mvar$edgecolor[, , 1]),

pie = errors,

pieColor = c(rep("tomato", 4), rep("lightblue", 2)),

nodeNames = c(paste0("Categorical; m=",c(2,2,4,4)),

rep("Gaussian",2)))

We transposed the parameter matrix fit_mvar$wadj[, , 1] because
qgraph() draws arrows from rows to columns instead of columns to rows, the
latter of which is the data structure used in mvar(). The resulting plot is shown
in Figure 2.7.
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Figure 2.7: We visualize the lagged interaction parameters of the mixed VAR model estimated above
together with the nodewise errors computed in the previous section. Green edges indicate positive
relationships. Grey edges indicate that no sign is defined for the pairwise interaction (in the case
the interaction involves categorical variables). The width of the edges is proportional to the absolute
value of the edge-parameter.

The green edge indicates a positive linear relationship for the cross-lagged ef-
fect from node 6 on node 5. The remaining edges are grey, indicating that no sign
is defined. This is because these interactions are defined by several parameters,
so no sign can be defined. The width of the edges is proportional to the absolute
value of the estimated edge-weights in (the values in fit_mvar$wadj[, , 1]).

2.3.2.4 Sampling from mixed VAR model

We now use the function mvarsampler() to sample the data set mvar_data used
in the previous section. We specify a model with only one lag of order one and
p = 6 variables, four categorical (with 2, 2, 4 and 4 categories) and two Gaussians:
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p <- 6

type <- c("c", "c", "c", "c", "g", "g")

level <- c(2, 2, 4, 4, 1, 1)

max_level <- max(level)

lags <- 1

n_lags <- length(lags)

Next, we specify the thresholds for each variable. We assign one threshold
(intercept) to the Gaussians, and a separate threshold for each of the categories
of each of the categorical variables. These thresholds correspond to the first sum-
mation in the joint MGM density in Equation 2.5. In addition, we define a vector
indicating the standard deviations of the Gaussian nodes. Note that entries of
that vector that do not correspond to Gaussian variables in type are ignored.

thresholds <- list()

for(i in 1:p) thresholds[[i]] <- rep(0, level[i])

sds <- rep(1, p)

Finally, we specify the lagged effects in a 5-dimensional p × p ×max{levels} ×
max{levels}× |L| array, where |L| is the number of lags n_lags. We first specify the
lagged effect from the continuous variable 6 on the continuous variable 5, which
consists of a single parameter:

# Create coefficient array

coefarray <- array(0, dim=c(p, p, max_level, max_level, n_lags))

# Lagged effect: 5 <- 6

coefarray[5, 6, 1, 1, 1] <- .4

We specify two additional lagged effects: one from the categorical variable 3
on the categorical variable 1, which is parameterized by 2×4 parameters; and one
from the continuous variable 5 to the binary variable 1, which is parameterized
by 2× 1 parameters.

# Lagged effect 1 <- 5

coefarray[1, 5, 1:level[1], 1:level[5], 1] <- c(0, 1)

# Lagged effect 1 <- 3

m1 <- matrix(0, nrow=level[2], ncol=level[4])

m1[1,1:2] <- 1

m1[2,3:4] <- 1

coefarray[1, 3, 1:level[2], 1:level[4], 1] <- m1
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Finally, all arguments are provided to mvarsampler():

mvar_data <- mvarsampler(coefarray = coefarray,

lags = lags,

thresholds = thresholds,

sds = sds,

type = type,

level = level,

N = 200,

pbar = TRUE)

These sampled data correspond to the example dataset in mvar_data we used
above to illustrate how to estimate a mVAR model.

2.3.2.5 Application: Resting state fMRI data

We fit an mVAR model with lags 1, 2 and 3 to resting state fMRI data of a single
participant. The dataset consists of BOLD measurements of 68 voxels for 240
time points, where the average sampling frequency is 2 seconds (for details see
Schmittmann, Jahfari, Borsboom, Savi, & Waldorp, 2015). The data is loaded
automatically with the mgm package. All BOLD measurements are modeled as
conditional Gaussians, and accordingly we specify the number of levels to be
equal to 1 for all variables. We select the regularization parameters λ with the
EBIC with tuning parameter γ = 0.25, and we include lags of order 1, 2 and 3.

rs_mvar <- mvar(data = restingstate_data$data,

type = rep("g", 68),

level = rep(1, 68),

lambdaSel = "EBIC",

lambdaGam = 0.25,

lags = c(1, 2, 3))

We visualize the 68 × 68 × 3 interaction parameters of this VAR model in
rs_mvar$wadj in three separate network plots in Figure 2.8, one for each lag.
We provide code to reproduce Figure 2.8 from the package example data set
restingstate_data in the online supplementary materials and on the Github
repository https://github.com/jmbh/mgmDocumentation.

For the lag of size one, many coefficients are nonzero. In contrast, for the lags
of size two and three only few coefficients are nonzero. For a typical fMRI data
analysis, this could mean that it is sufficient to fit a VAR model of lag 1 in order
to reduce the variance for further analyses.

Similarly to MGMs, the function resample() can be used to obtain boot-
strapped sampling distributions for the parameters of the mVAR model.

2.3.3 Time-varying Mixed Graphical Model

In this section we show how to estimate a time-varying MGM, how to compute
predictions from it and how to visualize it.
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(c) Lag = 3

Figure 2.8: Visualization of the fitted mVAR model, where we depict the parameters separately for
each lag. Red edges indicate positive relationships, green edges indicate negative relationships. The
width of the edges is proportional to the absolute value of the edge-parameter.

2.3.3.1 Estimating time-varying Mixed Graphical Model

We fit a time-varying MGM to gene expression data used by Gibberd and Nel-
son (2017), who took a subset of the data presented by Arbeitman et al. (2002).
Specifically, we model p = 150 gene expressions related to the immune system of
D. melanogaster (the fruit fly) measured at n = 67 time points across its whole life
span. Since p > n, this is an example of a high-dimensional estimation problem.
Figure 2.9 (top panel) shows that the 67 measurement are distributed unequally
across the time interval.

Estimating the type of time-varying models introduced in Section 2.2.5 re-
quires the specification of a bandwidth parameter σ that reflects how many time
points are combined locally for estimation. The bandwidth parameter σ is the
standard deviation of the Gaussian distribution that defines the weighting func-
tion (see Section 2.2.5). The empirical time points are normalized to the interval
[0,1] and the Gaussian weighting function is defined on this interval. This allows
some intuition about which σ is appropriate. For example, σ = 2 implies weights
that are close to uniform on the interval [0,1] and therefore gives similar results
as the stationary model. This intuition allows to specify a candidate σ-sequence.
We select σ with the function bwSelect(), which computes prediction errors on
leave-out sets for all candidate σ-values and selects the σ∗ that has the lowest
mean error. In the next paragraph we describe this approach in detail.

The function bwSelect() fits time varying models on an equally spaced se-
quence between the time points j and n−F + j − 1 of length J with j ∈ {1,2, . . . ,F},
where F is the number of folds (times the procedure is repeated) while leaving
out (weighting to zero) the time point at which the model is estimated. In a sec-
ond step, the data at this time point are predicted with the time-varying model
and an error measure is computed (RMSE for non-categorical, 0/1-loss for cate-
gorical). This procedure is repeated F times. Then we take the arithmetic mean
over J estimation points, p variables and F folds. If J = n

F , this procedure is equal
to a time-stratified F-fold cross-validation scheme. We allow to specify J < n

F
to save computational cost. J is specified by the argument bwFoldsize and F is
specified by the argument bwFolds. Selecting the ratio between bwFoldsize and
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n corresponds to the problem of selecting the number of folds in cross-validation
(see e.g., J. Friedman, Hastie, & Tibshirani, 2001).

For the present illustration we select bwFolds = 5 and bwFoldsize = 5
to keep the computation time short. We provide the candidate σ-sequence
{0.1,0.2,0.3,0.4}. And we provide all arguments for the time-varying MGM.
This is because we repeatedly fit the type of model we want as our final
model (then with fixed σ). We provide the time points of measurements
fruitfly_data$timevector via the argument timepoints (see Figure 2.2 in
Section 2.2.5 for an explanation of why one has to provide the time points
if they are not equally spaced). Finally, we specify the class of time-varying
model modeltype = "mgm" and pass the arguments k, threshold and ruleReg,
to tvmgm() (see Section 2.3.1 on mgm() for a description of these arguments).

set.seed(1)

p <- ncol(fruitfly_data$data)

bw_tvmgm <- bwSelect(data = fruitfly_data$data, # Takes around 3h

type = rep("g", p),

level = rep(1, p),

bwSeq = c(0.1, 0.2, 0.3, 0.4),

bwFolds = 5,

bwFoldsize = 5,

timepoints = fruitfly_data$timevector,

modeltype = "mgm", k = 2,

threshold = "none", ruleReg = "OR")

We would like to know which candidate bandwidth minimized the average
prediction error. This information is stored in bw_tvmgm$meanError:

round(bw_tvmgm$meanError, 3)

> 0.1 0.2 0.3 0.4

> 0.826 0.707 0.630 0.640

We see that σ = 0.3 minimizes the error in this dataset. If the smallest/largest
candidate σ minimized the prediction error, it is advisable to extend the candi-
date σ sequence to smaller/larger values.

After obtaining a reasonable bandwidth for this data set, we can esti-
mate the final time-varying MGM. The estimation points are specified on the
unit interval [0,1] to which the provided time scale is normalized internally.
We choose 20 equally spaced time points across the time series by setting
estpoints = seq(0, 1, length = 20). Finally, we specify the above obtained
bandwidth with bandwidth = 0.3 and set a random seed to ensure reproducibil-
ity.

set.seed(1)

fit_tvmgm <- tvmgm(data = fruitfly_data$data,

type = rep("g", p),

level = rep(1, p),

timepoints = fruitfly_data$timevector,

estpoints = seq(0, 1, length = 20),
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k = 2,

bandwidth = 0.3,

threshold = "none",

ruleReg = "OR")

The output list in the fit object fit_tvmgm is similar to the list returned by
mgm(). The difference is that all parameter matrices are now 3 dimensional ar-
rays, with an additional dimension for the estimated time points te ∈ E . For
instance, the edge parameters of the pairwise MGM estimated at the third esti-
mation point te = 3 are stored in the matrix fit_tvmgm$pairwise$wadj[, , 3].
For a a detailed description of all output provided in fit_tvmgm, see the help file
?tvmgm.

2.3.3.2 Making Predictions from time-varying Mixed Graphical Model

When making predictions with time-varying MGMs, in principle we would need
to estimate the time-varying model at the maximum resolution, that is, at every
time point. However, this would be computationally expensive: for example, for
a time-series of n = 1000 time points, we would need to fit 1000 models in order
to compute predictions. The predict method in mgm provides two different
options in order to compute predictions and nodewise errors across time, without
requiring to estimate n models.

The first option, tvMethod = "weighted", computes predictions for each of
the n time points from all models te ∈ E . It then computes a weighted average
over the predictions of all models at each time point. The weight is equal to the
weight of the kernel function at t for the respective model estimated at te. The
second option is tvMethod = "closestModel", which for each time point deter-
mines the closest estimation point te, and then uses this model for prediction.
Accordingly, local nodewise errors are calculated only from the closest model.
Note that if one estimates n models at equally spaced time points, this method
corresponds to the above described situation of estimating a time-varying model
for each time point.

In order to compute predictions we call the predict() function and provide
the data, the fit object and the desired method to compute predictions. Here we
pick tvMethod = "weighted":

pred_tvmgm <- predict(object = fit_tvmgm,

data = fruitfly_data$data,

tvMethod = "weighted")

The output object pred_tvmgm is a list containing the function call
pred_tvmgm$call, the predicted values pred_tvmgm$predicted and
pred_tvmgm$probabilities (in the case of categorical variables) computed
by the method tvMethod = "weighted". pred_tvmgm$true contains the true
data matrix and pred_tvmgm$errors contains an array of local nodewise error,
where the third dimension indicates the estimation points.
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2. Estimating Mixed Graphical Models

2.3.3.3 Visualizing time-varying Mixed Graphical Model

Figure 2.9 displays several aspects of the time-varying MGM estimated on the
fruit-fly data above. The top panel shows the number of edges (solid line) es-
timated across the time series of 67 measurements, which decreases across the
time series. This can be explained by the small number of measurements avail-
able at the end of the time series (see red dashes on the time arrow). To make this
explicit, we plot nσ=0.3,te , the used sample size at a given estimation point (see
Section 2.2.5). We see that extremely few data points are available in the end of
the time series, resulting in a very low sensitivity to detect edges. The lower panel
shows the undirected network at the 2nd, 6th and 13th estimation point out of
20 equally spaced estimation points across the whole time series (blue dashes).

Estimation Points

Time / Measurements across time

0

50

150

200

250

N
um

be
r o

f E
dg

es

0

25

50

67

Lo
ca

l N

Em
br

yo

La
rv

a

Pu
pa

Ad
ul

t

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●

● Number of Edges
Local n

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

Figure 2.9: Top panel: the number of estimated edges (solid line) and the local sample size nσ=0.3,te
(dashed line) at each estimation point. The red dashes indicate the available measurement on the
true time scale. The four colored areas indicate the four stages of the life cycle of the fruit fly. Bottom
panel: the undirected network plottet at three different estimation points 2, 6, 13 (with 20 estimation
points equally distributed across the 67 time points).

While we can interpret the MGM at each estimation in context of the local
nσ ,te , it is difficult to interpret changes over time, because the sensitivity of the
algorithm decreases towards the end of the time series (because less data is avail-
able) and hence it is unclear whether edges in the end of the time series are absent
in the true model or whether the sensitivity of the algorithmwas too low to detect
them. This highlights the importance of collecting data with a roughly constant
sampling frequency. We provide code to exactly reproduce Figure 2.9 from the
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package example data set fruitfly_data in the online supplementary materials
and on the Github repository https://github.com/jmbh/mgmDocumentation.

2.3.3.4 Sampling from time-varying Mixed Graphical Model

The function tvmgmsampler() allows to sample from a time-varying MGM. The
function input is identical to the input to mgmsampler(), the sampling function
of the stationary MGM described in Section 2.3.1.5, except that the arguments
thresholds, sds and interactions have an additional dimension for time. The
number of indices in this additional time dimension defines the length of the
time series. Thus, a separate model is specified for each time point in the time
series. For details see ?tvmgmsampler.

2.3.3.5 Bootstrap Sampling Distributions

Similarly to stationary MGMs, the function resample() can be used to ob-
tain bootstrapped sampling distributions for the parameters of the time-varying
MGM. The only difference is that we use a block-bootstrapping scheme to en-
sure that data points remain reasonably distributed across time. The number of
blocks can be specified with the argument blocks in the resample() function.
The larger the number of blocks, the more evenly distributed the bootstrap sam-
ples are across the time interval and the higher the similarity between bootstrap
samples. Since even distribution across time and low similarity across bootstrap
samples is desirable, the number of blocks controls this trade-off. For more de-
tails see the help file ?resample.

2.3.4 Time-varying mixed VAR model

We illustrate how to fit a time-varying mixed VAR model on a symptom time se-
ries with 51 variables measured on 1478 time points during 238 consecutive days
from an individual diagnosed with major depression (Wichers, Groot, Psychosys-
tems, Group, et al., 2016). The measured variables include questions regarding
mood, self-esteem, social interaction, physical activity, events and symptoms of
depression (see also legend in Figure 2.10). During the measured time interval, a
double-blind medication dose reduction was carried out, consisting of a baseline
period, the dose reduction, and two post assessment periods (See Figure 2.10, the
points on the time line correspond to the two dose reductions). For a detailed
description of this data set see Kossakowski, Groot, Haslbeck, Borsboom, and
Wichers (2017).

2.3.4.1 Estimating time-varying mixed VAR model

We provide the data, the type (continuous and categorical), and the levels for
each variable, all of which are contained in the data list symptom_data (automat-
ically loaded withmgm), similarly to specifying mvar(). Next, we provide the day
number with dayvar and the number of notification on each day with beepvar.
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Alternatively, one could manually compute a single vector that indicates the con-
secutiveness of measurements and provide it via the argument consec. We pro-
vide this information because the measurements in this data set are not consec-
utive, both because of the day-night break in which no measurements are taken
and because of randomly missing measurement points. If we did not provide this
information, the resulting parameters represent a mixture of effects across differ-
ent lags and are therefore not interpretable anymore. We explained this in detail
in Section 2.2.5. The function tvmvar() uses this information to fit the model
only on rows of the time series for which sufficient previous measurements are
available (1 for lag 1, 2 for lag 2, etc.).

In order to fit a time-varying MGM we need to choose an appropriate band-
width parameter σ , which determines how many observations close in time we
combine in order to estimate a local model (see Section 2.2.5). In Section 2.3.3,
we provided an explanation of how to use bwSelect() to select an appropriate σ
using a time-stratified cross validation scheme. Here we choose σ = 0.2.

We specify a lag of order 1 and via the argument estpoints we specify that
we would like to estimate the model at 20 equally spaced time intervals through-
out the time series. We specify the sequence of estimation points on the unit
interval [0,1], to which the provided time scale is normalized internally. Finally,
we set thresholding threshold = "none" and set a random seed to ensure repro-
ducibility.

set.seed(1)

fit_tvmvar <- tvmvar(data = symptom_data$data, # Takes around 15min

type = symptom_data$type,

level = symptom_data$level,

beepvar = symptom_data$data_time$beepno,

dayvar = symptom_data$data_time$dayno,

lags = 1,

estpoints = seq(0, 1, length = 20),

bandwidth = 0.2,

threshold = "none",

saveData = TRUE)

The output of tvmvar() is similar to the output of ?mvar described in
Section 2.3.2. The difference is that all entries have now an additional di-
mension for estimation points. For example, the entry of the parameter ar-
ray fit_tvmvar$wadj[4, 9, 2, 15] indicates the cross lagged effect of 9 on 4
over the second specified lag in lags at the 15th estimation point. The array
fit_tvmvar$signs has the same dimension and specifies the signs of the parame-
ters in fit_tvmvar$wadj, if defined. For a discussion of when a sign is defined for
an edge-parameter see Section 2.3.1. The object fit_tvmvar$intercepts con-
tains a list with time-varying thresholds/intercepts and fit_tvmvar$tvmodels
contains the models at each of the |E| estimation points.

We provided the day and notification number of each measurement and
tvmvar() used this information to only include measurements in the model for
which sufficient previous measurements are available. By executing the model
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object in the console, we get the number of measurements that were actually
used for estimation:

fit_tvmvar

> mgm fit-object

> Model class: Time-varying mixed Vector Autoregressive (tv-mVAR) model

> Lags: 1

> Rows included in VAR design matrix: 876 / 1476 ( 59.35 %)

> Nodes: 48

> Estimation points: 20

We see that for 876 of 1476 measurement points the previous measurement
(requirement of lag 1) is available and were therefore used for estimation. If
we included lags with higher order the number of usable measurements would
become smaller.

2.3.4.2 Making Predictions from time-varying mixed VAR model

In order to compute predictions from the mixed VAR model we
have to choose between the two options tvMethod = "weighted" and
tvMethod = "closestModel". For a discussion of these two methods see
Section 2.3.3 or the help file ?predict.mgm. Next to the fit object we provide the
data and information about the consecutiveness of measurements to predict():

# Compute Predictions

pred_tvmvar <- predict(object = fit_tvmvar,

data = symptom_data$data,

tvMethod = "weighted",

beepvar = symptom_data$data_time$beepno,

dayvar = symptom_data$data_time$dayno)

The output object pred_tvmvar is a list containing the function call
pred_tvmgm$call, the predicted values pred_tvmgm$predicted and
pred_tvmgm$probabilities (in the case of categorical variables) computed
by the method tvMethod = "weighted". pred_tvmgm$true contains the true
data matrix, which is useful in the case of VAR models, when not all rows
in the original data matrix are necessarily used to fit the VAR model (see
previous section). Finally, pred_tvmgm$errors is an array of local nodewise
errors, where the third dimension indexes estimation points. For instance,
pred_tvmgm$errors[, , 9] contains the nodewise errors for estimation point
9.

2.3.4.3 Visualizing time-varying mixed VAR model

Figure 2.10 displays some aspects of the time varying mixed VAR model esti-
mated in the previous section.
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Figure 2.10: Top row: network visualization of VAR(1) parameters at the estimation points 2, 6, and
16. Green edges indicate positive relationships, red edges indicate negative relationships and grey
edges indicate that no sign is defined. The color of the nodes corresponds to the group the variable
belongs to (see legend); second row: six autoregressive (e.g.,Worryingt−1→Worryingt ) or cross-lagged
effects (e.g., Selfliket−1 → Downt ) depicted as a function of time.

In the top row of Figure 2.10 we depict a network plot of the VAR(1) pa-
rameters at the estimation points 2, 6, and 16. Green edges indicate positive
relationships and red edges indicate negative relationships. Grey edges indi-
cate that no sign is defined, because the edge-weight is a function of several pa-
rameters, which is the case for interactions including categorical variables (see
Section 2.3.1). The width of edges is proportional to the absolute value of the
edge-weight. It is evident from the three network plots that the model changes
considerably over time which suggests that a stationary model is not appropriate
for these data. The second row depicts six autoregressive or cross-lagged effects
across the measured time interval. We see that parameters change considerably
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over time, for instance the autoregressive effect of Tired is strong at the begin-
ning of the time series and decreases almost monotonously until the end of the
measured time interval.

We provide code to exactly reproduce Figure 2.10 from the example data set
symptom_data in the online supplementary materials and on the Github reposi-
tory https://github.com/jmbh/mgmDocumentation.

2.3.4.4 Sampling from time-varying mixed VAR model

The function tvmvarsampler() allows to sample from a time-varying mVAR
model. The function input is identical to the input to mgmsampler(), the sam-
pling function of the stationary mVAR described in Section 2.3.2, except that the
arguments thresholds, sds and coefarray have an additional dimension for
time. The number of indices in this additional time dimension defines the length
of the time series. Thus, a separate model is specified for each time point in the
time series. For details see ?tvmvarsampler.

Similarly to time-varying MGMs, the function resample() allows to obtain
bootstrapped sampling distributions for the parameters of time-varying mixed
VAR models.

2.4 Concluding Comments

We presented the R-package mgmwhich allows to fit stationary and time-varying
Mixed Graphical Models and stationary and time-varying mixed Vector Autore-
gressive Models. In addition to the estimation functions, we provide methods to
compute predictions and nodewise errors and assess the stability of estimates via
resampling. Furthermore, flexible sampling functions for all model classes allow
the user to evaluate the performance of the estimation algorithms in a given situ-
ation via simulations. Finally, we provided fully reproducible code examples that
illustrate how to use the software package.

The mgm package is under continuous development. We aim to add func-
tions that allow one to inspect higher order interactions in an accessible way.
We plan to implement different ways to select tuning parameters (λ penalization
parameter, α elastic net parameter, σ bandwidth parameter), for instance with
stability-selection (Meinshausen & Bühlmann, 2010; Liu, Roeder, & Wasserman,
2010). And we will implement other estimators than ℓα-penalized regression,
which might be more appropriate in some situations. Finally, since all estimation
algorithms are based on sequential regressions, considerable performance gains
can be made by parallelizing the estimation algorithms.
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Chapter 3

Nodewise Predictability

Abstract

Network models are an increasingly popular way to abstract complex
psychological phenomena. While the study of the structure of network
models has led to many important insights, little attention is paid to how
well they predict observations. This is despite the fact that predictability is
crucial for judging the practical relevance of edges: for instance in clinical
practice, predictability of a symptom indicates whether a an intervention
on that symptom through the symptom network is promising. We close
this methodological gap by introducing nodewise predictability, which
quantifies how well a given node can be predicted by all other nodes it
is connected to in the network. In addition, we provide fully reproducible
code examples of how to compute and visualize nodewise predictability
both for cross-sectional and time-series data.

Haslbeck, J. M. B., & Waldorp, L. J. (2018). How well do network models predict observations?
On the importance of predictability in network models. Behavior Research Methods, 50(2), 853-861.
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3. Nodewise Predictability

3.1 Introduction

Network models graphically describe interactions between a potentially large
number variables: each variable is represented as a dot (node) and interactions
are represented by lines (edges) connecting the nodes (for an illustration see
panel (a) of Figure 3.1). These models have been a popular way to abstract com-
plex systems in a large variety of disciplines such as statistical mechanics (Albert
& Barabasi, 2002), biology (N. Friedman et al., 2000), neuroscience (Huang et al.,
2010) and are recently also applied in psychology (Costantini et al., 2015) and
psychiatry (Borsboom, 2017).

Particularly in psychology, network models are attractive because many psy-
chological phenomena are considered to depend on a large number of variables
and interactions between them. In such a situation, the graphical representa-
tion ensures that the model can be understood intuitively even if the number of
variables is large. In addition, network models open up the possibility to study
the network structure: for instance, one can use network summary measures like
density or centrality to describe the global structure of the network (M. Newman,
2010). These could allow inferences about the behavior of the whole network that
would not be possible from the edge parameters alone. One could also run gen-
erative models on the network, e.g. diffusion models of diseases to explain how
symptoms of psychological disorders activate each other (Shulgin, Stone, & Agur,
1998).

F

B

C

D

E

A

(a)

F

B

C

D

E

A

(b)

Figure 3.1: (a) Example network with six nodes. An edge between two nodes indicates a pairwise
interaction between those two nodes; (b) Illustration of predicting node A by all its neighboring
nodes (E and C).

Currently, most applications are in the field of clinical psychology (e.g., Fried,
Epskamp, Nesse, Tuerlinckx, & Borsboom, 2016; Fried et al., 2015; Beard et al.,
2016; McNally et al., 2015; Boschloo et al., 2015) but network models are also
applied in other subfields such as health psychology (Kossakowski et al., 2016)
and personality psychology (Cramer et al., 2012; Costantini et al., 2015). While
initially they were used to model cross-sectional data, there is increasing inter-
est in analyzing data obtained using the Experience Sampling Method (ESM),
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which consists of repeated measurements of the same person (e.g., Bringmann
et al., 2013; Pe et al., 2015). The focus in these papers is the global network
structure and how specific nodes are connected in the network, which provides
a new perspective on many psychological phenomena. For instance, Cramer and
colleagues (Cramer, Waldorp, Van Der Maas, & Borsboom, 2010) suggested an
alternative view on the concept of comorbidity by analyzing how symptoms of
different psychological disorders are connected to each other.

The key idea of this chapter is to analyze the predictability of nodes in the net-
work in addition to the network structure. By predictability of node A we mean
how well node A can be predicted by all its neighboring nodes in the network
(see Figure 1b). The predictability of nodes is important for several reasons:

1. The edges connected to node A should be interpreted taking into account
howmuch of the variance of A is explained by the nodes connected to A. For
instance, edges will be interpreted differently, depending on whether 0.5%
or 50% of the variance of A is explained. This issue is particularly important
for networks estimated on a large number of observations, where small edge
weights can be detected that are likely to be meaningless in practice.

2. In many areas of psychology the goal is to design effective interventions.
Using the predictability measure of node A, one can estimate howmuch we
can influence this node by intervening on nodes that are connected to it.

3. Predictability across nodes tells us whether a (part of a) network is largely
determined by itself through strong mutual interactions between nodes
(high predictability) or whether it is mostly determined by other factors
that are not included in the network (low predictability).

The problem addressed here is similar to the problem ofmodeling only the co-
variance matrix in Structural Equation Modeling (SEM) (Byrne, 2013): one might
find a model that perfectly fits the covariance matrix, but if the variance of vari-
ables is much larger than their covariance, the model might be of limited use in
practice.

Predictability in general cannot be inferred by the network structure but has
to be computed from the network model and the data. Unfortunately, currently
there is no easy-to-use tool available for researchers to compute predictability
and include it in network visualizations. In the present chapter, we address this
methodological gap by making the following contributions:

1. We present a method to compute easy to interpret nodewise predictability
measures for state-of-the-art network models (Section 3.2).

2. We provide a step-by-step description of how to use the R-packages mgm
and qgraph to compute and visualize nodewise predictability, both for
cross-sectional (Section 3.3) and time-series networks (Section 3.4). The
provided code is fully reproducible, which means that the reader can run
the code and reproduce all figures while reading. The data in our applica-
tions are from two published studies and will be downloaded automatically
with the provided code.
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3.2 Methods

In order to determine the predictability of a given node A, we need to know
which nodes are connected to A in the network model. Therefore the first step
is to estimate a network model, which we describe in Section 3.2.1. In a second
step, we use the network model to predict the given node A by the nodes that
are connected to it (its neighbors). In Section 3.2.2, we describe in detail how to
compute these predictions. Finally, we quantify how close these predictions are
to the actual values of A. The closer the predictions are to the actual values, the
higher the predictability of A. A description of predictability measures for both
continuous and categorical variables is given in Section 3.2.3. In Section 3.2.4
we discuss the relationship between the predictability and the parameters of the
networkmodel. Finally we describe the data (3.2.5) that is used in the application
examples in Sections 3.3 and 3.4.

3.2.1 Network Models

We model cross-sectional data using pairwise Mixed Graphical Models (MGMs)
(Yang, Baker, Ravikumar, Allen, & Liu, 2014b; Haslbeck &Waldorp, 2015), which
generalize well-known exponential family distributions such as the multivariate
Gaussian distribution or the Isingmodel (Wainwright & Jordan, 2008). This is the
model used in all papers mentioned in the introduction. MGMs are estimated
via ℓ1-regularized (LASSO) neighborhood regression as implemented in the R-
package mgm by the authors (Haslbeck & Waldorp, 2020). In this approach, one
estimates the neighborhood of each node and combines all neighborhoods to ob-
tain the complete graph (network) (Meinshausen & Bühlmann, 2006). The neigh-
borhood of a node is the set of nodes that is connected to that node. For example,
in Figure 1(a), the neighborhood of node A consists of the nodes E and C. The
ℓ1-regularization ensures that spurious edge-parameters are put to exactly zero,
which makes the network model easier to interpret. The parameter that controls
the strength of the regularization is selected via 10-fold cross validation.

To model time-series data we use the Vector Autoregressive (VAR) model,
which is a popular model for multivariate time series in many disciplines (see
e.g. Hamilton, 1994; Pfaff, 2008a). The VAR model is different from the MGM
in that associations are now defined between time-lagged variables. Specifically,
in its simplest form with a time-lag of order one, in this model all variables Xt−1

at time t − 1 are regressed on each of the variables Xt
i at time t, where i indexes

different variables. Note that this also includes the variable Xs itself at an earlier
time point: that is, one predicts Xt

s at time t by itself and all other variables at
time t − 1. For the analyses in this chapter we use the implementation of mixed
VAR models in the R-package mgm (Haslbeck & Waldorp, 2020).

3.2.2 Making Predictions

We are interested in howwell a node can be predicted by all adjacent nodes in the
network. This means that we would like to compute the mean of the conditional
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distribution of the node at hand given all its neighbors. To provide understand-
ing of what this means exactly, we show how to compute predictability for the
node A in Figure 3.1 (b), for (1) the case of A being a continuous-Gaussian vari-
able and (2) the case of A being binary.

We begin with (1): the conditional mean of A given its neighbors C and E,
which is given by

P(A = x|C,E) = 1
√
2πσ

exp

{

−
(x −µ)2

2σ2

}

, (3.1)

where the mean µ = β0 + βCC + βEE is a linear combination of the two neigh-
bors C and E. This conditional distribution is obtained from the multivariate
exponential family distribution of the MGM, for details see Yang et al. (2014b);
Haslbeck and Waldorp (2015). This prediction problem corresponds to the fa-
miliar linear regression problem with Gaussian noise. Now, how to make predic-
tions? Let’s say the intercept is β0 = 0.25 and βC = 0.1,βE = −0.5. Then, if the
ith case in the sample is Ci = 2,Ei = 1, then for the ith sample of A we predict
Ai = 0.25 + 0.1× 2− 0.5× 1 = −0.05. A measure of predictability should evaluate
how close this is the actual observation for node Ai .

In example (2), where A is categorical, we compute a predicted probability for
each category using a multinomial distribution

P(A = k|C,E) =
exp{µk}

∑K
l=1 exp{µk}

, (3.2)

where k indicates the category, K is the number of categories and µk = β0k+βCkC+
βEkE. Now let’s assume A is binary (K = 2) and we have β01 = 0,βC1 = 0.5,βE1 = 1
and β02 = 0,βC2 = −0.5,βE2 = −1 and if for the ith cases we have Ci = 1 and Ei = 1.
When filling in the numbers in equation (3.2) we get P(A = 1|C,E) ≈ 0.95 and
P(A = 2|C,E) ≈ 0.05, and predict category k = 1 for the ith sample of A, because
0.95 > 1

2 . Of course, all probabilities have to add up to 1, so we have 1 − P(A =
1|C,E) = P(F = 2|C,E). This direct approach of modeling the probabilities of
categories is possible due to the regularization used in estimation (see e.g. Hastie
et al., 2015), otherwise this model would not be identified. Note that predicting
A by all its neighbors is the same as predicting A by all nodes in the network.
This is because all nodes that are not in the neighborhood of A have a zero weight
associated to them in the regression equation on A (3.1 or 3.2) and can hence be
dropped.

In the case of other exponential family distributions, such as Poisson or Expo-
nential, one similarly uses the univariate conditional distribution to make pre-
dictions (Yang et al., 2014b). Importantly, the joint distribution of the MGM can
be represented as a factorization of p conditional distributions and hence our
method to compute predictions is based on a proper representation of the joint
distribution. Indeed, this factorization is used when estimating the MGM in the
neighborhood regression approach (see Section 3.2.1).
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3.2.3 Quantifying Predictability

After computing predictions, we would like to know how close these are to the
observed values in the data. Because we are interested in how well a given node
can be predicted by all other nodes in the network, we need to remove any effects
of the intercept (continuous variables) and the marginal (categorical variables).
The marginal indicates the probabilities of categories, when ignoring all other
variables. For example, the marginal of a binary variable is described by relative
frequency of observing category 1, e.g. P(X = 1) = 0.7.

3.2.3.1 Predictability in Continuous Variables

For continuous data, we choose the proportion of explained variance as pre-
dictability measure as it is well-known in the literature and easy to interpret:

R2
A = 1− var(Â−A)

var(A)
,

where var(X) is the variance of X, Â is a vector of predictions for A as described
in Section 3.2.2, and A is the vector of observed values in the data. In order to
remove any influences of the intercepts, all variables are centered to mean zero.
Hence, all intercepts will be zero and cannot affect to the predictability measure.
Thus, we can interpret R2 as follows: a value of 0 means that a node cannot be
predicted at all by its neighboring nodes in the network, whereas a value of 1
means that a node can be perfectly predicted by its neighboring nodes.

3.2.3.2 Predictability in Categorical Variables

For categorical variables it is slightly more difficult to get a measure with the
same interpretation as the R2 for continuous variables, because there is no way
to center categorical variables. The following example shows that it is, however,
important to somehow take the marginal into account: let’s say we have 100 ob-
servations of a binary variable A and observe ten 1s and 90 1s. This means that
the marginal probabilities of A are p0 = 0.1 and p1 = 0.9. Now, if all other nodes
contribute nothing to predicting whether there is a 0 or 1 present in case Ai , one
can just predict a 1 for all cases and get a proportion of correct classification (or
accuracy, see below) of 90%. For our purpose of determining how well a node
can be predicted by all other nodes, this is clearly misleading, because actually
nothing is predicted by all other nodes. We therefore compute a normalized ac-
curacy that removes the accuracy that is achieved by the trivial prediction using
marginal of the variable (p1 = 0.9) alone:

LetA = 1
n

∑n
i=1 I(yi = ŷi ) be the proportion of correct predictions, the accuracy,

and let p0,p1, . . .pm be the marginal probabilities of the categories, where I is
the indicator function for the event Fi = F̂i . In the binary case these are p0 and
p1 = 1− p0. We then define normalized accuracy as

Anorm =
A−max{p0,p1, . . . ,pm}
1−max{p0,p1, . . . ,pm}

.
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Hence, Anorm indicates how much the node at hand can be predicted by all
other nodes in the network, beyond what is trivially predicted by the marginal
distribution. Anorm = 0 means that none of the other nodes adds anything to the
marginal in predicting the node at hand, while Anorm = 1 means that all other
nodes perfectly predict the node at hand (together with the marginal).

Let’s return to the above example: in contrast to the high accuracy of A = 0.9,
the normalized accuracyAnorm is zero, indicating that the node at hand cannot be
predicted by other nodes in the network. However, notice that both A and Anorm
are important for interpretation. For instance if we have a marginal of p1 = .9
in a binary variable, then it is less impressive if all other predictors account for
80% of the remaining accuracy that can be achieved (.98 instead of .9) than in a
situation where p1 = .5, where accounting 80% of the remaining accuracy would
mean an improvement from .5 to .9. We therefore visualize both A and Anorm for
the binary variable in Figure 3.2.

3.2.4 Predictability and Model Parameters

Given the above definition of measures of predictability, it is evident that there
is a close relationship between the parameters of the network model and pre-
dictability: if a node is not connected to any other node then the explained vari-
ance/normalized accuracy of this node has to be 0. Also, the more edges are con-
nected to a node, the higher predictability tends to be. There is a strong linear
relationship between predictability and edge parameters for Gaussian Graphical
Models (GGM), where the edge parameters (partial correlation) are restricted to
[−1,1]. This linear relationship is much weaker for models including categorical
variables, where the model parameters are only constrained to be finite.

This implies that also centrality measures (like degree centrality), which are
a function of edge parameters, are strongly correlated with predictability for
GGMs, but much less for MGMs (e.g., Haslbeck & Fried, 2017). However, note
that even if a given centrality measure would correlate perfectly with predictabil-
ity, it would not be a substitute, because it would only allow us to order nodes by
predictability but would not tell us the predictability of any node. Hence, while
centrality measures are related to predictability, they are not a good proxy for
predictability.

3.2.5 Application to Datasets

We illustrate how to compute and visualize nodewise predictability for network
models for both cross-sectional and time-series data. We use a cross-sectional
dataset from (Fried et al., 2015) (N = 515) with 11 variables on the relationship
on bereavement and depressive symptoms. In order to illustrate predictability
for the VARmodel, we use a dataset consisting of up to 10 daily measurements of
nine variables related to mood over a long period of time (N = 1478) of a single
individual (Wichers et al., 2016). A detailed description of the time-series data
can be found in (Kossakowski et al., 2017).
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3.3 Predictability in Cross-Sectional Networks

Here we show how to obtain the proposed predictability measures using themgm
package. We will provide the code below so all steps can be reproduced exactly
by the reader. First, we download the preprocessed data. The raw data and the
preprocessing file can be found in the same Github repository.

library(httr)

url <- "https://github.com/jmbh/NetworkPrediction/raw/master/Fried2015_nD.RDS"

GET(url, write_disk("Fried2015.RDS", overwrite=TRUE))

datalist <- readRDS("Fried2015.RDS")

Next, we fit a MGM using the mgm-package:

library(mgm)

fit_obj <- mgm(data = datalist$data,

type = c(rep("g", 11), "c"),

lev = c(rep(1, 11), 2),

ruleReg = "OR",

k = 2, binarySign = TRUE)

In addition to the data, one has to specify the type and the number of cate-
gories for each variable. The remaining arguments are tuning parameters and are
selected such that the original results in Fried et al. (2015) are reproduced. For
the general usage of the mgm package see Haslbeck and Waldorp (2020). After
estimating the model, which is saved in fit_obj, we use the predict() func-
tion to compute the predictability for each node in the network. For categorical
variables, we specify the predictability measures accuracy / correct classification
("CC") and normalized accuracy ("nCC"). In addition, we request the accuracy of
the intercept (marginal) model ("CCmarg"), which we will use to visualize the ac-
curacy decomposition in intercept model and the contribution of other variables.
For continuous variables, we specify explained variance ("R2") as predictability
measure.

p_obj <- predict(fit_obj, datalist$data,

errorCat = c("CC", "nCC", "CCmarg"),

errorCon = c("R2"))

To display both the accuracy of the intercept model and the normalized accu-
racy (contribution by other variables), we require a list for the ring-segments and
a list for the corresponding colors:

error_list <- list() # List for ring-segments

for(i in 1:11) error_list[[i]] <- pred_obj$errors[i, 2]

error_list[[12]] <- c(p_obj$errors[12,5],

p_obj$errors[12,3]-p_obj$errors[12,5])

color_list <- list() # List for Colors

for(i in 1:11) color_list[[i]] <- "#90B4D4"

color_list[[12]] <- c("#ffa500", "#ff4300")
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We now provide the weighted adjacency matrix and the list containing the
nodewise predictability measures to qgraph, resulting in Figure 3.2:

pieColor <- c(rep("#90B4D4", 11), rep("#EB9446", 1)) # pick nice color

library(qgraph)

qgraph(fit_obj$pairwise$wadj, pie = error_list,

layout="spring", labels = datalist$names,

pieColor = color_list, label.cex = .9,

edge.color = fit_obj$pairwise$edgecolor,

curveAll = TRUE, curveDefault = .6,

cut = 0, labels = datalist$names)

depr

effort

sleep

happy

lonely

unfr

enjoy

appet

sad

dislike

getgo loss

Figure 3.2: Mixed Graphical Model estimated on the data from Fried et al. (2015). Green edges indi-
cate positive relationships, red edges indicate negative relationships. The blue ring shows proportion
of explained variance (for continuous nodes). For the binary variable ”loss”, the orange part of the
ring indicates the accuracy of the intercept model. The red part of the ring is the additional accuracy
achieved by all remaining variables. The sum of both is the accuracy of the full model A. The nor-
malized accuracy Anorm is the ratio between the additional accuracy due to the remaining variables
(red) and one minus the accuracy of the intercept model (white + red).

The color of the pie chart behind the node can be controlled using the
pieColor argument. The remaining arguments are not necessary but improve the
visualization. The argument layout="spring" specifies that the placement of
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the nodes in the visualization is determined by the force-directed Fruchtermann-
Reingold algorithm (Fruchterman & Reingold, 1991), which places nodes such
that all edges have more or less equal length and that there are as few edge cross-
ings as possible. Note that there is no analytic relation between the distance of
nodes and model parameters, however, the algorithm tends to group strongly
connected nodes together in order to avoid edge crossings. Green and red edges
indicate positive and negative relationships, respectively, and the width of the
edges is proportional to the absolute value of the edge-weight. For a detailed
description of the qgraph-package see Epskamp et al. (2012).

This code returns a network that is very similar to the one in the original
paper of Fried et al. (2015). Note that the network is not identical as we did
not dichotomize ordinal variables but treat them as continuous instead. For the
11 continuous variables, the percentage of explained variance is indicated by the
blue part in the pie chart. For the single binary variable, the normalized accuracy
is indicated by the orange part in the pie chart.

As expected, nodes with more/stronger edges can be predicted better (e.g.
lonely) than nodes with fewer/weaker edges (e.g. unfriendly unfr). While this
trivially follows from the construction of the predictability measure (see Section
3.2.4), this does not mean that one can use the network structure to infer the pre-
dictability of a node: by looking at the network visualization in Figure 3.2, we
are quite certain that predictability of lonely is higher than of unfr. However, we
do not know how high predictability is in either of the two nodes (0.55 and 0.13,
respectively), which is highly relevant for interpretation and practical applica-
tions.

Because we used the same data for estimating the network and calculating
the predictability (or error) measures, we estimated the within sample prediction
error. In order to see how well the model generalizes, one has to calculate the
out of sample prediction error. This can be done by splitting the data in two parts
(or using a cross validation scheme) and providing one part to the estimation
function, and the other part to the prediction function.

3.4 Predictability in Temporal Networks

Note that the interpretation of predictability is slightly different for VAR net-
works because we predict each node by all nodes at the previous time point,
which also includes the predicted node itself. We begin again by downloading
the example dataset:

url<-"https://github.com/jmbh/NetworkPrediction/raw/master/Wicherts2016_Mood.RDS"

GET(url, write_disk("Wicherts2016_Mood.RDS", overwrite=TRUE))

datalist_ts <- readRDS("Wicherts2016_Mood.RDS")

Next, we provide the data and the type and number of categories of variables
as input. In addition, we specify that we would like to estimate a VAR model
with lag 1
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var_obj <- mvar(data = datalist_ts$data_mood,

type = rep("g", 9), lev = rep(1, 9), lags = 1,

consec = datalist_ts$data_time$beepno)

and compute the predictability of each node similarly to above:

p_obj2 <- predict(var_obj, datalist_ts$data_mood,

errorCon = c("R2"))

Finally, we visualize the network structure together with the nodewise pre-
dictability measures, which results in Figure 3.3. Because we have only one pre-
dictability measure for each node, we can provide them in a vector via the pie
argument:

qgraph(var_obj$wadj[ , , 1],

edge.color = var_obj$edgecolor[ , , 1],

labels = datalist_ts$labels,

pie = p_obj2$errors[ , 2],

pieColor = rep(’#90B4D4’, 9),

curveAll = TRUE, curveDefault = .6, cut = 0)

Relaxed
Irritated

Satisfied

Enthusiastic

Suspicious

Cheerful
Restless

Agitated

Worry

Figure 3.3: Visualization of VAR network of the mood variables in Wicherts et al. (2016). Green
edges indicate positive relationships, red edges indicate negative relationships. The self-loops refer
to the effect of the variable on itself over one time lag. The blue rings around the nodes indicate the
proportion of explained variance in that node by all other nodes.
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We see two groups of self-engaging mood variables in Figure 3.3: (a) the posi-
tive mood variables Cheerful, Enthusiastic and Satisfied and (b) the negative mood
variables Irritated, Agitated, Restless and Suspicious. Worrying seems to be influ-
enced by both groups and Relaxed is rather disconnected and has a weak negative
influence on group (b). These insights can be used to judge the effectiveness
of possible interventions on these mood variables: for instance, if the goal is to
change variables in group (a), one can do this by intervening on other variables
in (a). In addition, we would expect an effect on Worrying when intervening on
groups (a) and (b), however, the reverse is not true. Relaxed has a small influence
on group (b), however, is itself not influenced by any of the variables in the net-
work. Hence, in order to intervene on Relaxed, one has to search for additional
variables influencing Relaxed that were not yet taken into account in the present
network.

3.5 Discussion

In this chapter we introduced a method and easy-to-use software to compute
nodewise predictability in network models and to visualize it in a typical net-
work visualization. Predictability is an important concept that complements the
network structure when interpreting network models: it gives a measure of how
well a node can be predicted by all its neighboring nodes and is hence crucial in-
formation whenever one needs to judge the practical significance of a set of edges.
An example is clinical practice, where it is important to make predictions of the
outcome of interventions on an interpretable scale to optimally select treatments.

The analyses shown in the present chapter can be extended to networks that
are changing over time, which allows to investigate how edge-parameters and
nodewise predictability change over time. The time-varying parameters can then
be modeled by a second model, which could include variables from inside and
outside the time-varying network. With this modeling approach, it would be
possible to gather evidence for the event of one (or several) variables causing the
system to transition into another state, which is possibly reflected by a different
network structure and nodewise predictability. For details about how to fit time-
varying network models and time-varying predictability measures see Haslbeck
and Waldorp (2020); Haslbeck et al. (2020).

Several limitations for the interpretation of nodewise predictability require
discussion. First, we can only interpret the predictability of a node as the influ-
ence of its neighboring nodes if the network model is an appropriate model. A
network model can be inappropriate for a number of reasons:

1. Two ormore variables in the networkmodels are caused by a variable that is
not included in the network. This results in estimated edges between these
variables in the network, even though they are only related via an unob-
served common cause. In this situation we cannot interpret predictability
as influence by neighboring nodes, because we know that the nodes are not
influencing each other but are caused by a third variable outside the net-
work.
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2. In some situations variables are logically dependent, for instance age and
age of diagnosis are always related, because one cannot be diagnosed before
being born. Clearly, in this situation the relation between the variables must
be interpreted differently.

3. If two or more variables measure the same underlying construct (e.g., five
questions about sad mood). In this situation the edge-parameters indicate
how similar the variables are and do not reflect mutual causal influence.
Consequently, we would not interpret the predictability of these variables
as the degree of determination by neighboring nodes. See Fried and Cramer
(2016) for a discussion of this problem. Solutions could be to determine
the topological overlap (Zhang, Horvath, et al., 2005) and choose only one
variable in case of large overlap or to incorporate measurement models into
the network model (Epskamp, Rhemtulla, & Borsboom, 2016).

Second, if the data was generated by a Directed Acyclic Graph (DAG) (e.g.,
Peters, Janzing, & Schölkopf, 2017) and if a collider structure is present in this
DAG (i.e., A causes B and C), then the network models discussed in this chapter
imply a small spurious edge between variables B and C. This spurious edge will
lead to a small over-estimation of the predictability measures of nodes B and C.

Third, if we interpret the predictability of node A as a measure of howmuch it
is determined by its neighbors, we assumed that the causal influence of the edges
goes from the neighbors to node A. However, the direction of edges is gener-
ally unknown when the model is estimated from cross-sectional data. Estimates
about the direction of edges can be made using causal search algorithms like the
PC algorithm (Spirtes et al., 2000) or by using substantive theory. This means
that the predictability of a node is an upper bound and in practice often lower,
because the causal effect points away from the node at hand or is bi-directional.
While this is a major limitation, note that this is true for any model estimated on
cross-sectional data. In models with lagged predictors like the VAR model, this
problem does not exist, because we use the direction of time to determine the
causal direction.

Finally, it is important to stress that a topic we did not cover here is to inves-
tigate how well A can be predicted by node B. This is different from the problem
studied in this chapter, where the interest was in how well node A can be pre-
dicted by all other nodes. Unfortunately, there are no straightforward solutions for
the former problem in the situation of correlated predictors, which is always the
case in practice. For linear regression, there is work on decomposing explained
variance (Grömping, 2012) and in themachine learning literature there are meth-
ods to determine variable importance by replacing predictor variables by noise
and investigate the drop in predictability (e.g., Breiman et al., 2001). It would
certainly be interesting to try to extend these ideas to the general class of network
models.

To sum up, if the network model is an appropriate model for the phenomena
at hand, predictability is an easy to interpret measure of how strongly a given
node is influenced by its neighbors in the network. This allows researchers to
judge the practical relevance of edges connected to a node A on an absolute scale
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(0 = no influence on A at all, 1 = A fully determined) and thereby helps to predict
intervention outcomes. In addition, the predictability of (parts of) the network is
interesting on a theoretical level, as it indicates how self-determined the network
is.
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Chapter 4

Nodewise Predictability:

Reanalysis

Abstract

Network analyses on psychopathological data focus on the network
structure and its derivatives such as node centrality. One conclusion one
can draw from centrality measures is that the node with the highest cen-
trality is likely to be the node that is determined most by its neighboring
nodes. However, centrality is a relative measure: knowing that a node is
highly central gives no information about the extent to which it is deter-
mined by its neighbors. In this chapter, we provide an absolute measure of
determination (or controllability) of a node its predictability. We introduce
predictability, estimate the predictability of all nodes in 18 prior empirical
network papers on psychopathology, and statistically relate it to centrality.
We investigate predictability in 25 datasets from 18 published papers that
studied psychopathology (several mood and anxiety disorders, substance
abuse, psychosis, autism, and transdiagnostic data) from a network per-
spective. Predictability was unrelated to sample size, moderately high in
most symptom networks, and differed considerable both within and be-
tween datasets. Predictability was higher in community than clinical sam-
ples, highest for mood and anxiety disorders, and lowest for psychosis.
We argue that predictability is an important additional characterization of
symptom networks because it gives an absolute measure of the controlla-
bility of each node. It also allows to judge how self-determined a symptom
network is, and may help to inform intervention strategies.

This chapter has been adapted from: Haslbeck, J. M. B., & Fried, E. I. (2017). How predictable
are symptoms in psychopathological networks? A reanalysis of 18 published datasets. Psychological
Medicine, 47(16), 2767-2776.
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4.1 Introduction

In the network approach to psychopathology, mental disorders are understood
as networks of interacting symptoms, and by studying the structure of these net-
works one hopes to find explanatory models for the etiology of disorders and
effective interventions (Cramer et al., 2010; Borsboom & Cramer, 2013). This
perspective has provided new and intuitively appealing explanations of psy-
chopathological phenomena, and has been applied to many different mental dis-
orders, has been described in detail elsewhere (for a review, see Fried et al., 2017).

While the analysis of the structure of symptom networks has led to important
insights, in this chapter we focus on another important characteristic that has not
been considered so far in the literature: predictability, i.e. the degree to which a
given node can be predicted by all other nodes in the network. Predictability is
an important measure because it tells us on an interpretable absolute scale (e.g.
40% variance explained) how much a node is determined by other nodes in the
network. Thereby, predictability gives us an idea of how clinically relevant con-
nections (also called ‘edges’) are: if node A is connected to many other nodes,
but these together explain only 1% of its variance, then these edges are not in-
teresting in many situations. As an example, take the problem of selecting an
intervention on insomnia in two hypothetical symptom networks in Figure 4.1:

Guilt
Agitation

Insomnia

Worthless

Concentration

Worrying

(a)

Guilt
Agitation

Insomnia

Worthless

Concentration

Worrying

(b)

Figure 4.1: Two example symptom networks with different predictability measures. Left: insomnia is
strongly determined by the nodes connected to it (80% variance explained as indicated by the grey pie
chart). Right: insomnia is weakly determined by the nodes connected to it (11% variance explained).

In the network of the first patient (a), 80% of the variance of insomnia is ex-
plained by the two nodes that are connected to it, worrying and concentration
problems, as indicated by the grey area in the ring around the node; it is plau-
sible that an intervention on worrying may have a considerable impact on the
sleep problems. In contrast, in the network of the second patient (b), insomnia
is only weakly determined by its neighbors (11% variance explained), and an ef-

68



4.2. Methods

ficient intervention on insomnia via worrying seems questionable. Instead, we
should search for relevant variables outside the current network that have an ef-
fect on insomnia, or may want to consider intervening directly on insomnia, e.g.
by administering sleeping pills. Predictability thus helps us to estimate the po-
tential success of clinical interventions on a symptom via the symptom network
and could thereby guide treatment selection.

Clearly, predictability depends on the number and the strength of the edges
a node is connected to: a node with many strong edges tends to have a higher
predictability than a node with few weak edges. For instance, we can expect
from the edge weights in Figure 4.1 that insomnia is better predicted in network
(a) than (b). However, we do not know how well we can predict insomnia on
an absolute scale in either case. In contrast, predictability does provide such
an absolute scale and thereby goes beyond the network structure and centrality
indices reported in prior literature.

In summary, this work makes the following contributions:

1. We introduce predictability as an additional measure to characterize net-
work models, and discuss the relationship between predictability and
derivatives of the network structure, such as centrality measures.

2. We provide a reproducible example (including R syntax) of how to estimate
and interpret predictability in psychopathological networks using the data
on bereavement and depression from Fried et al. (2015), serving as a tuto-
rial for researchers.

3. We provide a first glimpse into predictability in the field of psychopathol-
ogy by re-analyzing 25 datasets from 18 published papers that used net-
work analyses. We discuss theoretical implications of the variability of
predictability within and between networks and the relation between pre-
dictability and the network structure. In addition, we make our syntax, all
datasets we are allowed to share (4/25), as well as the correlation matri-
ces and adjacency matrices (i.e. the network structures) of all 25 datasets
available.

4.2 Methods

4.2.1 Literature Review & Data

We aimed to identify all papers in the field of psychopathology that applied net-
work analysis techniques to cross-sectional data. To this end, we combined all
papers known to the authors with the results of a literature review: we searched
the databases PsycNET, ISI Web of Science and GoogleScholar using the names
of the most prevalent mental disorders in combination with “Network” as key-
words. This literature review yielded 23 papers published between 2010 and
2016. We excluded one paper as the used data was identical to the data used in
another paper. We contacted the authors of the remaining 22 papers and were

69



4. Nodewise Predictability: Reanalysis

able to obtain the data of the 12 papers described in Table 4.1. For further de-
tails about the literature review see Appendix A.1. The authors in the respective
papers estimated Gaussian Graphical Models (GGMs) using the qgraph package
(Epskamp et al., 2012), Ising models using the IsingFit package (van Borkulo,
Borsboom, et al., 2014), and the parameters for relative importance networks us-
ing the relaimpo package (Grömping, 2012; Grömping et al., 2006) (see column
“original analysis” in Table 4.1). Datasets predominantly feature symptoms or
clinical problems as nodes, although some contain contextual variables (e.g., age
of diagnosis in Deserno et al. (2017)).

4.2.2 Statistical Methods

We fitted GGMs to the continuous datasets and Ising models to the binary
datasets. These models are considered the state-of-the-art and were also used
in most of the papers included in our re-analysis (see Table 1). For an accessible
tutorial on how to estimate GGMs, see Epskamp and Fried (2018). We computed
predictability measures using the R-package mgm (Haslbeck & Waldorp, 2020).
Note that in the case of GGMs, our estimation procedure was slightly different
than the one in the original analyses as we did not estimate polychoric correla-
tions before using the correlation matrix to estimate the graph structure using
the graphical lasso (e.g., Epskamp et al., 2012). We instead used the neighbor-
hood regression approach implemented in the mgm package, which is necessary
to compute predictability. In the case of the Ising Model, there are no differences
since the node-wise estimation of mgm is identical to the node-wise estimation in
IsingFit (van Borkulo, Borsboom, et al., 2014). Note that the reported sample size
in Table 4.1 in some cases differs from the one reported in the original study. In
these cases, the authors deleted missing values pairwise to compute the sample
covariance matrix and reported the full sample size. With the neighborhood re-
gression approach, however, we have to delete missing values casewise, resulting
in a smaller number of observations.

As predictability measures we selected the proportion of explained variance
for (centered) continuous variables and a normalized accuracy measure for bi-
nary variables. The normalized accuracy measure quantifies how a node is deter-
mined by its neighboring nodes beyond the intercept model. This is important,
because for instance if a binary variable with 100 cases has 5 zeros and 95 ones,
then the intercept model (which predicts a one for each case) alone would already
lead to an accuracy of 95% without considering any other nodes. The normalized
predictability measure takes this into account and is zero when other variables
do not predict the node at hand beyond the intercept model; a more detailed
explanation of both proportion of explained variance and normalized accuracy
can be found in Haslbeck and Waldorp (2018). Both measures range from 0 to
1: 0 means that we cannot at all predict a node by other nodes in the network,
whereas 1 implies perfect prediction. In addition to predictability, we computed
the the following node centrality measures: weighted degree centrality, between-
ness centrality, closeness centrality and eigenvector centrality (M. E. Newman,
Barabási, & Watts, 2006).
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Paper Subfield Datatype p n Original Analysis
Anderson et al. (2015) Autism Continuous 14 477 Correlation
Armour et al. (2017) PTSD Continuous 27 221 GGM
Beard et al. (2016) Anxiety, Depression Continuous 17 1029 GGM
Borsboom and Cramer (2013) Anxiety, Depression Binary 18 9282 Ising model
Boschloo, van Borkulo, et al. (2016) General Binary 12 501 Ising model
Deserno et al. (2017) Autism Continuous 17 301 GGM
Fried et al. (2015) Bereavement Binary 12 515 Ising model
Fried, Epskamp, et al. (2016) Depression Continuous 28 3463 GGM
Goekoop and Goekoop (2014) General Continuous 63 192 Correlation
Hoorelbeke et al. (2016) Depression Continuous 6 69 GGM
Koenders et al. (2015) Bipolar Continuous 16 126 Correlation
McNally et al. (2015) PTSD Binary 17 362 Ising model
Rhemtulla et al. (2016) Substance Abuse Binary 11 2405 Ising model
Robinaugh et al. (2014) Bereavement Continuous 19 1532 GGM
Robinaugh et al. (2016) Complicated Gried Continuous 13 195 GGM
Ruzzano et al. (2015) Autism Binary 17 213 Correlation
Santos Jr et al. (2017) Depression Continuous 20 503 GGM
Wigman et al. (2016) Psychosis Binary 56 283 GGM

Table 4.1: Characteristics of Papers included in the Data Reanalysis. GGM stands for Gaussian
Graphical Model. Datatype refers to the variables after preprocessing as performed in the original pa-
pers; this means that some datasets were actually on an ordinal scale with more than two categories,
but were binarized for the analysis by the original papers (we did the same)

Rhemtulla et al. (2016) split their data in six subgroups (abuse of cannabis,
sedatives, stimulants, cocaine, opioids or hallucinogens) and Koenders et al.
(2015) used three subgroups (mildly depressed, predominantly depressed, cy-
cling). We followed the analyses in their papers and estimated six and three sep-
arate networks (see also Figure 4.3), respectively. Overall, this led to 25 dataset-
s/networks from 18 papers.

4.3 Results

4.3.1 Application example: node-wise predictability in data of
Fried et al. (2015)

Before discussing the results of the re-analysis of all papers, we provide an ex-
ample how to estimate and interpret predictability using the depression and be-
reavement dataset analyzed in Fried et al. (2015). In their paper, they re-analyzed
the Changing Lives of Older Couples study (Carr, Nesse, & Wortman, 2005). The
network in Figure 4.2 represents the cross-sectional network structure of 10 di-
chotomous depression symptoms (measured via the 10-item CES-D) and 1 condi-
tion node (loss), which codes whether participants belong to the bereaved group
who had lost their spouse prior to this follow-up time point, or the still-married
control group. Several results of the predictability analysis are noteworthy.

First, the average predictability across all nodes is 0.34, indicating that 34%
of the variance of a node that is not predicted by the intercept model is explained
by its neighbors. Compared to the predictability results of all other datasets (see
below), this is an average level of predictability.
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depr

effort

sleep

happy

lonely

unfr

enjoy

appet

sad

dislike

getgo

loss

Figure 4.2: Ising model estimated on the data of Fried et al. 2015. Green edges indicate positive
relationships, red edges indicate negative relationships. The blue ring around each node represents
its predictability. loss, spousal loss; depr, depressed; effort, everything is an effort; sleep, restless
sleep; unfr, people are unfriendly; enjoy, enjoy life; appet, poor appetite; dislike, people dislike me;
getgo, cannot get going.

Second, appet (poor appetite) and unfr (people are unfriendly) stand out with
the lowest predictability estimates in the network (.06 and 0), implying that all
other nodes together share nearly no variance with these items. The low pre-
dictability of poor appetite is consistent with psychometric studies of depression
scales, showing that weight and appetite items often form a distinct cluster of
nodes (or factor) and show only weak partial correlations with other depression
symptoms (e.g., Fried et al., 2016). In contrast, the low predictability unfr is
likely explained by the low variance in this variable: 94% of the cases report the
symptom to be absent. This leads to a situation in which the model including the
neighbors gives the same predictions as the intercept model. Because the nor-
malized predictability measure used here captures the predictability beyond the
intercept model, we get a measure of zero (for details see Haslbeck & Waldorp,
2018).

Finally, negative emotions such as depr, sad, and lonely have comparably high
predictability values (.48, .63 and .59). This could either be due to the fact that
these items measure different concepts that strongly influence each other, or be-
cause they capture similar constructs (e.g., depr and sad may tap into the same
emotion).
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4.3.2 Re-analysis of 25 datasets

We now turn to the re-analysis of 25 datasets from 18 published papers in the
psychopathology network literature. Figure 4.3 shows box plots describing the
distributions of predictability measures for all included datasets. In general, we
see that symptoms in networks can often be predicted reasonably well by all other
symptoms in the network.
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Figure 4.3: Summaries of the distribution of predictability measures for datasets with continuous
(left) and binary (right) data. The x axis shows the predictability measure (ranging from 0 to 1): ‘nor-
malized accuracy’ for binary variables and ‘proportion of explained variance’ for continuous vari-
ables. The box plot whiskers show 1.5 times the Interquantile Range (IQR)

A few things stand out. First, node-predictability varies considerably within
datasets, as can be seen by the spread in the distributions of predictability mea-
sures that is summarized in the boxplots: the bold vertical bar corresponds to the
median, the box indicates the 25% and 75% quantiles, and the whiskers show 1.5
times the interquantile range (IQR).

Second, there is a considerable amount of node-predictability variation across
datasets. This difference is not trivially explained by differences in sample size
between datasets: the Spearman correlation between mean predictability and
sample size is only 0.07. In addition, we explored whether predictability differ-
ences across samples were related to severity of psychopathology. To that end, we
classified all datasets into an ordinal variable indicating severity (0 = all healthy,
1 = mixed, 2 = clinical populations). The weighted (by number of observations)
Spearman correlation between this severity variable and predictability was -0.82,
providing evidence that networks of clinical samples may have a lower mean pre-
dictability than networks of healthy samples. This is consistent with findings
of lower dimensionality of symptom networks of healthier patients (Fried, van
Borkulo, et al., 2016). However, these results are at best preliminary because
a clear classification of datasets into predominantly healthy, sick, or mixed was
difficult, and because we analyzed a small number of often highly heterogeneous
datasets. Like many other results presented in this chapter, these analyses serve
as example of what research questions can be exploredwith predictability results,
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rather than strong evidence.
Third, it stands out that the six substance abuse subsamples of Rhemtulla et

al. (2016) differ considerably in their mean predictability. A possible explana-
tion for these differences is that the symptoms are consequences of a common
cause—the consumed substance—and that the influence of this common cause
is differentially strong for different substances (e.g., stronger for opioids than
cannabis). A similar argument could be made for the datasets on PTSD: symp-
toms may co-vary (and hence predict each other well) because they are all caused
by the traumatic experience. This contrasts with the network approach to psy-
chopathology, and we will turn to this issue of (unobserved) common causes in
the discussion.

Fourth, we observed a very high mean predictability for the depression net-
work of Borsboom and Cramer (2013). This finding is at least in part explained
by the fact that the authors replaced skipped questions with zeros (Borsboom
et al., 2017). This procedure leads to spurious relationships, because variables
become related via their shared missing value pattern that is determined by the
structure of the skip questions (0s are imputed for multiple variables at the same
time, inducing correlations among these items). We also observed a very high
predictability of 2 items in the paper on autism by Deserno et al. (2017) (see the
outliers in Figure 4.3)—age and age of diagnosis. These have to be strongly cor-
related, because the former is an upper bound for the latter, i.e. a person cannot
get a diagnosis at the age of 15 if the person is 9 years old.

Finally, the question arises whether predictability differs consistently across
different types of datasets, for instance, across mental disorders. Differences in
predictability acrossmental disorders can be interpreted as evidence for how self-
determined a symptom network is: if predictability is high, the symptoms are
largely determined by each other, if predictability is low, symptoms are largely
influenced by additional variables (e.g. biological, environmental or additional
symptoms) that are not included in the network. Figure 4.3 suggests that symp-
toms of depression and anxiety disorders might be more self-determined (aver-
age predictability = 0.38), while the symptoms of psychosis might be determined
to a larger degree by other influences such as genes or environmental variables
(0.10). Other explanations for the pattern of findings could be that the mea-
surement error is larger for symptoms of psychosis, or that depression and anxi-
ety assess very similar problems multiple times, which increases their respective
predictability. Apart from comparing predictability across types of mental dis-
orders, we could also investigate whether the predictability is higher for female
vs male, or younger vs. older patients. While we do not have sufficient data to
answer these questions, Figure 4.3 provides numerous possibilities that should
be investigated in more focused future studies.

4.3.3 Relationship between Predictability and Edge Weights

It is clear that there has to be a close relationship between the predictability of a
node and the edge weights connected to that node: if a node is unconnected, its
predictability by other nodes has to be zero. And the more edges are connected
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to a node, the higher its predictability tends to be. We illustrate this relationship
using weighted degree centrality (the sum of absolute edge-weights connected to
a node), which had the highest mean correlation with predictability (0.79, 0.70,
0.36 and 0.27 for weighted degree centrality, eigenvalue centrality, closeness cen-
trality and betweenness centrality, respectively): in Figure 4.4, we plot weighted
degree against predictability, for all datasets shown in Figure 4.3.
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Figure 4.4: The relationship between weighted degree centrality (x axis) and predictability (y axis)
of each node in the datasets with continuous (left) and binary (right) data. The colors of the points
correspond to the colors used for different papers in Figure 4.3.

Each point corresponds to one node and its color indicates to which dataset
it belongs (see Figure 4.3). As expected, we observe a positive relationship be-
tween the centrality of a node and its predictability. This relationship is stronger
for continuous-Gaussian variables, because here the edge weights (which are par-
tial correlations in this special case) are always between -1 and 1, whereas edge
weights in the Ising model for binary data are only constrained to be finite. How-
ever, the relationship is far from perfect: for example, for continuous-Gaussian
variables, a centrality measure of 0.25 can coincide with a predictability mea-
sure between 0.1 and 0.5 and for binary variables, a centrality measure of 3 can
coincide with a predictability measure between 0.1 and 0.8.

It is crucial to note, however, that centrality gives us only relative information
about predictability: even if both measures would be correlated perfectly, we
could only order all nodes by predictability, but we would not know the absolute
value of the predictability of any node. This is similar to the correlation of the
actual height of children in a classroom with their position in an ordering by
height: these two metrics may be considerably related, but we can never know
how tall Alice is from knowing she is the 5th tallest girl in class.

It would be possible to fit a regression model to predict predictability from
degree centrality. However, both the mean predictability (see Figure 4.3) and
the strength of the linear relationship between both measures (see Figure 4.4)
differ greatly between data sets, which implies that a predictability inferred from
centrality would be highly inaccurate. Given that predictability can be easily
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computed with freely available software (Haslbeck & Waldorp, 2020), we see no
reason to accept these inaccuracies.

4.4 Discussion

We showed that predictability is an important characteristic of network models
in addition to their structure. Furthermore, we provided a first overview of how
high predictability typically is in the field of psychopathology and suggest that
analyzing predictability across disorders and groups of individuals may generate
new theoretical insights.

Predictability was moderately high in most datasets, indicating that a consid-
erable amount of the variation of nodes can be explained by other nodes in the
network. We found that the average predictability was higher for certain disor-
ders (e.g. depression, anxiety, PTSD) than for others (e.g. psychosis). This sug-
gests that the symptom network of the former disorders is more self-determined,
while nodes for the latter disorders are more strongly influenced by other factors
that are not included in the network, such as additional symptoms or biological
and environmental variables. We thus see predictability as a first attempt to-
wards characterizing the controllability of the symptom network: if predictability
is high, we can control symptoms via their neighboring symptom in the network
– if it is low, we have to search for additional variables or intervene on the symp-
tom directly. If our findings of low predictability for specific disorders or groups
of patients can be replicated in future studies, this calls for research on important
variables beyond common symptoms.

In clinical practice, predictability enables us to judge the efficacy of a planned
treatment: if the neighbors of symptom A explain 90% of its variance, an inter-
vention on symptom A via its neighbors seems viable. In contrast, if they explain
only 5% of the variance, one would rather search for additional variables outside
the network or try to intervene on the node directly (instead of trying to control
the node via neighboring nodes).

It is important to note several limitations of the present chapter. First, we only
analyzed a small and heterogeneous sample of datasets (all available datasets we
could obtain for this project), and a much larger database of studies is required to
draw any strong conclusions when comparing, for instance, the predictability of
different types of mental disorders. Due to the increasing popularity of network
models in psychopathology, we look forward to having more data available in the
next few years to tackle these and related questions.

Second, the present chapter explored how well node A is predicted by all
its neighbors. Another interesting question is how well node A is predicted by
one particular neighboring node B. Unfortunately, there is no straightforward
solution to this problem in the case of correlated predictors, which is nearly al-
ways the case in psychopathology data. For continuous-Gaussian data, solutions
to this problem have been proposed that are based on variance decomposition
(Grömping, 2012) , and there are more general methods in the machine learn-
ing literature based on replacing a predictor by noise and investigating the drop
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in predictability (e.g., Breiman et al., 2001) . While the performance of these
methods is not always clear and requires further work, it would be important to
extend and apply these approaches to the network models used in psychopathol-
ogy research. From this limitation follows that we cannot quantify the ‘predictive
power’ or ‘degree of determination’ of a given node on its neighboring nodes on
an absolute scale (the causal opposite of predictability or controllability). How-
ever, if predictability is low for all nodes in the network, we do know that no
node exerts a strong influence on any other node in the network.

Third, when calculating predictability of node A, we assume that all edges are
directed towards that node A, i.e. that all adjacent nodes are causing A, but not
vice versa. However, we do not know whether this is true because the direction of
edges is generally unknown in cross-sectional data (Pearl, 1991). It follows that
the predictability of a node is an upper bound for how much it is determined
by the nodes it is connected to. While it is important to keep this limitation
in mind, it may not matter that much in many situations: for instance, if the
predictability of symptom A is too low to render an intervention via neighbor-
ing symptoms viable, it does not matter that the true predictability is probably
lower. The predictability estimate can be improved by any method that reliably
replaces our assumption about the direction of edges by estimates about the di-
rection. In cross-sectional data, the direction of edges can under a set of stringent
assumptions be inferred via causal search algorithms such as the PC-algorithm
(Spirtes et al., 2000)). In time-series data with lagged effects, this problem is cir-
cumvented by using the direction of time: if A and B are related and A precedes
B in time, then we say that A Granger-causes B and we have a directed edge from
A to B (Granger, 1969). The predictability measure we propose here can easily be
applied to these time-series models as well (Haslbeck & Waldorp, 2020).

Fourth, the interpretation of predictability of a node as the degree to which
it is determined by the node it is connected to is only appropriate if the net-
work model is an appropriate model for the phenomenon at hand. A network
model can be problematic or even inappropriate for a number of reasons (see
also Haslbeck & Waldorp, 2020; Fried & Cramer, 2017). In the presence of two
or more variables that measure the same underlying construct (e.g. several ques-
tions about sad mood) we would not interpret connections between those vari-
ables as genuine causal relations and hence we also would not interpret pre-
dictability as a measure of determination. Another problem is a situation in
which variables are deterministically related such as the variables age and age
of diagnosis in the paper of Deserno et al. (2017). Clearly in this case, we would
not think of a process in which age is causing age of diagnosis or vice versa.
Moreover, it is problematic if two or more nodes have a common cause that is
not included in the network, because this leads to a spurious edge between these
nodes. In all three cases, interpreting edges as genuine cause-effect relationships
is incorrect, and the interpretation of predictability as degree of determination by
neighboring nodes does not apply. This could be to case for substance abuse and
PTSD where substance use and traumatic experiences may be common causes
for (parts of) the symptom network (Fried & Cramer, 2017). While this is a major
limitation, it applies to any other statistical model as well: for instance, interpret-
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ing Cronbach’s alpha or factor loadings in factor models makes only sense in case
the factor model is the appropriate model for the data.

In sum, predictability is a useful additional characterization of psychopatho-
logical networks, may have direct implications for clinical practice, and pro-
vides a method to investigate theoretical questions such as the degree of self-
determination of a network.
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Chapter 5

Moderated Network Models

Abstract

Pairwise network models such as the Gaussian Graphical Model (GGM)
are a powerful and intuitive way to analyze dependencies in multivariate
data. A key assumption of the GGM is that each pairwise interaction is
independent of the values of all other variables. However, in psychologi-
cal research this is often implausible. In this chapter, we extend the GGM
by allowing each pairwise interaction between two variables to be mod-
erated by (a subset of) all other variables in the model, and thereby intro-
duce aModerated Network Model (MNM). We show how to construct MNMs
and propose an ℓ1-regularized nodewise regression approach to estimate
it. We provide performance results in a simulation study and show that
MNMs outperform the split-sample based methods Network Comparison
Test (NCT) and Fused Graphical Lasso (FGL) in detecting moderation ef-
fects. Finally, we provide a fully reproducible tutorial on how to estimate
MNMs with the R-package mgm and discuss possible issues with model
misspecification.

This chapter has been adapted from: Haslbeck, J. M. B., Borsboom, D. & Waldorp, L. J. (2019).
Moderated Network Models. Multivariate Behavioral Research.
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5. Moderated Network Models

5.1 Introduction

Network (or graphical) models are a powerful and intuitive tool to analyze de-
pendencies in multivariate data and their popularity has recently surged in psy-
chological research (e.g., personality psychology (Costantini et al., 2015), so-
cial psychology (Dalege et al., 2016), and clinical psychology (Borsboom, 2017;
Haslbeck & Fried, 2017; Eidhof et al., 2017; Kendler, Aggen, Flint, Borsboom,
& Fried, 2018)). The network models used in this literature model interactions
between pairs of variables, for instance mood and physical activity. Examples for
such pairwise network models are the Gaussian Graphical Model (GGM) implied
by the multivariate Gaussian distribution (Lauritzen, 1996), the Ising model for
binary-valued data (Wainwright et al., 2008) and the Mixed Graphical Model
(MGM) for data frommixed distributions (S. Chen, Witten, & Shojaie, 2014; Yang
et al., 2014a).

A key assumption of these pairwise network models is that there are no mod-
eration effects, which means that the interaction between any pair of variables
is independent of the values of all other variables in the network. As an exam-
ple, let’s say we have the variable fatigued in the model. Then this assumption
says that the (possibly positive) interaction between mood and physical activity
does not depend on how fatigued an individual is. This is an empirical question
and so seems worth checking. Because psychology studies highly contextualized
and multicausal phenomena, the occurrence of such moderation effects is often
plausible. Psychological researchers have known this for a long time, which is
reflected by the widespread use of moderation in the analysis of psychological
data: either explicitly as moderation analysis in the regression framework (e.g.,
Fairchild & McQuillin, 2010; MacKinnon & Luecken, 2008) or as interaction
terms, for instance, in a 2-way Analysis of Variance (e.g., Tabachnick & Fidell,
2007).

Moderation is important in network models for the same reason it is impor-
tant in these well-known analyses: missing a moderator means getting an average
model (over the values of the missed moderator) that is potentially inappropriate
for individuals with any value on the moderator variable. This averaging can lead
to detecting no effect at all, even if there is a strong moderation effect (see Sec-
tion 5.2.1). In addition, differences in the distributions of the missed moderator
variable across studies offer one explanation for contradicting evidence across
studies (Collaboration et al., 2015; Collaboration, 2012): for example, study A
might have studied mostly well-rested individuals and found a positive relation-
ship betweenmood and physical activity, while study B might have studied mostly
fatigued individuals and found a negative relationship. Moderators are also im-
portant in clinical practice: for example, (Borsboom, 2017) suggested that one
can intervene on a symptom network of a mental disorder both on the node- and
the network level. Since moderators determine the relationships between vari-
ables, they are the natural tool to find possible interventions on the network.
More generally, moderators are useful in applications if a medication/treatment
only works for a certain group of patients (defined by the moderator variable)
and does not work (or even has adverse effects) for other groups of patients. Thus,
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studying moderator variables is a key requirement for moving towards personal-
ized medicine and therapy (e.g., Hamburg & Collins, 2010).

One way to check for moderation effects in network models is to split the data
set in two parts along the moderator variable, estimate a network model on each
of them, and compare them. A more sophisticated version of this procedure is
the Network Comparison Test (NCT) (van Borkulo et al., 2016) which performs
a permutation test on differences across data sets for each edge-parameter; an-
other procedure is the Fused Graphical Lasso (FGL), which jointly estimates two
Gaussian Graphical Models (GGMs) on two data sets, with an additional penalty
on differences between the two GGMs (Danaher, Wang, & Witten, 2014). These
data-split approaches have two major draw-backs: first, the type of moderation
effect they approximate is a step function, with the step placed at the value of
the moderator variable at which the data set was split. Such a step function is
implausible in many situations. In the above example, this would mean that the
relationship betweenmood and physical activity remains (possibly positively) con-
stant while increasing the value of fatigue. And at some specific value of fatigue,
the relationship “jumps” to another (possibly negative) constant. Second, split-
ting the data set in half means losing information, because now both network
models have to be estimated on half the data compared to the original data set.
This leads to greatly reduced sensitivity to detect both pairwise interactions and
moderation effects.

We propose a more direct approach to detecting moderation. Specifically, we
extend pairwise network models by a specified set of moderator variables to ob-
tain a Moderated Network Model (MNM). This circumvents the above mentioned
problems of the split-data approaches by fitting a linear moderation effect and
making full use of the data. We do this by using the standard moderation defi-
nition from multiple linear regression and extend the multivariate Gaussian dis-
tribution with moderation effects. In a similar way one could also extend Ising
models and more generally, MGMs, with moderation effects. Here, we take the
first step by extending the popular GGM with moderation effects. Specifically,
we make the following contributions:

1. We introduce moderation for network models by extending pairwise net-
work models with moderation effects similar to moderation effects in the
linear regression framework

2. We suggest a new visualization of moderated network models, based on
factor graphs

3. In a simulation study, we investigate the performance of the moderated
network model in estimating moderation effects and compare it to the per-
formance of the sampled-split based methods NCT and FGL

4. A fully reproducible tutorial demonstrates how to fit and visualize Moder-
ated Network Models using the R-package mgm

In Section 5.2, we briefly review moderation in linear regression (5.2.1) and
then show how to construct a Moderated Network Model (5.2.3). In the last two
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subsections of Section 5.2 we show how to visualize (5.2.4) and estimate MNMs
(5.2.5) using an ℓ1-regularized nodewise regression approach. In Section 6.3 we
report the performance of our estimation approach in estimating MNMs, and
compare its performance in recovering moderation effects to the split-sample
methods NCT and FGL. Finally, in Section 5.4, we provide a fully reproducible
tutorial (6.4) on how to estimate MNMs with the R-package mgm and discuss
possible issues with model misspecification (5.4.2).

5.2 Moderated Network Models

In this section, we first review basic concepts of moderation in multiple regres-
sion, which are useful for introducing MNMs (Section 5.2.1). Using these con-
cepts, in Section 5.2.3 we construct theMNMby extending themultivariate Gaus-
sian with 3-way interactions. In Section 5.2.4, we show how to visualize MNMs
using factor graphs and in Section 5.2.5, we present an ℓ1-regularized nodewise
regression approach to estimate MNMs.

5.2.1 Moderation in Linear Regression

Here we review basic concepts of moderation in multiple regression, which we
use to construct MNMs. Readers who are familiar with these concepts can skip
directly to Section 5.2.3.

5.2.1.1 Moderation and Interactions in Linear Regression

By moderation we mean that the effect of the predictor B on response variable
A is a linear function of a third variable C. The simplest possible example to
introduce moderation is a linear regression model in which A is a function of B
and C

A = βBB+ βCC + ε, (5.1)

where βB is the effect of B on A, βC is the effect of C on A, and ε has a Gaussian
distribution with mean µ = 0 and variance σ2 (e.g., Aiken, West, & Reno, 1991).
In this model, both effects βB,βC are constants and therefore not a function of
any variable. This changes when adding the product interaction term BC with
parameter ωBC as a predictor to the model

A = βBB+ βCC +ωBCBC + ε (5.2)

= (βB +ωBCC)B+ βCC + ε (5.3)

= βBB+ (βC +ωBCB)C + ε. (5.4)

Rewriting the model with interaction the term in (5.2) into (5.3) shows that the
effect of B on A is now equal to

(βB +ωBCC), (5.5)
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and therefore a linear function of C, with constant term βB and slope ωBC . If the
effect of B onA depends linearly on C, we say that this effect is linearly moderated
by C. Because we can rewrite (5.2) also into (5.4), ωBC can also be interpreted as
the moderation effect of C on the effect of B on A. The above rewriting shows
that the interaction effect and moderation effects are different interpretations of
the same parameter ωBC . Throughout the chapter we adopt the moderation per-
spective, because it is more intuitive and the parameter is easier to interpret.

�−2 −1 0 1 2 C

(a) No effect

P(C)

Effect
B → A

�−2 −1 0 1 2 C

(b) Unmoderated effect

P(C)

Effect
B → A

�−2 −1 0 1 2 C

(c) Fully moderated effect

P(C)

Effect
B → A

�−2 −1 0 1 2 C

(d) Partially moderated effect

P(C)

Effect
B → A

Figure 5.1: The linear function in equation (5.5) determining the main effect of B on A for the four
possible zero/nonzero combinations of the parameters βB and βBC , displayed both as equation and
visually (dashed red line). The dotted blue line in panels (c) and (d) indicate the effect one would
obtain when fitting a regression model without moderation/interaction term.

To develop some intuition for moderation, let’s consider an example in which
βB = 0.2 and ωBC = 0.1. Then, if C = 0 the effect of B on A is equal to 0.2+0.1 ·0 =
0.2. And if C = 1, it is equal to 0.2 + 0.1 · 1 = 0.3. In this example the effect of B
on A is equal to the constant βB plus C times ωBC . Figure 5.1 shows four possible
cases for effects of B on A.

The x-axis shows the values of the moderator C. The y-axis shows both the
effect of B on A as a function of C and the density of C. In panel (a) of Figure
5.1 there is no effect of B on A; in panel (b) there is a constant effect from B on
A that is independent of C; in panel (c) there is an effect of B on A that is fully
determined (moderated) by C; and in panel (d) the effect of B on A is equal to a
constant plus a dependency on C. The dotted blue lines in panel (c) and (d) of
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Figure 5.1 indicate the parameter one would obtain for the effect of B on A with
a simple regression model without moderation/interaction term. We make two
observations: first, the constant parameters (dotted blue line) are a poor descrip-
tion of the true moderated parameters (dashed red line). Second, (c) shows that
if βB = 0 and |ωBC | > 0, one would entirely miss the presence of an effect when
estimating a regression model without moderation.

In the procedure to estimate MNM described in Section 5.2.5 we mean-center
all variables before estimation. This is required to ensure that all parameters in
the MNM have a meaningful interpretation. We discuss this issue in Appendix
B.1, or refer the reader to (Afshartous & Preston, 2011).

5.2.1.2 Regression vs. Network Semantics

In the following section we wed the world of regression with the world of net-
works. Unfortunately, depending on whether one adopts the regression (condi-
tional distribution) or network (joint distribution) perspective, the same param-
eter is referred to differently. To avoid confusion, we make these differences ex-
plicit: In Section 5.2.1, we discussed moderation from the regression (conditional
distribution) perspective. In regression, βB is typically referred to as main effect,
or conditional main effect in the presence of moderation, and ωBC is referred
to as the moderation/interaction effect. From the perspective of the network
model, βB is referred to as a pairwise interaction (because it is associated with
the product AB in the joint distribution), and ωBC is referred to as a 3-way inter-
action (because it is associated with the product ABC in the joint distribution) or
a moderation effect (because it moderates the pairwise interaction AB). The two
different perspectives will become apparent in the following section, where we
show both the joint distribution of the MNM and the conditional distributions.
In the remainder of the chapter we adopt the network perspective, except when
otherwise stated.

5.2.2 Gaussian Distribution and Gaussian Graphical Model

A graphical (or network model) is a statistical model for which an undirected
graph/network encodes the conditional dependence structure between random
variables (Lauritzen, 1996). A popular network model for continuous data is the
multivariate Gaussian distribution. We introduce this distribution here, because
we will use it as a basis for constructing Moderated Network Models for contin-
uous data in the following section:

P(X = x) =
1

√

(2π)p |Σ|
exp

{

−1
2
(x −µ)⊤Σ−1(x −µ)

}

, (5.6)

where x is p-dimensional vector of random variables, µ is a p-dimensional vector
of means, Σ is a p×p variance-covariance matrix, and |Σ| denotes the determinant
of Σ.

In the case of the multivariate Gaussian distribution, it is easy to obtain
the graph/network that encodes the conditional dependence structure between
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random variables: if an entry in the inverse variance-covariance matrix Σ−1 is
nonzero, the two corresponding variables are conditionally dependent (present
edge in the network); if the entry is zero, the two corresponding variables are
conditionally independent (no edge in the network). The resulting conditional
(in-)dependence network is also called Gaussian Graphical Model (GGM). For
an accessible introduction to GGMs, their relation to regression and Structural
Equation Modeling (SEM), and how to estimate them, we refer the reader to
(Epskamp, Waldorp, et al., 2018).

5.2.3 Construction of Moderated Network Model

The central goal of this chapter is to construct a joint distribution over p con-
tinuous variables which allows that each pairwise interaction between variables
Xi and Xj is a linear function of all other variables. Another way of saying this
is that each pairwise interaction between Xi and Xj is linearly moderated by all
other variables. Here we construct such a joint distribution by addingmoderation
effects to the multivariate Gaussian distribution, which models (unmoderated)
linear pairwise interactions between variables.

The density of the multivariate Gaussian distribution (5.6) shown in the pre-
vious section can be rewritten in its exponential family form as

P(X) = exp
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, (5.7)

where X ∈ Rp , V = {1,2, . . . ,p} is the index set for the p variables, α is a p-vector
of intercepts, β is a p × p matrix of

(p
2

)

partial correlations1, σ2
i is the variance of

Xi , andΦ(α,β) is the log normalizing constant which ensures that the probability
distribution integrates to 1.

To see how the common form of the Gaussian density in equation (5.6) can be
written as equation (5.7) above, momentarily assume that all means are equal to
zero µ = 0. Then the term in the exponential simplifies to −1

2x
⊤Σ−1x. This inner

product is the same as the sum
∑

i,j∈V
i!j

βi,j
Xi
σi

Xj

σj
in (5.7), except that we summed

over each (i, j) combination twice, which is why we multiply with 1
2 . With means

unequal zero, one can expand the expression in the exponential and gets a similar
expression for the interactions, plus an expression for the intercepts α, which are
a function of the means and the interaction parameters.

Now, to extend the Gaussian distribution in (5.7) with all possible moderation
effects, we add all 3-way interactions to the model:

1(n
k
)

= n!
k!(n−k)! , the k

th binomial coefficient of the polynomial expansion of (1 + x)n.

85



5. Moderated Network Models

P(X) = exp
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where ω is a p × p × p array of
(p
3

)

3-way interactions.
How many parameters are introduced by adding 3-way interactions? For

p = 10 variables, adding all 3-way interactions means that the number of in-
teraction parameters increases from

(10
2

)

= 45 to
(10
2

)

+
(10
3

)

= 45 + 120 = 165.
Instead of adding all moderation effects (3-way interactions) one can also add
single moderation effects, or all moderation effects of a subset of variables. For
instance, adding all moderation effects of M ∈ {1,2, . . . ,p} moderators would re-

sult in
∑M

m=1
∑min{0,p−1−m}

i=1 i additional moderation parameters.
The distribution of Xs conditioned on all remaining variables X\s is given by

P(Xs |X\s) = exp
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where Φ∗(α,β,ω) is the log-normalizing constant with respect to the conditional
distribution P(Xs |X\s), and we use lower case letters xi to indicate fixed values
opposed to random variables Xi . We now show that (5.9) is a conditional Gaus-
sian distribution. To make the presentation more clear, we set σs = 1 without loss
of generality. If we let

µs = αs +
∑

i∈V
i!s

βi,sxi +
∑

i,j∈V
i!j!s

ωi,j,sxixj (5.10)

and

Φ
∗(α,β,ω) =

µs
2
− log( 1

√
2π

)

we can rewrite (5.9) into
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P(Xs |X\s) =
1
√
2π

exp
{

µsXs −
Xs

2
−
µs
2

}

(5.11)

=
1
√
2π

exp

{

(Xs −µs)2

2

}

,

which is the well-known form of the conditional Gaussian distribution. In Ap-
pendix B.2, we provide more intuition for the MNM by deriving the joint distri-
bution in (5.8) from the conditionals as in (5.11) for the case of p = 3 variables.

Since each P(Xs |X\s) is only parameterized by µs and regression estimates
E[Xs |X\s] = µs, the above derivation shows that a Moderated Network Model can
be estimated with a series of p regressions that include the appropriate modera-
tion (3-way interaction) effects. Specifically, the equation for the mean µs of the
conditional distribution Xs in (5.10) has the same form as the moderated linear
regression in equation (5.2) in Section 5.2.1, except that it includes more terms.
In Section 5.2.5, we show how to estimate the p conditional Gaussian distribu-
tions using ℓ1-regularized regression and how to combine the resulting estimates
to the MNM joint distribution.

The mean (5.10) of the conditional distribution P(Xs |X\s) compared to the
joint distribution P(X) in (5.8) explains the different terminology for interaction
effects, depending on whether one adopts the regression- or graph perspective
(see Section 5.2.1.2). For example, in the joint distribution, the second term indi-
cates pairwise interactions because two variables are multiplied. In the mean of
the conditional, which is estimated in a linear regression model, the second term
only contains a single variable and is therefore referred to as a main effect.

Above we discussed that one could include all 3-way interactions or only a
subset of 3-way interactions in the model. However, we always include all pair-
wise interactions. While all pairwise interactions are included in the model, this
does not mean that the parameter associated with a pairwise interaction has to be
nonzero if the 3-way interaction moderating that pairwise interaction is nonzero.
In other words, in the joint MNM (5.8) the presence of a 3-way interaction does
not imply the presence of a pairwise interaction. This is in contrast to log-linear
models for categorical data, in which a k-order interaction always implies a (k−1)-
order interaction

The number of parameters of the MNM is much larger than in pairwise net-
work models, especially when p is large. If the proportion of nonzero 3-way
interaction parameters in the true model would be the same as the proportion
of nonzero pairwise interaction in the true model, we needed a lot more ob-
servations n to estimate the MNM with similar accuracy as the pairwise model.
However, it is highly implausible that every variable in the model moderates ev-
ery pairwise interaction. Instead, we would expect that some variables moderate
some pairwise interactions. Under the assumption that a large fraction of mod-
eration effects are equal to zero in the true model, it is possible to estimate the
model accurately with a reasonable sample size n. In Section 5.2.5, we present an
ℓ1-regularized regression procedure to estimate MNMs, which uses this assump-

87



5. Moderated Network Models

tion. In Section 6.3, we explicitly show in a simulation study how much data is
needed to recover a MNM in realistic situations.

We showed that the MNM joint distribution in (5.8) can be factorized into p
conditional Gaussian distributions. However, the MNM joint distribution is not a
multivariate Gaussian distribution, because we added 3-way interactions (mod-
eration effects). For the multivariate Gaussian distribution, all parameters have
to be finite and the covariance matrix has to be positive-definite to ensure that
the distribution is normalizable. For the MNM proposed here, the constraints
to ensure normalizability are unknown. For the class of MGMs, which general-
ize MNMs, (Yang et al., 2014a) proposes that for normalizability it is sufficient
that the sum of unnormalized terms in the exponential in (5.8) are smaller than
zero, which will ensure that the unnormalized mass in (5.8) converges to zero.
Thus, in order to ensure normalizability, one needs to constrain the parameter
space such that this inequality is satisfied. The required constraint is most likely
a constraint on the 3-way interactions, and is a function of all other parameters
and the variances of the conditional Gaussian distributions. However, working
out these constraints is beyond the scope of this chapter, in which we focus on
introducing the idea of moderation in network models to an applied audience. In
the present chapter, we therefore estimate MNMs with an unconstrained node-
wise algorithm. This means that we do not know whether the estimated param-
eters lead to a normalizable joint distribution. One consequence of having no
guarantee that the joint distribution is normalizable is that one cannot apply any
global goodness of fit analyses, for example, to select between models with dif-
ferent sets of included moderators. While this is a major limitation of the here
proposed MNM, one can perform model selection with out of sample prediction
error, which does not require a proper joint distribution.

5.2.4 Visualizing Moderated Network Models

Pairwise networkmodels are typically visualized in a network consisting of nodes
representing variables and undirected edges representing pairwise interactions.
In MNMs, we have additional moderation parameters and therefore need to find
a new visualization that allows to include those without giving up clarity. We
solve this problem with a factor graph visualization, in which each interaction
(pairwise or higher-order) is represented by a factor node (see e.g., Koller & Fried-
man, 2009). We first show how to represent a pairwise network model as a factor
graph and then demonstrate how to include moderation parameters in the factor
graph visualization.

Figure 5.2 (a) shows the typical network-visualization of a pairwise network
model with edges 1-2 and 2-3 indicating pairwise interactions between those two
pairs of variables. Panel (b) shows the visualization of the same network model as
a factor graph: now each pairwise interaction is represented by a square red fac-
tor node which connects to the nodes that are involved in the respective pairwise
interaction. In the present example the network model has two pairwise interac-
tions, each of which is now represented by a factor nodes. The label 2 indicates
that the interaction is pairwise.
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Figure 5.2: (a) The typical network-visualization of a network model with pairwise interactions be-
tween variables 1-2 and 2-3; (b) the network model in (a) visualized as a factor graph. Edges are now
represented by factor nodes (red square nodes) of order 2; edges now indicate which variables are
connected to which factor (c) the factor graph visualization of the previous network model with an
additional 3-way interaction (blue triangle node).

The factor graph visualization allows us to also include interactions involving
three variables (3-way interactions): in panel (c) we add the 3-way interaction
1-2-3 to the pairwise model and visualize it in a factor graph. Again we visualize
the two pairwise interactions 1-2 and 2-3 as separate factor nodes. Similarly, we
visualize the 3-way interaction as a factor node that connects to the three vari-
ables involved in the 3-way interaction. Again, the label 3 indicates that the in-
teraction is a 3-way interaction. We can interpret this 3-way interaction in terms
of moderation in three different ways: (i) the moderation effect of 3 on the pair-
wise interaction 1-2, (ii) the moderation effect of 1 on the pairwise interaction
2-3, and (iii) the moderation effect of 2 on the pairwise interaction 1-3. In Section
5.2.1 we called (i) and (ii) partiallymoderated because there is a pairwise interac-
tion independent of the value of the moderator variable. And we called (iii) fully
moderated, because the pairwise interaction is fully determined by the value of
the moderator variable.

In Figure 5.2 we did not display the value of the two pairwise and the 3-way
interaction. In a factor graph this information can either be displayed on the
factor nodes or on the edges connecting them to variables. Since researchers are
already familiar with displaying the weight of parameters as the width of edges,
we chose the latter option. We show such weighted factor graphs in empirical
data examples in Section 5.4.

5.2.5 Estimation via ℓ1-regularized Nodewise Regression

In this section we show how to estimate the p conditional distributions of the
MNMwith ℓ1-regularized nodewise regression and how to combine the estimates
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to the joint MNM. Our approach is similar to the nodewise regression approach
for estimating themultivariate Gaussian distribution (Meinshausen & Bühlmann,
2006), except that we estimate the conditionals of the MNM instead of the joint
Gaussian distribution.

5.2.5.1 Estimate Nodewise Regressions

To estimate the p regression models, we minimize the squared loss plus the ℓ1-
norm of the parameter vectors βs,· and ωs,·,· for each variable s ∈ V

argβs,·,ωs,·,·
min

⎧

⎪

⎪

⎨

⎪

⎪

⎩

n
∑

z=1

(Xz,s − µ̂z,s)2 +λs(||βs,·||1 + ||ωs,·,·||1)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (5.12)

where Xz,s is the value of variable s in row z of the data matrix, µ̂z,s is the pre-
dicted mean for row z (see equation 5.10), βs,· and ωs,·,· are vectors contain-
ing parameters associated with pairwise and 3-way interactions, respectively,
||βs ||1 + ||ωs ||1 =

∑

i∈V
i!s
|βs,i | +

∑

i,j∈V
i!j!s
|βs,i,j | is the sum of the ℓ1-norms of both pa-

rameter vectors, and λs is a tuning parameter that weights the ℓ1-norm relative
to the squared loss. Note that βs,· contains only the pairwise interactions involv-
ing variable s and has therefore less elements than β in the joint distribution.
Similarly, ωs,·,· contains only the 3-way interactions involving variable s and has
therefore less elements than ω in the joint distribution.

Prior to estimation we mean-center each variable and divide each variable by
its standard deviation. This ensures that the penalization of a given parameter
does not depend on the standard deviation of its associated (product of) vari-
ables and simplifies the model because all intercepts are equal to zero. In addi-
tion, recall that mean-centering of variables is necessary to obtain interpretable
parameter estimates (see Section B.1).

We chose ℓ1-regularized (LASSO) regression for three reasons: (1) the num-
ber of parameters can be large if p is large and many moderation effects are
included in the model (see Section 5.2.3), which leads to high variance on the
parameter estimates (overfitting). The ℓ1-regularization shrinks parameter esti-
mates towards zero and thereby mitigates this problem; (2) The ℓ1-penalty sets
small parameter estimates to zero, which simplifies the interpretation of the
model, especially when interpreted from a network/graph perspective; and (3)
ℓ1-penalization ensures that the model remains identifiable when the number
of parameters is larger than the number of observations. When estimating an
MNM with p = 20 variables and includes all moderation effects, each nodewise

regression has p − 1 +
(p−1

2

)

= 190 parameters, which means unregularized meth-
ods require n ≥ 190 observations. The ℓ1-penalization allows to estimate such a
model also with n < 190.

The main assumption underlying ℓ1-regularized regression is that most of the
parameters in the true model are equal to zero (also called sparsity assumption).
This seems a reasonable assumption for the MNM in psychological data, since we
would not expect that every variable moderates every pairwise interaction. For
an excellent discussion of ℓ1-regularized regression see (Hastie et al., 2015).
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In each of the p regressions, one has to select a tuning parameter λs which
controls the strength of the penalization. If λs = 0, the loss function in (5.12)
reduces to squared loss alone, which is the loss function of standard OLS regres-
sion. If λs is huge, all parameters are set to zero. To select an optimal λs, one
can use a cross-validation scheme or an information criterion. Foygel and Drton
(2010) showed that the Extended Bayesian Information Criterion (EBIC), a mod-
ification of the BIC Schwarz et al. (1978) that puts an extra penalty on nonzero
parameters, performs well in estimating sparse parameter vectors.

5.2.5.2 Combine Estimates to Joint Moderated Network Model

The above estimation procedure leads to two estimates for every pairwise inter-
action, and three estimates for every 3-way interaction (moderation effect). For
example, we obtain an estimate for the pairwise interaction between Xi and Xj
from the regression of Xi on Xj , and another estimate from the regression of Xj
on Xi . Similarly, we obtain three estimates for any given moderation effect from
three regressions: the nodewise estimation procedure returns three estimates for
each moderation parameter: (1) Xq moderating the predictor Xs in the regression
on Xj , (2) Xs moderating the predictor Xj in the regression on Xq, and (3) Xq
moderating the predictor Xj in the regression on Xs. In order to arrive at a sin-
gle estimate to specify the joint MNM, we either take the arithmetic mean across
the two/three values (OR-rule), or take the arithmetic mean across the two/three
values if all three values are nonzero and otherwise set the aggregated parame-
ter to zero (AND-rule). The AND-rule is more conservative than the OR-rule. It
is even more conservative for 3-way interactions, because now three parameter
estimates have to be nonzero to set the aggregate parameter to nonzero. For a
more elaborate description of the nodewise regression procedure see (Haslbeck
& Waldorp, 2020).

In the following section, we investigate the performance of the ℓ1-regularized
nodewise regression approach in estimating MNMs, and compare its perfor-
mance in detecting moderation effects to the split sample methods NCT and FGL.

5.3 Simulation Study

The goal of this simulation is (a) to investigate the performance of ℓ1-regularized
nodewise regression in estimating moderated network models and (b) compare
its performance to detect moderation effects to the split-sample methods Net-
work Comparison Test (NCT) and Fused Graphical Lasso (FGL). Note that since
the NCT and FGL can only provide a piecewise constant approximation of the
linear moderation effects in MNMs, we expect that they will perform worse than
MNMs. However, because themethods differ in several additional characteristics,
and to determine the exact performance differences, we map out the differences
of NCT, FGL and MNMs. We first describe the data generation (5.3.1) and the
estimation procedures (5.3.2). Finally, we report performance results (5.3.3) and
discuss them in Section 5.3.4.
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5. Moderated Network Models

5.3.1 Data generation

We sample observations from 100 Moderated Network Models that are specified
by the following procedure: we begin with an empty graph with p = 12 nodes
and randomly add six edges. Of these six edges, two are unmoderated pairwise
interactions (e.g. edge 2-4 in Figure 5.3; or panel (b) in Figure 5.1), two are fully
moderated pairwise interactions (e.g., 6-7 in Figure 5.3; or panel (d) in Figure
5.1), and two are partially moderated pairwise interactions (e.g. edge 12-1 in
Figure 5.3; or panel (d) in Figure 5.1). We enforce that each node has at most 2
edges by resampling the graph until this constraint is met. We do this because
sampling from highly connected nodes leads to many rejections in the rejection
sampler, which makes sampling unfeasible. After obtaining the graph with six
edges, we add an additional variable, which serves as the moderator2. The final
graph therefore has 13 nodes. We repeat this procedure for 100 iterations, yield-
ing 100 data generating models in the simulation. Figure 5.3 shows the model
resulting from this procedure in iteration 2.
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Figure 5.3: The factor graph used in iteration 2 of the simulation. Circle nodes indicate variables.
Square nodes with label 2 indicate 2-way interactions. Triangle nodes with label 3 indicate mod-
eration effects (3-way interactions). Each of the three types of pairwise interactions (unmoderated,
partially moderated, fully moderated) appears twice. For one of each of them the formula for the
total effect is shown. Node 13 is the moderator variable.

2We do not allow the initial six edges to be connected to the moderator, because otherwise for
some graph configurations (1) moderation effects can turn into quadratic effects and (2) unmoderated
pairwise interactions can turn into moderated pairwise interactions.
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We visualize the moderated network model using a factor graph (see Section
5.2.4). There is an unmoderated pairwise interaction between 2-4 and 4-11; a par-
tially moderated pairwise interaction between 1-12 and 8-11; and a fully moder-
ated pairwise interaction between 6-7 and 8-10. All moderated interactions are
moderated by variable 13. The factor graph visualization highlights the equiv-
alence between moderation effects and higher order interactions: a pairwise in-
teraction between A and B that is partially moderated by C means that A and
B are also connected to C in a 3-way interaction. Take the pairwise interaction
1-12 as an example: the total pairwise interaction is equal to the constant β1,12
plus variable X13 weighted by the moderation effect ω1,12,13. The presence of a
3-way interaction alone can be seen as full moderation: for example 8-10 are only
connected via the 3-way interaction with 13. This means the parameter for the
pairwise interaction 8-10, is only a function of X13 weighted by the moderation
effect ω6,7,13. In an unmoderated pairwise interaction (for example 2-4) the two
variables are not involved in the same 3-way interaction. In this case, the total
parameter for the pairwise interaction is a constant.

We constructed the joint distribution by factoring p conditional Gaussians
(see Section5.2.3). For each of the p conditional Gaussians, we set the standard
deviation to one and the intercept to zero. To be able to compare the performance
in recovering pairwise and 3-way interactions, we set the value of all nonzero
parameters βi,j and ωi,j,q to 0.2. The total interaction parameters (βi,j +ωi,j,qXq)
can be interpreted as (moderated) partial correlations. To sample cases from the
joint distribution, we use a Gibbs sampler on the p conditional Gaussians with
means defined in equation (5.10). As discussed in Section 5.2.3, the constraints
of the parameter space under which the joint distribution is normalizable are
unknown. We work around this problem by using a rejection sampler (for details
see Appendix B.3). With this sampling procedure we obtain n = 1808 cases from
each of the 100 MNMs.

To investigate performance as a function of the number of observations n we
create 12 variations on a log scale n ∈ {30,46, . . . ,1148,1808}. This range of n-
values was chosen because it allows us to show the performance transition from
detecting no parameters at all to perfectly recovering the model as a function of
n. We always use the first 30,46, . . . observations, which means that in scenario
n = 46 we take the samples of the scenario n = 30 and add the next 16. This ap-
proachminimizes differences in performance across n-variations due to sampling
variation.

5.3.2 Estimation

Here we describe the three different methods for detecting moderation effects
that we compare in the simulation study: Moderated Network Models (5.3.2.1),
the Network Comparison Test (NCT) (5.3.2.2), and the Fused Graphical Lasso
(FGL) (5.3.2.3).
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5.3.2.1 Moderated Network Models

To investigate the performance of MNMs in recovering moderation effects we
estimate MNMs in three different versions: in version (1) we know the true mod-
erator variable (variable 13) and specify only that variable as a moderator. If we
do not know the true moderator, one can use two different strategies: in version
(2) we estimate p moderated network models, in each of which we specify a dif-
ferent variable as the moderator. After estimating the p models, all estimates
are combined such that if a parameter was estimated nonzero in at least one of
the p models it is considered to be present in the combined model; note that the
sensitivity to discover pairwise interactions for (2) will be larger or equal com-
pared to (1) because we combine 13 estimates for each pairwise interaction. The
same is true for moderation effects, but we expect the difference to be smaller,
because only 3 estimates are combined (in our model the moderation effect of C
on the interaction between B,A is the same as the moderation effects of B on the
interaction between A,C and of A on the interaction between C,B). The reason
to include this version of the algorithm is to see how much the precision drops
when using such an exploratory approach. The second strategy for the situation
in which the true moderators are unknown is version (3), in which we include all
moderators at once.

In the nodewise regression algorithm used to estimate all three versions of the
moderated network models, we select the tuning parameters λs that minimizes
the Extended Bayesian Information Criterion (EBIC), which has been shown to
perform well in recovering sparse graphs (Foygel & Drton, 2010). The EBIC is an
extension of the BIC (Schwarz et al., 1978) in that it puts an additional penalty
on the number of nonzero parameters. This additional penality is weighted by
a parameter γ . We set γ = 0.5 because this value led to good performance in
simulations using a setting similar to ours (Epskamp, 2016).

5.3.2.2 Network Comparison Test (NCT)

The Network Comparison Test (NCT) performs a permutation test for each edge
parameter to determine whether it is reliably different across two groups (data
sets). Since the NCT makes a comparison between two groups it requires to split
the dataset in half. Here we split at the median of the moderator variable. In
a first step, the NCT estimates a model on each data set and takes the abso-
lute value the differences between the corresponding parameters. These differ-
ences serve as test statistics. In a second step, a sampling distribution under the
null hypothesis (no difference) is created for each edge comparison by B times
randomly permuting the group membership of data points, estimating the two
models and computing the absolute value of all edge differences. This gives sam-
pling distributions for each edge-parameter difference, which can be used to test
the significance of the edge-difference from step 1 under the null hypothesis that
there is no difference. For estimation, the NCT uses the graphical lasso algorithm
(J. Friedman, Hastie, & Tibshirani, 2008a) and selects the regularization param-
eter λ with using the EBIC with hyperparameter γ = 0.5. We used B = 1000 and
set the significance threshold to α = 0.05. In our simulation, for small sample
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sizes n = 30,46 the covariance matrices for the two groups (each computed from
n = 30

2 , 462 ) were not positive definite for some of the B bootstrap samples. To still
be able to run the NCT algorithm, we modified the original algorithm by (van
Borkulo et al., 2016) in that we project these covariance matrices to the nearest
positive definite covariance matrix3.

5.3.2.3 The Fused Group Lasso (FGL)

The Fused Group Lasso (FGL) (Danaher et al., 2014; Costantini et al., 2017)
jointly estimates two GGMs by using two separate ℓ1-penalties: the first penalty
(weighted by λ1) includes all parameters of the model (two covariance matrices),
which is the standard ℓ1-penalty (e.g., Hastie et al., 2015). This penalty is sim-
ilar to the one we use to estimate the moderated network models; the second
penalty (weighted by λ2) includes the difference of the two covariance matrices,
and therefore penalizes parameter differences across groups. For a detailed de-
scription of the FGL see (Danaher et al., 2014). Following the implementation
in the R-package EstimateGroupNetwork (Costantini & Epskamp, 2017), we first
select λ1 and then λ2, using the EBIC with γ = 0.5. We do not perform a full
grid-search on λ1,λ2 since this is computationally very expensive (Costantini et
al., 2017). Because the FGL jointly estimates two GGMs on two data sets, also
here we median-split the data set along the moderator variable.

For both the NCT and the FGL methods we run two versions: (1) we create
two groups by splitting the dataset at the median value of the moderator variable
and then run the NCT/FGL; (2) we create the grouping for each of the p variables
in the data set one by one and compute the NCT/FGL for each of those group-
ings. And then take the union of detected moderation effects as output. Since
no more group differences can be discovered in the additional p − 1 = 12 runs,
the sensitivity cannot improve. Again, we include this condition to investigate
the drop of precision when using such an exploratory approach. The estimates of
NCT/FGL can be seen as a piecewise constant approximation to the linear mod-
eration effect, with two constant functions on the left/right of the median split
on the moderator variable.

We estimate moderated network models using the implementation in the R-
package mgm (Haslbeck & Waldorp, 2020). The NCT is implemented in the R-
packageNetworkComparisonTest (van Borkulo, 2016) and the FGL is implemented
in the R-package EstimateGroupNetwork (Costantini & Epskamp, 2017). All three
packages are open source and freely available on the Comprehensive R Archive
Network (CRAN) (https://cran.r-project.org/).

5.3.3 Results

We report sensitivity (probability of recovering a true parameter) and precision
(probability that an estimated parameter is a true parameter). For the moder-
ated network models recovering a true (nonzero) parameter means estimating a

3We use the implementation of the algorithm of Higham (2002) in the R-package Matrix (Bates &
Maechler, 2017).

95



5. Moderated Network Models

nonzero parameter with positive sign. For NCT and FGL, recovering a modera-
tion effect means that the group difference of a given pairwise interaction is sig-
nificant (NCT) or nonzero (FGL) and that the parameter estimated on the data set
with larger values on the moderator variable is larger (that is, the difference has
the correct sign). In the FGL version (2), which runs over all {1,2, . . . ,p} possible
moderators, it can happen that a given edge difference is detected with differ-
ent signs in several runs. We then select the difference with the largest absolute
value.

Figure 5.4 shows the average sensitivity and precision of pairwise interactions
and the pairwise part in a partially moderated pairwise interaction over 100 iter-
ations. Precision is defined with respect to all pairwise interactions (moderated
or not) and is therefore only displayed once. Note that the sensitivity for small n
is very low. This implies that precision is undefined in many iterations. We dis-
play precision only if precision is defined in at least 5 iterations. We report the
performance for the three estimation versions of the moderated network model.
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Figure 5.4: Sensitivity and precision for the moderated network model estimators for pairwise inter-
actions without moderation (first row) and pairwise interactions with moderation (second row), as a
function of n on a log scale. Precision is defined with respect to all pairwise estimates and is therefore
the same for pairwise parameters with/without moderation.

We first turn to the performance of the ℓ1-regularized nodewise regression in
estimating the pairwise parameters in the MNM. The sensitivity of all three ver-
sions of the moderated network model seems to converge to 1 when increasing n.
The different versions of the networkmodel stack up as expected: the exploratory
sequential version (2) has the highest sensitivity, since combining the standard
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version with specified moderator (1) with the estimates of p−1 additional models
can only increase the sensitivity. The network model with all possible moderator
effects specified at once has the lowest sensitivity. This makes sense, since it has
a much larger number of parameters and hence larger regularization parameters
λs to control the variance of the estimates. Consequently, precision stacks up in
reverse order. The precision for versions (1) and (3) seems to converge to 1, while
the precision of (2) does not.

Figure 5.5 shows that all of the results described in the previous paragraph
also hold formoderation effects. The performance to recover pairwise andmoder-
ation effects is similar. The largest difference in performance between parameter
types is between the sensitivity to detect the unmoderated pairwise interaction
(row 1 in Figure 5.4) and the full moderation (row 2 in Figure 5.5) is smaller
compared to the sensitivity to detect the pairwise and moderation effects in the
partially moderated pairwise interaction (row 2 in Figure 5.4 and row 1 in Figure
5.5, respectively).
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FGL m specified (1)
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Figure 5.5: Sensitivity and precision for the moderated network model estimators and the NCT and
FGL estimators for the moderation effects in a partially moderated pairwise interaction (first row)
and moderation effects in a fully moderated pairwise interaction (second row), as a function of n on
a log scale.

Turning to the NCT, Figure 5.5 shows that its sensitivity seems to converge to
1, but does so slower than all other methods for partial moderation (first row),
and comparable to the FGL for full moderation effects (second row). Precision
grows slower than for MNMs and is only close to 1 for n ≥ 591 observations. The
version of the NCT that searches for all p possible moderators sequentially cannot
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improve sensitivity, because there is nothing to detect if an incorrect moderator
is specified. The precision of the sequential NCT is low and does not converge to
1 as n increases.

The FGL shows the highest sensitivity in recovering moderation effects in
a pairwise interaction (row 1) and shows the lowest sensitivity (comparable to
NCT) for full moderation (row 2). Within FGL, the sequential version shows
higher sensitivity while above we claimed that the sensitivity cannot be larger
than in the specified version. The precision of the FGL with specified moderator
increases up to n = 193 and decreases for larger n. The sequential FGL has low
precision for all n.

In Appendix B.11 we also provide the results shown in Figures 5.4 and 5.5 in
tables.

5.3.4 Discussion of Simulation Results

The goal of this simulation was (a) to investigate the performance of ℓ1-
regularized nodewise regression for estimating moderated network models and
(b) compare its performance to detect moderation effects to the split-sample
methods NCT and FGL.

5.3.4.1 Performance of Moderated Network Models

The MNMs with correctly specified moderator (version 1) and with all modera-
tors specified at once (version 3) are consistent estimators for moderated network
models in the setting of our simulation, since both their sensitivity and precision
seem to converge to 1 as n increases. Version 2, which combines results of p se-
quential moderated network models showed similar performance, but does not
converge to 1 for the sequence of n investigated in our simulation. The reason is
that false-positives accumulate across the p models. When considering larger n
we would expect that also version 2 converges.

The second important finding is that pairwise interactions and moderation
effects (3-way interactions) are roughly equally difficult to estimate. From a
ℓ1-regularized nodewise (LASSO) regression perspective this is what we would
expect: moderation effects are just additional predictors that are uncorrelated
with the respective main effects (we show that in Appendix B.7). For estimation,
moderation effects are therefore in no relevant way different from main effects
and hence a different performance in estimating them would be surprising. The
fact that moderation effects are just additional predictors in a regularized regres-
sion means that we can make use of the large pool of theoretical and simulation
results on the performance of ℓ1-regularized regression in different situations
(e.g., Hastie et al., 2015; Bühlmann & Van De Geer, 2011). Theoretical results of
the LASSO for nodewise regression require the assumption of sparsity. Graph-
sparsity does not apply to moderated networkmodels since their parameters can-
not be represented in a p × p graph (see Section 5.2.4).

Based on anecdotal evidence we expect that in reality moderation effects are
on average smaller than pairwise interactions. If this is true, it will be harder to
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recover any moderation effects than recovering any pairwise effects in the trivial
sense that smaller effects are harder to recover than larger effects. In the simula-
tion study we kept the size of pairwise interactions and moderation effects equal
to investigate the presence of any unexpected effects. This was important so as
to verify whether we can use theory on multiple regression to make predictions
about the performance of moderated network models in different situations (we
can).

The largest performance difference across the four parameter types was be-
tween the sensitivity of unmoderated pairwise interaction and full moderation
on the one hand, and the pairwise and moderation effects in the partially mod-
erated interaction on the other hand. This difference is explained by the fact
that in the latter cases the number of uncorrelated predictors is larger, which
leads to a small increase in sensitivity. In Appendix B.4 we provide a figure that
directly displays this difference. In Appendices B.5 and B.6 we show with ad-
ditional simulations that the above explanation is correct. Specifically, we show
that this phenomenon is also present in unmoderated network models and thus
not specific to MNMs.

In the present simulation we specified the MNM to include only a single mod-
erator variable. We chose to include a single moderator variable to ensure that the
simulation setup is easy to understand and to keep the sampling procedure fea-
sible. However, the performance of the estimators with all moderators specified,
or all moderators specified sequentially will not change much when including
an additional moderator. The reason is that all moderators are already included
in the model. Including one additional parameter therefore does not change the
estimated model, it merely means that one additional parameter is nonzero in
the true MNM. Since we estimate the MNM nodewise, and because higher- and
lower-order terms are uncorrelated (see Appendix B.7), adding a moderator in
the present situation is similar to fitting a fixed linear regression model and set-
ting one parameter in the true model from zero to nonzero.

5.3.4.2 Performance of NCT and FGL

Sensitivity and precision of the NCT in which we specified the correct moderator
seem to converge to 1 as a function of n. However, both sensitivity and precision
are lower than for the moderated network model in all situations included in
our simulation. The sequential version of the NCT has low precision for all n
and should therefore not be used in situations similar to the one used in our
simulation.

Turning to the FGL version in which we also specified the correct moderator,
its sensitivity is comparable to the NCT for full moderation and largest across
all methods for moderation in partially moderated interactions. The explanation
for this difference in sensitivity is a combination of two factors: first, the EBIC
selects models with higher sensitivity if the number of uncorrelated neighbors
is larger (we show this in Appendix B.6). In the moderation with pairwise ef-
fect (row 1, Figure 5.5) there is an additional predictor (neighbor) compared to
the moderation effect alone (row 2). Second, the graphical lasso is more liberal
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than nodewise regression. The second factor combined with the first one explains
why the sensitivity difference is larger for the FGL compared to the moderated
network models. However, since the FGL is not the focus of the present work we
did not further investigate this difference. The difference in sensitivity between
the standard and the sequential version of the FGL is explained by the fact that
by design 4-8 variables are correlated with the moderator 13 (see Figure 5.3).
Therefore, splitting by these variables in the sequential version is similar to split-
ting along the moderator proportional to the correlation between the moderator
and the splitting variable. The precision of the FGL with specified moderator
increases up to n = 193 and decreases for larger n. The sequential FGL has low
precision for all n. A partial explanation for this low precision of the FGL could
be the low precision of the graphical lasso algorithm for large n if its assumption
of sparsity if violated (Williams & Rast, 2018). Because of its low precision, we
do not recommend the FGL for situations similar to the one in our simulation.

So far, we only discussed the version of the NCT and FGL in which the true
moderator variable was known and provided to the algorithms. However, this
may not be the case in many realistic situations. In version (2) of NCT and FGL
we ran the algorithms p times, each time specifying another variable as the mod-
erator and combining the results (for details see above). Figure 5.5 shows that
the sensitivity of this approach is (as expected) a bit higher, however, precision is
very low.

5.3.4.3 Moderated Network Models vs. Sample-split Methods

For the situations considered in our simulation study, we found that moder-
ated network models are consistent estimators for moderation effects and out-
perform the split-sample based methods NCT and FGL. We generated the data
from a MNM and therefore our model is correctly specified, while the sample-
split methods NCT/FGL only approximate the linear moderation effect with a
piecewise constant function. We therefore expected that our model would per-
form better. If the moderator is a Bernoulli random variable and NCT/FGL do
not have the disadvantage of only approximating the moderation effect, the per-
formance difference may be smaller. However, this comparison would require
moderated MGMs, which we leave for future work (see also Discussion in Section
5.5). Another important general advantage of the moderated network approach
is that it has much larger sensitivity to detect pairwise interactions, because the
method does not require to split the sample in half.

5.4 Empirical Data Examples

In this section, we apply Moderated Network Models to empirical data. Specifi-
cally, we provide a fully reproducible tutorial on how to fit MNMs to a data set of
mood variables using the R-package mgm (Haslbeck & Waldorp, 2020) (Section
6.4). We also present different options for visualizing MNMs using factor graphs
(see Section 5.2.4). On the basis of the same data set we then discuss possible
aspects of model misspecification and tools to detect those (Section 5.4.2).
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5.4.1 R-Tutorial: Fit Moderated Network Model to Data Set of
Mood Variables

We show how to fit a MNM to a cross-sectional data set consisting of n = 3896
observations of the fivemood variables hostile, lonely, nervous, sleepy and depressed
with 5 response categories. This data set is a subset of the data set msq from the R-
package psych (Revelle, 2017). To fit the MNM, we use the R-packagemgm, which
implements functions to estimate k-order Mixed Graphical Models (MGMs), of
which GGMs and MNMs are special cases. The package can be installed and
loaded in the following way:

install.packages("mgm")

library(mgm)

In the following two subsections we first show how to fit the MNM to the data
and then present possible visualizations of the model.

5.4.1.1 Fit Moderated Network Model to Data

The data set containing the five trait mean scores is automatically loaded with
mgm and available as the object msq_p5:

> dim(msq_p5)

[1] 3896 5

> head(msq_p5)

hostile lonely nervous sleepy depressed

1 -0.4879522 0.7280507 1.0018084 -0.2334325 -0.5998642

2 -0.4879522 -0.6442210 -0.5445646 -0.2334325 -0.5998642

3 -0.4879522 -0.6442210 -0.5445646 -1.1857391 -0.5998642

4 -0.4879522 0.7280507 2.5481814 -0.2334325 0.8672236

5 -0.4879522 -0.6442210 -0.5445646 -0.2334325 -0.5998642

6 -0.4879522 -0.6442210 -0.5445646 0.7188742 0.8672236

dim(msq_p5) shows that the dataset consists of 3896 rows and 5 columns and
head(msq_p5) displays the first 6 rows of the data set. The data points have
several points after the decimal because each variable was scaled to mean zero
and a standard deviation of one.

We provide the data in msq_p5 to the estimation function mgm() of the mgm
package. Next to the data, we specify the types and levels for each variable.
Since we model all variables as Gaussian distributions, we specify "g" for each
variable and the number of levels as 1 by convention for continuous variables.
This specification is necessary in mgm, because the package also allows to model
Poisson variables and categorical variables with m categories. Via the argument
moderator one specifies the moderators to be included in the model. For in-
stance, if we select moderators = c(1, 3) all moderation effects of variables 1
and 3 are included in the model. Here we do not have any prior theory about
possible moderators and therefore specify all variables as moderators by setting
moderators = 1:5. This corresponds to version 3 of the estimator for MNMs in
the simulation study (Section 6.3).
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The estimation algorithm uses p = 5 nodewise penalized regressions, for each
of which an appropriate regularization parameter λs has to be selected (see Sec-
tion 5.2.5). We select the λs that minimizes the EBIC with the hyperparameter
γ = 0.5 by setting lambdaSel = "EBIC" and lambdaGam = .5. This is the same
setup we used in the simulation study. Alternatively one could select λs using
cross-validation (lambdaSel = "CV"). With scale = TRUE we specify that all
predictors are scaled to mean zero and standard deviation 1. This is a standard
procedure in regularized regression and avoids that the penalization of a given
parameter depends on the standard deviation of the associated variable (see Sec-
tion 5.2.5). With ruleReg = "AND" we specify that the nodewise regressions are
combined with the AND-rule (see Section 5.2.5).

mgm_mod <- mgm(data = msq_p5,

type = rep("g", 5),

level = rep(1, 5),

lambdaSel = "EBIC",

lambdaGam = .5,

ruleReg = "AND",

moderators = 1:5,

scale = TRUE)

The main output is stored in mgm_mod$interactions. For a detailed descrip-
tion of the output see the help file ?mgm and themgm paper (Haslbeck &Waldorp,
2020). The list entry mgm_mod$interactions$indicator contains a list of all es-
timated parameters separately for each order (2-way, 3-way, etc.):

> mgm_mod$interactions$indicator

[[1]]

[,1] [,2]

[1,] 1 3

[2,] 1 4

[3,] 1 5

[4,] 2 3

[5,] 2 4

[6,] 2 5

[7,] 3 4

[8,] 3 5

[9,] 4 5

[[2]]

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 1 2 4

[3,] 1 3 4

[4,] 3 4 5

The first level of this list shows that there are nine pairwise interactions; and
the second entry shows that there are four moderation effects (or 3-way inter-
actions). Specifically, the entry mgm_mod$interactions$indicator[[1]][6, ]
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indicates that there is a nonzero pairwise interaction between variables 2-5. And
the entry mgm_mod$interactions$indicator[[2]][4, ] indicates that there is
a nonzero moderation effect between variables 3-4-5. To obtain more informa-
tion about a given interaction we use the function showInteraction(). One can
obtain the parameter for the pairwise interaction 2-5 (lonely and depressed) via:

> showInteraction(object = mgm_mod, int = c(2,5))

Interaction: 2-5

Weight: 0.4318148

Sign: 1 (Positive)

This pairwise interaction can be interpreted as in a linear regression: when
increasing lonely by one unit, depressed increases by ≈ 0.432 units, when keeping
all other variables constant. The parameters for the moderation effect can be
obtained similarly: to obtain the moderation effect between nervous, sleepy and
depressed we provide the respective column numbers to the int argument:

> showInteraction(object = mgm_mod, int = c(3,4,5))

Interaction: 3-4-5

Weight: 0.0564465

Sign: 1 (Positive)

We can interpret this moderation effect in three different ways: First, he pair-
wise interaction between nervous and sleepy is equal to zero when depressed is
equal to zero (no pairwise interaction between nervous and sleepy) and increases
by ≈ 0.06 when increasing depressed by one unit. For the other two interpreta-
tions we need the parameters of the pairwise interactions between depressed and
sleepy, and between depressed and nervous:

> showInteraction(object = mgm_mod, int = c(4,5))

Interaction: 4-5

Weight: 0.1534387

Sign: 1 (Positive)>

> showInteraction(object = mgm_mod, int = c(3,5))

Interaction: 3-5

Weight: 0.1029161

Sign: 1 (Positive)

The second interpretation is: the pairwise interaction between depressed and
sleepy is equal to ≈ 0.153 when nervous is equal to zero, and increases by ≈ 0.06
when increasing nervous by one unit. Similarly, the third interpretation is that
the pairwise interaction between depressed and nervous is equal to ≈ 0.103, when
sleepy is equal to zero, and increases by ≈ 0.06 when increasing sleepy by one unit.
For example, if sleepy has the value 2, then the pairwise interaction parameter
between depressed and nervous is equal to ≈ 0.103+2× 0.06 = 0.223

5.4.1.2 Visualize Moderated Network Model as Factor Graph

In many situations it is more convenient to inspect the model parameters graph-
ically. Since the MNM contains more than p × p parameters, they cannot be vi-
sualized in a standard network with p × p edges. Instead, we use a factor graph,
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in which we introduce additional nodes for interactions (for details see Section
5.2.4). The function FactorGraph() from the mgm package draws such factor
graphs from the output objects of mgm():

FactorGraph(object = mgm_mod,

edge.labels = TRUE,

labels = colnames(msq_p5))

With edge.labels = TRUE we specified that the values of parameters are
shown the visualization. Figure 5.6 (a) shows the resulting plot:
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Figure 5.6: Two different factor graph visualizations: (a) variable-nodes are displayed as circle nodes,
pairwise interactions are displayed as square nodes, and moderation effects (3-way interactions) are
displayed as triangles; (b) Only moderation effects (3-way interactions) are displayed as triangle
nodes, pairwise interactions are displayed as simple edges. Green edges indicate parameters with
positive sign. The widths of edges is proportional to the absolute value of the parameter.

The green (red) edges indicate parameters with positive (negative) sign, and
the width of edges is proportional to the absolute value of the parameter. If two
variables are connected by a pairwise interaction but not by a 3-way interaction,
the pairwise interaction parameter is a partial correlation. If two variables are
connected by a pairwise interaction and and 3-way interaction, the pairwise in-
teraction parameter is the partial correlation between the two variables if the
third variable (in the 3-way interaction) is equal to zero (see Section 5.2.1). The
function FactorGraph() is a wrapper around the qgraph() function from the
qgraph package (Epskamp et al., 2012) and all qgraph() arguments can passed to
customize the visualization.

For models that include many pairwise interactions this visualization may
become unclear. To alleviate this problem, the factor nodes representing pairwise
interactions can be replaced by simple edges with PairwiseAsEdge = TRUE. In
addition, we specified with edge.labels = FALSE that the parameter values are
not shown. The resulting visualization is shown in Figure 5.6 (b). While this
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graph is not a traditional factor graph anymore, the visualization contains the
same information as the visualization in (a), except the parameter values.

An alternative way to visualize MNMs is to condition on a set of values of
the nonzero moderators and visualize the resulting pairwise network. This can
be done with the function condition() which takes the model object mgm_mod
and a list assigning a value to each moderator as input. The function outputs
a new, conditioned, pairwise model object that can be visualized as a network.
Repeating this process for a number of values of the nonzero moderators allows
to show the pairwise network as a function of the nonzero moderators. This is
especially useful if there is only a single moderator in the model. In the case
of a large number of moderators, this approach becomes unfeasible, because the
number of values to map out the space of moderator variables (and therefore the
number of networks to plot) becomes grows exponentially with the number of
moderators.

In Appendix B.8 we provide an additional tutorial in which we recover the
MNM used in iteration 2 of the simulation study in Section 6.3.

5.4.2 Model Misspecification

Like for any other statistical model, when fitting MNMs to empirical data we
assume that these data were generated by the class of MNMs, that is, we assume
that the model is correctly specified. Specifically, we constructed the MNM from
p conditional Gaussian distributions and therefore assume that each variable is
conditionally Gaussian. In addition, we assume that the mean of each variables
is modeled by a regression equation of the form of equation (5.10).

5.4.2.1 Types of Model Misspecification

TheMNM is estimated via pmoderatedmultiple regressionmodels and therefore
the possible types of model misspecification are the same as in multiple regres-
sion with moderation/interactions. The first type of misspecification in these
models is the presence of non-linear effects (in pairwise or/and moderation ef-
fects); the second type is the presence of conditional distributions that are not
Gaussian distributed. Both types of problems are well documented in the regres-
sion literature (e.g. (Aiken et al., 1991; Afshartous & Preston, 2011; Hainmueller,
Mummolo, & Xu, 2018)), which is why we do not discuss them here in detail.

Instead, we focus on a new type of misspecification that arises from construct-
ing the MNM joint distribution from the p conditional Gaussian distributions.
Specifically, our construction of the MNW implies that the population modera-
tion effect of A on the pairwise interaction B,C is the same as the moderation
effect of B on A,C and C on A,B (and the three parameters converge empirically
as n → ∞). It is this equality that justifies aggregating these three parameter
estimates using the AND- or OR-rule (see Section 5.2.5). If all variables are gen-
erated from a joint distribution that can be factorized into conditional Gaussians,
the moderation effects are the same across conditional distributions (nodewise
regressions). However, if the data are skewed, it is possible that the moderation
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effects are different across nodewise regressions and summarizing them in a sin-
gle parameter would be misleading. This does not mean that the moderation
effects always differ across nodewise regressions if the data is skewed. For exam-
ple, the data used in the previous section were skewed but the moderation effects
were roughly the same across nodewise regressions. In the following subsection
we give an empirical data example with skewed variables in which moderation
effects are different across nodewise regressions.

5.4.2.2 Different Moderation Effects across Nodewise Regressions

We illustrate the problem of largely varying moderation effects across nodewise
regressions using a data set consisting of n = 3896 observations of the mood vari-
ables afraid, ashamed and distressed. These data are also from the data set msq
from the R-package psych (Revelle, 2017) and are loaded with the mgm package
as the object msq_p3. We request the dimensions and the first six rows of the data
set with the following code:

> dim(msq_p3)

[1] 3896 3

> head(msq_p3)

afraid ashamed distressed

1 2.1854037 -0.280891 0.8504921

2 -0.2853835 -0.280891 -0.5565216

3 -0.2853835 -0.280891 -0.5565216

4 -0.2853835 2.067502 0.8504921

5 -0.2853835 -0.280891 -0.5565216

6 -0.2853835 -0.280891 -0.5565216

The histograms in Figure 5.7 show that all three variables are highly skewed:
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Figure 5.7: Histograms for the scaled variables afraid, ashamed and distressed.

In Appendix B.9, we show conditional scatter plots to provide some intuition
for how it is possible that moderation effects differ across nodewise regressions.
Here we proceed by estimating a moderated network model with the same spec-
ifications as above in Section 6.4:
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mgm_mod2 <- mgm(data = msq_p3,

type = rep("g", 3),

level = rep(1, 3),

lambdaSel = "EBIC",

lambdaGam = .5,

ruleReg = "AND",

moderators = 1:3)

Again similarly to above we use the function FactorGraph() to plot the factor
graph visualization of the moderated network model

FactorGraph(object = mgm_mod2,
edge.labels = TRUE)

which is shown in Figure 5.8 (a):
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Figure 5.8: (a) Factor graph visualization of the estimated network model with aggregated parameter
values; (b) Nodewise factor graph visualization of all estimated nodewise (unaggregated) parameters.
The direction of edges indicates the nodewise regression in which the parameter has been estimated.

Panel (a) in Figure 5.8 shows that there is a moderation effect with value
≈ 0.19. We can interpret this moderation effect in the following way: the pair-
wise interaction between distressed and ashamed is equal to ≈ 0.27 when afraid is
equal to zero, and increases by ≈ 0.19 when increasing afraid by one unit. How-
ever, we now show that this interpretation is inappropriate, because the nodewise
estimates differ widely and the aggregate parameter is therefore misleading.

The nodewise parameter estimates can be accessed via the mgm() output ob-
ject (see ?mgm). A more convenient way to inspect the unaggregated nodewise
estimates is to plot them into a directed version of the factor graph, in which
the direction of the edges indicates the nodewise regression in which the param-
eter has been estimated. This modified Factor graph can be plotted by setting
Nodewise = TRUE in the FactorGraph() function:
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FactorGraph(object = mgm_mod2,

edge.labels = TRUE,

Nodewise = TRUE)

Figure 5.8 (b) shows the resulting visualization. A directed edge towards a
given node always indicates a parameter obtained from the regression on that
node. For example, the directed edge towards afraid from the order-2 factor node
that connects afraid with distressed indicates the pairwise interaction between
afraid and distressed obtained from the nodewise regression on afraid. Impor-
tantly, the directionality of the edges shown in Figure 5.8 (b) only stems from the
nodewise regression algorithm and does not represent an actual directionality of
the effect.

We see that themoderation effect on distressed is actually negative. The correct
interpretation would therefore be that the pairwise interaction between distressed
and ashamed is equal to ≈ 0.27 when afraid is equal to zero, and decreases by ≈ 0.09
when increasing afraid by one unit. This is a moderation effect in the opposite
direction of the aggregate moderation effect we used in the interpretation above.

What should one do in such a situation? There is no easy answer. Clearly,
interpreting the parameters of the moderated network model joint distribution
shown in (a) is misleading and therefore no option. A solution would be to reject
the joint distribution in (a) and instead report the combined conditional distri-
butions in (b). This has the downside that the model is more complex and that
the joint distribution is unknown. The latter is undesirable, because this means
that we cannot perform inference on the joint distribution. On the other hand,
in many applications of network analysis in psychology no such inference is per-
formed. The principled solution would be to create a joint distribution that incor-
porates skewed distributions and moderation effects that vary across conditional
distributions. However, we expect this to be difficult and far beyond the scope of
the present chapter.

5.5 Discussion

We introduced Moderated Network Models by using the standard definition of
moderation in the regression framework and adding moderation effects to the
multivariate Gaussian distribution. We presented a new visualization for Moder-
ated Network Models based on factor graphs and we proposed an ℓ1-regularized
nodewise regression procedure to estimate this model. In a simulation study we
reported the performance of this approach to recover different types of param-
eters in a random graph with moderation and showed that estimating a moder-
ated network model outperforms the split-sample based methods Fused Graph-
ical Lasso (FGL) and the Network Comparison Test (NCT). Finally, we provided
a fully reproducible tutorial on how to estimate MNMs with the R-package mgm
and discuss possible issues with model misspecification.

Three limitations are important to keep in mind. First, as discussed in Section
5.2.3, we do not have an explicit constraint on the parameter space of the MNM
joint distribution that ensures that the distribution is normalizable. In order to
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sample observations, we worked around this issue with a rejection sampler (see
Appendix B.3). But for a given model estimated from data, it is unclear whether
the resulting joint distribution is normalizable. This means that while the joint
distribution does capture the dependency structure in the data, it might not be
possible to define a probability distribution over it. A consequence of the ab-
sence of a guaranteed probability distribution is that one cannot use global like-
lihood ratio tests or goodness of fit analyses to select between models. We expect
that an appropriate constraint on the parameter space to be difficult to work out
since it involves all parameters of the model and the variances of all conditional
Gaussians. While this is an important limitation to keep in mind, all conditional
distributions are consistently estimated proper distributions. Thus, if inferences
are limited to the conditional distribution there is no issue. This implies that
predictions for any variable can be computed without any limitation, which al-
lows to perform model selection using out of sample prediction error. Also, it
is important to keep in mind that the joint distribution correctly captures the
dependency structure. This implies that one can use network statistics such as
centrality metrics, modularity or global efficiency to describe the global network
structure.

Second, the performance results obtained from our simulation study may be
different in other setups. The best way to obtain the performance in setups with
larger/smaller parameters or higher/lower sparsity is to run appropriate addi-
tional simulation studies. That said, recall that we estimate the MNM using a
series of multiple regression models with interaction terms. Since interaction
effects can be seen as additional variables in a multiple regression, the perfor-
mance in recovering is in principle the same as for main effects. This means that
one can draw on the rich literature on these models to make predictions about
the performance in recovering MNMs in different setups (e.g., Hastie et al., 2015;
Bühlmann & Van De Geer, 2011).

Third, in our simulation study we assigned the same size to pairwise interac-
tions and moderation effects. We did this to confirm our prediction from the lin-
ear regression framework that pairwise and moderation effects are equally hard
to estimate. But in reality moderation effects are often much smaller than pair-
wise interactions. This means that moderation effects are on average harder to
detect than pairwise interactions in the same sense as small pairwise interactions
are harder to detect than large pairwise interactions. It is possible to make the
estimation procedure more liberal by reducing the hyperparameter γ in the EBIC
to detect small moderation effects. However, this would result in higher false pos-
itive rates for both pairwise and moderation effects. In sum, moderation effects
tend to be smaller than pairwise interaction and are therefore harder to detect by
any estimation algorithm. However, MNMs will recover moderation effects that
have a size comparable to pairwise interactions. And any moderation effect can
be recovered if enough data is available.

We see the following extensions for future research. First, in this chapter
we suggested a ℓ1-regularized nodewise regression approach to estimate mod-
erated network models. We chose this estimator because it deals well with the
large number of parameters and renders the interpretation of the model easier

109



5. Moderated Network Models

by setting small parameters to zero. In addition, the underlying assumption that
most parameters are zero is reasonable in the case of MNMs (see Section 5.2.5).
But in some situations a different estimator might perform better. One exam-
ple is the presence of correlated predictors in skewed data. In this situation, the
lower-order terms will be correlated with the higher-order terms in the regres-
sion models (see Section B.9 for an illustration of that fact). If this correlation
becomes too large, the ℓ1-regularized estimator selects only one of the two terms.
This problem is larger, if n is small and the selected regularization parameter λ
large. It would be interesting to map out how problematic this is and whether
other estimators, for example based on significance testing, are better suited for
such situations.

Second, the MNM we propose includes all pairwise interactions and a set
of specified 3-way interactions/moderation effects. Since we freely estimate all
specified parameters, it is possible that a moderation effect is estimated to be
nonzero, while none of the pairwise interactions between the involved variables
is estimated to be nonzero. In some situations, the model may be more meaning-
ful when enforcing a structural hierarchy that only allows to estimate moderation
effects to be nonzero if all respective pairwise interactions are estimated nonzero
(Bien, Taylor, & Tibshirani, 2013). However, such a choice reduces the fit of the
model and should be based on substantive grounds.

Third, we use a single regularization parameter λs in each of the p nodewise
regressions. The sparsity assumption here is with respect to the entire parameter
vector, which includes both pairwise interactions and moderation effects (3-way
interactions). However, if one assumes a different level of sparsity for pairwise
interactions and moderation effects, separate regularization parameters may be
more appropriate. The downside of two regularization parameters is that any
model selection procedure needs to search a grid of λs instead of a sequence,
which increases the computational cost. In addition, estimates may become more
unstable, because the considered model space is larger.

Fourth, it would be useful to extend the present work to moderated Mixed
Graphical Models (MGMs) (S. Chen et al., 2014; Yang et al., 2014a). Here we
have shown how to extend the multivariate Gaussian distribution by adding lin-
ear moderation effects for one or several moderator variables. This approach of
adding terms for moderation effects to the nodewise regression equations can in
principle be extended to the more general class of MGMs, in which each variable
in the model is a univariate member of the exponential family conditioned on all
other variables (S. Chen et al., 2014; Yang et al., 2014a). The only difference is
that we perform the nodewise regressions in the GLM framework using the ap-
propriate link-functions (see e.g., Nelder & Baker, 1972). However, depending on
which types of variables are involved in an interaction, both pairwise interactions
and moderation effects are captured by sets of varying numbers of parameters. It
would be useful to give detailed treatment of all possible (moderated) interac-
tion types between different types of variables, a description of how to interpret
them and provide performance results for estimating different types of modera-
tion effects in different situations. A special case of moderated MGMs would be
an MGM with a single categorical variable as a moderator. This would allow to
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investigate group differences across two or several groups in a principled way and
is likely to out-perform group-split based methods on this task. Note that these
analyses are implemented in the R-package mgm (Haslbeck & Waldorp, 2020)
which we used in the application section of this chapter. However, a full treat-
ment of moderated MGMs is beyond the scope of the present chapter.

Fifth, it could be useful to extend the notion of centrality to factor graphs
and obtain a moderator centrality. A naive way of doing that would be to simply
add up the moderation effect of a given variable to find out which variable has
the strongest influence on the pairwise interactions in the network model. But
one could come up with more sophisticated measures that take the structure of
the network into account. This would especially interesting in data sets that in-
clude contextual variables, because it allows to identify which of them have the
strongest influence on a network model of psychological variables or symptoms.

In sum, Moderated NetworkModels relax the assumption of Gaussian Graph-
ical Models that each pairwise interaction is independent of the value of all other
variables by allowing that each pairwise interaction is moderated by (potentially)
all other variables. This allows more precise statements about the sign and value
of a given interaction parameters in a given situation, which may reduce the pres-
ence of seemingly contradictory research outcomes and provides a step towards
more accurate models for subgroups and individuals.
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Chapter 6

Time-varying VARModels

Abstract

Time series of individual subjects have become a common data type
in psychological research. These data allow one to estimate models of
within-subject dynamics, and thereby avoid the notorious problem ofmak-
ing within-subjects inferences from between-subjects data, and naturally
address heterogeneity between subjects. A popular model for these data
is the Vector Autoregressive (VAR) model, in which each variable is pre-
dicted as a linear function of all variables at previous time points. A key
assumption of this model is that its parameters are constant (or station-
ary) across time. However, in many areas of psychological research time-
varying parameters are plausible or even the subject of study. In this tu-
torial paper, we introduce methods to estimate time-varying VAR models
based on splines and kernel-smoothing with/without regularization. We
use simulations to evaluate the relative performance of all methods in sce-
narios typical in applied research, and discuss their strengths and weak-
nesses. Finally, we provide a step-by-step tutorial showing how to apply
the discussed methods to an openly available time series of mood-related
measurements.

This chapter has been adapted from: Haslbeck, J., Bringmann, L. F., & Waldorp, L. J. (2020). A
Tutorial on Estimating Time-Varying Vector Autoregressive Models. Multivariate Behavioral Research.
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6. Time-varying VAR Models

6.1 Introduction

The ubiquity of mobile devices has led to a surge in time series (or intensive lon-
gitudinal) data sets from single individuals (e.g., Bringmann et al., 2013; Kramer
et al., 2014; Hartmann et al., 2015; Kroeze et al., 2016; van der Krieke et al., 2017;
Bak, Drukker, Hasmi, & van Os, 2016; Snippe et al., 2017; Fisher, Reeves, Lawyer,
Medaglia, & Rubel, 2017; Groen et al., 2019). This is an exciting development be-
cause these data allow one to model within-subject dynamics, which avoids the
notorious problem of making within-subjects inferences from between-subjects
data, and naturally addresses heterogeneity between subjects (Fisher, Medaglia,
& Jeronimus, 2018; Molenaar, 2004). The ability to analyze within-subjects data
therefore promises to be a major leap forward both for psychological research
and applications in (clinical) practice.

A key assumption of all standard time series models is that all parameters of
the data generating model are constant (or stationary) across the measured time
period. This is called the assumption of stationarity1. While one often assumes
constant parameters, changes of parameters over time are often plausible in psy-
chological phenomena. As an example, take the repeated measurements of the
variablesDepressed Mood, Anxiety andWorrying, modeled by a time-varying first-
order Vector Autoregressive (VAR) model shown in Figure 6.1. In week 1, there
are no cross-lagged effects between any of the three variables. However, in week 2
we observe a cross-lagged effect from Worrying on Mood. A possible explanation
could be a physical illness in week 2 that moderates the two cross-lagged effects.
In week 3, we observe a cross-lagged effect from Anxiety on Mood. Again, this
could be due to an unobserved moderator like a stressful period at work. The
fourth visualization shows the average of the previous three models, which is the
model one would obtain by estimating a stationary VARmodel on the entire time
series. In this situation, the stationary model is clearly inappropriate because it
is different to the true model across all intervals of the time series.

Time-varyingmodels are of central interest when studying psychological phe-
nomena from awithin-person perspective. For example, in the network approach
to psychopathology, it is suggested that mental disorders arise from causal inter-
actions among symptoms (see also Borsboom & Cramer, 2013; Schmittmann et
al., 2013; Robinaugh, Hoekstra, & Borsboom, 2019). This means that the inter-
actions between symptoms are different for healthy and unhealthy individuals
(Pe et al., 2015; van Borkulo et al., 2015) and that the interactions in an individ-
ual change when she or he transitions from a healthy to an unhealthy state (or
vice versa). Time-varying models are able to capture this change. Next to de-
tecting these changes, they may also shed light on why those changes occurred.
For example, one could correlate time-varying parameters with contextual fac-
tors such as elevated stress levels, social setting or major life events and thereby
possibly uncover conditions and events that predict the onset of mental disor-

1We use this definition of stationarity, because for VAR models with eigenvalues within the unit
circle, which we focus on in this paper, it is equivalent to definitions based on the moments of dis-
tributions. This implies that we do not consider diverging VAR models (with eigenvalues outside the
unit circle) which have a non-stationary distribution while its parameters are constant across time.

114



6.1. Introduction

Mood
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Depressed Mood

Anxiety
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Mood
Anxiety

Worrying

Average

Figure 6.1: Upper panel: hypothetical repeated measurements of Depressed Mood, Anxiety and Wor-
rying, generated from a time-varying lag 1 VAR model. Lower panel: the time-varying VAR-model
generating the data shown in the upper panel. It consists of three models, one for each week. The
fourth model (left to right) indicates the average of the three models, which is what one obtains when
estimating a stationary VAR model on the entire time series.

ders. Time-varying models can also be used to study how parameters change in
response to interventions. For example, in Section 6.4 we will fit a time-varying
VAR model on ESM measurements during a double-blind medication reduction
study (Wichers et al., 2016).

Time-varying models are also central to the idea of Early Warning Signals
(EWS; Scheffer et al., 2009). For example, Wichers et al. (2016) suggested to an-
ticipate phase-transitions between healthy and unhealthy states with EWS such
as time-varying autocorrelation and variance (see also van de Leemput et al.,
2014a). Time-varying VAR models are an extension of these EWS to multivariate
time-series. Anticipating the sensitive periods around phase transitions is inter-
esting, because during those periods treatment may be more efficient (Olthof et
al., 2019). This means that time-varying models could be used as a tool to moni-
tor patients and determine periods during which treatment is most promising.

In this tutorial paper we provide an introduction to how to estimate a time-
varying version of the Vector Autoregressive (VAR) model, which is arguably the
simplest multivariate time series model for temporal dependencies in continu-
ous data, and is used in many of the papers cited above. We will focus on two
sets of methods recently proposed by the authors to estimate such time-varying
VAR models: Bringmann, Ferrer, Hamaker, Borsboom, and Tuerlinckx (2018)
presented a method based on splines using the Generalized Additive Model-
ing (GAM) framework, which estimates time-varying parameters by modeling
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them as a spline function of time; and Haslbeck and Waldorp (2020) suggested a
method based on penalized kernel-smoothing (KS), which estimates time-varying
parameters by combining the estimates of several local models spanning the en-
tire time series. While both methods are available to applied researchers, it is
unclear how well they and their variants (with/without regularization or signifi-
cance testing) perform in situations that are typical in applied research. We aim
to improve this situation by making the following contributions:

1. We report the performance of GAM based methods with and without sig-
nificance testing, and the performance of KS based methods with and with-
out regularization in situations that are typical for Experience Sampling
Method (ESM) studies.

2. We discuss the strengths and weaknesses of all methods and provide prac-
tical recommendations for applied researchers

3. We compare time-varyingmethods to their corresponding. stationary coun-
terparts to address the question of how many observations are necessary to
identify the time-varying nature of parameters.

4. We provide tutorials on how to estimate time-varying VAR models using
both methods on an openly available intensive longitudinal dataset using
the R-packages mgm and tvvarGAM.

The paper is structured as follows. In Section 6.2.1 we define time-varying
VARmodels, which are the focus of this paper. We next present two sets of meth-
ods to recover such models: one method based on splines with and without sig-
nificance testing (Section 6.2.2), and one method based on kernel estimation with
and without regularization (Section 6.2.3). In Sections 6.3.1 and 6.3.2 we report
two simulation studies that investigate the performance of these two models and
their stationary counterparts. In Section 6.4 we provide a fully reproducible tu-
torial on how to estimate a time-varying VAR model from an openly available
time series data set collected in ESM studies using the kernel smoothing method
using the R-package mgm (we repeat the same tutorial with the GAM method in
the appendix). Finally, in Section 6.5 we discuss possible future directions for
research on time-varying VAR models.

6.2 Estimating Time-Varying VARModels

We first introduce the notation for the stationary first-order VAR model and its
time-varying extension (Section 6.2.1) and then present the two methods for es-
timating time-varying VAR models: the GAM-based method (Section 6.2.2) and
the penalized kernel-smoothing-based method (Section 6.2.3). We discuss imple-
mentations of related methods in Section 6.2.4.
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6.2.1 Vector Autoregressive (VAR) Model

In the first-order Vector Autoregressive (VAR(1)) model, each variable at time
point t is predicted by all variables (including itself) at time point t − 1. Next to
a set of intercept parameters, the VAR(1) model is comprised by autoregressive
effects, which indicate how much a variable is predicted by itself at the previ-
ous time point, and cross-lagged effects, which indicate how much a variable is
predicted by all other variables at the previous time point.

Formally, the variables Xt ∈ Rp at time point t ∈ Z are modeled as a linear
combination of the same variables at t − 1

Xt = β0 +BXt−1 + ε =
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, (6.1)

where β0,1 is the intercept of variable 1, β1,1 is the autoregressive effect of Xt−1,1
on Xt,1, and βp,1 is the cross-lagged effect of Xt−1,1 on Xt,p , and we assume that
ε = {ϵ1, . . . ,ϵp} are independent (across time points) samples drawn from a mul-
tivariate Gaussian distribution with variance-covariance matrix Σ. In this paper
we do not model Σ, however, it can be obtained from the residuals of the model
and used to estimate the inverse covariance matrix (see e.g., Epskamp, Waldorp,
et al., 2018).

Throughout the paper we deal with first-order VAR models in which all vari-
ables at time point t are a linear function of all variables at time point t − 1. In
the interest of brevity we will therefore refer to this first-order VAR model (or
VAR(1) model) as a VAR model. More lags can be included by adding further pa-
rameter matrices and lagged variable vectors Xt−k (for a lag of k) to the model in
(6.1). Note that while we focus on VAR(1) models in the this paper, the presented
methods can be used to estimate time-varying VAR models with any set of lags.
For a detailed description of VAR models we refer the reader to Hamilton (1994).

In both the GAM and the KS method we estimate (6.1) by predicting each of
the variables Xt,i for i ∈ {1, . . . ,p} separately. Specifically, we model

Xt,i = β0,i +βiXt−1 + ϵi = β0,i +
[

βi,1 . . . βi,p
]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Xt−1,1
...

Xt−1,p

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+ ϵi , (6.2)

for all i ∈ {1, . . . ,p}, where βi is the 1 × p vector containing the lagged effects on
Xt,i . After estimating the parameters in each equation, we combine all estimates
to the VAR model in (6.1).

In order to turn the stationary VAR model in (6.1) into a time-varying VAR
model, we introduce a time index for the parameter matrices

Xt = β0,t +BtXt−1 + ε . (6.3)

This allows a different parameterization of the VAR model at each time point
and thereby allows the model to vary across time. Throughout this paper we
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6. Time-varying VAR Models

assume that the time-varying parameters are smooth deterministic functions of
time. We define a smooth function as a function for which the first derivative
exists everywhere. In the following two subsections we introduce two different
ways to estimate such a time-varying VAR model.

The VAR model has often been discussed and visualized as a network model
(Epskamp, Waldorp, et al., 2018), and also here we will use both statistical and
network/graph terminology. To avoid confusion between the two terminologies,
we explicitly state how the terms in the two terminologies correspond to each
other. From the statistical perspective there are two types of lagged effects be-
tween pairs of variables: autocorrelations (e.g., Xt−1 → Xt) and cross-lagged ef-
fects (e.g.,Xt−1→ Yt). In the network terminology variables are nodes, and lagged
effects are represented by directed edges. An edge from a given node on itself is
also called a self-loop, and represents autocorrelation effects. The value of lagged
effects is represented in sign and the absolute value of the edge-weights of the
directed edges. If an edge-weight between variables Xt and Yt−1 is nonzero, we
say that the edge from Xt and Yt−1 is present. Sparsity refers to how strongly
connected a network is: if many edges are present, sparsity is low; if only few
edges are present, sparsity is high. On a node-level, sparsity is captured by the
indegree (how many edges point towards a node) and outdegree (how many edges
point away from a node). In statistical terminology indegree is the number of in-
coming lagged effects on variable X, and outdegree the number outgoing lagged
effects from variable X.

6.2.2 The GAMMethod

In this section we explain how to estimate a time-varying VAR model using the
Generalized AdditiveModel (GAM) framework, which allows for non-linear rela-
tionships between variables (see also Bringmann et al., 2017, 2018). We leverage
the GAM framework for the estimation for time-varying models by using it to
define each parameter as a function of time. Because GAMs are able to represent
non-linear functions, this allows us to recover non-linear time-varying param-
eters. In what follows we illustrate how this approach works for the simplest
possible example, a model consisting only of a time-varying intercept parameter,
y = β0,t + ε.

Panel (a) of Figure 6.2 shows that the values of y are varying over time, so
the intercept will have to be time-varying as well, if the intercept-only model is
supposed to fit the data well. This is achieved by summing the following five
basis functions

β̂0,t = α̂1R1(t) + α̂2R2(t) + α̂3R3(t) + α̂4R4(t) + α̂5R5(t), (6.4)

which are displayed in panels (b) - (f) in Figure 6.2. Panel (g) overlays all used
basis functions, and panel (h) displays the estimate of the final smooth function
β̂0,t , which is obtained by adding up the weighted basis functions (α̂) (see panel
(g) and (h) of Figure 6.2). The optimal regression weights are estimated using
standard linear regression techniques. The same rationale is applied to every
time-varying parameter in the model.
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Figure 6.2: An example of the basis function for a time-varying parameter β̂0,t . In panel (a) the data
are shown. In panel (b)-(f) the estimated 5 basis functions are given and panel (g) shows the weighted
basis functions. In the last panel (h) the final smooth function is illustrated with credible intervals
around the smooth function.

There are several different spline bases such as cubic, P-splines, B-splines, and
thin plate splines. The advantage of thin plate splines, which is the basis used
here, is that one does not have to specify knot locations, resulting therefore in
fewer subjective decisions that need to be made by the researcher (Wood, 2006).
The basis functions in Figure 6.2 exemplify the thin plate spline basis. In the fig-
ure, panels (b)-(f) show that each additional basis function (R) increases the non-
linearity of the final smooth function. This is reflected in the fact that every extra
basis function is more “wiggly” than the previous basis functions. For example,
the last basis function in panel (f) is “wigglier” than the first basis function in
panel (b). The spline functions used here are smooth up to the second derivative.
Thus, a key assumption of the GAM method is that all true time-varying param-
eter functions are smooth as well. This assumption is also called the assumption
of local stationarity, because smoothness implies that the parameter values that
are close in time are very similar, and therefore locally stationary. This would be
violated by, for example, a step function, where the GAMmethod would provide
incorrect estimates around a “jump” (but would still give good estimates for the
two constant parts).

As the number of basis functions determines the nonlinearity of the smooth
function (e.g., β̂0,t), a key problem is how to choose the optimal number of basis
functions. The final curve should be flexible enough to be able to recover the
true model, but not too flexible as this may lead to overfitting (Andersen, 2009;
Keele, 2008). Themethod used here to find the optimal number of basis functions
is penalized likelihood estimation (Wood, 2006). Instead of trying to select the
optimal number of basis functions directly, one can simply start by including
more basis functions than would be normally expected, and then adjust for too
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much wiggliness with a wiggliness penalty (Wood, 2006).
Thus, the problem of selecting the right number of basis functions is reduced

to selecting the right wiggliness penalty. This is achieved using generalized cross-
validation (Golub, Heath, & Wahba, 1979), where the penalty parameter with
the lowest Generalized Cross-Validation (GCV) value is expected to give a good
bias-variance trade-off. Specifically, the penalization decreases the influence of
the basis functions (R) by reducing the values of their regression coefficients (α̂).
Therefore, smoothness is imposed on the curve both through the choice of the
number of basis functions and the final level of penalization on these basis func-
tions.

To estimate time-varying VAR models with the GAM method, we use the tv-
varGAM package in R (Bringmann &Haslbeck, 2017), which is a wrapper around
themgcv package (Wood, 2006). As the wiggliness penalty is automatically deter-
mined, the user only needs to specify a large enough number of basis functions.
The default settings are the thin plate regression spline basis and 10 basis func-
tions, which although an arbitrary number, is often sufficient (see the simulation
results in Bringmann et al., 2017). The minimum number is in most models
three basis functions. In general, it is recommended to increase the number of
basis functions if it is close to the effective degrees of freedom (edf) selected by
the model. The effective degrees of freedom is a measure of nonlinearity. A lin-
ear function has an edf of one, and higher edf values indicate wigglier smooth
functions (Shadish, Zuur, & Sullivan, 2014).

The GAM function in themgcv package outputs the final smooth function, the
GCV value and the edf. Furthermore, the uncertainty of the smooth function is
estimated with 95% Bayesian credible intervals (Wood, 2006). In the remainder
of this manuscript we refer to this method as the GAM method. We refer to a
variant of the GAMmethod, in which we set those parameters to zero whose 95%
Bayesian credible interval overlaps with zero, with GAM(st), for “significance
thresholded”. With GLM we refer to the standard unregularized VAR estimator.

After the model is estimated, it is informative to check if the smooth func-
tions were significantly different from zero (at some point over the whole time
range), and if each smooth function had enough basis functions. Significance
can be examined using the p-values of each specific smooth function, which in-
dicates whether the smooth function is significantly different from zero. To see
whether there are enough basis functions, the edf of each smooth function can
be examined. The edf value should be well below the maximum possible edf or
the number of basis functions for the smooth function (or term) of interest (in
our case 10, see Wood, 2006). When the edf turns out to be too high, the model
should be refitted with a larger (e.g., double) number of basis functions.

6.2.3 The Kernel-smoothing Method

In the kernel-smoothing method one obtains time-varying parameters by esti-
mating and combining a sequence of local models at different time points across
the time series. A local model is estimated by weighting all observations depend-
ing on how close they are to the time point at which the local model is estimated.
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In Figure 6.3 we show an example in which a single local model is estimated at
time point te = 3. We do this by giving the time points close to te a high weight
and time points far away from te a very small or zero weight. If we estimate mod-
els like this on a sequence of equally spaced estimation points across the whole
time series and take all estimates together, we obtain a time-varying model.
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Figure 6.3: Illustration of the weights defined to estimate the model at time point te = 3. Left panel:
a kernel function defines a weight for each time point in the time series. Right panel: the weights
shown together with the VAR design matrix constructed to predict Xt,1.

Specifically, we use a Gaussian kernel N (µ = te,σ
2 = b2) function to define a

weight for each time point in the time series

wj,te =
1

√
2πb2

exp

{

−
(j − te)2

2b2

}

, (6.5)

where j ∈ {1,2, . . . ,n}, which is the local constant or Nadaraya-Watson estimator
(Fan & Gijbels, 1996).

For the example shown in Figure 6.3 this means that the time point te = 3
gets the highest weight, and if the distance to te increases, the weight becomes
exponentially smaller. The same idea is represented in the data matrix in the
right panel of Figure 6.3: each time point in the multivariate time series is asso-
ciated with a weight defined by the kernel function. The smaller we choose the
bandwidth b of the kernel function, the smaller the number of observations we
combine in order to estimate the model at te: when using a kernel with band-
width b = 0.2 (red curve), we combine more observations than when using the
kernel with b = 0.05 (blue curve). The smaller the bandwidth the larger the sen-
sitivity to detect changes in parameters over time. However, a small bandwidth
means that less data is used and therefore the estimates are less reliable (e.g., only
three time points when b = 0.05; see right panel of Figure 6.3).

Since we combine observations close in time to be able to estimate a local
model, we have to assume that the models close in time are also similar. This
is equivalent to assuming that the true time-varying parameter functions are
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6. Time-varying VAR Models

smooth, or locally stationary. Thus, the key assumption of the kernel-smoothing
approach is the same as in the spline approach. For the kernel-smoothing
method, we need the additional assumption that the chosen bandwidth is small
enough to capture the time-varying nature of the true model. For example, if the
parameters of the true model vary widely over time, but the bandwidth is so large
that at any estimation point almost the entire time series is used for estimation,
it is impossible to recover the true time-varying function.

The weights wj,te defined in (6.5) enter the loss function of the ℓ1-regularized
regression problem we use to estimate each of the p time-varying versions of the
model in (6.2)

β̂te = argβte ,β0,te
min

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1

n

n
∑

j=2

wj,te (Xi,j − β0,te −βteXj−1)
2 +λi ||βt ||1

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, (6.6)

where Xi,j is the jth time point of the ith variable in the design matrix, ||βte ||1 =
∑p

i=1

√

β2i,te is the ℓ1-norm of βte , and λi is a parameter controlling the strength of

the penalty. Note that the indices i and te are fixed in (6.6) because we estimate
the time-varying VARmodel equation by equation, separately for each estimation
point te.

For each of the p regressions, we select the λi that minimizes the out-of-
sample deviance in 10-fold cross validation (J. Friedman et al., 2010). In or-
der to select an appropriate bandwidth b, we choose the b̂ that minimizes the
out of sample deviance across the p regressions in a time stratified cross valida-
tion scheme (for details see Section 6.3.1.2). We choose a constant bandwidth
for all regressions so we have a constant bandwidth for estimating the whole
VAR model. Otherwise the sensitivity to detect time-varying parameters and the
trade-off between false positives and false negatives differs between parameters,
which is undesirable.

In ℓ1-penalized (LASSO) regression the squared loss is minimized together
with the ℓ1-norm of the parameter vector. This leads to a trade-off between fitting
the data (minimizing squared loss) and keeping the size of the fitted parameters
small (minimizing ℓ1-norm). Minimizing both together leads to small estimates
being set to exactly zero, which is convenient for interpretation. When using
ℓ1-penalized regression, we assume that the true model is sparse, which means
that only a small number of parameters k in the true model are nonzero. If this
assumption is violated, the largest true parameters will still be present, but small
true parameters will be incorrectly set to zero. However, if we keep the number
of parameters constant and let n → ∞, ℓ1-regularized regression also recovers
the true model if the true model is not sparse. For an excellent treatment on
ℓ1-regularized regression see Hastie et al. (2015).

As noted above, the larger the bandwidth b, the more data is used to estimate
the model around a particular estimation point. Indeed, the data used for esti-
mation is proportional to the area under the kernel function or the sum of the
weights Nutil =

∑n
j=1wj,te . Notice that Nutil is smaller at the beginning and end of

122



6.3. Evaluating Performance via Simulation

the time series than in the center, because the kernel function is truncated. This
necessarily leads to a smaller sensitivity to detect effects at the beginning and the
end of the time series. For a more detailed description of the kernel smoothing
approach see Haslbeck and Waldorp (2020). In the remainder of this manuscript
we refer to this method as KS(L1). With GLM(L1) we refer to the stationary ℓ1-
penalized estimator.

6.2.4 Related methods

Several implementations of related models are available as free software pack-
ages. The R-package earlywarnings (Dakos & Lahti, 2013) implements the es-
timation of a time-varying AR model using a moving window approach. The
R-packageMARSS (E. Holmes, Ward, &Wills, 2013; E. E. Holmes, Ward, &Wills,
2012) implements the estimation of (time-varying) state-space models, of which
the time-varying VARmodel is a special case. While the state-space model frame-
work is very powerful due to its generality, it requires the user to specify the
way parameters are allowed to vary over time, for which often no prior the-
ory exists in practice (Belsley & Kuti, 1973; Tarvainen, Hiltunen, Ranta-aho, &
Karjalainen, 2004). In parallel efforts, Casas and Fernandez-Casal (2018) devel-
oped the R-package tvReg, which estimates time-varying AR and VAR models, as
well as IRF, LM and SURE models, using kernel smoothing similar to the kernel
smoothing approach described in the present paper, however does not offer ℓ1-
regularization. Furthermore, the R-package bvarsv (Krueger, 2015) allows one to
estimate time-varying VAR models in a Bayesian framework.

The R-package dynr (Ou, Hunter, & Chow, 2019) provides an implementation
for estimating regime switching discrete time VAR models, and the R-package
tsDyn (Fabio Di Narzo, Aznarte, & Stigler, 2009) allows to estimate the regime
switching Threshold VARmodel (Tong & Lim, 1980; Hamaker, Grasman, & Kam-
phuis, 2010). These two methods estimate time-varying models that switch be-
tween piece-wise constant regimes, which is different to the methods presented
in this paper, which assume that parameters change smoothly over time.

Another interesting way to modeling time-varying parameters is by using the
fused lasso (Hastie et al., 2015). However, to our best knowledge this method
is currently only implemented for the estimation of Gaussian Graphical Mod-
els: R. Monti (2014) provide a Python implementation of the SINGLE algorithm
(R. P. Monti et al., 2014), and (Gibbert, 2017) provide a Python implementation of
the (group) fused-lasso basedmethod as presented in Gibberd andNelson (2017).

6.3 Evaluating Performance via Simulation

In this section we use two simulations to evaluate the performance of the meth-
ods introduced in Section 6.2 in estimating time-varying VAR models. In the
first simulation (Section 6.3.1) we generate time-varying VAR models based on a
random graph with fixed sparsity, which is the natural choice in the absence of
any knowledge about the structure of VAR models in a given application. This
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simulation allows us to get a rough overview of the performance of all methods
and their strengths and weaknesses. In the second simulation (Section 6.3.2), we
generate time-varying VAR models in which we vary the level of sparsity. This
simulation allows us to discuss the strengths and weaknesses of all methods in
more detail, specifically, we can discuss in which situations methods with/with-
out regularization or thresholding perform better. Finally, in Section 6.3.3 we
discuss the combined results of both simulations, and provide recommendations
for applied researchers.

6.3.1 Simulation A: Random Graph

In this simulation we evaluate the performance of all methods in estimating time-
varying VAR models that are generated based on a random graph. We first de-
scribe how we generate these time-varying VAR models (Section 6.3.1.1), discuss
details about the estimation methods (Section 6.3.1.2), report the results (Section
6.3.1.3), and provide a preliminary discussion (Section 6.3.1.4).

6.3.1.1 Data generation

We generated time-varying VAR models by first selecting the structure of a sta-
tionary VAR model and then turning this stationary VAR model into a time-
varying one. Specifically, we used the following procedure to specify whether
a parameter in the time-varying VAR(1) model is nonzero: we choose all our VAR
models to have p = 10 variables, which is roughly the number of variables mea-
sured in typical ESM studies. We start out with an empty p × p VAR parameter
matrix. In this matrix we set all p autocorrelations to be nonzero, since autocor-
relations are expected to be present for most phenomena and are observed in es-
sentially any application (e.g., aan het Rot, Hogenelst, & Schoevers, 2012; Snippe
et al., 2017; Wigman et al., 2015). Next, we randomly set 26 of the p × p − p = 90
off-diagonal elements (the cross-lagged effects) to be present. This corresponds
to an edge probability of P(edge) ≈ 0.29 2. This approach returns an initial p × p
matrix with ones in the diagonal and zeros and ones in the off-diagonal.

In a second step we use the structure of this VAR model to generate a time-
varying VAR model. Specifically, we randomly assign to each of the nonzero
parameters one of the sequences (a) - (g) in Figure 6.4. If an edge is absent in
the initial matrix, all entries of the parameter sequence are set to zero (panel
(h) in Figure 6.4). Note that only the time-varying parameter functions (a - e)
and (h) in Figure 6.4 are smooth functions of time. Therefore, the two methods
presented in this paper are only consistent estimators for those types of time-
varying parameters. They cannot be consistent estimators for the step-functions
(f) and (g), however, we included them to investigate how closely the methods
studied in this paper can approximate the step function as a function of n.

2We set a fixed number of elements to nonzero instead of using draws with P(edge) = 0.2, be-
cause we resample the VAR matrix until it represents a stable VAR model (the absolute value of all
eigenvalues is smaller than 1). By fixing the number of nonzero elements we avoid biasing P(edge)
through this resampling process. Thus, all VAR matrices in each iteration and at each time point has
no eigenvalue with absolute value greater than 1.
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Figure 6.4: The eight types of time-varying parameters used in the simulation study: (a) constant
nonzero, (b) linear increase, (c) linear decrease, (d) sigmoid increase, (e) sigmoid decrease, (f) step
function up, (g) step function down and (h) constant zero.

The maximum parameter size of time-varying parameters is set to θ = 0.35
(see Figure 6.4). The noise is drawn from a multivariate Gaussian with variances
σ2 =

√
0.10 and all covariances being equal to zero. Hence the signal/noise ratio

used in our setup is S/N = 0.35
0.10 = 3.50. All intercepts are set to zero and the

covariances between the noise processes assigned to each variable are zero.
Using these time-varying VAR model, we generate 12 independent time se-

ries with lengths n = {20,30,36,69,103,155,234,352,530,798,1201,1808}. We
chose these values because they cover the large majority of scenarios applied re-
searchers typically encounter. Each of these time-varying models covers the full
time period [0,1] and is parameterized by a p×p×n parameter array Bi,j,t . For ex-
ample, the B1,2,310 indicates the cross-lagged effect from variable 2 on variable 1
at the 310th measurement point, which occurs then at time point 310/530 ≈ 0.59,
if there are in total 530 measurements. Importantly, in this setting increasing n
does not mean that the time period between the first and the last measurement of
the time series becomes larger. Instead, we mean by a larger n that more evenly
spaced measurements are available in the same time period. This means that the
larger n, the smaller the time interval between two adjacent measurements. That
is, the data density in the measured time period increases with n, which is re-
quired to consistently estimate time-varying parameters (Robinson, 1989). This
makes sense intuitively: if the goal is to estimate the time-varying parameters of
an individual in January, then one needs sufficient measurements in January, and
it does not help to add additional measurements from February.

We run 100 iterations of this design and report the mean absolute error over
iterations. These mean errors serve as an approximation of the expected popula-
tion level errors.
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6.3.1.2 Estimation

To estimate time-varying VAR models via the GAM method we use the imple-
mentation in the R-package tvvarGAM (Bringmann & Haslbeck, 2017) version
0.1.0, which is a wrapper around the mgcv package (version 1.8-22). The tuning
parameter of the splinemethod is the number of basis functions used in the GAM.
Previous simulations have shown that 10 basis functions give good estimates of
time-varying parameters (Bringmann et al., 2018). To ensure that the model is
identified, for a given number of basis functions k and variables p, we require at
least nmin > k(p + 1) observations. In our simulation, we used this constraint to
select the maximum number of basis functions possible given n and p, but we do
not use less than 3 or more than 10 basis functions. That is, the selected number
of basis functions ks is defined as

ks =max

{

3,min

{

max

{

k;k >
n

p +1

}

,10

}}

. (6.7)

If ks satisfies the above constraint, the time-varying VAR model can be es-
timated with the spline-based method. With this constraint the model cannot
be estimated for n = {20,30}. We therefore do not report results for GAM and
GAM(st) for these sample sizes.

In principle it would be possible to combine ℓ1-regularization with the GAM-
method, similarly as in the KS-method. However, an implementation of such
a method is currently not available and we therefore cannot include it in our
simulation.

We estimated the time-varying VAR model via the KS and KS(L1) meth-
ods using the R-package mgm (Haslbeck & Waldorp, 2020) version 1.2-2. As
discussed in Section 6.2.3, these methods require the specification of a band-
width parameter. Therefore, the first step of applying these methods is to select
an appropriate bandwidth parameter by searching the candidate sequence b =
{0.01,0.045,0.08,0.115,0.185,0.22,0.225,0.29,0.325,0.430,0.465,0.5}. For n ≤ 69
we omit the first 5 values in b, and for n > 69 we omit the last 5 values. We
did this to save computational cost because for small n, small b are never se-
lected, and analogously for large n, large b values are never selected. To select an
appropriate bandwidth parameter we use a cross-validation-like scheme, which
repeatedly divides the time series in a training and a test set, and in each rep-
etition fits time-varying VAR models using the bandwidths in b, and evaluates
the prediction error on the test set for each bandwidth. More concretely, we de-
fine a test set Stest by selecting |Stest| = ⌈(0.2n)2/3⌉ time points stratified equally
across the whole time series. Next, we estimate a time-varying VAR model for
each variable p at each time point in Stest and predict the p values at that time
point. After that we compute for each b the |Stest| × p absolute prediction errors
and take the arithmetic mean. Next, we select the bandwidth b̂ that minimizes
this mean prediction error. Finally, we estimate the model on the full data using
b̂ and λ̂ at 20 equally spaced time points, where we select an appropriate penalty
parameter λ̂i with 10-fold cross-validation for each of the p variables (for more
details see Haslbeck & Waldorp, 2020).
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We also investigate the performance of the kernel-smoothing method with-
out ℓ1-regularization. We refer to this method as KS. In order to compare the
ℓ1-regularized time-varying VAR estimator to a stationary ℓ1-regularized VAR es-
timator, we also estimate the latter using themgm package. We call this estimator
GLM(L1).

Both time-varying estimationmethods are consistent if the following assump-
tions are met; (a) the data is generated by a time-varying VAR model as specified
in equation (6.1), (b) all parameters are smooth functions of time, (c) with the
eigenvalues of the VAR matrix being within the unit circle at all time points, (d)
and the error covariance matrix is diagonal. We also fit a standard stationary VAR
model using linear regression to get the unbiased stationary counter-part of the
GAM methods. Specifically for the KS-method, it is additionally required that
we consider small enough candidate bandwidth values. We do this by using the
sequence b specified above.

6.3.1.3 Results

We first report the performance of the GLM, GLM(L1), KS, KS(L1), GAM and
GAM(st) methods in estimating different time-varying parameters by evaluating
the estimation error averaged across time. Next, we zoom in on the performance
across time, for the constant and the linear increasing parameter function, and
finally examine the performance in structure recovery of all methods.

Absolute Error Averaged over Time Figure 6.5 displays the absolute estima-
tion error, averaged over time points, iterations, and time-varying parameter
functions of the same type, as a function of sample size n. Since the linear in-
crease/decrease, sigmoid increase/decrease, and step function increase/decrease
are symmetric, we collapsed them into single categories to report estimation er-
ror. The absolute error on the y-axis can be be interpreted as follows: let’s say we
are in the scenario with n = 155 observations and estimate the constant function
in Figure 6.5 (a) with the stationary ℓ1-regularized regression GLM(L1). Then the
expected average (across the time series) error of the constant function is ±0.09.

Figure 6.5 (a) shows that, for all methods, the absolute error in estimating
the constant nonzero function is large for small n and seems to converge to
zero as n increases. The GLM method has a lower estimation error than its ℓ1-
regularized counterpart, GLM(L1). Similarly, the KS method outperforms the
KS(L1) method. The stationary GLM method also outperforms all time-varying
methods, which makes sense because the true parameter function is not time-
varying.
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Figure 6.5: The five panels show the mean absolute estimation error averaged over the same type,
time points, and iterations as a function of the number of observations n on a log scale. We re-
port the error of six estimation methods: stationary unregularized regression (blue), stationary
ℓ1-regularized regression (light blue), time-varying regression via kernel-smoothing (green), time-
varying ℓ1-regularized regression via kernel-smoothing (light green), time-varying regression via
GAM (pink), and time-varying regression via GAM with thresholding at 95% CI (red). Some data
points are missing because the respective models are not identified in that situation (see Section
6.3.1.2).

For the linearly increasing/decreasing time-varying parameter in Figure 6.5
(b), the picture is more complex. For very small n from 20 to 46 the regular-
ized methods GLM(L1) and KS(L1) perform best. This makes sense because, for
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such small n, the estimates of all other methods suffer from huge variance. For
sample sizes from 46 to 155 the unregularized methods perform better: now
the bias of the regularized methods outweighs the reduction in variance. From
sample sizes between 155 and 352 the time-varying methods start to outperform
the two stationary methods. Interestingly, until around n = 530 the KS meth-
ods outperforms all other time-varying methods. For n > 530 all time-varying
methods perform roughly equally. Overall, the error of all time-varying methods
seem to converge to zero, as we would expect from a consistent estimator. The
error of the stationary methods converges to ≈ 0.088, which is the error resulting
from approximating the time-varying function with the optimal constant func-
tion with value 0.35

2 . Since the sigmoid increase/decrease functions in panel (c)
are very similar to the linear increase/decrease functions, we obtain qualitatively
the same results as in the linear case.

In the case of the step function we again see a similar qualitative picture, how-
ever here the time-varying methods outperform the stationary methods already
at a sample size of around n = 69. The reason is that the step function is more
time-varying in the sense that here the best constant function is a worse approx-
imation than in the linear and the sigmoid case. Another difference is that the
GAM(st) method seems to outperform all other methods by a small margin if the
sample size is large.

Finally, the absolute error for estimating the constant zero function is lowest
for the regularized methods and the thresholded GAM method. This is what one
expect since these methods bias estimates towards zero, and the true parameter
function is zero across the whole time period.

In Figure 6.5 we reported the mean population errors of the six compared
methods in various scenarios. These mean errors allow one to judge whether the
expected error of one method will be larger than the one of another method. How-
ever, it is also interesting to inspect the population sampling variance around
these mean errors. This allows one to gauge with which probability one method
will be better than another for a given sample. We show a version of Figure 6.5
that includes the 25% and 95% quantiles of the absolute error in Appendix C.1.

Absolute Error over Time for Constant and Linear Increasing Function To in-
vestigate the behavior of the different methods in estimating parameters across
the time interval, Figure 6.6 displays the mean absolute error for each estimation
point (spanning the full period of the time series) for the constant nonzero func-
tion and the linear increasing function for n = {103,530,1803}. Note that these
results were already shown in aggregate form in Figure 6.5: for instance, the av-
erage (across time) of estimates of the stationary ℓ1-regularized method in Figure
6.6 (a) corresponds to the single data point in Figure 6.5 (a) of the same method
at n = 103.
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Figure 6.6: Mean and standard deviations of estimates for the constant parameter (left column), and
the linear increasing parameter (right column), for n = 103 (top row), n = 530 (second row) and n =
1803 (bottom row) averaged over iterations, separately for the five estimation methods: stationary ℓ1-
regularized regression (red), unregularized regression (blue), time-varying ℓ1-regularized regression
via kernel-smoothing (green), time-varying regression via GAM (pink), and time-varying regression
via GAM with thresholding at 95% CI (orange).

Panel (a) of Figure 6.6 shows the average parameter estimates of each method
for the constant function with n = 103 observations. In line with the aggregate re-
sults in Figure 6.5, the stationary methods outperform the time-varying methods,
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and the unregularized methods outperform the regularized methods. We also see
that the KS(L1) and the GAM(st) methods are biased downwards at the beginning
and the end of the time series. The reason is that less data is available at these
points, which results in stronger bias toward zero (KS(L1)) and more estimates
being thresholded to zero. When increasing n, all methods become better at ap-
proximating the constant nonzero function. This is what we would expect from
the results in Figure 6.5, which suggested that the absolute error of all methods
converges to zero as n grows.

In the case of the linear increase with n = 103 (d), we see that the time-varying
methods follow the form of the true time-varying parameter, however, some de-
viations exists. With larger n, the time-varying methods recover the linearly in-
creasing time-varying parameter with increasing accuracy. In contrast, the sta-
tionary methods converge to the best-fitting constant function. We also see that
the average estimates of the regularized methods are closer to zero than the es-
timates of the unregularized methods. However, note that, similar to panel (e)
in Figure 6.5, the regularized methods would perform better in recovering the
constant zero function.

Here we only presented the mean estimates of each method, which displays
the bias of the different methods as a function of sample size. However, it is
equally important to consider the variance around estimates. We display this
variance in Figure C.2 in Appendix C.2. This figure shows that — as expected —
the variance is very large for small n, but approaches 0 when n becomes large.

Performance in Structure Recovery In some situations the main interest may
be to recover the structure of the VARmodel, that is, we would like to knowwhich
parameters in the VAR parameter matrix are nonzero. We use two measures to
quantify the performance of structure recovery. Sensitivity, the probability that
a parameter that is nonzero in the true model is estimated to be nonzero; and
precision, the probability that a nonzero estimate is nonzero in the true model.
While higher values are better for both sensitivity and precision, different esti-
mation algorithms typically offer different trade-offs between the two. Figure 6.7
shows this trade-off for the five estimation methods.

The unregularized stationary GLM method, the unregularized KS method,
and the unthresholded time-varying GAM method have a sensitivity of 1 and a
precision of 0 for all n. This is trivially the case because these methods return
nonzero estimates with probability 1, which leads to a sensitivity of 1 and a pre-
cision of 0. Consequently, these methods are unsuitable for structure estimation.
For all remaining methods, sensitivity seems to approach 1 when increasing n,
while GLM(L1) has the highest sensitivity followed by KS(L1) and GAM(st). As
expected, the precision of these methods is stacked up in reverse.
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Figure 6.7: Sensitivity and precision for the five estimationmethods across all edge-types for different
variations of n. The lines for the unthresholded GAM(st) method and the stationary GAM method
overlap completely, since they do not return estimates that are exactly zero. Some data points are
missing because the respective models are not identified in that situation (see Section 6.3.1.2).

Computational Cost In Appendix C.3 we report the computational cost of the
time-varying methods. The main take away from these results is that computa-
tion time is not a major concern for typical psychological applications.

6.3.1.4 Discussion

The first simulation showed how the different methods perform in recovering a
VAR model with p = 10 variables based on a random graph, with linear, sigmoid,
step and constant parameter functions, with sample sizes that cover most appli-
cations in psychology. The compared methods differ in the dimensions stationary
vs. time-varying methods, unregularized vs. regularized methods, and GAM- vs.
KS-based methods. Since all these dimensions interact with each other and with
the type of time-varying parameter function they aim to recover, we discuss these
interactions separately for each parameter function.

Constant Nonzero Function In the case of the constant nonzero function the
stationary and unregularized GLM performed best, followed by the unregular-
ized time-varying KS method. It makes sense that GLM performs best, because
the true parameter function in this case is nonzero and constant across time.
The KS method performs similarly especially for small n, because the bandwidth
selection will select a very high bandwidth, which leads to a weighting that is
almost equal for all time points, which leads to estimates that are very similar
to the ones of the GLM method. The next best method is the stationary regular-
ized GLM(L1) method. This is because the regularization decreases performance
if the true parameter function is nonzero, however, it uses the correct assump-
tion that the true parameter function is constant across time. Since the ability to
estimate time-varying parameters is no advantage when estimating the constant
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nonzero function, the KS(L1) method performs worse than the GLM(L1) method.
Interestingly, the unregularized GAM function performs much worse than the
unregularized KS method. The significance-thresholded GAM(st) method per-
forms worse than the GAM method, because if the true parameter function is
nonzero, thresholding it to zero can only increase estimation error.

Linear and Sigmoid Functions The results for the linear increasing/decreasing
function are similar to the constant nonzero function, except that that all time-
varying methods have a lower absolute error than the stationary methods from
n > 234. The KS method is already better from n > 46. A difference to the con-
stant nonzero function is that the two regularized methods GLM(L1) and KS(L1)
perform best if the sample size is very small (n < 46). A possible explanation for
this difference is that the bias toward zero of the regularization is less disadvan-
tageous for the linear increasing/decreasing functions, because its parameter val-
ues are on average only half as large as for the constant nonzero function. Within
time-varying functions, the KSmethod performs better than the KS(L1) methods,
which makes sense because the true parameter function is nonzero. For the same
reason, the GLMmethod outperforms the GAM(st) method. The KSmethods per-
form better than the GAM methods for sample sizes up to n = 530. The reason
is that the estimates of the GAM methods have a larger sampling variance (see
Figure C.1 in Appendix C.1). The errors in estimating the sigmoid function are
very similar to the linear increasing/decreasing functions, since their functional
forms are very similar.

Step Function The errors in estimating the step function are again similar to
the linear and the sigmoid case, except for two differences: first, the time-varying
methods become better than the stationary methods already between n = 46 and
n = 69. And second, the regularized KS(L1) performs better than KS, and the
thresholded GAM(st) method performs better than the GAM method. The rea-
son is that in half of the time series the parameter value is zero, which can be
recovered exactly with the KS(L1) and the GAM(st) methods. This advantage
seem to outweigh the bias these methods have in the other half of the time series
in which the parameter function is nonzero.

Constant Zero Function In the case of the constant zero function the errors are
roughly stacked up the reverse order as in the constant nonzero function. The
regularized GLM(L1) and KS(L1) do best, followed by the thresholded GAM(ks)
method. Among the unregularized methods the GLM and KS methods perform
quite similarly, with the GLM method being slightly better, because the true pa-
rameter function is constant. Interestingly, the GAMmethod performs far worse,
which is again due to its high variance (see Figure C.1 in Appendix C.1).

Summary We saw that stationary methods outperform time-varying methods
when the true parameter function is a constant, and time-varying methods out-
perform stationary methods if the true parameter function is time-varying, and if
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the sample size is large enough. The sample size at which the time-varying meth-
ods become better depends on how time-varying the true parameter is: the more
time-varying it is, the smaller the sample size n at which time-varying methods
become better than stationary ones. Within time-varying methods, the KS meth-
ods outperformed the GAM methods for smaller sample sizes, while the GAM
based methods became better with very large sample sizes (n > 530).

Finally, we saw that regularized methods perform better if the true parameter
function is zero, while unregularized methods perform better if the true param-
eter function is nonzero, as expected. In order to choose between regularized
and unregularized methods, one therefore needs to judge how many of the pa-
rameters in the true time-varying VAR model are nonzero. Given the expected
sparsity of the true VAR model, one could compute a weighted average of the
errors shown in this section in order to determine which method has the lowest
overall error. However, to evaluate the performance of the different methods for
different levels of sparsity more directly, we performed a second simulation study
in which we vary the sparsity of the VAR model.

6.3.2 Simulation B: Varying Sparsity

In this simulation we evaluate the absolute estimation error of all methods for the
different parameter functions and for the combined time-varying VAR model, as
a function of sparsity. Specifically, we evaluate the estimation error of recovering
the time-varying predictors of a given variable in the VAR model, depending on
how many predictors are nonzero. From a network perspective the number of
predictors on a given node is equal to its indegree. We will vary the indegree
from 1 to 20. The average indegree in Simulation A was 1+9×P(edge) = 2.61.

6.3.2.1 Data Generation

We vary sparsity by specifying the structure of the initial VARmatrix to be upper-
triangular. We show the structure of such a matrix, and the corresponding di-
rected network in Figure 6.8. In such a model, the first variable has one predictor
(itself at t − 1), the second variables has two predictors (itself and variable 1 at
t − 1), the third variable has three predictors, etc. and the last variable has p
predictors. As defined in Section 6.2, the number of nonzero predictor variables
(or the indegree from a network perspective) is a local (i.e. for some variable X)
measure of sparsity. In the simulation we use the same initial VARmatrix, except
that we use a VAR model with p = 20 variables. All additional steps of the data
generation (see Section 6.3.1.1, and the specification of the estimation methods
(Section 6.3.1.2) are the same as in Simulation A.

134



6.3. Evaluating Performance via Simulation

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

X1,t−1 X2,t−1 X3,t−1 X4,t−1 X5,t−1 X6,t−1
X1,t 1 1 1 1 1 1
X2,t 0 1 1 1 1 1
X3,t 0 0 1 1 1 1
X4,t 0 0 0 1 1 1
X5,t 0 0 0 0 1 1
X6,t 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

1

2

3

4

5

6

Figure 6.8: Left: the upper-diagonal pattern of nonzero parameters used in the time-varying VAR
model in the second simulation, here shown for six variables. The row sums are equal to the indegree
of the respective nodes, which results in a frequency of one for each indegree value. Right: visual-
ization of the upper-diagonal pattern as a directed graph. The graph used in the simulation has the
same structure but is comprised of 20 nodes.

6.3.2.2 Results

Figure 6.9 displays the mean absolute error separately for the five different time-
varying parameter functions and for indegrees 1, 10, 20. Similarly to Simulation
A, we collapsed symmetric increasing and decreasing functions into single cate-
gories and report their average performance. The first row of Figure 6.9 shows
the performance averaged over time points and types of time-varying parameters
for indegree 1, 10 and 20. The most obvious result is that all methods become
worse when increasing the indegree. This is what one would expect since more
parameters are nonzero and more predictors are correlated. In addition, there
are several interactions between indegree and estimation methods. First, the reg-
ularized methods perform best when indegree is low, and worst when indegree
is high. This makes sense: the bias toward zero of the regularization is more
beneficial if almost all parameter functions are zero. However, if most parameter
functions are nonzero, a bias toward zero leads to high estimation error. Sec-
ond, we see that the drop in performance is lower for the GAM based methods
compared to the KS based methods. The combined results in the first row are
the weighted average of the remaining rows. The estimation errors for the time-
varying functions show a similar pattern as in Figure 6.5 of Simulation A, except
that the GAM methods perform better for indegree values 10 and 20.

6.3.2.3 Discussion

The results of Simulation B depicted the relative performance of all methods
as a function of sparsity, which we analyzed locally as indegree. As expected,
regularized methods perform better when indegree is low and worse if indegree
is high. Interestingly, among the time-varying methods, the GAM based methods
perform better than the KS based methods when indegree is high.
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Figure 6.9: The mean average error for estimates of the upper-triangular model for all five estimation
methods for the same sequence of numbers of time points n as in the first simulation. The results are
conditioned on three different indegrees (1, 10, 20) and shown averaged across (a - c) and separately
for the time-varying parameter types (d - q).

6.3.3 Overall Discussion of Simulation Results

Here we discuss the overall strengths and weaknesses of all considered methods
in light of the results of both simulations.

136



6.3. Evaluating Performance via Simulation

Stationary vs. Time-VaryingMethods We saw that stationary methods outper-
form time-varying methods if the true parameter function is constant, as one
would expect. If the parameter function is time-varying, then the stationary
methods are better for very small sample sizes, but for larger sample sizes, the
time-varying methods become better. The exact sample size n at which time-
varying methods start to perform better depends on how strongly the true pa-
rameters vary with time: the stronger the variation, the smaller the n. For the
choice of true parameter functions in our simulations, we found that the best
time-varying method outperformed the stationary methods at already n > 46.

Unregularized vs. Regularized Methods The results in both simulations
showed that if most true parameter functions are zero (high sparsity), regu-
larized methods and the thresholded GAM(st) method performed better com-
pared to their unregularized/unthresholded counterparts. On the other hand, if
most true parameter functions are nonzero (low sparsity), the unregularized/un-
thresholded functions perform better. In Simulation B we specifically mapped
out the performance of methods as a function of sparsity and found that unreg-
ularized methods are better at an indegree of 10 or larger.

Kernel-smoothing vs. GAM Methods If sparsity is high, that is, if most
parameter functions are zero, the KS based methods outperformed the GAM
based methods for most sample size regimes. Only if the sample size is very
large the GAM based methods showed a performance that is equal or slightly
better than the KS based methods. However, if sparsity is low, the GAM based
methods outperformed the KS based methods.

Accordingly, applied researchers should choose the KS based methods when
they expect the time-varying VAR model to be relatively sparse and if they only
have a moderate sample size (n < 200to300). If one expects that only few pa-
rameter functions are nonzero, the KS based method should be combined with
regularization. If one expects the parameter functions of the time-varying VAR
model to be largely nonzero, and if one has a large sample size, the GAM based
methods are likely to perform better.

Limitations Several limitations of the simulation studies require discussion.
First, the signal to noise ratio S/N = θ

σ = 3.5 in parameter values could be larger
or smaller in a given application and the performance results would accordingly
be better or worse. Similarly, the signal to noise ratio would be smaller if we
increased the number of variables p, because more parameters have to be esti-
mated. However, note that S/N is also a function of n. Hence if we assume a
lower S/N this simply means that we need more observations to obtain the same
performance, while all qualitative relationships between time-varying parame-
ters, structure in the VAR model and estimators remain the same.

Second, the time-varying parameters could be more time-varying. For exam-
ple, we could have chosen functions that go up and down multiple times instead
of being monotone increasing/decreasing. However, for estimation purposes, the
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extent to which a function is time-varying is determined by how much it varies
over a specified time period relative to how many observation are available in the
time period. Thus the n-variations can also be seen as a variation of the extent to
which parameters are varying over time: From this perspective, the time-varying
parameter functions with n = 20 are very much varying over time, while the pa-
rameter functions with n = 1808 are hardly varying over time. Since we chose
n-variations stretching from unacceptable performance (n = 20) to very high per-
formance (n = 1808), we simultaneously varied the extent to which parameters
are time-varying.

Third, we only investigated time-varying VAR models with p = 10 variables
and a single lag. In terms of the performance in estimating (time-varying) VAR
parameters, adding more variables or lags boils down to increasing the indegree
of a VAR model with a single lag and fixed p. In general, the larger the indegree
and the higher the correlations between the predictors, the harder it is to estimate
the parameters associated with a variable. Part of the motivation for Simulation
B in Section 6.3.2 was to address this limitation.

Finally, we would like to stress that all statements with respect to sample
size refer to the effective sample size available to estimate the VAR model. We
mention this because the effective sample size that is used to estimate a VAR
model is often considerably lower than the number of measurement points in
an ESM study. This is both because of planned (e.g., at the day/night shift) and
unplanned missing values. For example, if an ESM study has five measurements
a day with a measurement interval of 3h and the fourth measurement is missing,
then the effective sample size is only three, because only for three time points (2,
3, and 4) a measurement 3h before is available.

6.4 Estimating time-varying VAR model on Mood
Time Series

In this section we provide a step-by-step tutorial on how to estimate a time-
varying VAR model on a mood time series using the KS(L1) method. In addi-
tion, we show how to compute time-varying prediction errors for all nodes, how
to assess the reliability of all estimates, and how to visualize some aspects of
the estimated time-varying VAR model. Finally, we briefly discuss how to se-
lect between stationary and time-varying models. All analyses are performed
using the R-package mgm (version 1.2-8) (Haslbeck & Waldorp, 2020) and R-
version 3.6.0, and the code below can also be found as an R-file on Github:
https://github.com/jmbh/tvvar paper. In Appendix C.5 we show how to fit
the same model with the GAM(st) method using the R-package tvvarGAM.

6.4.1 Data

We illustrate how to fit a time-varying VARmodel on a symptom time series with
12 variables related to mood measured on 1476 time points during 238 consec-
utive days from an individual diagnosed with major depression (Wichers et al.,
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2016). The measurements were taken at 10 pseudo-randomized time intervals
with average length of 90 minutes between 07:30 and 22:30. During the mea-
sured time period, a double-blind medication dose reduction was carried out,
consisting of a baseline period, the dose reduction, and two post assessment pe-
riods (See Figure 6.10, the points on the time line correspond to the two dose
reductions). For a detailed description of this data set see Kossakowski et al.
(2017).

6.4.2 Load R-packages and Dataset

The above described symptom dataset automatically available when loading the
R-package mgm. After loading the package, we subset the 12 mood variables
contained in this dataset:

library(mgm) # Version 1.2-8

mood_data <- as.matrix(symptom_data$data[, 1:12]) # Subset variables

mood_labels <- symptom_data$colnames[1:12] # Subset variable labels

colnames(mood_data) <- mood_labels

time_data <- symptom_data$data_time

The object mood_data is a 1476 × 12 matrix with measurements of 12 mood
variables:

> dim(mood_data)

[1] 1476 12

> head(mood_data[,1:7])

Relaxed Down Irritated Satisfied Lonely Anxious Enthusiastic

[1,] 5 -1 1 5 -1 -1 4

[2,] 4 0 3 3 0 0 3

[3,] 4 0 2 3 0 0 4

[4,] 4 0 1 4 0 0 4

[5,] 4 0 2 4 0 0 4

[6,] 5 0 1 4 0 0 3

The matrix time_data contains information about the time stamps of each
measurement. This information is needed for the data preprocessing in the next
section.

> head(time_data)

date dayno beepno beeptime resptime_s resptime_e time_norm

1 13/08/12 226 1 08:58 08:58:56 09:00:15 0.000000000

2 14/08/12 227 5 14:32 14:32:09 14:33:25 0.005164874

3 14/08/12 227 6 16:17 16:17:13 16:23:16 0.005470574

4 14/08/12 227 8 18:04 18:04:10 18:06:29 0.005782097

5 14/08/12 227 9 20:57 20:58:23 21:00:18 0.006285774

6 14/08/12 227 10 21:54 21:54:15 21:56:05 0.006451726
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For a sizable number of measurement points the individual did not provide a
response. The mgm package takes care of this automatically, by only using those
time points to estimate a VAR(1) model for which a measurement at the previous
time point is available.

Some of the variables in this data set are highly skewed, which can lead to
unreliable parameter estimates. Here we deal with this issue by computing boot-
strapped confidence intervals (KSmethod) and credible intervals (GAMmethod),
to judge how reliable the estimates are. Since the focus in this tutorial is on esti-
mating time-varying VARmodels, we do not investigate the skewness of variables
in detail. However, in practice the marginal distributions should always be in-
spected before fitting a (time-varying) VARmodel. A possible remedy for skewed
variables is to transform them, typically by taking a root, the log, or transforma-
tions such as the nonparanormal transform (Liu, Lafferty, & Wasserman, 2009).
A disadvantage of this approach is that the parameters are more difficult to inter-
pret. For example, if applying the log-transform to X, then the cross-lagged effect
βX,Y of Y on X is interpreted as “When increasing Y at t − 1 by 1 unit, the log of
X at t increases by βX,Y , when keeping all other variables at t − 1 constant”.

6.4.3 Estimating Time-Varying VARModel

Here we describe how to use the function tvmvar() of the mgm package to es-
timate a time-varying VAR model. A more detailed description of this function
can be found in the help file ?tvmvar. After providing the data via the data
argument, we specify the type and levels of each variable. The latter is nec-
essary because mgm allows one to estimate models including different types of
variables. In the present case we only have continuous variables modeled as con-
ditional Gaussian distributions, and we therefore specify type = rep("g", 12).
By convention the number of levels for continuous variables is specified as one
level = rep(1, 12).

Via the argument estpointswe specify that we would like to have 20 estima-
tion points that are equally spaced across the time series (for details see ?tvmvar).
The number of estimation points can be chosen arbitrarily large, however at some
point adding more estimation points becomes useless because adjacent estima-
tion points become indistinguishable. Via the argument timepoints we provide
a vector containing the time point of each measurement. The time points are
used to distribute the estimation points correctly on the time interval. If no
timepoints argument is provided, the function assumes that all measurement
points are equidistant. See Section 2.5 in Haslbeck and Waldorp (2020) for a
more detailed explanation how the time points are used in mgm and an illustra-
tion of the problems following from incorrectly assuming equidistant measure-
ment points.

Next, we specify the bandwidth parameter b, which determines how many
observations close to an estimation point are used to estimate the model at
that point. Here we select b = 0.34, which we obtained by searching a candi-
date sequence of bandwidth parameters, and selected the value that minimized
the out-of-bag cross-validation error. The latter is implemented in the function
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bwSelect() (for details on this time-stratified cross-validation scheme see Sec-
tion 6.3.1.2). Since bwSelect() repeatedly fits time-varying VAR models with
different bandwidth parameters, the specification of bwSelect() and the estima-
tion function tvmvar are very similar. We therefore refer the reader for the code
to specify bwSelect() to Appendix C.4.

After that we provide the number of the notification on a given day and the
number of the day itself via the arguments beepvar and dayvar, respectively.
This information is used to exclude cases from the analysis which do not have
sufficient previous measurements to fit the specified VAR model. This can be
both due to randomly missing data, or because of missingness by design. In the
present dataset we have both: within a given day the individual did not always
answer at all 10 times. And by design, there is a break between day and night.
When not considering the correct successiveness the estimated parameters do
not only reflect effects from tt−1 on t but also effects over (possibly) many other
time-lags (for instance 10h over night instead of the intended 1h30).

Via the argument lags = 1 we specify to fit a first order VAR model and
specify with the argument lambdaSel = "CV" to select the penalty parameters
λwith cross-validation. Finally, with the argument scale = TRUEwe specify that
all variables should be scaled to mean zero and standard deviation 1 before the
model is fit. This is recommended when using ℓ1-regularization, because other-
wise the strength of the penalization of a parameter depends on the variance of
the predictor variable (see Hastie et al., 2015, p. 9). Since the cross-validation
scheme uses random draws to define the folds, we set a seed to ensure repro-
ducibility.

set.seed(1)

tvvar_obj <- tvmvar(data = mood_data,

type = rep("g", 12),

level = rep(1, 12),

lambdaSel = "CV",

timepoints = time_data$time_norm,

estpoints = seq(0, 1, length = 20),

bandwidth = 0.34,

lags = 1,

beepvar = time_data$beepno,

dayvar = time_data$dayno,

scale = TRUE)

Before looking at the results we check howmany of the 1476 time points were
used for estimation, which is shown in the summary that is printed when calling
the output object in the console:

> tvvar_obj

mgm fit-object

Model class: Time-varying mixed Vector Autoregressive (tv-mVAR) model

Lags: 1

Rows included in VAR design matrix: 876 / 1475 ( 59.39 %)
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Nodes: 12

Estimation points: 20

This means that the VAR design matrix that is used for estimation has 876
rows. One of the removed time points is the first time point, since it does not have
a previous time point. Other time points were excluded because of (a) missing
measurements during the day or (b) the day-night break. As an example, from
the six rows of the time stamps shown above, we could use three time points,
since a measurement at the previous time point is available.

The absolute values of the estimated VAR coefficients are stored in the object
tvvar_obj$wadj, which is an array of dimensions p×p×lags×estpoints, lags is the
number of lags, and estpoints is the number of estimation points. For example,
the array entry tvvar_obj$wadj[1, 3, 1, 9] returns the cross-lagged effect of
variable 3 on variable 1 with the first specified lag size (here 1) at estimation
point 9. Due to the large number of estimated parameters, we do not show this
object here but instead visualize some aspect of it in Figure 6.10. The signs of all
parameters are stored separately in tvvar_obj$signs, because signs may not be
defined in the presence of categorical variables (which is not the case here). The
intercepts are stored in tvvar_obj$intercepts.

6.4.4 Assessing Reliability of Parameter Estimates

To judge the reliability of parameter estimates, we approximate the sampling dis-
tribution of all parameters using the nonparametric block bootstrap. The func-
tion resample() implements this bootstrap scheme and returns the sampling dis-
tribution and a selection of its quantiles of each parameter. First we provide the
model object object = tvvar_obj and the data data = mood_data. resample()
then fits the model specified as in tvvar_obj on 50 (nB = 50) different block
bootstrap samples, where we specify the number of blocks via blocks. The ar-
gument seeds provides a random seed for each bootstrap sample and quantiles
specified the quantiles shown in the output.

res_obj <- resample(object = tvvar_obj,

data = mood_data,

nB = 50,

blocks = 10,

seeds = 1:50,

quantiles = c(.05, .95))

The p × p × lags × estpoints × nB array res_obj$bootParameters contains
the sampling distribution of each parameter. For instance, the array entry
res_obj$bootParameters[1, 3, 1, 9, ] contains the sampling distribution of
the cross-lagged effect of variable 3 on variable 1 with the first specified lag size
(here 1) at time point 9. Due to its size, we do not show this object here but show
the 5% and 95% quantiles of the empirical sampling distribution of three time-
varying parameters in Figure 6.10. Also note that the resampling procedure is
computationally expensive. With 50 bootstrap samples as specified above, the
resample() runs approximately 10 minutes.
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It is important to keep in mind that the quantiles of these bootstrapped sam-
pling distributions are not confidence intervals around the true parameter. The
reason is that the ℓ1-penalty biases all estimates and hence the whole sampling
distribution towards zero which implies that the latter is not centered on the true
parameter value.

6.4.5 Computing Time-Varying Prediction Error

Here we show how to compute time-varying nodewise prediction errors. Node-
wise prediction errors indicate how well the model fits the data on an absolute
scale and is therefore useful to judge the practical relevance of (parts of) a VAR
model. See Haslbeck and Waldorp (2018) for a detailed description of node-
wise prediction error (or predictability) in the context of network models and
Haslbeck and Fried (2017) for an analysis of predictability in 18 datasets in the
field of psychopathology.

The function predict() computes predictions and prediction errors from a
givenmgmmodel object. We first provide the model object object = tvvar_obj
and the data data = mood_data. We then specify the desired types of pre-
diction, here R2 for the proportion of explained variance and RMSE for the
Root Mean Squared Error. tvMethod = "weighted" specifies how to com-
bine all time-varying models to arrive at a single prediction for each variable
across the whole time series (for details see ?predict). Finally, we provide
consec = time_data$beepno for the same reasons as above.

pred_obj <- predict(object = tvvar_obj,

data = mood_data,

errorCon = c("R2", "RMSE"),

tvMethod = "weighted",

consec = time_data$beepno)

The predictions are stored in pred_obj$predicted and the error of the pre-
dictions of all time-varying models combined are in pred_obj$errors:

> pred_obj$errors

Variable Error.RMSE Error.R2

1 Relaxed 0.939 0.155

2 Down 0.825 0.297

3 Irritated 0.942 0.119

4 Satisfied 0.879 0.201

5 Lonely 0.921 0.182

6 Anxious 0.950 0.086

7 Enthusiastic 0.922 0.169

8 Suspicious 0.818 0.247

9 Cheerful 0.889 0.200

10 Guilty 0.928 0.175

11 Doubt 0.871 0.268

12 Strong 0.896 0.195

The prediction errors of each time-varying model separately are stored in
pred_obj$tverrors. Note that here we weight the errors using the same weight
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vector as used for estimation (see Section 6.2.3). For details see ?predict.mgm.
In the following section we visualize the time-varying nodewise estimation error
for a subset of estimation points.

6.4.6 Visualizing Time-Varying VAR model

Figure 6.10 visualizes a part of the time-varying VAR parameters estimated
above.
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Figure 6.10: Top row: visualization of VAR(1) models at estimation points 2, 10 and 18. Blue solid ar-
rows indicate positive relationships, red dashed arrows indicate negative relationships, and the width
of the arrows is proportional to the absolute value of the corresponding parameter. The self-loops in-
dicate autocorrelations. The colored parts of the ring around each node represents the respective
within sample proportion of explained variance (R2). Bottom row: three parameters plotted as a
function of time; the points are the point estimate obtained from the full dataset, the shaded ar-
eas indicate the 5% and 95% quantiles of the bootstrapped sampling distribution at each estimation
point.

The top row shows visualizations of the VAR parameters for the estimation
points 2, 10 and 18. Blue solid arrows indicate positive relationships, red dashed
arrows indicate negative relationships. The width of the arrows is proportional
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to the absolute value of the corresponding parameter. The grey part of the ring
around each node indicates the proportion of explained variance of each vari-
ables by all other variables in themodel. Comparing the VAR estimates across the
three shown estimation points reveals that some parameters are strongly time-
varying. For example, there is an autocorrelation effect of Relaxed at estimation
point 2, which becomes smaller at estimation point 10 and vanishes at estima-
tion point 18. On the other hand, the cross lagged effects Strongt−1 → Satisfiedt
and Satisfiedt−1 → Guiltyt are equal to zero at estimation point 2 and become
larger in absolute value at estimation points 10 and 18. To better evaluate the
time-varying nature of those three parameters we plot them as a line graph in the
lower panel of Figure 6.10. Aligning time-varying parameter functions with ad-
ditional information available about an individual may allow one to explain the
changes in parameters. For example, we see that the three time-varying parame-
ters in the lower panel show their largest change after the second reduction of the
antidepressant medication. This suggests that the medication reduction could be
part of the explanation for this change in parameters. Next to individual inter-
action parameters, possible analyses can also focus on the changes in intercepts
or aggregates of several parameters. For example, one could investigate how the
density of the entire or parts of the VAR model changes across time. The code
to fully reproduce Figure 6.10 is not shown here due to its length, but can be
obtained from Github (https://github.com/jmbh/tvvar paper).

6.4.7 Selecting between Stationary and Time-varying Models

While model selection between stationary and time-varying models is not the
topic of this paper and requires a separate treatment to be addressed adequately,
we briefly comment on this issue in relation to the methods presented here. One
possible way to select between a stationary and a time-varying (VAR) model is to
divide the time series into a training and test set. Then one can fit each model
on the training set and evaluate on the test set which model has the lower pre-
diction error. In fact, this is the procedure that is implemented in the function
bwSelect() which we used in Appendix C.4 to select an appropriate bandwidth
parameter, and which we described in detail in Section 6.3.1.2. Thus, if one in-
cludes large bandwidths (b > 1) that are essentially leading to the same estimates
as a stationarymodel, this bandwidth selection procedure includes a model selec-
tion procedure between stationary and time-varying models. However, selecting
a (roughly) stationary model with this procedure does not necessarily imply that
the data generating process is stationary. The reason is that the procedure strikes
a balance between stability of estimates and sensitivity to estimate time-varying
parameters. If the sample size is low, the procedure will therefore select a sta-
tionary model even if the data generating process is time-varying.

Another possibility is to rely on information criteria such as the AIC (see e.g.,
Bringmann et al., 2018). Finally, one could construct a hypothesis test with the
null hypothesis that the data generating process is stationary VAR model. This
could be done by estimating a stationary VAR model on the data set at hand,
and then generating B time series of the same length as the original time se-
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ries from this model. Then one fits a time-varying VAR model to each of those
data sets and records a mean (over variables) prediction error. This way we ob-
tain the sampling distribution of the prediction error under the null hypothe-
sis, and we can perform a hypothesis test using the prediction error of the time-
varying VAR model on the actual data as the test-statistic. We could for instance
set α = 0.05, which would mean that we would accept the time-varying model
if its error is smaller than the 5% quantile of the sampling distribution. For
the data in this tutorial this leads to the rejection of the null-hypothesis, which
means that the data generating mechanism is not a stationary VAR model and
it is therefore more appropriate to fit a time-varying VAR model. We provide
the code to reproduce this test on in the supplementary materials and Github
https://github.com/jmbh/tvvar paper.

6.5 Discussion

We compared the performance of GAM and kernel-smoothing (KS) based meth-
ods in combination with and without regularization in estimating time-varying
VAR models in situations that are typical for psychological applications. Our
simulation results allow researchers to select the best method amongst the ones
we considered based on sample size and their assumptions about the sparsity
of the true VAR model. In addition, we provided step-by-step tutorials for the
KS based method using the R-package mgm (Section 6.4) and for the GAM based
method using the R-package tvvarGAM (Appendix C.5).

Next to assessing the relative performance of different methods, our paper
also provides the first overview of how many observations are roughly necessary
to estimate time-varying VAR models. For the time-varying functions studied in
our paper, already for n > 46 the best time-varying method outperformed sta-
tionary methods, suggesting that time-varying methods can be applied to typical
ESM data. However, it is important to keep in mind that if the sample size is low,
the time-varying methods return very similar estimates as their stationary coun-
terparts. Thus, if the true parameter function is heavily depending on time, and
the sample size is small, time-varying methods will not be able to recover most
of this dependency on time.

There are several interesting avenues for future research on time-varying VAR
models. First, in the present paper we focused on frequentist methods. How-
ever, time-varying VAR models can also be estimated in a Bayesian framework
(Krueger, 2015). It would be interesting to compare the performance of these
methods to the methods presented in this paper. Second, the methods presented
here could be extended to beyond the standard VARmodels. Examples are mixed
VAR models, which allow to jointly model variables defined on different do-
mains (Haslbeck & Waldorp, 2020), unified Structural Equation Models (SEM)
that allow an extension of SEMmodels to different domains (J. Kim, Zhu, Chang,
Bentler, & Ernst, 2007), or the graphical VARmodel (Abegaz &Wit, 2013), which
estimates both the VAR parameters and the residual structure Σ (see Section
6.2.1). In this model, identifying time-varying parameters is especially impor-
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tant, because spurious relations in the residual structure can be induced by time-
varying parameters. Third, all methods discussed in this paper are based on the
assumption that the true parameters are smooth functions of time. However, in
some situations it might be more appropriate to assume different kinds of local
stationarity, for example piece-wise constant functions (e.g., Gibberd & Nelson,
2017; Bringmann & Albers, 2019). It would be useful to make those alternative
estimation methods available to applied researchers, and possibly combine them
with the methods presented here. Fourth, the Gaussian kernel in the KS method
could be replaced by kernels with finite domains such as the box car function, in
order to improve the computational efficiency of the algorithm. Finally, in this
paper we focused on the population performance of the two presented methods
in a variety of settings. However, we did not discuss in detail how to select be-
tweenmodels (for example stationary vs. time-varying) in a practical application.
Bringmann et al. (2018) analyzed the performance of information criteria for se-
lecting between stationary and time-varying VAR models with two variables. We
believe that a conclusive discussion of different model selection strategies in a
variety of realistic situations would be an important avenue for future work.
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Chapter 7

Selecting between AR and

VARModels

Abstract

Time series of individual subjects have become a common data type in
psychological research. The Vector Autoregressive (VAR) model, which
predicts each variable by all variables including itself at previous time
points, has become a popular modeling choice for these data. However,
the number of observations in typical psychological applications is of-
ten small, which puts the reliability of VAR coefficients into question. In
such situations it is possible that the simpler AR model, which only pre-
dicts each variable by itself at previous time points, is more appropriate.
Bulteel, Mestdagh, Tuerlinckx, and Ceulemans (2018) used empirical data
to investigate in which situations the AR or VAR models are more appro-
priate and suggest a rule to choose between the two models in practice.
We provide an extended analysis of these issues using a simulation study.
This allows us to (1) directly investigate the relative performance of AR
and VAR models in typical psychological applications, (2) show how the
relative performance depends both on n and characteristics of the true
model, (3) quantify the uncertainty in selecting between the two models,
and (4) assess the relative performance of different model selection strate-
gies. We thereby provide a more complete picture for applied researchers
about when the VAR model is appropriate in typical psychological appli-
cations, and how to select between AR and VAR models in practice.

This chapter has been adapted from: Dablander F.*, Ryan O.* & Haslbeck J. M. B.* (under revi-
sion). Choosing between AR(1) and VAR(1) Models in Typical Psychological Applications. Preprint:
https://psyarxiv.com/qgewy/
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7.1 Introduction

Time series of individual subjects have become a common data type in psycho-
logical research since collecting them has become feasible due to the ubiquity of
mobile devices. First-order Vector Autoregressive (VAR) models, which predict
each variable by all variables including itself at the previous time point, are a nat-
ural starting point for the analysis of dependencies across time in such data and
are already used extensively in applied research (e.g., Bringmann et al., 2013; Pe
et al., 2015; Fisher et al., 2017; Snippe et al., 2017; Groen et al., 2019).

An acute question that arises when using these models is: how reliable are the
estimates of the single-subject VARmodel, given the typically short time series in
psychological research (i.e., n ∈ [30,200])? To be more precise, we would like to
know how large the estimation error is in this setting. Estimation error is defined
as the distance between the estimated parameters and the parameters in the true
model, assuming that the true model has the same parametric form as the esti-
mated model. If estimation error is large, it might be possible to obtain a smaller
estimation error by choosing a simpler model, even though it is less plausible
than the more complex model (J. H. Friedman, 1997). A possible simpler model
in this setting is the first-order Autoregressive (AR) model, in which each vari-
able is predicted only by itself at the previous time point. While the AR model
introduces a strong bias by setting all interactions between variables to zero, it can
have a lower estimation error when the number of available observations is small.
When analyzing time series in psychological research it is therefore important to
know (a) in which settings the AR or the VARmodel has a lower estimation error,
and (b) how to choose between the two models in practice.

Bulteel et al. (2018) identified these important and timely questions, and of-
fered answers to both. They investigated question (a) regarding the relative per-
formance of AR and VAR models by selecting three empirical time series data
sets, each consisting of a number of individual time series with the same data
structure. For each of these data sets, they approximate the out-of-sample pre-
diction error with out-of-bag cross-validation error for both the AR and the VAR
model and their mixedmodel versions. The authors make a valuable contribution
by assessing which of the many cross-validation schemes available for time series
approximates prediction error best in this context. Using the approximated pre-
diction error obtained via cross-validation, they find that the prediction error for
AR is smaller than for VAR, and that the prediction error of mixed AR and mixed
VAR is similar. In a last step, they link prediction and estimation error by stating
that “[...] the number of observations T [here n] that is needed for the VAR to be-
come better than the AR is the same for the prediction MSE [mean squared error]
as well as for the parameter accuracy [estimation error]” (Bulteel et al., 2018, p.
10). Although the latter statement implies that the estimation error of mixed AR
and mixed VAR models are similar, Bulteel et al. (2018) conclude that “[...] it is
not meaningful to analyze the presented typical applications with a VAR model”
(p. 14) when discussing both mixed and single-subject models.

Using their statement about the link between prediction error and estimation
error, together with a preference towards parsimony, Bulteel et al. (2018) also of-
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fer an answer to question (b) on how to choose between the AR and VAR models
in practice: they suggest using the “1 Standard Error Rule”, according to which
one should select the AR model if its prediction error is not more than one stan-
dard error above the prediction error of the VAR model, and select the model
with lowest prediction error otherwise (Hastie, Tibshirani, & Friedman, 2009, p.
244).

In this commentary, we provide an extended analysis of the problems studied
by Bulteel et al. (2018). First, regarding question (a) on the relative performance
of AR and VAR models: when the goal is to determine the estimation error in
a given setting, one can obtain it directly with a simulation study. A simulation
study allows for a more extensive analysis of this problem for three reasons. First,
we do not need tomake any claim about the relation between prediction error and
estimation error, which — as we will show— turns out to be non-trivial. Second,
in a simulation study we can average over sampling variance which allows us
to compute the expected value of estimation (and prediction) error. While the
approach of Bulteel et al. (2018) in using three empirical datasets has the benefit
of ensuring the models considered mirror data from psychological applications,
these empirical datasets are naturally subject to sampling variation. And third,
a simulation study allows us to map out the space of plausible VAR models and
base our conclusions on this large set of VAR models instead of the VAR models
estimated from the three data sets used by Bulteel et al. (2018). In Section 7.2 we
perform such a simulation study, which allows us to give a direct answer to the
question of how large the estimation errors of AR and VAR models are in typical
psychological applications.

Regarding question (b) on choosing between AR and VAR models in prac-
tice, Bulteel et al. (2018) base their “1 Standard Error Rule” (1SER) on the idea
that the n at which the estimation errors of the AR and VAR models cross is (ap-
proximately) the same n at which the prediction errors cross, combined with a
preference towards the more parsimonious model. While the 1SER is used as a
heuristic used in the statistical learning literature (Hastie et al., 2009), it is not
clear why this heuristic would perform better in the present problem than simply
selecting the model with the lowest prediction error. In Section 7.3 we show that
when choosing between AR and VARmodels, the n at which prediction errors be-
come equal is not necessarily the same as the n at which estimation errors become
equal: in fact, there is a substantial degree of variation in how the prediction and
estimation errors of both models cross. Using the relationship between estima-
tion and prediction error we are able to show via simulation when the 1SER is
expected to perform better than selecting the model with lowest prediction error.
This extended analysis of the problem studied by Bulteel et al. (2018) provides
a more complete picture for applied researchers about when the VAR model is
appropriate in typical psychological applications, and how to select between AR
and VAR models in practice.
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7.2 When does VAR outperform AR?

In this section we report a simulation study which directly answers the question
of how large the estimation errors of AR and VAR models are in typical psycho-
logical applications. This allows the reader to get an idea of how many observa-
tions ne one needs, on average, for the VAR model to outperform the AR model.
In addition, we will decompose the variance around those averages in sampling
variation and variation due to differences in the VAR parameter matrix Φ. Fi-
nally, explaining the latter type of variation allows us to obtain ne conditioned
on characteristics of Φ.

7.2.1 Simulation Setup

Since the AR model is nested under the more complex VAR model, we focus
solely on the VAR as the true data-generating model. To obtain realistic VAR
models, we use the following approach: first, we estimate a mixed VAR model
to the “MindMaastricht” data (Geschwind, Peeters, Drukker, van Os, & Wichers,
2011), which consists of 52 individual time series with on average n = 41 mea-
surements on p = 6 variables, and is the only publicly available data set used by
Bulteel et al. (2018). In a second step, we sample stationary VAR models with a
diagonal error covariance matrix from this mixed model.

We expect that the estimation (and prediction) errors of the AR and VAR
model depend not only on the number of observations n, but also on the char-
acteristics of the underlying p×p VAR model matrixΦ. We therefore stratify the
sampling process from the mixed model by two characteristics ofΦ. This proce-
dure allows us to obtain a better picture of how the performance of AR and VAR
may differ depending on the characteristics of the data generating model.

The first characteristic is based on the relative size of the auto-regressive (Φii )
and cross-lagged effects (Φij , i ! j), operationalized as the ratio

R =
1

p

p
∑

i=1

|Φii | /
1

p(p − 1)

p
∑

i=1

p
∑

j!i

|Φij | .

We expect that true VAR models with a large R value (i.e., large auto-regressive
effects and small cross-lagged effects) result in a low estimation error for ARmod-
els, since these VAR models are very similar to an AR model. In contrast, if R is
small, we expect that the estimation error of the ARmodel is large, because it sets
the large cross-lagged effects in the true VAR model to zero.

The second characteristic we consider is based on the eigenvalues λ of the
Φ matrix, which are commonly used to describe VAR models in the time-series
literature (Hamilton, 1994). The absolute value of the eigenvalues encodes in-
formation about the dynamics described by Φ, with higher absolute eigenvalues
denoting a relatively larger carry-over of information from one time-point to the
next. We summarize the information contained in λ by taking the mean of their
absolute values, also referred to here as the dimensionality D, given as
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D =
1

p

p
∑

i=1

|λi | ,

where |λi | is the absolute value of the ith eigenvalue of Φ, and where, to ensure
stationarity, only Φ matrices with |λ| < 1 are included in our analysis. As the
eigenvalues are a function of the auto-regressive and cross-lagged parameters, R
and D are distinct yet correlated characteristics of the VAR model.

Ideally, we would stratify by sampling a fully crossed grid of R and D val-
ues. However, this is not possible since both measures are correlated and thus
some combinations have an extremely small probability. We therefore adopt the
following approach: we define a grid of cells with width/height 0.5 on the R-D
plane (see Figure 7.4) and sample 1000 VAR models. We then include only those
cells in the design in which at least one VAR model has been sampled (see Fig-
ure 7.2 in Appendix D.1). This procedure returned 60 non-empty cells. We then
sample those 60 cells until each of them contains 100 VAR models. We keep the
cell size constant to render the results comparable across cells (see Appendix D.1
for a detailed description of this procedure).

This procedure returns a set of 60 × 100 = 6000 VAR models that includes
essentially any stationary VAR model with p = 6 variables, and allows us to
describe each model in the dimensions R and D. For each of these VAR mod-
els, we generate 100 independent time series with n = 500 observations, with
a burn-in of nburn = 100. We then estimate both the AR and the VAR model
on n = {8,9, . . . ,499,500} observations. For each model, and each n, we compute
the expected estimation error for both the AR model (EEAR) and the VAR model
(EEVAR) model by averaging over the 100 independent time series. This means
that while EEAR and EEVAR have different values depending on n and the under-
lying model, we have averaged over the sampling variation.

7.2.2 Simulation Results

The simulation described above allows us to investigate the relative perfor-
mance of AR and VAR models across different samples, sample sizes, and data-
generating models. We define the estimation error as the mean squared error of
the estimated parameters to the true parameters, and quantify the relative perfor-
mance with two measures: the difference between the estimation errors of the AR
and VAR models at a particular sample size, EEDiff = EEAR − EEVAR; and, ne, the
sample size at which the VAR model outperforms the AR model (EEAR > EEVAR).
In the following we examine the mean and variance of EEDiff and subsequently
study ne and its dependence on the characteristics of the true VAR model.
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Figure 7.1: Difference in estimation error of AR and VAR models (EEDiff) across n on three different
levels of aggregation. Panel (a) shows EEDiff averaged over iterations andmodels, and the band shows
the standard deviation over iterations and models; panel (b) shows EEDiff for each model averaged
across iterations; and panel (c) shows the EEDiff averaged over iterations for three specific models,
and the bands show the standard deviation across 100 iterations (sampling variation).

Figure 7.1 (a) shows the mean and standard deviation of EEDiff as a function
of n, across all 6000 VARmodels and 100 iterations. The dashed line at EEDiff = 0
indicates the point at which the estimation errors of the two models are equal.
Below that line, the AR model performs better, that is, its parameter estimates
are closer to the parameters of the true VAR model than the parameter estimates
of the VARmodel. We see that, across all models, ne = 92 (median). Note that, out
of all 600,000 simulated data sets, in only 327 cases the estimation error curves
did not yet cross with an n of 500. Notably, the variance around the difference
in estimation error is substantial for all n. In the following we decompose this
variance in variance due to sampling error, and variance due to differences in
VAR matrices.

Panel (b) of Figure 7.1 displays the mean EEDiff for each of the 6000 VAR
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models, averaged across 100 iterations. We see that the lines differ considerably
and that ne substantially depends on the characteristics of the true VAR model.
This shows that one cannot expect reliable recommendations with respect to ne
that ignore the characteristics of the generating model. To illustrate the extent
of the sampling variation of the models, we have chosen three particular VAR
models (see colored lines). Figure 7.1 (c) shows that they exhibit considerable
sampling variation. Note that, as the variance in (b) is due to differences in mean
performance across VAR models, it does not decrease with n. In contrast, the
variance in (c) depends on n as it pertains to the sampling variance of a single
VAR model, which decreases with the square root of the number of observations.
While the mean EEDiff (shown in Figure 7.1 (a)) gives a clear answer to the ques-
tion of which n is required for the VAR model to outperform the AR model on
average, both types of variations (see Figure 7.1 (b) and (c)) show that for any par-
ticular VAR model it is difficult to determine which model performs better with
the sample sizes typically available in psychological applications. However, we
see that the sampling variation is smaller than the variation across VAR models
for most n. This means that one can make much more precise statements about
the relative performance if one specifies the data generating model.
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Figure 7.2: Left: ne, the n at which estimation error becomes lower for the VAR than for the ARmodel,
as a function of D and R. Right: sampling distribution of ne, the n at which the expected estimation
error of the VAR model becomes lower than the expected estimation error of the AR model. The
dashed line indicates the median of 92.

The large degree of variation around EEDiff also highlights the potential pit-
falls of generalizing the findings of Bulteel et al. (2018) beyond the empirical data
sets, which consist of 28, 52, and 95 individual time-series with an average num-
ber of 41, 70 and 70 time points, analyzed by the original authors. This is because
(i) it is unlikely that their (in total) 175 time series appropriately represent the
population of all plausible VAR matrices, (ii) their sample is subject to a substan-
tial amount of sampling variation, and (iii) the absence of systematic variations
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of n does not allow a comprehensive answer to how relative performance relates
to sample sizes in principle.

Above we suggested that the relative performance of AR and VAR models
(quantified by EEDiff) depends on the characteristics R and D of the true VAR
parameter matrix. In Figure 7.2 (a) we show the average (across models in cells)
n at which the estimation error of VAR becomes smaller than the estimation of AR
(i.e., EEDiff > 0). We see that the larger the dimensionality D, and the smaller the
ratio R, the lower the n at which VAR outperforms AR. This is what one would
expect: for large R values, which reflects small off-diagonal elements, the true
VAR model is actually very close to an AR model. In such a situation, the bias
introduced by the AR model by setting the off-diagonal elements to zero leads
to a relatively small estimation error. It therefore takes a considerable amount
of observations until the variance of the VAR estimates becomes small enough to
outperform the AR model.

In contrast, if R is small, which reflects large off-diagonal elements, the bias of
the AR model leads to a comparatively larger estimation error. In this situation
the VAR model, regardless of the high variance of its parameter estimates, can
already outperform the AR model. This trade-off between a simple model with
high bias but low variance and a more complex model with low bias but high
variance is well-known in the statistical literature as the bias-variance trade-off
(Hastie et al., 2009). Note that the characteristics R and D explain the vertical
variation of the estimation error curves shown in Figure 7.1 (a): the curves on
top (small ne) have have high D and low R, while the the curves at the bottom
(large ne) have low D and high R. Figure 7.2 (b) collapses across these values and
illustrates the sampling distribution of ne, taking into account the probability of
any particular VAR matrix (as specified by the mixed model estimated from the
“MindMaastricht” data).

In summary, we used a simulation study to investigate the relative perfor-
mance of AR and VARmodels in amuch larger space of plausible data-generating
VAR models in psychological applications than considered by Bulteel et al.
(2018). Next to investigating the average relative performance as a function of
n, we also looked into the variation around averages. We showed that there is
substantial variation both due to sampling error and differences in VAR matri-
ces, which means that for a particular time series at hand it is difficult to select
between AR and VAR with the n available in typical psychological applications.
Finally, we confirmed the intuition that the relative performance depends on the
characteristics of the true VAR matrix.

7.3 Choosing between VAR and AR based on Predic-
tion Error

In the previous section, we directly investigated the estimation errors of the AR
and the VARmodel in typical psychological applications and showed that the n at
which VAR becomes better than AR depends substantially on the characteristics
of the true model. In practice, the true model is unknown, so we can neither
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look up the n at which VAR outperforms AR in the above simulation study, nor
can we compute the estimation error on the data at hand. We therefore have to
resort to prediction error, which we can approximate using the data at hand,
for instance by using a cross-validation scheme as suggested by Bulteel et al.
(2018). However, since we are interested in estimation error, we require a link
between prediction error and estimation error. In the remainder of this section
we investigate this important link between prediction and estimation error. We
describe the implications of this link for the model selection strategy suggested
by Bulteel et al. (2018), who use the “1 Standard Error Rule” (1SER) to select the
model with lowest estimation error. Finally, we use our simulation study from
above to directly compare the performance of the 1SER with model selection
based only on the minimum prediction error.

7.3.1 The Relation between Prediction Error and Estimation Er-
ror

Bulteel et al. (2018) suggest that the link between prediction error and estima-
tion error is straightforward: “[...] the number of observations T [here n] that is
needed for the VAR to become better than the AR is the same for the prediction
MSE [mean squared error] as well as for the parameter accuracy [estimation er-
ror]” (Bulteel et al., 2018, p. 10). More formally, this claim states that if ne is the
number of observations at which the estimation errors of the AR and VAR model
are equal, and if np is the number of observation at which the prediction errors
of the AR and VAR model are equal, and ngap = ne − np , then ngap = 0. Bulteel et
al. (2018) do not specify the exact conditions under which this statement should
hold, and elsewhere in the text suggest that this should be considered an approx-
imate rather than exact relationship. If this relationship were indeed approxi-
mate, it would still be interesting to study in which settings ngap > 0 or ngap < 0,
as this bears onmodel selection, and so we will here focus our investigation quan-
tifying ngap and investigating any systematic deviations from zero this quantity
exhibits through simulation.

Clearly, it would be unreasonable to expect that ngap = 0 for any data set, since
the observations in a given data set are subject to sampling error. We therefore in-
terpret the statement of Bulteel et al. (2018) as a statement about the expectation
over errors of any given VARmodel. Assuming momentarily that indeed ngap = 0
on average for all VAR models, this would mean that if the prediction errors of
both models are the same (similar), then the estimation of both models are the
same (similar). However, after observing that the single-subject AR outperforms
the single-subject VAR and that the mixed AR and mixed VAR have similar pre-
diction errors, Bulteel et al. (2018) conclude that “[...] it is not meaningful to
analyze the presented typical applications with a VAR model” (p. 14). Since
meaningfulness can only refer to estimation error in the present context, the au-
thors seem to overgeneralize: while this statement is true for the single-subject
case, it does not hold in the mixed case. In particular, from ngap = 0 it follows that
if the prediction errors of both models are the same, then their estimation errors
are the same, and hence bothmodels are equally meaningful. Note that one could
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choose the AR model over the VAR model in this situation by applying a bias to-
wards the more parsimonious model. However, we question whether invoking
the principle of parsimony is justifiable when choosing between two models of
which the more parsimonious model is theoretically implausible (as the original
authors state themselves). In any event, the VAR model would certainly not be
more meaningless than the AR model, since their estimation errors would be the
same.

7.3.2 Assessing ngap through simulation

We now use the results of the simulation study from the previous section to check
whether indeed ngap = 0 on average for all VAR models. For each of the 6000
models, and for each n, we compute the prediction error averaged across the 100
models estimated from the 100 data sets generated from the true VAR model,
evaluated on a separate time series with ntest = 2000 observations, with a burn-
in of nburn = 100. This is the out of sample prediction error (i.e., the expected
generalization error) that Bulteel et al. (2018) approximate with out-of-bag cross-
validation error. We define prediction error as the mean squared error (MSE) of
the predicted values relative to the true values in the test data set.
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Figure 7.3: ScaledMean Squared Error (MSE) of estimation (solid lines) and prediction errors (dashed
lines) for both the AR (black lines) and VAR (red lines) models as a function of n, separately for model
A with R = 1.47 and D = 0.24 (left panel) and model B with R = 6.66 and D = 0.36 (right panel). The
red and green shaded area indicates the median ngap, and the grey shaded area shows the 20% and
80% quantiles across the 100 iterations per model.

Figure 7.3 shows the estimation (solid lines) and prediction (dashed lines)
errors for both the AR (black lines) and VAR (red lines) models as a function of
n, averaged across the iterations, for model A with R = 1.47 and D = 0.24 (left
panel) and model B with R = 6.66 and D = 0.36 (right panel). For model A,
we see that ngap < 0, which shows that ngap = 0 for all VAR models is incorrect.
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What consequences does this gap have for model selection? The negative gap
implies that if the prediction errors for the AR and VAR model are the same,
the VAR model should be selected, because its estimation error is smaller. In
contrast, for model Bwe observe ngap > 0. In this situation, if the prediction errors
are equal, one should select the AR model because it incurs smaller estimation
error. Clearly, ngap differs between the two models, and this difference matters
for model selection.

So far we only investigated ngap for two individual VARmodels. Figure 7.4 (a)
shows the distribution of the expected ngap across all VAR models, computed by
averaging over 100 iterations. Note that for 97 out of 6000 models the curves of
prediction errors and estimation errors did not cross within n ∈ {8,9, . . . ,499,500}.
The results in Figure 7.4 are therefore computed on 5903 models.
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Figure 7.4: Panel (a) displays the distribution of the expected ngap across all 6000 VAR models,
computed by averaging over 100 iterations, and weighted by the probability defined by the original
mixed model. Panel (b) shows the distribution of non-zero EEcomp across all n, 6000 VAR models,
averaged across iterations and weighted by the probability defined by the original mixed model.

Each of the data points in the histogram in Figure 7.4 (a) corresponds to the
expected ngap of one of the 6000 models. We see that the expected ngap has a right
skewed distribution with a mode at zero. This allows us to make a precise state-
ment regarding the crossing of estimation and prediction errors described above:
while the most common value of ngap is zero, not all expected ngap are zero. In
fact, ngap shows substantial variation across different VAR models. Explaining
the variance of ngap is interesting, because ngap has direct consequences for model
selection. If we can relate the ngap to characteristics of theΦmatrix, it is possible
to make more specific statements with respect to when to apply a bias towards
the AR or VAR model, when the prediction errors are the same or very similar.
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Note that such a function from Φ to ngap must exist, because the only way the
6000 models differ is in their entries of the VAR parameter matrix Φ. However,
this function may be very complicated. For example, the correlation of ngap with
R and D are 0.20 and 0.18, respectively. Predicting ngap by R and D including

the interaction term with linear regression achieves R2 = 0.043. This shows that
a simple linear model including R and D is not sufficient to describe the relation-
ship between ngap andΦ. Future research could look into better approximations
of this relationship. If successful, one could build new model selection strategies
on reliable predictions of ngap from empirical data.

7.3.3 Performance of the “1 Standard Error Rule”

Bulteel et al. (2018) propose, in the words of Hastie et al., to “[...] choose the most
parsimonious model whose error is no more than one standard error above the er-
ror of the best model.” (Hastie et al., 2009, p. 244). This model selection criteria
is known as the “1 Standard Error Rule” (1SER) and is suggested by Hastie and
colleagues as a method of choosing a model with the minimal out-of-sample pre-
diction error (which is typically unknown), on the basis of out-of-bag prediction
error (acquired with cross-validation techniques).

Making inferences from prediction error to estimation error requires a link
between the two. Bulteel et al. (2018) provide this link by suggesting that ngap = 0
(or ngap ≈ 0). However, they do not provide justification for why the 1SER should
outperform simply selecting the model with the lowest prediction error. Above
we showed that ngap = 0 does not hold for all VAR models. In fact, it is this result
that explains why the 1SER can perform better than selecting the model with
the lowest prediction error. Specifically, this is the case when ngap > 0, which
characterizes the situation that the prediction error for VAR is lower than for AR
while at the same time the estimation error of VAR is higher than for AR. In such
a situation, a bias towards the AR model can be favorable. In contrast, if ngap < 0
and the prediction error of AR is lower than for VAR, even though the estimation
error of VAR is lower than for AR, such a bias would be unfavorable. In the
following, we assess the relative performance of the 1SER and simply selecting
the model with lowest prediction error, both on average and as a function of n.

In order to quantify the relative performance of both model selection strate-
gies, we take the prediction and estimation errors of the 6000 VAR models esti-
mated on n ∈ {8,9, . . . ,499,500} and for eachmodel, and each n, select between the
AR and VAR model in two different ways: (1) by simply selecting the model with
the lowest prediction error, and (2) by applying the 1SER (using the standard-
deviation of the out-of-sample prediction error across 100 training sets). For each
of the two strategies, we then subtract the estimation error of the selected model
(EEsel) from the estimation error of the model with the lowest estimation error
(EEbest). The difference EEdiff = EEbest −EEsel equals zero if the model with lower
estimation error has been selected, and is negative if the model with higher esti-
mation error has been selected. Subsequently, we compute

EEcomp = EE
(2)
diff −EE

(1)
diff ,
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where EE
(2)
diff is the difference obtained using (2), and EE

(1)
diff is the difference ob-

tained using (1). The resulting value of EEcomp allows us to compare the perfor-
mance of the two model selection strategies. That is, if EEcomp < 0, simply select-
ing the model with lowest prediction error performs better, and if EEcomp > 0, the
1SER performs better.

Figure 7.4 (b) shows the distribution of EEcomp across all 6000 VAR models,
averaged over iterations, and weighted by the probability given by the original
mixed model. The only interesting cases when comparing model selection proce-
dures are the cases in which they disagree. Therefore, we analyze only those cases
for which EEcomp ! 0. We find that using the 1SER is better in 50.1% of cases (ob-
tained using on a log-spine density estimate on the weighted histogram). This
would suggest that it makes essentially no difference whether we use the 1SER or
select the model with lowest prediction error. However, these proportions aver-
age over the number of observations n and therefore cannot reveal differences in
relative performance for different sample sizes.

Figure 7.5 (a) shows EEcomp as a function of n, averaged across all 6000 mod-
els.
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Figure 7.5: Panel (a) displays EEcomp averaged across 6000 models as a function of n (black line) and
the standard deviation around the average (blue line). Panel (b) displays, for each n, the proportion
of times that EEcomp > 0 across 6000 models (i.e., the proportion of 1SER performing better).

Because the VAR prediction error is huge for very small n, both model se-
lection strategies choose the same model, resulting in EEcomp = 0 for those n.
However, from around n = 10 on until around n = 60, EEcomp is substantially
positive, indicating that the 1SER outperforms simply selecting the model with
the lowest prediction error by a large margin. However, for n > 60 we see that
EEcomp approaches zero and then becomes slightly negative. The latter is also il-
lustrated in panel (b), which displays the weighted proportion of models in which
the 1SER is better (i.e., EEcomp > 0). The explanation of this curve has three parts.
First, ngap tends to be larger if the gap is located at a small n (Pearson correlation
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r = −0.16). If ngap is large (and therefore positive), the AR model has lower esti-
mation error than the VARmodel, even though the prediction errors are the same
(compare Figure 7.5 (b)). In such situations, biasing model selection towards se-
lecting the AR model is advantageous. Since the 1SER constitutes a bias towards
the AR model, it performs better for small n. Second, this also explains why the
1SER performs worse than simply selecting the model with lowest prediction er-
ror for large n: here the gap is small (negative), indicating that if the prediction
errors are the same, the VAR model performs better. Clearly, in such a situation,
providing a bias towards AR is disadvantageous. Therefore, the 1SER performs
worse. Finally, why does the curve get closer and closer to zero? The reason is
that the standard error converges to zero with (the square root of) the number of
observations, and therefore the probability that both rules select the same model
approaches 1 as n goes to infinity.

To summarize, we found that the 1SER is better than simply selecting the
model with the lowest prediction error only in 50.1% of the cases in which the
two rules do not select the same model. However, when looking at the relative
performance as a function of n, we found that the 1SER is better than selecting
the model with lowest prediction error until around n = 60, and worse above.
Finally, we were able to explain the dependence of the relative performance on
n with the fact that ngap is larger when it occurs at a smaller n. For applied
researchers these results suggest that, for VAR models with p = 6 variables, the
1SER should be applied for n < 60.

7.4 Discussion

In this paper we provided an extended analysis of the problem studied by Bulteel
et al. (2018) by using a simulation study to (a) map out the relative performance
of AR and VAR models in typical psychological applications as a function of the
number of observations n, and (b) investigate how to choose between AR and VAR
models in practice. We found that, averaged over all models considered in our
simulation, the VAR model outperforms the AR model for n > 92 observations
in terms of estimation error. In addition, we show that and explain why the 1SE
rule proposed by Bulteel et al. (2018) performs better than selecting the model
with the lowest prediction error when n is small.

Next to the average estimation errors of AR and VAR models, we also investi-
gated the variance around those averages. We decomposed this variance in vari-
ance due to different true VAR models, and variance due to sampling. The vari-
ance across different VAR models showed that the relative performance, that is,
the n at which VAR becomes better than AR (ne) depends on the characteristics
of the true VAR parameter matrix Φ. For example, if the true VAR model is very
close to an AR model, it takes more observations until the VAR model outper-
forms the AR model. This shows that one cannot expect reliable recommenda-
tions with respect to ne that ignore the characteristics of the generating model.
The size of the sampling variation indicates that, for many of the considered sam-
ple sizes, whether the VAR or AR model will have lower estimation error largely
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depends on the specific sample at hand. This implies that it is difficult to select
the model with lowest estimation error with the sample sizes available in typical
psychological applications.

The second question was: how should one choose between the AR and VAR
model for a given data set? Bulteel et al. (2018) suggest that, for any VAR model,
the n at which the prediction errors of both models are equal is, in expectation,
(approximately) the same n at which their estimation errors are equal (i.e., ngap ≈
0). Combining this claim with a preference towards the more parsimonious AR
model, they proposed using the “1 Standard Error Rule”, according to which one
should select the AR model if its prediction error is not more than one standard
error above the prediction error of the VAR model, and choose the model with
lowest prediction error otherwise. We showed that the expected ngap varies as a
function of the parameter matrix of the true VAR model. Using the relationship
between estimation and prediction error we were able to explain when the 1SER
is expected to perform better than selecting the model with lowest prediction
error. In addition, we show via simulation that the 1SER performs better than
selecting the model with the lowest prediction error for n < 60.

The relative performance of the AR and VARmodel shown in our simulations
can be understood in terms of the bias-variance trade-off. Because the AR model
sets all off-diagonal elements to zero, it has a bias that is constant and indepen-
dent of n. In contrast, the VAR model has a bias of zero, since the true model is a
VAR model. This is why a VAR model will always perform better than (or at least
as good as, if the all off-diagonal elements of the true VAR model are zero) an AR
model as n→∞. However, for finite sample sizes the variance of the estimates of
the two models are different: while both variances converge to zero as n→∞, for
finite samples the variance of VAR parameters is much larger than the variance
of AR parameters, especially for small n. This allows for the situation that the
biased simpler model is showing a smaller error, even though the true model is
in the class of the complex model. This trade-off between bias and variance also
explains the relative performance of AR and VAR models: In Figure 7.3 we see
that for small n, the variance of the VAR estimates is so large that the error is
larger than the error of the AR model, despite the bias of the AR model. How-
ever, with increasing n, the variance of the estimates of both models approaches
zero. This means that the larger n, the more the bias of the AR model contributes
to its error. Thus, at some n the error of the VAR model becomes smaller than
the error of the AR model. We agree with Bulteel et al. (2018) that the fact that
a simple (and possibly implausible) model can outperform a complex (and more
plausible) model, even though the true model is in the class of the more complex
model, is underappreciated in the psychological literature.

An interesting question we did not discuss in our paper is: which model
should we choose if the AR and VAR models have equal estimation error? Since
we defined the quality of a model by its estimation error, we could simply pick
one of the two models at random. However, their model parameters are likely to
be very different. The estimation error of the AR model comes mostly from set-
ting off-diagonal elements incorrectly to zero, while the estimation error of the
VAR model comes mostly from incorrectly estimating off-diagonal elements. In
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terms of the types of errors (false positive/negative) produced by the two mod-
els, the AR model will almost exclusively produce false negatives, while the VAR
model will produce almost exclusively false positives. A specification of the cost
of false positives/negatives in a given analysis may allow to choose between mod-
els when the estimation errors are the same or very similar. For example, in an
exploratory analysis one might accept more false positives in order to avoid false
negatives.

Throughout the paper we compared the AR model to the VAR model. How-
ever, we believe that it is unnecessarily restricting to choose only between those
extremes (all off-diagonal elements zero vs. all off-diagonal elements nonzero).
Instead, one could estimate VAR models with a constraint that limits the number
of nonzero parameters or penalizes their size (see e.g., Fan & Li, 2001; Hastie et
al., 2015). This would allow the recovery of large off-diagonal elements with-
out the high variance of estimates in the standard VAR model. Similarly, one
could estimate a VAR model and, instead of comparing it to an AR model and
thus testing the nullity of the off-diagonal elements jointly, test the nullity of the
off-diagonal elements of the VAR matrix individually.

It is important to keep the following limitations of our simulation study in
mind. First, we claimed that the 6000 models we sampled from the mixed model
obtained from the “MindMaastricht” data represent typical applications in psy-
chology. One could argue that there are sets of VAR models that are plausible in
psychological applications that are not included in our set of models. While this
is a theoretical possibility, we consider this extremely unlikely, since we heavily
sampled the mixed model stratified for R and D. Any VAR model that is not
similar to a model in our set of considered VAR models is therefore most likely
non-stationary. When presenting our results we weighted all models by their
frequency given the estimated mixed model in order to avoid giving too much
weight to unusual VAR models. This means that it could be that the weighting
obtained from the mixed model does not well represent the frequency of VAR
models in psychological applications. While we consider this unlikely, we also
used a uniform weighting across VARmodels as a robustness check which left all
main conclusions unchanged. A second limitation is that we only considered VAR
models with p = 6 variables. While this is not a shortcoming compared to Bulteel
et al. (2018) who use VAR models with 6, 6, and 8 variables, the results shown in
the present paper would likely change when considering more than six variables.
Specifically, we expect that the n at which VAR outperforms AR becomes larger
across all settings. Similarly, we would expect that the 1SER outperforms select-
ing the model with lowest prediction error for sample sizes larger than 60. While
the exact values will change for larger p, we expect that the general relationships
between n, R, and D extend to any number of variables p.

Although Bulteel et al. (2018) also consider mixed VAR and AR models, in
the simulation studies presented above we focus exclusively on single-subject
(N = 1) time-series for simplicity. Mixed models can be seen as a form of regular-
ization, in which individual parameter estimates are shrunk towards the group-
level mean if the number of observations n is small. One would expect that for
small n, the use of mixed models would improve the estimation and prediction
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errors of both models, which is also what Bulteel et al. (2018) report in their
results. Indeed, mixed models may improve the performance of VAR methods
relative to AR. The reason is that the differential performance of AR and VAR
models can be understood in terms of a bias-variance trade-off, where AR mod-
els are biased but have lower variance than VAR methods. The use of mixed VAR
models should decrease this variance through shrinkage in small n settings (e.g.,
Efron & Morris, 1977; Gelman, 2006). The precise effect of using mixed models
depends on the variance of parameters across individuals; however, we do not
expect the general pattern of results reported here to change when moving from
single-subject to mixed settings.

Future research could extend the analysis shown here to VAR models with
number of variables larger than p = 6, which would allow to generalize the simu-
lation results to more situations encountered in psychological applications. An-
other interesting avenue for future research would be to investigate the link be-
tween ngap and the VAR parameter matrix Φ. Since ngap has direct implications
for model selection, such a link could possibly be used to construct improved
model selection procedures. Finally, it would be useful to extend the simulation
study in this paper to constrained estimation such as the LASSO, especially since
those methods are already applied in practice (see e.g., Epskamp, Waldorp, et al.,
2018).

To sum up, we studied the relative performance of AR and VAR models in
typical psychological applications. We were able to make clear statements about
the average performance, however, the variance around averages is considerable.
Decomposing this variance showed that (i) one cannot expect reliable statements
with respect to the relative performance of the AR and VAR models that ignore
the characteristics of the generating model, and (ii) that choosing reliably be-
tween AR and VARmodels is difficult for most sample sizes typically available in
psychological research. Finally, we provided a theoretical explanation for when
the “1 Standard Error Rule” outperforms simply selecting the model with lowest
prediction error, and showed that the 1SER performs better when n is small.
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Chapter 8

The Input Matters:

Interpreting the Ising Model

Abstract

The Ising model is a model for pairwise interactions between binary
variables that has become popular in the psychological sciences. It has
been first introduced as a theoretical model for the alignment between pos-
itive (1) and negative (-1) atom spins. In many psychological applications,
however, the Ising model is defined on the domain {0,1} instead of the
classical domain {−1,1}. While it is possible to transform the parameters
of the Ising model in one domain to obtain a statistically equivalent model
in the other domain, the parameters in the two versions of the Ising model
lend themselves to different interpretations and imply different dynamics,
when studying the Ising model as a dynamical system. In this tutorial,
we provide an accessible discussion of the interpretation of threshold and
interaction parameters in the two domains and show how the dynamics
of the Ising model depends on the choice of domain. Finally, we provide
a transformation that allows one to transform the parameters in an Ising
model in one domain into a statistically equivalent Isingmodel in the other
domain.

This chapter has been adapted from: Haslbeck J. M. B., Epskamp S. & Marsman M., Waldorp L.
J. (2020). Interpreting the Ising Model: The Input Matters. Multivariate Behavioral Research.
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8.1 Introduction

The Ising model is a model for pairwise interactions between binary variables
that originated in statistical mechanics (Ising, 1925; Glauber, 1963) but is now
used in a large array of applications in the psychological sciences (e.g., Bors-
boom & Cramer, 2013; Marsman, Maris, Bechger, & Glas, 2015; Boschloo et al.,
2015; Boschloo, Schoevers, van Borkulo, Borsboom, & Oldehinkel, 2016; Fried et
al., 2015; Cramer et al., 2016; Dalege et al., 2016; Rhemtulla et al., 2016; Van
Der Maas, Kan, Marsman, & Stevenson, 2017; Haslbeck & Fried, 2017; Afzali et
al., 2017; Deserno et al., 2017; Savi, van der Maas, Maris, et al., 2018; Marsman,
Tanis, Bechger, & Waldorp, 2019)

The original Ising model has been introduced as a model for the interactions
between atom spins, which can be positive (1) and negative (-1) (Brush, 1967).
In this setting, with variables taking values in the domain {−1,1}, the interaction
parameters in the Ising model determine the alignment between variables: If an
interaction parameter between two variables is positive, the two variables tend to
take the same value; on the other hand, if the interaction parameter is negative,
the two variables tend to take different values.

In most psychological applications, however, the Ising model is defined with
variables taking values in the domain {0,1}. While it is possible to transform the
parameters of a given Ising model in one domain to obtain a statistically equiv-
alent model in the other domain, the parameters in the two versions of the Ising
model lend themselves to different interpretations and imply different dynamics,
when studying the Ising model as a dynamical system. If unaware of those subtle
differences, one might erroneously apply theoretical results from the {−1,1} do-
main to an estimated model in the {0,1} domain, or simply interpret parameters
incorrectly. To prevent such confusion in the emerging psychological networks
literature which makes heavy use of the Ising model, we provide a detailed dis-
cussion of both versions of the Ising model in the present tutorial.

We begin by discussing the different interpretations of the Ising model in
the {−1,1} and {0,1} domain in Section 8.2, using a simple two variable exam-
ple which allows the reader to follow all calculations while reading. We explain
the differences in the interpretation of the threshold and interaction parameters
in the two versions of the Ising model, and discuss in which situation which ver-
sion might be more appropriate. While most psychological applications of the
Ising model use it as a statistical model, it has also been studied as a dynamical
system in psychological research (e.g., Cramer et al., 2016; Dalege et al., 2016;
Lunansky, van Borkulo, & Borsboom, 2019). In Section 8.3 we discuss how the
dynamics of the Ising model depends on the choice of domain, and show that
the domain changes the qualitative behavior of the model. Finally, in Section 8.4
we provide a transformation that allows one to transform the parameters in an
Ising model in one domain into a statistically equivalent Ising model in the other
domain.
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8.2 Different Domain, Different Interpretation

In this section we estimate an Ising model with p = 2 variables in both domains,
{−1,1} and {0,1}, and show that the resulting threshold and interaction param-
eters have different values and lend themselves to different interpretations. We
choose the p = 2 variable case to make the explanation as accessible as possible.
However, all results immediately extend to the general situation with p variables.
The Ising model for two variables is given by

P(y1, y2) =
1

Z
exp {α1y1 +α2y2 + β12y1y2} , (8.1)

where y1, y2 are either elements of {−1,1} or {0,1}, P(y1, y2) is the probability of the
event (y1, y2), α1,α2,β12 are parameters in R, and Z is a normalization constant
which denotes the sum of the exponent across all possible states. There are 2p = 4
states in this example.

To illustrate the differences across models, we generate n = 1000 samples of
the labels A,B with the relative frequencies shown in Table 8.1:

(

A B

A 0.14 0.18
B 0.18 0.50

)

Table 8.1: Relative frequency of states in the example data set.

In applications, the labels A,B can stand for any pair of categories such as
being for or against something, some event having happened or not, or a symp-
tom being present or not. The two domains are two different ways to numerically
represent these labels.

We obtain the Maximum Likelihood Estimates (MLE) of the parameters in
two different ways: once, by filling in {−1,1} for {A,B}; and once by filling in {0,1}
for {A,B}. Figure 8.1 summarizes the two resulting models. The first column in
Figure 8.1 shows the parameter estimates α1,α2 and β12, and log potentials in
domain {−1,1}. We first focus on the interpretation of the interaction parameter
β12. To understand the interpretation of this parameter we take a look at the
log potentials for all four states {(−1,−1), (−1,1), (1,−1), (1,1)}, which we obtain by
plugging the four states into the expression within the exponential in equation
(8.1). The resulting log potentials are displayed in the second row in Figure 8.1
and show us the following: if β12 becomes larger, the probability of the states
(−1,−1), (1,1) increases relative to the probability of the states (−1,1), (1,−1). This
means that the interaction parameter determines the degree of alignment of two
variables. That is, if β12 > 0 the same labels align with each other, and if β12 < 0
opposite labels align with each other. In other words, β12 models the probability
of the states (−1,−1), (1,1) relative to the probability of the states (−1,1), (1,−1).

This is not the case in the {0,1} domain. The second column in Figure 8.1
shows that the parameter estimates α∗1,α

∗
1,β
∗
12 in domain {0,1}, and we see that
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Domain

Model 

Parameters

Log 

Potentials

Figure 8.1: The threshold and interaction parameters estimated from the data generated from Table
8.1, and the log potentials for each combination of states, separately for the two domains {−1,1} and
{0,1}. The log potentials (also called energy function or Hamiltonian) are obtained by filling each
state (e.g., y1 = −1, y2 = −1) in the expression within the exponential in equation (8.1).

they have different values than in the {−1,1} domain. To understand why this is
the case, we again look at the interpretation of the interaction parameter β∗12 by
inspecting the four log potentials. The key observation is that β∗12 only appears
in the log potential of the state (1,1). What happens if β∗12 increases? Then the
probability of the state (1,1) increases relative to the probability of all other states
(0,1), (1,0), (0,0). In other words, β∗12 models the probability of state (1,1) relative
to the probability of the states (0,1), (1,0), (0,0).

Next, we turn to the interpretation of the threshold parameters. If all inter-
action parameters are equal to zero, the threshold parameters in both domains
indicate the tendency of a variable to be in one state or the other. That is, α,α∗ > 0
implies a larger probability for the states (1) ∈ {0,1}, (1) ∈ {−1,1} than for states
(0) ∈ {0,1}, (−1) ∈ {−1,1}. If α,α∗ < 0 the reverse is true, and if α,α∗ = 0, the corre-
sponding states have both probability 0.5. However, in the general case in which
interaction parameters are allowed to be nonzero, the interpretation depends on
the domain: in the {−1,1} domain the threshold parameter indicates the tendency
of a variable averaged over all possible states of all other variables. In more for-
mal terms, the threshold parameter of a given variable indicates the marginal
mean of that variable. In contrast, the threshold in the {0,1} domain indicates the
tendency of a variable when all other variables are equal to zero. We return to
the different interpretations of thresholds in Section 8.3, in which we discuss the
dynamics of the Ising model.
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In this section we showed that depending on its domain, the parameters of
the Ising model have different interpretations. What are the consequences for
applied researchers? In terms of reporting, it is important to state which domain
has been used such that the reported model can be re-used in the correct way:
if someone reports a set of parameters estimated from in the {0,1} domain, and
a reader applies it to the {−1,1} domain they will obtain the incorrect probabil-
ities. Note that in order to use the model one also has to report the threshold
parameters. Not reporting the threshold parameters is a common problem and
irrespective of the issue discussed in this chapter. The only situation in which
the domain does not matter is if the only goal is to compare the relative size of
interaction parameters since the relative size is the same in both domains (see
Section 8.4).

The second consequence is that researchers have to choose which version of
the Ising model is more appropriate for the phenomenon at hand. The above
clarified interpretations of the Ising model in its two different domains allow to
take this decision. For example, the {−1,1} parameterization may be more plausi-
ble for labels that are not qualitatively different, but rather opposing each other
in some way such as supporting or opposing a certain viewpoint, for example
agreeing or disagreeing with a statement like “Elections should be held every
two years instead of every four years”. This also reflects the origin of the Ising
model as a model for atom spins, which are either positive or negative. The pa-
rameterization implied by {0,1} could be more appropriate if the two labels are
qualitatively different, such as the presence or absence of an event or a charac-
teristic. Take psychiatric symptoms as an example: while it seems plausible that
fatigue leads to lack of concentration, it is less clear whether the absence of fatigue
also leads to the increase of concentration. In such a case, we can encode the pos-
sible belief that the absence of something cannot have an influence on something
else by choosing the {0,1} domain. Importantly, the decision of which version to
pick has to be based on information beyond the data, because the models are sta-
tistically equivalent and therefore cannot be distinguished by observational data.
In Appendix E.1 we prove this equivalence for the example shown in Figure 8.1.

While Ising models in psychological research are usually fit to cross-sectional
data, one is typically interested in within-subjects dynamics. In this context,
one is often interested in inferring from an estimated Ising model how to best
intervene on the system. In the next section we will show how the dynamics of
the Ising model depends on its domain, and that the different versions of the
Ising model make different predictions for optimal interventions.

8.3 Different Domain, Different Dynamics

The choice of domain also determines the dynamics of the Ising model, when
studying it as a dynamical system describing within-person dynamics. The dy-
namical version of the Ising model is initialized by p initial values at t = 1, and
then each variable at time t is a function of all variables it is connected to via a

171



8. The Input Matters: Interpreting the Ising Model

nonzero interaction parameter at t − 1 1. An often studied characteristic in this
model is how its behavior changes when the size of the interaction parameters
increases. A typical behavior of interest is the number of variables in state (1)
(e.g., Dalege et al., 2016; Cramer et al., 2016).

Which behavior would we expect in the two domains {−1,1} and {0,1}? From
the previous section we know that in domain {−1,1}, the interaction param-
eter βij models the probability of states {(−1,−1), (1,1)} relative to the states
{(−1,1), (1,−1)}. Now, when increasing all βij , connected variables become more
synchronized, which means that all (connected) variables tend to be either all in
state (−1) or (1). In terms of number of variables in state (1), we would therefore
predict that the expected number of variables in state (1) remains unchanged,
because the states (−1) and (1) occur equally often in the aligned ((−1,−1) and
(1,1)) and not aligned ((−1,1) and (1,−1)) states. And second, we predict that the
probability that at a given time point either all variables are in state (−1), or all
variables are in state (1), increases. The reason is that, in the (−1,1) domain, the
larger the interaction parameter, the stronger the alignment between variables.
This second prediction implies that the variance of the number of states in (1)
increases.

In the domain {0,1}, the interaction parameter β∗ij models the probability of

the state (1,1) relative to the remaining three states {(0,1), (1,0), (0,0)}. Now, when
increasing β∗ij , connected variables will have a higher probability to be all in state

1. Importantly, the frequency of 1s in the high probability state (1,1) is higher
than in the other three states. We therefore expect that the number of variables
in state (1) increases and that the probability that all variables are in state (1)
increases. The second prediction implies that the variance of the number of states
in (1) decreases.

We prove that the expected number of variables in state (1) remains un-
changed for {−1,1} and increases for {0,1}, if βij > 0 for the case p = 2 variables in
Appendix E.2. Here, we show via simulation that our predictions are correct. We
sample n = 106 observations from a fully connected (i.e., all interaction param-
eters are nonzero) Ising model with p = 10 variables in which all edge weights
(interaction parameters) have the same size and all thresholds are set to zero. We
vary both the size of the interaction parameters βij ∈ {0,0.1,0.2} and the domain2.
Figure 8.2 shows the distribution (over time steps) of the number of variables that
are in state {1}.

The first row of Figure 8.2 shows the distribution of the number of variables
in state (1) across time when all interaction parameters are equal to zero. We see
a symmetric, unimodal distribution with mean 5 for both domains. This is what
we would expect since the probability of each variable being in state (1) can be
seen as an unbiased (because the thresholds are zero) coin flip that is independent
of all other variables. Thus, since we have 10 variables, the means are equal to
10× 0.5 = 5.

1Glauber dynamics (Glauber, 1963) describe a different way to sample from a dynamic Ising
model. The qualitative results presented in this section also hold for Glauber dynamics.

2The code to reproduce the simulation and Figure 8.2 is available at
http://github.com/jmbh/IsingVersions.
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Figure 8.2: The distribution of the number of variables being in state one as a function of the size
of the interaction parameter in a fully connected Ising model {0, .1, .2} and used domain ({−1,1} and
{0,1}) of the random variable.

However, when increasing the interaction parameter from 0 to 0.1 (second
row) the distributions become different: in domain {−1,1} the mean remains un-
changed and the probability mass shifts from around 5 to more extreme val-
ues, resulting in increased variance. In contrast, in domain {0,1} the distribution
shifts to the right, which implies that the mean increases and the variance slightly
decreases. When further increasing the interaction parameters to 0.2 (third row),
in domain {−1,1}most of the probability mass is concentrated on 0 and 10, while
leaving the mean unchanged; in domain {0,1} the mean further increases and
the variance further decreases. From a dynamical perspective, this means that
for strongly connected Ising models (with thresholds equal to zero) the domain
{−1,1} implies two stable states (all variables in state (−1) or (1)), while the do-
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main {0,1} implies only a single stable (all variables in state (1)), whose position
depends on whether interaction parameters are positive or negative. This means
that the dynamic Isingmodel in the {−1,1} can switch between stable states, while
{0,1} it always stays in the same stable state3.

For the general case of Ising models that are not fully connected and also
have negative interaction parameters, the results described above extend local
clusters of two or more variables: in the domain {−1,1}, increasing the interaction
parameter will leave themeans of all variables in the cluster unchanged, however,
the variables become increasingly aligned (if interaction parameters are positive)
or disaligned (if interaction parameters are negative). Alignment will lead to an
increase in variance, while disalignment will lead to a decrease in variance. In
contrast, in the {0,1} domain the mean of all variables in the cluster will increase
in the case of positive interaction parameters, and decrease in the case of negative
interaction parameters.

This shows that, depending on which domain is used one can come to en-
tirely different conclusions about the dynamics of the Ising model. For example,
(Cramer et al., 2016) model the interactions between psychiatric symptoms with
an Isingmodel in domain {0,1} and conclude that densely connected Isingmodels
imply a larger number of active (in state (1)) symptoms and therefore represent
“pathological” models. The above argument and simulation show that this is
only true when using the {0,1} domain, which encodes the belief that the absence
of a symptom cannot influence the absence of another symptom. If one decides
that an alignment between variables is a more plausible interaction (as implied
by the {−1,1} domain), then densely connected Ising models do not imply a large
number of active symptoms. Instead, high density implies high variance and
two stable states. Thus, the characterization of dense networks as pathological
networks as in (Cramer et al., 2016) hinges on choosing the {0,1} domain.

This has important consequences: when choosing the {0,1} domain, we would
conclude that highly connected symptom networks are necessarily “bad”, and
interventions on the interactions between symptoms as suggested by (Borsboom,
2017) should always reduce symptom activation. On the other hand, in the {−1,1}
domain highly connected symptom networks are not necessarily bad, but in fact
can lead to high resilience, if the threshold parameters are large negative values.
In such a situation strong interactions would keep the system in a state in which
all symptoms are deactivated.

8.4 Transforming from {−1,1} to {0,1} and vice versa

The Ising model is typically estimated by a sequence of p logistic regressions,
which require the domain {0,1}. However, the previous sections showed that in
some situations the domain {−1,1} may be more appropriate. In Table 8.2 we

3The result about bistability is true for the considered fully connected Ising model with zero
thresholds. It is also possible to construct a bistable Ising model in the {0,1} domain by choosing large
negative thresholds and large positive interaction parameters. The relationship between mean/vari-
ance and changing the interaction parameter in the two domains, however, is always true.
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present a transformation that allows one to obtain the parameterization based on
domain {−1,1} from the parameterization based on domain {0,1} and vice versa
(see Appendix E.3 for the derivation of the transformations). We define β∗i+ =
p
∑

j=i1
β∗ij as the sum over the interaction parameters associated with a given variable

yi .

Transformation Thresholds Interactions
{0,1}⇒ {−1,1} αi =

1
2α
∗
i +

1
4β
∗
i+ βij =

1
4β
∗
ij

{−1,1}⇒ {0,1} α∗i = 2αi − 2βi+ β∗ij = 4βij

Table 8.2: Transformation functions to obtain the threshold and interaction parameters of one param-
eterization from the threshold and interaction parameters of the other parameterization. Parameters
with asterisk indicate parameters in the {0,1} domain.

Table 8.2 shows that the interaction parameters βij in the {−1,1} domain are
4 times smaller than the interaction parameters β∗ij in the {0,1} domain. We also

see that the threshold parameter αi is a function of both the threshold and the
interaction parameters α∗i ,β

∗
ij in the other parameterization.

We now apply the transformations in Table 8.2 to the p = 2 variable example
in Figure 8.1. We choose to transform from {0,1} to {−1,1}:

a1 =
1

2
a∗1 +

1

4
β∗i+ =

0.251

2
+
0.77

4
= 0.318

β12 =
1

4
β∗12 =

.77

4
= 0.1925 ≈ 0.193

And indeed, we obtain the parameters obtained when estimating the Ising model
in the {−1,1} domain (see first column in Figure 8.1).

From the transformation in Table 8.2 follows that the two models are statis-
tically equivalent. This implies that one could also estimate the model in the
{−1,1} domain, transform the parameters, and would obtain the parameters one
would have obtained from estimating in the {0,1} domain. Also, note that the
standard errors of estimates are subject to the same transformation, and there-
fore one always reaches the same conclusion regarding statistical significance in
both domains.

However, note that one does not necessarily arrive at statistical equivalent
models when estimating in the two different domains using biased estimators.
An example of a biased estimation method is the popular ℓ1-regularized esti-
mator (Van Borkulo et al., 2014). We discuss why statistical equivalence is not
guaranteed in this specific example in Appendix E.4. The possibility that dif-
ferent domains lead to models that are not statistically equivalent highlights the
importance of choosing the most plausible Ising model on substantive grounds.
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8.5 Conclusions

In this chapter we have investigated the subtleties in choosing the domain of the
Ising model. We showed that estimating the Ising model in the domains {0,1}
and {−1,1} results in parameters with different values and different interpreta-
tions. We also showed that the qualitative behavior of the dynamical Ising model
depends on the chosen domain. Finally, we provided a transformation that ex-
plains the relation between the two parameterizations and allows one to obtain
one from the other. This is useful in practice, because typically used software
packages require the {0,1} domain. This transformation also implies that the
two parameterizations are statistically equivalent, which means that one cannot
choose one over the other on empirical grounds. Thus, researchers should care-
fully reflect on which interactions between variables are plausible and choose the
domain accordingly.
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Chapter 9

Recovering Bistable Systems

from Time Series Data

Abstract

Conceptualizing mental disorders as complex dynamical systems has
become a popular framework to study mental disorders. Especially
bistable dynamical systems have received much attention, because their
properties map well onto many characteristics of mental disorders. While
these models were so far mostly used as stylized toy models, the recent
surge in psychological time series data promises the ability to recover such
models from data. In this chapter we investigate how well popular (e.g.,
the Vector Autoregressive model) and more advanced (e.g., differential
equation estimation) data analytic tools are suited to recover bistable dy-
namical systems from time series. Using a simulated high-frequency time
series (measurement every six seconds) as an ideal case we show that while
it is possible to recover global dynamics (e.g., position of fixed points, tran-
sition probabilities) it is difficult to recover the microdynamics (i.e., mo-
ment to moment interactions) of a bistable system. Repeating all analyses
with a sampling frequency typical for Experience Sampling Method stud-
ies (measurement every 90 minutes) showed that the recovery of the global
dynamics was still successful, but no microdynamics could be recovered.
These results raise two fundamental issues involved in studying mental
disorders from a complex systems perspective: first, it is generally unclear
what to conclude from a statistical model about an underlying complex
systems model; and second, if the sampling frequency is too low, it is im-
possible to recover microdynamics. In response to these results we propose
a new modeling strategy based on substantively plausible dynamical sys-
tems models.

This chapter has been adapted from: Haslbeck*, J. M. B., & Ryan*, O. (under review). Recovering
Bistable Systems from Psychological Time Series. Preprint: https://psyarxiv.com/kcv3s
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9. Recovering Bistable Systems from Time Series Data

9.1 Introduction

Conceptualizing mental disorders as complex dynamical systems has become a
popular framework to study mental disorders (e.g., Wichers, Wigman, & Myin-
Germeys, 2015; Cramer et al., 2016; Borsboom, 2017). This framework is attrac-
tive because it acknowledges the fact that many mental disorders are massively
multifactorial (e.g., Kendler, 2019), and because it allows one to specify powerful
within-person dynamical systems models that capture many of the characteris-
tics hypothesized for mental disorders. The central goal of this framework is to
obtain such models to further our understanding of mental disorders, and allow
us to develop and test more successful interventions.

The class of dynamic systems that has received most attention in this emerg-
ing literature is the class of bistable systems (e.g., Wichers et al., 2015; Cramer et
al., 2016; Borsboom, 2017; Wichers, Schreuder, Goekoop, & Groen, 2019; van de
Leemput et al., 2014a; Nelson, McGorry, Wichers, Wigman, & Hartmann, 2017;
Kalisch et al., 2019). The reason is that its behavior maps well on many phe-
nomena observed in mental disorders: bistable systems describe variables that
have two stable states, which can be interpreted as different psychological states
such as “healthy” or “unhealthy” (e.g., depressed). The stability landscape re-
flecting the dynamics of the system determines how easy it is to transition from
one state to the other, and thereby offers a possible formalization of properties of
the mental disorder, such as vulnerability or resilience to developing it (Scheffer
et al., 2018). Bistable systems can also show sudden transitions from one state
to another, thereby mapping well on, for example, bipolar disorder or the phe-
nomenon of sudden gains and losses in psychotherapy (Stiles et al., 2003; Lutz et
al., 2013).

In parallel, the realization that inferences from between-subjects data to
within-person data are only possible under stringent assumptions (Molenaar,
2004; Hamaker, 2012) together with the increasing availability of psychologi-
cal time series collected from mobile devices has led to a surge in studies aiming
at recovering the within-person dynamics associated with mental disorders (e.g.,
Bringmann et al., 2013; Pe et al., 2015; Fisher et al., 2017; Snippe et al., 2017;
Groen et al., 2019). This is an exciting development, because within-person time
series potentially allow one to recover bistable systems and other dynamical sys-
tems from empirical data. This would be a major step forward for studying men-
tal disorders as complex systems, because so far these models were only used as
stylized toy models.

However, so far there has been no systematic investigation into to what extent
dynamical systems models can in fact be recovered from psychological time se-
ries. To investigate this question for a given dynamical system and data analytic
method, it has to be broken down into two parts: The first question is whether
the method at hand can recover (some aspect of) a dynamical system in principle,
that is, with “ideal” data (long time series, extremely high sampling frequency).
If this is the case, the second question is whether the method also works with re-
alistic data (shorter time series, much lower sampling frequency). In the present
chapter, we investigate both questions for a bistable dynamical system and a se-
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lection of the most popular (e.g., the Vector Autoregressive (VAR) model; Hamil-
ton, 1994) and somemore advanced (e.g., differential equation estimation; Boker,
Deboeck, Edler, & Keel, 2010) methods. Specifically, we use a basic bistable dy-
namical system for emotion dynamics to simulate both an ideal time series with
extremely high sampling frequency (measurement every six seconds) and a more
realistic time series with a sampling frequency common for Experience Sampling
Method (ESM) studies (measurement every 90 minutes). Using these time series,
we evaluate how useful each method is for recovering bistable dynamical sys-
tems in principle, and how useful it can be in practice when analyzing realistic
ESM time series.

We will show that the popular VARmodel (and the Gaussian Graphical Model
fitted on its residuals; Epskamp, Waldorp, et al., 2018) is in principle unable
to recover the global dynamics (e.g., location and variance of stable states, fre-
quency of transitions) and succeeds only in recovering some of the microdynam-
ics (moment-to-moment interactions) of the true bistable system. However, de-
scriptive statistics, data visualization andmore flexible statistical models are able
to capture the global dynamics. The only method that recovered the complete
bistable system is an iterative model building procedure that directly estimates
the system of differential equations (DEs). Reducing the sampling frequency
from every six seconds to every 90 minutes affects the considered methods differ-
ently: the VAR model and its extensions no longer recover any microdynamics,
and the DE-estimation procedure fails. However, descriptives, data visualization
and appropriate statistical models still recover the global dynamics. These re-
sults raise two fundamental issues involved in studying mental disorders from a
complex systems perspective: first, it is generally unclear what to conclude from
a statistical model about an underlying complex systems model; and second, if
the sampling frequency is too low, it is impossible to recover microdynamics. In
response to these findings, we outline a different research strategy to arrive at
dynamical systems models for mental disorders: Proposing initial formal models
which can subsequently be scrutinized and developed by deriving data implica-
tions that can be tested empirically. We will show that in this process many of the
presented methods are instrumental to testing predictions of the formal model
and thereby triangulating the formal model that captures the true dynamical sys-
tem best.

This chapter is structured as follows. In Section 9.2 we introduce a simple
bistable dynamical system for emotion dynamics, discuss its dynamics and char-
acteristics, and describe how we generate the ideal and the more realistic time
series from it. We use the ideal data (measurement every six seconds) in Section
9.3 to evaluate for each method to which extent it can recover a bistable dynam-
ical system. Next, in Section 9.4 we evaluate the same methods but using the
time series with a sampling frequency that matches typical ESM studies (mea-
surement every 90min). Finally, in Section 9.5 we discuss the implications of our
results for the framework of empirically studying mental disorders from a com-
plex systems perspectives, and outline a new research strategy based on formal
modeling, which avoids shortcomings of a purely data analytic approach.
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9. Recovering Bistable Systems from Time Series Data

9.2 Bistable Emotion System as Data Generating
Model

In this section we present a bistable dynamical system and describe its dynamics
(Section 9.2.1), show how we generate data from this system (Section 9.2.2) and
discuss its qualitative characteristics (Section 9.2.3).

9.2.1 Model Specification

Bistable dynamical systems are typically formalized within the framework of dif-
ferential equations (e.g., Hirsch, Smale, & Devaney, 2012; Strogatz, 2015) and we
therefore also choose this framework. Our goal is to provide an accessible first
investigation of how well bistable systems can be recovered from psychological
time series and therefore use the one of the simplest multivariate bistable sys-
tems. Specifically, we choose a system with four variables that is a generalization
of the classic Lotka Volterra model for competing species (e.g., H. I. Freedman,
1980) to four variables; a similar model was used by (van de Leemput et al.,
2014a) who interpreted the four variables as positive and negative emotion vari-
ables, an interpretation we also adopt here. In an appropriate parameter regime,
this model exhibits two stable states: one in which positive emotions are high
and negative emotions are low (the “healthy” state); and one in which the posi-
tive emotions are low and the negative emotions are high (the “unhealthy” state).

Note that different types of (bistable) dynamical systems will differ in how dif-
ficult they are to recover with a given method and type of time series, and much
research is needed to map out the space of dynamical systems model classes, data
analytic methods and types of time series. However, the intuition we rely on in
the present chapter is that if there are fundamental problems in recovering one
of the simplest multivariate bistable systems, then these problems will be at least
equally severe when recovering a more complicated bistable dynamical system.

The bistable system we use throughout this chapter consists of two emotions
with positive valence (Cheerful (x1) and Content (x2)) and two emotions with
negative valence (Anxious (x3) and Sad (x4)). The dynamics of the system is de-
fined by the stochastic differential equations

dxi
dt

= rixi +
4

∑

j=1

Ci,jxjxi + ai + ϵi , (9.1)

where ri can be thought of as the main effect of an emotion on itself over time,
that is, the effect of xi on its own rate of change. This parameter is set to 1 for
positive emotions, and will be varied between r3, r4 ∈ [0.9,1.1] for negative emo-
tions. We interpret the variations in r3, r4 as being related to stress: higher stress
means that the effects of a high degree of negative emotion stays in the system
longer. The matrix C represents the dependencies between emotions in the form
of interaction effects
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C =

⎡

⎢
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⎤
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⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The interactions in the matrix C show that emotions of the same valence re-
inforce each other, while emotions of different valence suppress each other. For
example, C1,2 = 0.04 indicates that the rate of change of x1 (Cheerful) depends
on the product of x1 and x2 (Content) weighted by 0.04. Similarly, C1,3 = −0.2
indicates that the rate of change of x1 depends on the product of x1 and x3 (Anx-
ious) weighted by −0.2. The diagonal elements are quadradic effects: for exam-
ple, C1,1 = −0.2 indicates that the rate of change of x1 depends on the product
x1x1 = x21. Note that the matrix C is symmetric because we aim at choosing the
simplest possible bistable system. In general, however, it does not have to be
symmetric.

We interpret 0 as the absence of positive/negative emotion, and therefore do
no not allow emotions to become negative. We ensure this with high probability
by setting the constant ai = 1.6 for all i. The Gaussian noise term ϵi has a mean
of zero and a fixed standard deviation σ and represents short-term fluctuations
in emotions due to the environment the system interacts with. Note that we used
the same parameterization as (van de Leemput et al., 2014a), except that in our
model we use an additive noise term instead of a multiplicative noise term for
simplicity and set all ai = 1.6.

Due to the symmetries in C, r and a, emotions with the same valence are ex-
changeable. We can therefore describe the dynamics of the 4-dimensional system
using a 2-dimensional system consisting of one dimension for positive emotions
and one dimension for negative emotions (for details see Appendix F.1). Figure
9.1 illustrates the dynamics of the deterministic part (i.e., with ϵi = 0) of this
model: Panel (a) displays the stable (solid lines) and unstable (dashed lines) fixed
points for positive (green) and negative (red) emotions, as a function of stress. For
example, for a low stress level of 0.9 there is only a single fixed point: the positive
emotions (PE) have the value 5.28 and the negative emotions (NE) have the value
1.15. We therefore also refer to this fixed point as the healthy state. If the stress
level remains unchanged, the system will always end up at this fixed point, no
matter how one chooses the starting values. This dynamic is illustrated in the
corresponding vector field in panel (b). The arrows depict the partial derivatives
with respect to the two emotions and therefore describe the linearized dynamics
at a given point in the 2-d space. The vector field shows us that whichever ini-
tial values we choose, the system will always end up at the fixed point at (PE =
5.28, NE = 1.15). Thus, the system with stress = 0.9 describes a person whose
emotions can be changed by external influences, but eventually always returns to
the healthy state of having strong positive emotions and weak negative emotions.
The solid lines in panel (b) indicate the values of positive and negative emotions
for which the two differential equations are zero. At the intersections of those
lines both differential equations are equal to zero, which means that the system
does not change anymore, which is the definition of a fixed point.
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Figure 9.1: The dynamics of the bistable system we will use as the data generating model throughout
the chapter. Panel (a) shows the fixed points of the deterministic part of the model as a function of
stress, operationalized by the rate of change of the negative emotions. Solid lines indicate stable fixed
points and dashed lines indicate unstable fixed points. Panels (b), (c) and (d) show the vector fields
of the system for the stress values r3, r4 = 0.9,1 and 1.1. Solid points indicate stable fixed points and
empty points indicate unstable fixed points. The solid lines indicate the values at which derivative of
positive emotion (orange) and negative emotion (light blue) is equal to zero. At the points at which
the two lines meet, both derivatives are equal to zero and the system remains in this (stable) state.

Panel (a) of Figure 9.1 shows that when increasing stress from 0.9 until around
0.95, the stable fixed point changes quantitatively: the value of positive emotion
value decreases, and the value of negative emotion value increases. However,
from around 0.95 on the dynamics of the system change qualitatively: the system
now has three fixed points. For example, at stress = 1, the fixed points are (PE =
4.89, NE = 1.36), (PE = 2.80, NE = 2.80), and (PE = 1.36, NE = 4.89). The first
fixed point is the stable healthy fixed point we also observed for values smaller
than 0.9. The second fixed point is an unstable fixed point. Specifically, it is a
saddle point, because the arrows in the vector field flow towards this fixed point
in one direction, but flow away in the other direction (Strogatz, 2015). The third
fixed point is again stable, however, now negative emotions have a high value and
positive emotions have a low value. We could call this fixed point the unhealthy
fixed point.

The presence of these three fixed points means that, if the system is initialized
anywhere except on the diagonal, the system will end up at one of the two stable
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9.2. Bistable Emotion System as Data Generating Model

fixed points. This behavior is illustrated in panel (c), which shows the vector field
of the system for stress = 1. We see that eventually all arrows point away from
the unstable fixed point at (PE = 2.80, NE = 2.80) and towards one of the two
stable fixed points. Thus, the system will never converge to this point except if
it is initialized exactly on the diagonal. For all other starting values, the system
will converge to one of the two stable fixed points. For the particular case of
stress = 1, starting values above the diagonal line will converge to the unhealthy
fixed point (PE = 1.36, NE = 4.89), whereas starting values below the diagonal
line will converge to the healthy fixed point (PE = 4.89, NE = 1.36). This system
describes a person that starts out in the healthy (unhealthy) state, and always
returns to the healthy (unhealthy) state after small outside influences. However,
a large influence can push the person into the unhealthy (healthy) state, and now
the person remains there until a large enough influence pushes her back into the
healthy (unhealthy) state.

When increasing stress further until around 1.06, we observe again a quan-
titative change of the three fixed points: the negative emotions go up, and the
positive emotions go down. However, from around 1.06 on the system changes
again qualitatively. It now again exhibits only one fixed point, which is now the
unhealthy fixed point. Thus, when stress is larger than around 1.06, the system
will always converge to the unhealthy fixed point. This behavior is illustrated in
panel (e), which depicts the vector field for the system with stress = 1.1. We see
that there is only a single fixed point at (PE = 1.03, NE = 5.98) and the arrows
show that the system will always converge to this point. This system describes a
person that will always return to the unhealthy state, no matter how large of an
outside influence is applied.

So far, we only discussed the deterministic part of the model, that is, our
model with noise set to zero (i.e., with ϵi = 0). Introducing noise changes the dy-
namics of the system, and how exactly it changes depends on the stress level. For
low stress (below 0.95), the system will fluctuate around the healthy fixed point.
For high stress (above 1.06), the system will fluctuate around the unhealthy fixed
point. The interesting behavior is observed for stress values between 0.95 and
1.06: then, the system will fluctuate around one of the two fixed points, but oc-
casionally the noise will be large enough to push the system to the other fixed
point. The frequency of switching is a function of the distance between the two
fixed points, the vector field between the two fixed points, and the variance of
the Gaussian noise process ϵi . If the variance is low, the probability of a noise
draw that is large enough to “push” the system to the other fixed point is small,
and consequently the frequency of switching is low. In contrast, if the variance
is high, the probability of a large enough noise draw to switch to the other fixed
point is high, and consequently the switching frequency is high.

9.2.2 Generating Time Series from Bistable System

In the previous section we have shown that our dynamical system is bistable
for stress values (r3, r4) ∈ [0.96,1.06]. In the remainder of this manuscript we
keep stress constant at stress = 1, and therefore study the bistable dynamical
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systemwith the dynamics displayed in panel (c) of Figure 9.1 and the fixed points
described above. Apart from stress we chose all parameters as indicated in the
previous section.

To obtain a plausible switching frequency for emotion dynamics we set the
standard deviation of the Gaussian noise term σ = 4.5. Note that a system can be
bistable, but the outside influences (the noise term) are so weak that the system
switches very infrequently or not at all. In such cases the bistable system is more
difficult (infrequent) or impossible (no switches) to recover. Thus, our choice of σ
represents an ideal situation, and all presented methods will perform worse with
a lower switching frequency.

In the remainder of this section we describe how we generated the two time
series that we will use throughout the chapter: an “ideal” time series with an
extremely high sampling frequency of 1 measurement every six seconds (Section
9.2.2.1); and a more realistic time series with measurements every 90 minutes, a
sampling frequency typical for ESM studies (Section 9.2.2.2).

9.2.2.1 Ideal Time Series

We generated data by computing the numerical solution to the model in Section
9.2.1 with stress = 1 on the interval [0,20160], using Euler’s method (e.g., Atkin-
son, 2008). We chose a step size of 0.01 to limit computational cost and disk
space, however the system shows qualitatively the same behavior for smaller step
sizes. We interpret a time step of 1 as one minute, and therefore the time series
spans two weeks (60× 24× 14 = 20160). We obtain a time series by sampling the
numerical solution obtained via Euler’s method 10 times per minute (or every
six seconds). We therefore obtain the ideal time series with 20160× 10 = 201600
measurements, which appears to switch between fixed points around 17 times1.
Figure 9.2 displays this time series.

We choose this unrealistically ideal time series (two weeks, one measurement
every six seconds, continuous response scale, no measurement error or missing
values) with 201600 measurements to be able to study the usefulness of different
data analytic methods in principle. That is, we study the usefulness of all methods
on the population level, which is the situation in which we have infinitely many
observations and sampling variation does not exist. With 201600 observations,
in this setting we approximate “infinitely many” for all practical purposes.

Note that we would not be able to investigate how well different methods per-
form in principle, if we made the time series more realistic by choosing a shorter
time interval or sampling it with a lower sampling frequency: in such a case we
would not know whether a method cannot recover (an aspect of) the bistable
system for fundamental reasons, or because the time series is too short or the
sampling frequency too low. We therefore first study all methods with the ideal
time series in order to identify their fundamental limitations. In the second part
of the chapter, we make the time series more realistic by taking measurements at
a sampling frequency that is typical for ESM studies. This will allow us to inves-

1The code to generate data and reproduce all analyses and results shown in this chapter can be
found at https://github.com/jmbh/RecoveringBistableSystems/.
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tigate the impact of sampling frequency on all methods. In the following section
we describe how we generate this ESM time series.
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Figure 9.2: Panel (a) shows the ideal time series of the four emotion variables Cheerful, Content,
Anxious and Sad. We see that the system switches 17 times between healthy and unhealthy state.
Panel (b) displays the twelfth switch, which is a transition from the unhealthy to the healthy state,
which occurs on day 9.

9.2.2.2 Experience Sampling (ESM) Time Series

Clearly, the ideal time series is very different from time series data sets obtained
from typical ESM studies. The perhaps two most important differences between
the ideal time series and realistic time series are the measurement scale and the
sampling frequency. With respect to the measurement scale, most ESM studies
do not use a continuous response but, for example, a 7-point Likert scale. Regard-
ing the sampling frequency, ESM studies investigating psychological variables
typically do not measure more frequently than every 90 minutes (e.g., Bring-
mann et al., 2013; Pe et al., 2015; Fisher et al., 2017; Snippe et al., 2017; Groen
et al., 2019). Thus, ESM time series have a much lower sampling frequency (ev-
ery 90 minutes) than the ideal time series used above (every six seconds). To be
able to explain possible drops in performance of certain methods when making
the time series more realistic, we are only allowed to change one aspect of the
time series. While the measurement scale can possibly be made near-continuous,
there are certainly hard limits on how many times one can notify a person each
day with an ESM questionnaire. We therefore consider the sampling frequency
the more fundamental constraint in realistic data, and thus make it the focus of
our investigation in Section 9.4.

Taking a measurement every 90 minutes in the two weeks of the original ideal
data leads to 224 measurements. This would mean that we would compare the
”ideal” time series with 201600 measurements which essentially implies the ab-
sence of sampling variation to an ESM time series with 224 measurement which
implies a lot of sampling variation. Thus, any comparison would be confounded
by the difference in the number of measurement points (i.e., sample size). To
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avoid this confound, we increase themeasurement interval of the ESM time series
to 1800 weeks, which ensures that the new ESM time series has exactly the same
sample size as the ideal data (2242 ×1800 = 201600). Thereby, we provide that any
drop in performance is a function of the lowered sampling frequency and can-
not be explained by lower sample size (and higher sampling variation). Note that
studying the performance of methods as a function of sample size (sampling vari-
ation) is of paramount importance to evaluate how useful a given method is in a
realistic application. However, here we study the more fundamental question of
the impact of reducing the sampling frequency to a level that is typical for ESM
studies. We do this because if we find that a method is ill-suited to recover (some
aspect of) a bistable systemwith a realistic sampling frequency on the population
level (i.e., with infinite sample size), then it does not make sense to investigate
the performance of the method in the less ideal scenario with realistic (small)
sample sizes.

So far, we only discussed that we sample every 90 minutes. However, to em-
ulate ESM measurements, we also need to formalize how exactly ESM questions
measure the four emotion variables. This is far from trivial: questions in some
ESM studies refer to the very moment of measurement and are phrased along
the lines of “How cheerful do you feel right now?”. Such measurements could
be formalized by defining the measurement as the set of current values of the
system (a “snapshot” of the system) at the measurement time. In contrast, other
ESM studies refer to the time period since the last measurement. A question of
this type could be phrased “How cheerful did you feel in the time since the last
notification?”. Such measurements could be formalized by defining the measure-
ment as the average values of the system since the last measurement. However,
many other measurement functions are also possible. In this chapter we analyze
the first type of ESM question, because its measurement function is the simplest.
However, we also performed all analyses with the second kind of ESM question,
and all our main conclusions also hold in this situation.

Figure 9.3 displays the two week long original time series (see also Figure 9.2
panel (a)) next to the ESM time series which was obtained by taking “snapshots”
of the process at 90 min intervals. The ESM time series in panel (b) appears
less dense, which is what we would expect since it contains only 1/900 of the
time points of the ideal time series in panel (a). However, we see that the system
is still bistable and that the location of and variance around the fixed points is
largely the same. In Section 9.4 we will use this emulated “snapshot” ESM time
series to try to recover the true bistable system using the same array of methods
as in Section 9.3, in which we analyze the ideal time series.
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Figure 9.3: Panel (a) shows the original time series that was already shown in panel (a) of Figure 9.2.
Panel (b) shows the ESM time series which was obtained by taking snapshots every 90 minutes in the
series. Note that the ESM time series we analyze in Section 9.4 is much longer (1800 weeks) than the
14 day ESM time series shown here.

9.2.3 Qualitative Characteristics of the Model

In this section we discuss the key qualitative characteristics of the bistable system
introduced in the previous section. We list these characteristics because most
considered methods are models that are misspecified (i.e., they do not contain the
true system as a special case). In such a situation one can only hope to recover
some characteristics of the true system, and we therefore evaluate how well a
method recovers the bistable system based on how well it recovers the following
seven characteristics:

Global dynamics

1. Bistability (two stable fixed points)

2. Position of fixed points

3. Variability around fixed points

4. Frequency of transitions

Microdynamics

5. Suppressing effects between valences, reinforcing effects within valences

6. Relative size of suppressing/reinforcing effects

7. All parameters are independent of time and independent of variables out-
side the model
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The first four characteristics describe the global dynamics of the dynamical
system. The first is bistability, which means that the data generating mechanism
exhibits two stable fixed points. This is the case for the data generating mecha-
nism with stress set to 1, which we use to generate data from and aim to recover
throughout the chapter (see Figure 9.2, panel (a) and (c)). The second character-
istic is the position of the fixed points, which are at (PE = 4.89, NE= 1.36) for
the healthy fixed point, and (PE = 1.36, NE= 4.89) for the unhealthy fixed point.
Third, we consider the variability around the different fixed points. Figure 9.2
shows that, for both fixed points, the variability of the emotions with lower val-
ues is smaller than the variability of the emotions with larger values. The fourth
characteristic is the frequency of transitions between the area around the healthy
fixed point and the area around the unhealthy fixed point. In the time series
shown in Figure 9.2 we see that the system switches around 17 times.

The remaining three characteristics describe the microdynamics of the dy-
namical system. The fifth characteristic is that emotions of the same valence re-
inforce each other, while emotions of different valence suppress each other. The
sixth characteristic is the fact that the size (absolute value) of the reinforcing ef-
fects (0.04) are smaller than the suppressing effects (0.2). The last characteristic
is that all parameters in the system of differential equations are independent of
time and independent of variables outside the model.

9.3 Recovering the Bistable System from Ideal Data

In this section we analyze the ideal time series to evaluate how well different
methods recover the data generating bistable system. The methods considered
here primarily consist of the most popular models used in analyzing time series
in clinical psychology and psychiatry, and some extensions thereof. In all but
one instance, this entails the estimation of misspecified models, that is, models
which do not contain the true bistable system as a special case. Thus we will
focus our investigation on whether these models allow one to recover some of the
characteristics of the true model, as outlined in Section 9.2.3.

We analyse each method in order of increasing complexity, moving from
methods which may be helpful in recovering global characteristics alone to meth-
ods which are typically used with the aim of characterising the microdynamic
structure. We begin by inspecting the time series using descriptive statistics
(Section 9.3.1); in Section 9.3.2 we characterize the switching behaviour in the
system using a mean-switching Hidden Markov Model (Hosenfeld et al., 2015;
Hamaker, Grasman, & Kamphuis, 2016). Next, in Section 9.3.3 we analyze the
multivariate lag-0 (same time point) relationships using correlations and par-
tial correlations with the popular Gaussian Graphical Model (GGM) (Epskamp,
Waldorp, et al., 2018). In Section 9.3.4 we use the most popular approach to
modeling microdynamics in experience sampling settings, the lag-1 Vector Auto-
Regressive (VAR(1)) model (e.g., Bringmann et al., 2013; Pe et al., 2015; Fisher
et al., 2017; Groen et al., 2019). Next, we evaluate the Threshold VAR model,
an extension of the VAR model that allows the modeling of state-switching be-
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haviour using time-varying parameters (Hamaker, Zhang, & van der Maas, 2009;
Hamaker & Grasman, 2012) (Section 9.3.5). While all models so far are misspec-
ified, we include one final method that is capable of recovering the full bistable
system: a two-step model building approach based on direct estimation of differ-
ential equations from data, following the dynamic systems modeling approach
of (Boker et al., 2010) and (Chow, 2019).

9.3.1 Descriptive Statistics

To get a rough overview of the behavior of the system, we inspect the time series
plot of all four emotion variables shown above in Figure 9.2 panel (a). We see that
at almost every time point the two positive emotion variables have high values
around 5, and the two negative emotion variables have small values around 1,
or the other way around. At the remaining time points, the variables seem to
transition between those two states (see panel (b) in Figure 9.2). In addition, we
see that the variables switch between states 17 times.

We can extract a considerable amount of information from simply inspecting
the time series plot. There seem to be two stable states (fixed points), one in which
positive emotions are high and negative emotions are low, and one in which the
reverse is true. Further, we see that the variance is higher for the emotion with
higher values, and we saw that the system switches around 17 times in the two
week window. To get a more direct picture of the distribution of variables and
possible fixed points we show the histograms for each variable in Figure 9.4:
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Figure 9.4: The histograms of the emotion intensity of the four modeled emotions Cheerful, Content,
Anxious and Sad, for the ideal data.

We see that at most time points in the time series, each emotion either takes
on values around 1 or around 5. This is what we would expect from inspecting
the time series plot, however, the histograms give a more precise picture of the
distributions and allow one to guess possible fixed points with greater precision.
For instance, we could separate the two distributions (using a fixed threshold, or
clustering algorithm) and take their means as estimates for the fixed points.

While eyeballing the data should be the first step in any time series analysis,
the conclusions are subjective and do not allow us to quantify how certain we are
about bistability and the switching frequency. We can quantify the observation
that there are two states and that the system is switching between them by fitting
a Hidden Markov Model (HMM) (e.g., Rabiner, 1989) to the data, which we will
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do in the following section. Such quantification is especially valuable in more
realistic situations, in which the two states are probably harder to separate than
in our ideal simulated data.

9.3.2 Hidden Markov Model

In this section we fit a mean-switching Hidden Markov Model (HMM) in order to
scrutinize the intuition that the system switches between two states and to quan-
tify the switching frequency. The HMMmodels the observed data as consisting of
K latent states or components, characterized by K multivariate Gaussian distri-
butions, which may differ in their means µk and variances σk .

2 Each observation
over time is drawn from one or other of these distributions, and the switching
between these states is governed by a matrix of transition probabilities A. For
more details about this model see Appendix F.2.1.

Here we choose K = 2 components, and fit this model to our time series using
the R-package depmixS4 (Visser & Speekenbrink, 2010), obtaining the following
parameter estimates
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We can see from the estimate µ̂1 that in state 1 the means of positive emotions
are low, and the means of negative emotions are high. We can therefore identify
state 1 as the unhealthy state. We also see that the standard deviations of positive
emotions are lower than for negative emotions in the unhealthy state which is
what we already observed in the time series plot in Figure 9.2. Similarly, state 2
can be identified as the healthy state, with high means and standard deviations
for positive emotions, and low for negative emotions. The transition matrix A
indicates the probabilities of switching between states. We see that there is a very
high probability for remaining in the same state (A11 = A22 = 0.9996), and a cor-
respondingly low probability to switch states (A12 = A21 = 0.0004). This is what
we would expect, because we take one measurement every six seconds, but the
system changes states only a couple of times within the two week window. Multi-
plying the number of time points of the time series with the switching probability
we obtain 201600× .0004 ≈ 81 switches, which is in the same order of magnitude
of the eyeballed number of switches (17) reported in Section 9.2.2.

In addition to obtaining estimates of means and standard deviations of the
two fixed points and the transition matrix, the HMM allows to predict the most
likely state for each time point. We show the predicted states for the entire time
series in Figure 9.5:

2In principle, the distributions may also differ with respective to their covariances, but in this
analysis, we set all covariances to zero due to limitations of the software package used in estimation.
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Figure 9.5: Time series of the four emotion variables, also shown in panel (a) of Figure 9.2, with
background color indicating whether a given time point is assigned to the first or second component
of the mean-switching HMM.

When inspecting the predicted states visually, it seems that the HMM cap-
tured the switches well. Next to the larger blocks in which the system stays at the
same fixed point, it also identifies switches in which the system switches back
and forth within only a few time points. These switches might have been missed
when inspecting the time series visually alone.

Taking all results together, which characteristics of the bistable system did
we recover with the HMM (see list in Section 9.2.3)? We got an estimate of the
location (characteristic 2) and variance (characteristic 3) around two fixed points,
which are very close to the healthy and unhealthy fixed points in the true bistable
system. We also quantified the frequency of transitions in the transitionmatrixA.
Since the transition frequency (characteristic 4) is not explicit in the true bistable
model, there is no clear way to evaluate this estimate. However, the number of
predicted transitions (81) is at least in the same ballpark as the number of transi-
tions eyeballed from the entire time series (at least 17). Note that while a bistable
HMM seems to fit the data well, we provided K = 2 as an input to the model, and
therefore bistability (characteristic 1) cannot be considered a characteristic we
recovered with this model. Instead of fixing a particular K , an optimal K can be
obtained via model selection. However, in Appendix F.2.2 we show that at least
the standard approach to selecting K in mean-switching HMMs performs poorly
since the data was not generated from a mean-switching HMM.

One additional way to visualize or ascertain how much of the true systems
behaviour a given model is able to capture is by generating new data from the
estimated model parameters. In Figure F.2 in Appendix F.3.1 we generate a two
week time series from the estimated mean-switching HMM and compare it to the
original time series. We find that the data generated from the HMM is similar
to the original data, except for two features: First, the system tends to switch
between states somewhat more frequently, and second, there are no observations
on the transitions between states.

The remaining three characteristics (5-7) are about the microdynamics of the
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true bistable system, that is, about how the components are related to each other.
Clearly, the mean-switching HMM we used here cannot elucidate these charac-
teristics since it does not model any dependencies between the four emotion vari-
ables. In the following sections we fit models that include such dependencies.

9.3.3 Lag-0 Relationships / Gaussian distribution

In this section we analyse the relationships between variables at the same time
point. Figure 9.6 panel (a) displays the relationship between Content and Cheer-
ful, two emotions of the same valence. We see that the observations cluster
around two points, one close to (1, 1) with smaller variance, and one close to
(5, 5) with larger variance. The red line indicates the best fitting regression line
(correlation 0.98). Panel (b) displays the relationship between Cheerful and Anx-
ious, two emotions of different valence. We see that that the observations cluster
around two points, one close to (1, 5) and the other one close to (5,1). The red
line indicates the best fitting regression line (correlation ρ = −0.97).
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Figure 9.6: Panel (a) shows the relationship between Content and Cheerful, two emotions with the
same valence, at the same time point The red line indicates the best fitting regression model. Sim-
ilarly, panel (b) shows the relationship between Anxious and Content, two emotions with different
valence. Panel (c) displays the correlation matrix as a network, and panel (d) displays the partial
correlation matrix as a network.
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Panel (c) displays the correlation network for all four emotion variables. As
we have already seen in panel (a) and (b) there is a positive correlation (ρ = 0.98)
between Content and Cheerful, and a negative correlation (ρ = −0.97) between
Cheerful and Anxious. Due to the symmetry in the true bistable system, all cor-
relations between emotions with the same valence are equal to ρ = 0.98 and all
correlations between emotions with different valences are equal to ρ = −0.97.
Panel (d) shows the partial correlation network (i.e., GGM). We see that the par-
tial correlations between emotions with the same valence are equal to θ = 0.51,
and the partial correlations between emotions with different valences is equal to
θ = −0.24 or θ = −0.25.

What can we learn from these results about the underlying bistable system?
From inspecting the pairwise relationships of emotions with same and different
valence in panels (a) and (b) one could guess the location and variance of pos-
sible fixed points, similarly to inspecting the histograms in Section 9.3.1. How-
ever, the 2-dimensional representation offers additional information about the
stability landscape, for example the shape around the fixed points and the most
likely paths to transition between them. When interpreting the correlations in
panel (b) as “contemporaneous” relationships, we would conclude that there are
strong positive linear relationships between emotions with the same valence, and
similarly strong negative linear relationships between variables with different va-
lences at a relatively short time scale. The partial correlations in (d) are smaller
than the correlations, which is what one would expect since all correlations are
high.

Using our knowledge about the true bistable system, which characteristics
did we correctly recover? From inspecting the scatter plots in panels (a) and (b)
one sees that most observations fall in one of two clusters indicating bistability
(characteristic 1). Also, one can obtain rough estimates of the position of the
fixed points (characteristic 2) and sees that the variances around the fixed points
is different (characteristic 3). Note that the shape of the scatter plot in panel (b)
is determined by the vector field in Figure 9.1 (c). The two clusters are exactly at
the location of the two fixed points, and the observations between the clusters are
both due to variance around the fixed points and switches between fixed points.

From the correlation and partial correlation network, we correctly find that
there are reinforcing effects within valences, and suppressing effects between va-
lences (characteristic 5). However, the correlation network suggests that their
relative size is equal, and the partial correlation network suggests that the rein-
forcing effects are stronger. In the true bistable system, however, the suppressing
effects between valences are larger than the reinforcing effects within valences.
Thus, judging the relative size of suppressing/reinforcing effects within/between
valences from (partial) correlation would lead to incorrect conclusions.

In sum, inspecting scatter plots of pairwise relationships indicated bistability,
and allowed us to obtain a rough estimate of the location of and variances around
the fixed points and. The scatter plots also allowed one to get a projection of the
stability landscape on two dimensions and thereby provide more information
than histograms. While inspecting the scatter plots allows one to recover global
dynamics of the true bistable system, one cannot infer the coupling between the
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emotion variables in the true bistable system from (partial) correlations. This
is not too surprising since the Gaussian distribution is very restrictive in that
it only models pairwise linear relationships (opposed to e.g., 3-way, 4-way, etc.
interactions). In addition, it does not model any dependencies across time, which
are the types of dependencies that constitute the microdynamics (characteristics
5-7) of the true model. In the next section, we inspect those dependencies across
time and fit a Vector Autoregressive (VAR) model to the data, which captures
temporal linear dependencies.

9.3.4 Lag-1 Relationships / VARModel

In this section we aim to characterize the microdynamics between the four emo-
tion variables by modeling the lagged linear relationships between them. Panels
(a) and (b) of Figure 9.7 show the marginal relationship of Content at time t with
Cheerful at the previous time point t − 1, and Anxious at time t with Content at
time t − 1, respectively. Although the data is generated from a dynamic model,
the marginal lagged relationships look very similar to the contemporaneous rela-
tionships shown in Figure 9.6: when averaging over all other variables, the lagged
relationships within-valence are positive, and between-valence are negative. The
reason is that the system largely stays around the two stable fixed points, and
relative to the length of the time series, switches are infrequent. As such, these
marginal relationships are largely driven by the relative location of the two fixed
points.

We can gain further insight into the dependencies between variables in our
model by examining the conditional lagged relationships between pairs of emo-
tions, that is, when keeping the other emotion variables at the previous time
point(s) fixed. A popular model for such conditional lagged relationships is the
first-order vector auto-regressive (VAR(1)) model. The VAR(1) model is one of
the simplest multivariate dynamic models which can be fit to repeated measure-
ment data, allowing linear relationships between all pairs variables observed at
consecutive measurement occasions t and t − 1:

Xt = b +ΦXt−1 + et . (9.2)

where b is a vector of intercepts,Φ is a matrix containing the auto-regressive (Φii )
and cross-lagged (Φij , i ! j) effects, that is, conditional linear dependencies, and et
is a vector of normally distributed residuals et ∼N (0,Ψ), which are independent
across time, with residual variance-covariance matrix Ψ.

The VAR(1) has been used widely to analyze experience sampling data in
psychopathology research, particularly in the form of dynamic network analy-
sis, wherein the Φ and Ψ matrices are used to construct directed and undirected
network structures, respectively (e.g., Bringmann et al., 2013; Pe et al., 2015;
Epskamp, Waldorp, et al., 2018). The VAR(1) model describes a system which
fluctuates around a single stable fixed point: Stochastic input in the form of a
residual term pushes the system away from this fixed point, and the system re-
turns to the fixed point with an exponential decay (Hamilton, 1994). The location
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of the stable fixed point is given by the mean vector µ, a function of the intercepts
and the lagged relationships µ = (I −Φ)−1b, where I is the identity matrix.
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Figure 9.7: Panel (a) shows the relationship between Content and Cheerful, two emotions with the
same valence, spaced one time point apart (at a lag of one). The red line indicates the best fitting
regression model. Similarly, panel (b) shows the relationship between Anxious and Content, two
emotions with different valence, at a lag of one. Panel (c) displays the matrix of lagged regression pa-
rameters, estimated from a VAR(1) model, as a network, and panel (d) displays the partial correlation
matrix of the residuals of the VAR(1) model as a network. This latter network is often referred to as
the contemporaneous network.

Panel (c) of Figure 9.7 displays the network of estimated lagged regression co-
efficients (Φ̂) between Cheerful, Content, Anxious and Sad. We can see that the
auto-regressive parameters are large and positive for all four variables (Φ̂ii = .91).
Furthermore, there are positive cross-lagged relationships between variables of
the same valence (Φ̂12 = Φ̂21 = Φ̂43 = Φ̂34 = .05) and weaker, negative cross-
lagged effects between variables of opposite valence (Φ̂13 = Φ̂31 = · · · = −.02).
All within-valence effects, and all between-valence effects, are of roughly equal
magnitude, respectively. In panel (d) we show the partial correlations of the
residuals (i.e., standardized Ψ̂−1), sometimes referred to as the “contemporane-
ous” network or the residual GGM (Epskamp, Waldorp, et al., 2018). Here we
see a similar pattern as above: the residuals have negative conditional relation-
ships between-valence, and slightly greater in magnitude positive conditional
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relationships within-valence. Note that the residual variance in this case is quite
low for each variable (Ψ̂ii ≈ 0.0185 with in-sample explained variance of approxi-
mately 99 percent). The estimated fixed point (that is, themean) is approximately
µ̂1 = µ̂2 = 3.16 for Cheerful and Content, and µ̂3 = µ̂4 = 3.04 for Anxious and Sad.

Which characteristics of the bistable system can we recover based on the
VAR(1) estimates? The strong auto-regressive effects correctly capture the strong
linear auto-effects present in the true system, defined by the r parameters in
Equation 9.2. The lagged regression parameters suggest that there are sup-
pressing effects between valences, and reinforcing effects with valences, captur-
ing characteristic number five of the data generating mechanism (Section 9.2.3).
However, the relative size of the suppressing and reinforcing effects is flipped in
the VAR(1): The suppressing effects are in fact larger in absolute value than the
reinforcing ones (see Section 9.2.1).

It is unclear what conclusions we can draw from the weak relationships
present in the residual network — as there are no such additional instantaneous
relationships present in the data generating system. We assume a-priori when
fitting the VAR(1) model that these parameters are independent of (i.e., constant
across) time. Finally, the VAR(1) model describes a uni-stable system, precluding
us from capturing any characteristics related to bistability. The dynamics im-
plied by the VAR(1) are illustrated by generating new data from the estimated
parameters, displayed in Appendix F.3.2. The estimated location of the single
fixed point is not equivalent to either of the two stable fixed points or the unsta-
ble fixed point in the true system.

Importantly, we can use our knowledge of the true bistable system to deter-
mine how we arrived at these observed parameter estimates. First, the estimated
position of the fixed point (given by µ̂) is roughly halfway between the positions
of the two stable fixed points, and is approximately equal to the sample mean
for each variable, reflecting that the system spends roughly the same amount of
time around each of the two stable fixed points. The main counter-intuitive re-
sult from the VAR(1) model is that the order of magnitude of the between- and
within-valence relationships is different than in the true bistable system. In the
true system, these pairwise relationships are non-linear, taking the form of inter-
action effects, and that the VAR(1) model captures the best linear approximation
of these non-linear relationships. As we can see from panel (a) of Figure 9.7, the
linear approximation of the within-valence relationship is largely driven by the
strong positive relationship present when both variables take on a high value,
e.g., when Cheerful and Content are both near the healthy fixed point. From
panel (b) we can see that, in contrast, the linear between-valence relationship of
Content on Anxious is in fact a mixture of the strong negative effect near the un-
healthy fixed point (Content is low, Anxious is high) and the weaker effect near
the healthy fixed point (Content is high, Anxious is low). Combined, this results
in higher linear within-valence relationships and lower linear between-valence
relationships.

Finally, the residual covariances displayed in panel (d) of Figure 9.7 are pro-
duced by a combination of model-misspecification (linear approximation of non-
linear relationships) and paths between each process at a shorter time scale than
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observed, due to the Euler steps used in data generation. We stress here that, even
in the current idealized situation, it is not trivial to derive an exact explanation
for the residual covariance structure, and so its utility in drawing conclusions
about the underlying system should be approached with great caution.

In summary, the VAR(1) model gives us rather limited information regarding
the core characteristics of the bistable model. In principle, the VAR(1) model
is unable to capture any features which relate to bistability (characteristics 1-
4), as one would expect from a model that exhibits only a single fixed point.
What is perhaps more surprising is that, while the sign of the lagged relation-
ships (characteristic 5), and their symmetries are captured, their relative order-
ing (characteristic 6) is not. This observation is critical: while we could expect
that the VAR(1) model would not reproduce the global dynamics of the system,
even when we have ideal data, the linear relationships in the VAR(1) model also
fail to appropriately capture the local microdynamics in this instance. Funda-
mentally, this is due to the non-linear relationships which must be present in
the underlying system in order to induce bi-stability: In general we would not
expect that linear approximations of non-linear effects would preserve the same
rank ordering. This observation has potentially major implications for the anal-
ysis of dynamic network structures, because many network derivatives such as
centrality metrics are strongly dependent on the relative ordering of effects. In
the following we will examine if extending the VAR(1) model to allow for bi-
stability brings us closer to recovering a more accurate characterization of the
data generating bistable system.

9.3.5 Threshold VARModel

Regime-switching VAR(1) models extend the VAR(1) model to allow for obser-
vations to be drawn from two different conditional distributions for Xt given
Xt−1, that is, two different regimes, described by two different sets of model pa-
rameters. These extensions in principle allow us to directly capture a notion of
multi-stability, by interpreting the mean vector of each conditional distribution
as a separate fixed point. Different extensions allow for different mechanisms by
which to model the switch between these regimes.

One popular regime-switching VAR(1) model is the Threshold TVAR(1)
model, where the system enters a different regime whenever a threshold value
or values τ of an a-priori specified threshold variable zt is crossed, written

Xt = b(1) +Φ
(1)Xt−1 + e

(1)
t if zt ≤ τ

Xt = b(2) +Φ
(2)Xt−1 + e

(2)
t if zt > τ

for a two-regime model with a single threshold, where the VAR(1) parameters are

indexed by regime, with e
(r)
t ∼ N (0,Ψ(r)), and mean vectors µ(r) = (I −Φ(r))−1b(r)

(Tong & Lim, 1980; Hamaker et al., 2010). The threshold variable zt may be an
exogenous variable, or one of the variables in the VAR model. Here we choose to
use Cheerful (zt = x1,t−1) as the thresholding variable. The threshold value τ is a
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9. Recovering Bistable Systems from Time Series Data

hyper-parameter that is estimated. Here, we estimate the TVAR(1) model using
the R-package tsDyn (Fabio Di Narzo et al., 2009), which estimates τ using a grid
search which selects the model with minimum summed squared residuals.

Figure 9.8 displays the main results from the estimated TVAR(1) model, in
which the threshold is estimated as τ̂ = 2.811. In panel (a) of Figure 9.8 we
show the time-series with shading indicating which observations are below (grey)
or above (white) the threshold. We can see that the estimated threshold nicely
separates the time series into periods in which the system is in an unhealthy state
(based on Cheerful values below the threshold) and a healthy state (Cheerful
values above the threshold).
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Figure 9.8: Panel (a) shows the two weeks of the time series, with observations shaded in either grey
or white as a function of whether x1,t−1 is above or below the threshold τ̂ = 2.811. Panels (b) and
(c) show the estimated VAR(1) parameters as lagged networks in the healthy (white) and unhealthy
(grey) regimes respectively.

Inspecting the lagged networks for each regime in panels (b) and (c) of Fig-
ure 9.8 we can see that the auto-regressive effects, and the within-valence cross-
lagged effects are pretty similar across both regimes. However, the cross-lagged
effects between variables of opposite valence are different. In the healthy regime,
negative valence emotions have much stronger cross-lagged effects on positive

emotions (Φ̂
(2)
13 = Φ̂

(2)
14 = Φ̂

(2)
23 = Φ̂

(2)
24 = −.08), and vice versa for the unhealthy
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regime (Φ̂
(1)
31 = Φ̂

(1)
41 = Φ̂

(1)
32 = Φ̂

(1)
42 = −.08). Residual partial correlation networks

for both regimes are shown in Appendix F.4, which display a similar pattern to
the regular VAR(1) model of weak positive residual partial correlation within-
valence and weak negative residual partial correlation between-valence. For the
TVAR, however, the residual covariance matrix is not symmetric across regimes:
In the healthy regime there is a slightly higher covariance between positive emo-
tions than negative emotions, and vice versa. The estimated means are given as
µ̂2 = {4.74,4.75,1.45,1.46} for the healthy state and µ̂1 = {1.49,1.48,4.69,4.69} for
the unhealthy state. Data generated by the TVAR(1) model estimates is shown in
Figure F.4 in Appendix F.3.3. From this figure we can see that most of the global
dynamics are well reproduced, although the system contains fewer switches be-
tween regimes than we would expect and there are fewer observations on the
switches between states compared to the original time series.

Which characteristics of the bistable system do we recover on the basis of the
TVAR(1) parameter estimates? First, the model picks up a number of character-
istics related to the bistability of the system: The estimated mean vectors capture
approximately the position of the two stable fixed points (characteristic 2), and
the estimated threshold correctly captures the position of the unstable fixed point
in the Cheerful dimension. However, note that bistability (characteristic 1) has
been specified a-priori and therefore cannot be considered to be recovered by the
model. Second, although the simulated data in Figure F.4 (Appendix F.3.3) ex-
hibits less frequent switches between states than we would expect, we can see
that the combination of state-dependent lagged parameters and residual vari-
ances does reproduce higher variability of positive emotion in the healthy state
in comparison to the unhealthy state, and vice versa for negative emotions (char-
acteristic 3). Finally, the lagged regression parameters in each regime correctly
capture that there are reinforcing effects within valence, and suppressing effects
between valence (characteristic 5).

The result that stands out in this analysis is the asymmetry in lagged regres-
sion coefficients across both regimes. This asymmetry would appear to indicate
that the parameters relating processes either change over time or are all explic-
itly a (step) function of the Cheerful variable. This last result is striking because
this intuitive interpretation does not correctly characterize the relationship be-
tween variables of different valences in the true bistable system. This is because
we know that the dependencies in C are invariant over time and fully symmetric.
However, the dependencies in C relate to pairwise interaction effects rather than
linear dependencies in the VAR(1) model. For example, the relationship between

Anxious, denoted x3, and the rate of change of Content, dx2
dt , depends both on the

value of C23 and on the current value of x2

dx2
dt

= r2x2 + (C23 × x2)x3 + . . . . (9.3)

If we view x2 as a moderator, we can see that, when x2 is high, the effect of x3
on the rate of change, given by C23 × x2, is relatively greater than when x2 is low.
In our system, separating the time-series into two regimes based on a threshold
of 2.811 for the Cheerful emotion essentially means we condition on high val-
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ues of x1 and x2 in the healthy regime, and low values in the unhealthy regime.
This leads to the relatively stronger linear relationship from negative emotions to
positive emotions in the healthy regime, and vice versa in the unhealthy regime.
As such, we can see that the asymmetry in lagged relationships over time picked
up by the TVAR(1) model is a characteristic of the true bistable system. Notably,
however, the mechanism by which this asymmetry occurs is entirely due to non-
linear relationships between the observed variables and the similarity of vari-
ables that share the same valence, while the TVAR(1) modeller might be tempted
to ascribe this entirely to the effect of the level of Cheerful.

To summarize, the TVAR(1) model allows us to recover global dynamics, and
it recovers some aspects of the microdynamics. However, we saw that a naive
interpretation of the TVAR parameter estimates may easily lead to the incorrect
conclusion that there is one time-varying variable which moderates the relation-
ships between all variables. In addition, we provided bistability as an input to
the model, and therefore cannot be considered a characteristic recovered from
data. In principle one could perform model selection between TVAR(1) models
with different numbers of components, however compared to theMean switching
HMM in Section 9.3.2, the run time for such a model comparison was unfeasible
for the large data set used in our chapter.

Furthermore, note that the threshold VAR(1) model does remarkably well for
this specific system for the following reason: While TVAR(1) models have fre-
quently been discussed in the literature (e.g., Warren, 2002; Hamaker et al., 2009,
2010; De Haan-Rietdijk, Gottman, Bergeman, & Hamaker, 2016) a major limita-
tion of this method is the difficulty in choosing a thresholding variable. In our
data generating mechanism, we know there to be an unstable fixed point defined
in multivariate space, x1 = x2 = x3 = x4 = 2.8. It just so happens that in this case,
almost always when we pass this position in one dimension (e.g., x1 > 2.8) we also
do so in all other dimensions (e.g., x2 > 2.8,x3 < 2.8,x4 < 2.8). This means that the
true mechanism of state-switching behaviour is very well approximated by the
univariate mechanism in the TVAR(1) model, for this choice of parameter values.
In more general situations, the choice of thresholding variable(s), and number
of thresholds, is likely to be less trivial. While the TVAR(1) model does capture
that there are suppressing and reinforcing effects between and within valences,
it does not capture the relative size of these effects, and it may easily lead to the
incorrect conclusion that there is a single time-varying variable which moderates
all of the relationships between other variables in the system.

Finally, the TVAR(1) is only one of a variety of different regime-switching dy-
namic models which could be fitted to the data at hand. Another alternative
would be the Markov-Switching (MS-)VAR model (Hamilton, 1989; Hamaker
et al., 2010; Hamaker & Grasman, 2012; Chow et al., 2018), a combination of
the HMM and VAR models, in which the regime-switching behaviour is deter-
mined by a random Markov process operating between latent categorical vari-
ables. While this model is more flexible than the Threshold VAR model, we show
here the TVAR results for two reasons. First, in this instance the switching be-
haviour will be less well approximated by the MS-VAR model, leading to even
less straightforward conclusions about the data generating process, but other-
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wise likely highly similar lagged parameter estimates. Second, while recent ad-
vances such as the dynR package (Ou et al., 2019) have made this model easier to
estimate, it is still prohibitively difficult and time consuming to fit to data.3

Now that we have shown the capabilities and limitations of the TVAR model
in recovering the bistable system, there are a few different avenues we could pur-
sue to further increase our model complexity in the hope of recovering more and
more of the features of underlying system. For example, both the TVAR and
MS-VAR can be considered special cases of time-varying parameter models, that
assume the true time-varying model is a partition between a finite set of com-
ponents. Other types of time-varying VAR models assume the parameters are
a smooth function of time (e.g., Haslbeck et al., 2020). However, we would not
expect these models to outperform the threshold VAR in this instance for two rea-
sons: First, the threshold VAR model is already able to capture the major source
of variation in parameters over time, that is, the step-like switches between sta-
ble states. Second, since these models are still based on fitting locally stationary
VAR models, the fundamental limitations of approximating the dynamics with
linear relationships remain. As such, in the next section we examine an approach
which aims to recover the exact system of differential equations (DEs) from data,
by allowing non-linear terms to enter into a step-wise model building procedure.

9.3.6 Differential Equation Model Building

In the previous sections we have shown that some models have been able to re-
cover some characteristics of the true model, but that it is generally difficult to
make inferences about the characteristics of the true system from these models.
Also, since all of these models were misspecified they were fundamentally unable
to recover the exact true bistable system. In this section, we aim to recover the
exact system of differential equations (DEs) directly from the ideal time series.

9.3.6.1 Model Building Procedure

The structure of the true model is typically unknown in practice, and therefore
has to be learned from the data. (Chow, 2019) describes a general methodol-
ogy for building dynamic systems models which consists of two steps: In the
first step, we approximate the first-order derivatives by taking difference scores
between consecutive measurement occasions, divided by the length of the time-
interval between those occasions

dxi,t
dt
≈

xi,t+1 − xi,t
∆t

(9.4)

where in each case, ∆t = .1, as described in Section 9.2.2 (cf., Boker et al., 2010).
In the second step, we use this approximate derivative as the outcome vari-

able, and try to find a regression model that predicts this outcome variable as
well as possible with as few parameters as possible. Here, we use results obtained

3Despite numerous attempts and correspondence with the authors of the package, we were unable
to get the model estimates for the dataset described here to converge.
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from the statistical models in the previous sections as a starting point, and then
follow the standard model-building approach of fitting models with increasing
complexity and evaluating the improvement in out-of-sample fit.

From the descriptive statistics (Section 9.3.1) the marginal lag-0 (Section
9.3.3) and lag-1 (Section 9.3.4) relationships and the mean-switching Hidden
Markov Model (Section 9.3.2), we saw that the system is bistable. From dynam-
ical systems theory we know that bistability is only possible in the presence of
non-linear terms (Strogatz, 2015). Similarly, we saw from the TVAR(1) model
(Section 9.3.5) that the linear relationships between pairs of variables is depen-
dent on where in the state-space other variables are located (i.e., below or above
a given threshold). Both of these pieces of information suggest the presence of
interaction effects between variables: However, we have no information about
what specific interaction terms, or what other linear or non-linear dependencies
should be in the model. Here, we start out with a main effects-only model, and
then add more and more non-linear terms (interactions, quadratic effects, etc.).
We evaluate the fit using the mean out-of-bag proportion of explained variance
(R2) obtained from a 10-fold cross-validation scheme (see Appendix F.5 for de-
tails), and we choose the model that maximizes this value. If two models result
in the same fit, we choose the model with less parameters.

The fit of the all models considered here is shown in Table 9.1. First, we test
a baseline model (Model A) where each derivative is a linear function of all other
variables. As we described above, the absence of interaction effects makes it un-
likely that this is a suitable candidate model, but it gives us a baseline explained
variance value of R2 = 0.04664. In Model B, we add to the baseline model all pair-
wise interactions between the outcome process (e.g., x1 when the DV is dx1/dt)
and the other variables in the model xj (i.e., x1×xj , ∀j ∈ p). Adding these pairwise

interactions increases the variance explained to R2 = 0.06874. In Model C, we
further extend this model by adding all possible pairwise interactions between
all variables xi × xj , ∀(i, j) ∈ p. However, we see that adding these parameters

in fact leads to a slight decrease in explained variance, R2 = 0.06870, indicating
overfitting. For brevity, we display only these three models, but adding further
complexity to model in terms of additional interaction terms, quadratic or cubic
terms also fails to increase the out-of-bag R2 (see Appendix F.5). As such, we can
take Model B to be our final model.

Model
dxi,t
dt ∼ a+ rixi + . . . q R2

A
∑

j!i rjxj 5 0.04464

B
∑

j!i Rijxj +
∑p

j Cijxjxi 9 0.06874

C
∑

j!i Rijxj +
∑p

(j,k)βjxjxk 15 0.06870

Table 9.1: Model fit results for each of the four models described in text. The second column gives
the model equation for each variable, q denotes the number of parameters estimated per univari-
ate regression model, and the final column indicates the mean proportion of explained variance R2,
calculated on the hold-out sets of a 10-fold cross-validation scheme (for details see Appendix F.5)
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9.3.6.2 Dynamics and Data Generated by Final Model

We can see that the structure of Model B is highly similar to the structure of our
data generating model, with additional main effects between variables, that is,
the linear effects denoted by the p × 1 vector r in the true model is replaced by a
p×pmatrix R in our chosenmodel. Furthermore, we can see from the left panel of
Figure 9.9 that the parameter estimates are highly similar, but not exactly equal
to the data generating parameters:

â =
[

−1.40 −1.37 −1.25 −1.27
]T

σ̂ =
[

−1.35 −1.34 −1.34 −1.34
]T

R̂ =

⎡

⎢

⎢
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Figure 9.9: Left panel: the parameters estimated from the ideal data. Right panel: the vector field
defined by the estimated parameters in the left panel. Solid points indicate stable fixed points and
empty points indicate unstable fixed points. The solid lines indicate the values at which derivative of
positive emotion (orange) and negative emotion (light blue) is equal to zero. At the points at which
the two lines meet, both derivatives are equal to zero and the system remains in this (stable) state.

While we would not expect to recover the exact parameters of the true model
with a different functional form, we see that the signs, size and relative order-
ings of parameters in the estimated Ĉ matrix are quite accurate. Based on these
parameter, we recover that there are suppressing effects between valences and re-
inforcing effects within valences (characteristic 5), that the reinforcing effects are
smaller in absolute value than the suppressing effects (characteristic 6), and by
capturing approximately the correct functional form, we capture that the micro-
dynamic parameters are dependent only on variables inside themodel (character-
istic 7). Furthermore, we can see that false positive (i.e., off-diagonal) elements
of R̂ are of a much smaller order of magnitude than the true positive diagonal
elements. The full parameter estimates, with standard errors and p-values are
shown in Appendix F.5.

Beyond inspecting the estimated parameters, we can judge how good of an ap-
proximation of the true bistable system our estimated model represents by com-
paring the dynamics implied by that model to that of the true system. The dy-
namics of a differential equationmodel are described by its vector field, which we

205



9. Recovering Bistable Systems from Time Series Data

depict for Model B in the right panel of Figure 9.9. To construct this vector field
we use the same two-dimensional approximation (positive and negative emotion)
as we did in Section 9.2.1 (see Appendix F.1 for details). The orange and light
blue lines are solution lines which indicate the locations where the rate of change
in one dimension (orange for no change in positive emotion, light blue for no
change in negative) is zero. The points at which these solutions line cross deter-
mine the fixed points. We can see that our model correctly identifies three fixed
points in this range of values: one stable healthy (x1 = x2 = 4.91,x3 = x4 = 1.34),
one stable unhealthy (x1 = x2 = 1.39,x3 = x4 = 4.84), and one unstable fixed point
approximately halfway between those two (x1 = x2 = 2.79,x3 = x4 = 2.82). If we
compare these global dynamics to the global dynamics of the true bistable sys-
tem depicted in Figure 9.1 in Section 9.2.1, we see that Model B very accurately
reproduces these dynamics, approximating the position of the fixed points in the
true system closely. From this we can say that the estimated DE model captures
characteristics 1 (bistability) and 2 (location of the fixed points) in the true sys-
tem.

An additional way to evaluate whether the dynamics of the estimated model
are similar to the dynamics of the true model is to generate data from the esti-
mated model and compare this data to the original data. Figure 9.10 shows a
time series generated from Model B using a step size of .1:
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Figure 9.10: Data generated from the estimated DE model, with the same initial values as the ob-
served data

We can see that the data looks very similar to the original data generated from
the true bistable system: the fixed points are at roughly the same location, there
is a difference in variance across the high and low emotion value fixed points
(characteristic 3), and there is a similar number transitions (around 14) between
the healthy and unhealthy state (characteristic 4). Thus, even though we did not
exactly recover the set of true parameters exactly, we seem to have recovered a
model that is equal to the true model in all relevant aspects, capturing all of the
seven characteristics listed in Section 9.2.3.
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9.3.6.3 Exact Recovery of Model Parameters

While this model building procedure performed extremely well in this scenario,
the findings here should be approached with a note of caution. Observe that, de-
spite negligible sampling error, we do not succeed in recovering the exact param-
eter estimates. The reason for this is that, while data is generated using an Euler
step of ∆t = .01, our ideal time series is created by sub-sampling with ∆t = .1.
While this is an unrealistically high sampling frequency, it still means that we
cannot estimate the derivative perfectly: As the sampling frequency becomes
lower, we would expect the quality of this approximation to degrade.

In theory, to recover the data generating parameters, we would need to fit
the integral solution form of the differential equation (Strogatz, 2015), as this de-
scribes the relationships between observed variables spaced ∆t apart, as implied
by the differential equation. It is well known that this integral solution may con-
tain a seemingly different set of dependency relationships than the differential
equation: variables which are independent in the DE form may be dependent in
the integral form, and the signs and relative orderings of these dependencies may
change depending on the value of ∆t (Ryan, 2018; Kuiper & Ryan, 2018; Aalen,
Røysland, Gran, & Ledergerber, 2012). Because methods based on approximating
integral solutions are expected to suffer from similar problems as the two-step DE
estimation procedure, and because these methods are difficult to apply in prac-
tice, we limit ourselves to the two-step approach in this chapter (see Discussion
section 9.5.3 for further details).

9.3.7 Summary: Analysis of Ideal Time Series

In this section we aimed to recover characteristics of the true bistable system
from the ideal time series with 10 measurements each minute using a number of
time series analysis tools. Table 9.2 provides a rough summary of which method
recovered which characteristics of the true bistable system. We showed that data
visualization (Histograms and the pairwise marginal relationships in Sections
9.3.3 and 9.3.4) revealed bistability and provided a rough estimate of the position
and showed that the variances around the fixed points differ. However, when
comparing the eye-balled number of switches with the estimates of the HMM,
we saw that we missed instances in which the system quickly switched back and
forth. The Mean switching HMM recovered all global dynamics, however, we
provided bistability as a model assumption, which is why we mark the check
mark at the first characteristic with an asterisk.

We showed that data visualization (Histograms and the pairwise marginal re-
lationships in Sections 9.3.3 and 9.3.4) revealed bistability and provided a rough
estimate of the position and showed that the variances around the fixed points
differ. However, when comparing the eye-balled number of switches with the
estimates of the HMM, we saw that we missed instances in which the system
quickly switched back and forth. The Mean switching HMM recovered all global
dynamics, however, we provided bistability as a model assumption, which is why
we mark the check mark at the first characteristic with an asterisk.
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Data Visualization # # # × × × ×

HMM #
∗

# # # × × ×
Lag-0 / GGM × × × × # × #

∗

Lag-1 / VAR(1) × × × × # × #
∗

TVAR(1) #
∗

# # # # × ×

DE-Estimation # # # # # # #
∗

Table 9.2: Summary of which method recovered which of the seven qualitative characteristics listed
in Section 9.2.3 from the ideal time series. The first four characteristics are global dynamics, thee
last three are microdynamics. The check marks with asterisk indicate that the method includes the
characteristic as a model assumption, and can therefore not be considered recovered from the time
series.

Turning tomethods that capture dependencies between variables, the analysis
of lag-0 relationships with the GGM and the analysis of lag-1 relationships with
the VAR(1) model (and a GGM on its residuals) fundamentally cannot recover
any global dynamics of the bistable system, but they recovered some micrody-
namics: the characteristic that within valence effect are reinforcing, and between
valence effects are suppressing; and that the parameters are constant across time,
however this is again an assumption of the model and therefore cannot be consid-
ered recovered from the data. The TVAR(1) model was able to recover all global
dynamics with the same caveat as in the HMM, that bistability is a model as-
sumption and not recovered from data. Similarly to the VAR model, it recovered
the reinforcing/suppressing characteristic. However, a naive interpretation of
the model parameters would lead one to conclude that the parameters are time-
varying. Finally, the DE-estimation method was able to recover all microdynam-
ics reasonably well, which implies that it also recovered all global dynamics.

The purpose of this section was to establish whether or not each method can
recover, in principle, some aspect of the bistable system. To do this we used
a highly idealized dataset, with an unrealistically high sampling frequency. As
such, the performance of each method described above can be considered an up-
per bound on its performance in any more realistic scenario. It remains to be
seen exactly how the performance of each method, and in general our ability to
recover global and microdynamic characteristics of the system, changes when a
more realistic sampling frequency is used.

9.4 Recovering the Bistable Systems from ESM Data

In this section we analyze a time series that is similar to the ideal time series in
all aspects, except that the system is sampled every 90 minutes instead of every
six seconds (see Section 9.2.2). This allows us to investigate how the ability of
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each method to recover (some characteristic of) the bistable system is affected by
having only a low sampling frequency time series, as it is typical for ESM studies.

9.4.1 Descriptive Statistics, HMM and Lag-0 Relationships

The descriptive statistics, such as histograms, and the lag-0 relationships ob-
tained from the ESM times series (Figures F.6 and F.7 respectively in Appendix
F.6) are essentially identical to those obtained from the ideal time series, depicted
in Figures 9.4 and 9.6 in Section 9.3.1. This makes sense: we have exactly the
same amount of data points, sampled from the same system as in the ideal time
series case. The only difference is that in the ESM data set 900 time points are
“missing” between each measurement of the ESM time series. However, because
lag-0 relations do not pick up on any temporal dependence, the lower sampling
frequency does not affect the lag-0 relations. While this suggests that lag-0 rela-
tions are robust against low sampling frequency, it also puts their utility to infer
the dynamics of an underlying dynamical system into question.

The parameter estimates obtained by fitting a two-component mean-
switching Hidden Markov Model on the ESM dataset were
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C1 C2

C1 0.915 0.085
C2 0.090 0.910

)

.

and the predicted states for two weeks of the time series are shown in Appendix
F.6 Figure F.8.

We see a very similar pattern of results as obtained from the HMM fit to the
ideal time series in Section 9.3.2, with the means and standard deviations of state
1 and state 2 reflecting the unhealthy and healthy states respectively. However,
the parameters of the estimated transition matrix A for this time series show sub-
stantially higher switching probabilities, a12 = .085 and a21 = .090. As we can see
from Figure 9.3, although the sub sampled ESM time series contains only 224 ob-
servations for a two-week period, rather than 201600, the sampling frequency is
still high enough to capture each of the 17 switches between states in this period.
That means that, although the amount of transitions that occur over a period of
time remains the same, the number of measurement occasions between any two
transitions is lower, which results in a higher transition probability. We can see
that this higher transition probability captures the number of transitions over
two weeks quite accurately — the model predicts between 224 × .090 ≈ 20 and
224× .085 ≈ 18 switches on average over a two week period. As such, the HMM
fitted on the ESM time series still allows us to estimate the location of and vari-
ance around the two fixed points (characteristics 2 and 3), and approximate the
frequency of transitions between these two fixed points (characteristic 4). In fact,
the transition probabilities appear to be even more accurate than the ideal case
— most likely this numerical imprecision in the ideal case is because the number
of transitions relative to total time series was so low that slight changes in the

209



9. Recovering Bistable Systems from Time Series Data

transition probability value lead to very different prediction about the number of
transitions over 201600 time points.

9.4.2 Lag-1 Relationships and VAR model

When analysing the lagged relationships in the ESM time series, we begin to see
some striking differences from the analysis of the ideal time series: panels (a) and
(b) of Figure 9.11 show the marginal relationship of Content observed at time t
with Cheerful at the previously observed time point t − 1, and Anxious at time
t with Content at time t − 1, respectively. Focusing on panel (a), we see that the
density of the lagged variables takes on a square-like shape, and each quadrant
seems to be filled with a roughly circular density. This is in contrast to the density
of the lagged relationships in the ideal data displayed in Figure 9.6 in Section
9.3.4, which was described by two elliptical shapes at the two fixed points.
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Figure 9.11: Panel (a) shows the relationship between Content and Cheerful, two emotions with the
same valence, spaced one measurement occassion apart (i.e., at a lag of one but with 90 minutes
between measurements) for the ESM dataset. The red line indicates the best fitting regression model.
Similarly, panel (b) shows the relationship between Anxious and Content, two emotions with different
valence, at a lag of one. Panel (c) displays the matrix of lagged regression parameters, estimated from
a VAR(1) model, as a network, and panel (d) displays the partial correlation matrix of the residuals
of the VAR(1) model as a network. This latter network is often referred to as the “contemporaneous”
network.
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9.4. Recovering the Bistable Systems from ESM Data

How can we explain this pattern? In the ideal data, the two elliptical shapes
indicate that Contentt−1 and Contentt tend to be near the same fixed point (two
shapes), and that the two variables are positively correlated (elliptical shape).
Now, in the ESM time series, we still have most of the density in the upper-
right and the bottom-left quadrant, indicating that if Contentt−1 is at the healthy
(unhealthy) fixed point, it is very likely that Contentt is also at the healthy (un-
healthy) fixed point (noting that t − 1 now reflects a 90 min instead of 6 second
time interval). However, we now also observe density at the top-left and bottom-
right quadrant. These densities represent the situation in which Contentt−1 is
in the healthy (unhealthy) state, but Contentt is in the unhealthy (healthy) state.
This situation is created when a switch between states falls within the 90min in-
terval between two ESM measurements. Next, we focus on the shape of the den-
sity within each of the quadrants: we see that each of the densities have roughly
a circular shape, which indicates that Contentt−1 and Contentt are uncorrelated
at each fixed point. This makes sense: in the ESM time series 900 time points
are missing between each pair of measurement, which means that the that there
is essentially no temporal dependence anymore between the variables. The re-
lationship between Anxioust−1 and Contentt can be explaned in an analogous
way. Before fitting the VAR model below, this already shows us that it is futile to
recover the microdynamics of the bistable system from these data.

Panel (c) of Figure 9.11 displays the network of estimated lagged regression
coefficients from a VAR(1) model fit to the data. If we were to use these to in-
fer the microdynamic characteristics of the system, we would manage to recover
the signs of effects between variables: Negative, suppressing effects between-
valence, and positive, reinforcing effects within-valence (characteristic 5, see Sec-
tion 9.2.3). However, we again fail to recover the relative size of the suppressing
and reinforcing effects. In fact, in this case, all of the estimated auto-regressive
and cross lagged effects have approximately equal absolute value |φ̂ij | ≈ 0.2. This
means that we also fail to recover the strong auto-regressive relationships en-
coded by the r parameters in the data generating model, and reflected by the
strong auto-regressive effects estimated by the VAR(1) model in the ideal setting.
In panel (d) we can see that, as was the case for the ideal time series, we obtain
positive residual partial correlations within-valence and negative residual cor-
relations between-valence, although the magnitude of these correlations is now
quite high, θ̂ = 0.51 and θ̂ = −0.23 respectively. In addition, note that the residual
variances of each variable in the model is considerably higher than the ideal case,
and approximately equal for all variables (Ψ̂ii ≈ 1.1, explained variance ≈ 0.62).
As we would expect, taking only every 900th measurement from the ideal time
series means that the predictive power of the VAR model decreases.

How can we reconcile these parameter estimates with what we know of
the underlying bistable system? Although we may be tempted to interpret
the VAR(1) parameters as reflecting the microdynamic structure, we have al-
ready seen in the analysis of the marginal relationships above that the large
time-interval between observed measurements means that such an interpretation
would be incorrect. Instead, the VAR(1) parameter values in the present situa-
tion are fully determined by the global characteristics of the system. Essentially,
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the estimated lagged relationships reflect that, at a time-scale of 90 minutes, the
dynamics of the system from one observation to the next can be boiled down
to just two possibilities: Either the entire system stays in the same state or it
moves to the other state. Since 1) the most likely behaviour is that the system
stays near the same fixed point, and 2) those two fixed points are defined as high-
positive and low-negative emotions, or low-positive and high-negative emotions,
we end up with positive within-valence relationships (e.g. if Cheerful now is
near the high fixed point, it’s likely that Content later will be too ) and negative
between-valence relationships (e.g. if Anxiety now is high, it’s likely that Con-
tent later will be low). All of the auto-regressive and cross-lagged relationships
are of equal value, as essentially all variables have the same value in predict-
ing what fixed point each other variable will be near at the next measurement
occasion: enough time elapses between measurements occasions that even the
auto-regressive effect is only as predictive as the cross-lagged effects. As noted
above, this interpretation is also reflected in the joint densities in panels (a) and
(b) of Figure 9.11: Each density takes the appearance of four quadrants of uncor-
related Gaussian distributions, indicating that the microdynamic dependencies
present in the ideal times series are totally absent from the ESM time series.

In summary, having a realistic sampling frequency results in the VAR(1)
model providing even less information about the characteristics of the bistable
model than in the ideal scenario. The longer time-interval between observations
implies that interpreting VAR(1) parameters as reflecting truly microdynamic be-
haviour would be incorrect: parameters interpreted as reflecting microdynamics
in fact have to be interpreted as reflecting the global characteristics of the system.
Although the sign of the microdynamic relationships (characteristic 5) is recov-
ered, in this instance it happens that the pattern of microdynamic relationships
has the same valence as the pattern of relationships at a longer time-scale, that is,
the movement of the process between fixed points. Thus, while in the ideal case
the VAR parameters were a mixture of the microdynamics (around each fixed
point), and global characteristics (i.e., position of the two fixed points), in the
ESM time series these parameters are only reflective of the global characteristics.

9.4.3 Threshold VARModel

We saw in the previous sections that inferring global characteristics using ESM
data was somewhat successful, but that inferring microdynamic characteristics
using a VAR(1) model was impossible. For the ideal time series, we saw that the
threshold VAR(1) model was in principle able to capture somemicrodynamic and
some global characteristics, and so in this section we examine how well that per-
formance generalises to our emulated ESM data. We use the same thresholding
variable (Cheerful, X1) and model specification as described in Section 9.3.5.

Figure 9.12 displays the main results from the TVAR(1) model estimated on
the ESM data. The estimated threshold is τ̂ = 2.796, very close to the estimated
threshold in the ideal case, and from panel (a) of Figure 9.12 we can see that
this threshold value does well in separating the time-series into the healthy and
unhealthy states. Inspecting the lagged networks for each regime in panels (b)
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and (c) of Figure 9.12 we see a similar general pattern of results as the lagged net-
works for the ideal time series in Figure 9.8 in section 9.3.5: In the healthy regime,
the negative variables have much stronger cross-lagged effects on the positive
variables, and vice versa for the unhealthy regime. However, we see even more
differences between regimes in this case than we did for the ideal time series.
For instance, in the healthy regime, the within-valence and auto-regressive rela-
tionships for the negative variables is much stronger than for the positive vari-
ables, a pattern which is flipped for the unhealthy regime. In both regimes, the
within-valence cross-lagged parameters are roughly equal to the auto-regressive
effects of the variables involved. The estimated means of each regime are given
as µ̂2 = {4.31,4.31,1.87,1.87} for the healthy state and µ̂1 = {1.74,1.71,4.44,4.62}
for the unhealthy state.

We can see from this that the TVAR(1) model for the ESM data succeeds in
recovering some global characteristics of the system. Specifically, the estimated
mean vectors capture approximately the position of the two stable fixed points
(characteristic 2), and the estimated threshold correctly captures the position of
the unstable fixed point in the Cheerful dimension. However, the recovery of this
characteristic comes with the same caveats as described in Section 9.3.5: The use
of a univariate threshold for this particular configuration of the true system hap-
pens to be a good approximation of the unstable fixed point in multi-dimensional
space.

Regarding the microdynamics, the lagged parameters in each regime approx-
imately capture that there are reinforcing effects within valence and suppressing
effects between valence (characteristic 5). Otherwise, however, the recovery of
microdynamic relationships performs worse than for the ideal time series, as ex-
pected. As was the case for the VAR(1) model, the regime-specific lagged param-
eters here again reflect global characteristics at the 90 minute time-scale rather
than microdynamics: Partitioning the joint densities in panels (a) and (b) of Fig-
ure 9.11 using a threshold does not aid us in any way to reproduce microdynamic
dependencies which are absent due to the low sampling frequency. Thus, the
asymmetry in parameter values across regimes has to be a function of the global
characteristics, influenced by both the different variances around the fixed points
in each state (i.e., high variance for positive emotions, low variance for negative
emotions in the healthy state, and vice versa) and those observations which jump
from one fixed point to the other across consecutive measurement occassions, as
discussed in the previous section.

As we did throughout Section 9.3, we could evaluate how well this model de-
scribes the bistable system by generating data from it. Notably, the dynamics
defined by Φ(1) and Φ(2) reflect an unstable system in both regimes: The eigenval-
ues of both contain a value outside the unit circle (i.e., with absolute value greater
than one) (Hamilton, 1994). This means that, if we were to generate data using
these parameters, the time series would always diverge (i.e., values of variables go
to infinity). This instability also precludes us frommaking any statement regard-
ing the variance of positive and negative emotions in each regime (characteristic
3), as the long run variances implied by the model are infinite. As such, we can
say that overall, the set of estimated parameters for the TVAR(1) based on the
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Figure 9.12: Panel (a) shows the first two weeks of the time series, with observations shaded in either
grey or white as a function of whether x1,t−1 is above or below the threshold τ̂ = 2.796. Panels (b) and
(c) show the estimated VAR(1) parameters as lagged networks in the healthy (white) and unhealthy
(grey) regimes respectively.

ESM time series are a poor characterisation of the microdynamics of the model at
any time-scale.

In summary, the TVAR(1) model fitted on the ESM time series still picks up
a global characteristic of the system, but the recovery of microdynamic charac-
teristics fails. In fact, the relationship between the estimated lagged parameters
and the characteristics of the system was much more opaque than in the ideal
data case, and our ability to generalize from the estimated parameters to the
behaviour of the system at any time scale was considerably worse than in the
ideal case. Again here, we should note that the only difference between the ideal
and ESM time series is the sampling frequency. Fundamentally, the results here
indicate that, if we do not have a sufficiently high sampling frequency, then fit-
ting increasingly complex models, or extensions to simpler models such as the
TVAR(1), does not aid us in recovering the characteristics we are interested in:
Even when we have an arbitrarily large number of observations, we fail to recover
basic characteristics of the microdynamics due to the spacing between measure-
ments.
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9.4.4 Differential Equation Model Building

In this section we will examine whether the DE model-building procedure de-
scribed in Section 9.3.6 also succeeds in recovering the bistable system when
applied to the emulated ESM dataset. Recall from Section 9.3.6 that for the
ideal time series, this method succeeded in recovering the microdynamics of
the system: The global characteristics were also considered to be recovered as
the global characteristics implied by the estimated model (bistability, position of
fixed points) matched up with the actual global characteristics of the underlying
system.

9.4.4.1 Model Building Procedure

Similarly to Section 9.3.6 we first estimate the derivatives directly from the data
by differencing the time series, and then search for the best fitting model by
fitting a series of regression models with increasing complexity. Table 9.3 dis-
plays the fit of seven increasingly complex regression models, evaluated using
the mean out-of-bag proportion of explained variance R2.

Model A (R2 = 0.13991), Model B (R2 = .16827) and Model C (R2 = 0.16928)
are the same models as introduced in Section 9.3.6. However, since we did not
observe a clear drop in R2 as we increased model complexity from Model A to
Model C, we also assess the fit of four additional models. Model D adds cu-
bic main effects x31, . . .x

3
4 as predictors, increasing the model fit to R2 = 0.19455.

Model E adds four three-way interactions (xi × xj × xk, i ! j ! k) to this, further

increasing the model fit to R2 = 0.19940. Adding yet more three-way interactions
(xi×xj×xk,∀(i, j,k) ∈ p) in Model F still increases model fit (R2 = 0.19940), as does

adding all possible four-way interactions in Model G (R2 = 0.20420). As it is not
possible to specify more unique product interaction terms, we consider Model G
to be our final model.

Model
dxi,t
dt ∼ a+ rixi + . . . q R2

A
∑

j!i rjxj 5 0.13991

B
∑

j!i Rijxj +
∑p

j Cijxjxi 9 0.16827

C
∑

j!i Rijxj +
∑p

(j,k) βjxjxk 15 0.16928

D
∑

j!i Rijxj +
∑p

(j,k) βjxjxk +
∑p

j γjx
3
j 19 0.19455

E
∑

j!i Rijxj +
∑p

(j,k)βjxjxk +
∑p

j γjx
3
j +

∑p
j!k!l ζj (xjxkxl ) 23 0.19801

F
∑

j!i Rijxj +
∑p

(j,k) βjxjxk +
∑p

(j,k,l) ζj (xjxkxl ) 35 0.19940

G

∑

j!i Rijxj +
∑p

(j,k) βjxjxk +
∑p

(j,k,l) ζj (xjxkxl )

+
∑p

(j,k,l,m) ηj (xjxkxlxm)
70 0.20420

Table 9.3: Model fit results for each of the seven models described in text, for the emulated snapshot
ESM data. The second column gives the model equation for each variable, q denotes the number
of parameters estimated per univariate regression model, and the final column indicates the mean
proportion of explained variance R2, calculated on the hold-out sets of a 10-fold cross-validation
scheme (for details see Appendix F.5)
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9.4.4.2 Dynamics and Data Generated by Final Model

Clearly, the model-building procedure for the emulated ESM data failed to re-
cover the functional form of the true bistable system. Furthermore, we have ar-
rived at a final model which is so complex (4×70 = 280 vs. 4×6 = 24 parameters
in the true model) that it is close to uninterpretable. In theory we could con-
tinue adding complexity to the model in the form of non-linear transformations
or spline functions, which we know to be absent from the data generating mech-
anism, but which may increase fit. However, this would make the model even
more difficult to interpret.

In the left panel of Figure 9.13 we present the estimated parameters that are
also contained in the true model, with full parameter estimates and standard er-
rors shown in Appendix F.5.3. We can see that the estimates deviate widely from
the parameters in the true bistable system. In addition, the estimated parameters
in the C matrix fail to capture the sign and relative ordering of all parameters in
the true C matrix, though a full evaluation of whether suppressing and reinforc-
ing effects of different sizes are present (i.e., characteristics 5 and 6) is infeasible
due to the large number of parameters present in the model. Thus, we can say
that this approach fails to recover the microdynamics of the system at least to the
degree that they can be interpreted.
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Figure 9.13: Left panel: the parameters estimated from the snapshot ESM time series. Right panel:
the vector field defined by the estimated parameters. Solid points indicate stable fixed points and
empty points indicate unstable fixed points. The solid lines indicate the values at which derivative of
positive emotion (orange) and negative emotion (light blue) is equal to zero. At the points at which
the two lines meet, both derivatives are equal to zero and the system remains in this (stable) state.

While the system did not recover the microdynamics in the sense that it cap-
tures the qualitative characteristics of the true bistable system, it could still be
the case that this more complex system exhibits global characteristics that are
similar to the true bistable system. Similarly to Section 9.3.6, we can evaluate
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these dynamics by inspecting its vector field, shown on the right-hand side of
Figure 9.13. As in the vector field obtained from the ideal data (Figure 9.9), the
intersections of the two solution lines (blue and orange) indicate the position of
the different fixed points in the shown range of the state space. These fixed points
are further denoted by dots, with filled dots indicating a stable fixed point, and
empty dots indicating an unstable fixed point.

We can immediately see from Figure 9.13 that the stability landscape is much
more complex than the one of the true bistable system, with high-degree poly-
nomial solution lines, and with four rather than three fixed points. Interest-
ingly, the system correctly identifies (1) that there are two stable fixed points
relating to healthy state (x1 = x2 = 4.51,x3 = x4 = 1.67) and unhealthy state
(x1 = x2 = 1.71,x3 = x4 = 4.47) and (2) that there is an unstable fixed point ap-
proximately half-way between those two (x1 = x2 = 2.99,x3 = x4 = 3.19). Despite
having an entirely different functional form, the estimated model does capture
two stable fixed points (characteristic 1) and the approximate position of those
fixed points (characteristic 2). This shows that Model G performs well in captur-
ing the characteristics of the system for emotion values that were observed in the
time series, that is, near the two stable fixed points.

Crucially, however, we cannot say that this system recovers the global dy-
namics of the true system, not least because the system contains an additional
unstable fixed point at (x1 = x2 = 5.31,x3 = x4 = 7.94), which is not present in
the true bistable system. The presence of this unstable fixed point means that if,
for instance, both negative and positive emotions take on a high value simultane-
ously, then the system diverges (i.e., the values of variables go to infinity). If we
examine the behaviour of the system even further outside the range of observed
values (−∞ > X > 0 and 10 < X <∞) even more fixed points and regions of stabil-
ity and instability can be found. We can further demonstrate these dynamics by
generating data from Model G. Figure 9.14 shows a time series generated from
the difference-form of Model G (i.e., with a step size equal to that of the observed
data).4 We see that the process moves between the healthy and unhealthy fixed
point for the first ten days, exhibiting the bistable behaviour we see in the true
system. However around the eleventh day, the stochastic input is large enough
to move the system to an unstable region in the vector field and which leads the
system to diverge.

4This is obtained by re-fitting the differential equation using the unscaled difference xi,t+1−xi,t as
the outcome variable, leading to equivalent results with parameters approximately scaled by dt = 90.
The residual variance used is the estimated residual variance scaled down to .65 the magnitude, to
account for the non-normal residual distribution. Using the estimated residual standard deviation
results in shocks which immediately move the system into an unstable region.
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Figure 9.14: Data generated from the estimated DE model, with the same initial values as the “ideal”
data

Note that the complexity of the final model here is not a result of over-fitting
the data because we performed model selection based on the out-of-bag R2, an
approximation of the out-of-sample R2. Rather, the complexity of this model can
be attributed to two factors. First, due to the low sampling frequency, our ap-
proximation of the derivative at each point in time is poor. The second, as we
discussed in Section 9.3.6.3, is that given the spacing between observations, the
best one can hope for is to approximate the integral solution to the data gener-
ating equation, which is likely of a highly complex functional form. The ability
of the misspecified Model G to reproduce some characteristics in regions where
we have observed data can be attributed to the high flexibility afforded by the
many non-linear terms. In that sense, this behaviour is highly comparable to
the problem of using a high-degree polynomial regression model to make pre-
dictions outside of the range of observed values. The vector field in Figure 9.14
is constructed by obtaining predicted values for the derivatives across a grid of
input values: As such, it is unsurprising that the vector field is accurate where
the input values are close to the observed data, and inaccurate elsewhere.

In summary, we do not at all recover the functional form or parameters of
the system; we do recover some of the global characteristics and behaviour of the
system in the region where we have observations, capturing that there are two
stable fixed points and one unstable fixed point, and their locations. However,
the estimated model also implies the presence of at least one extra unstable fixed
point, which has major implications for the dynamics of the model, implying di-
vergent behaviour. Thus, the estimated model implies fundamentally different
microdynamic and global characteristics. Based on the simulated data in Figure
9.14, it does not seem that we correctly capture the variability around these fixed
points, or the frequency of transitions, as any reasonable simulation of data from
this model eventually leads the system to diverge. Crucially, we fail in recov-
ering an interpretable approximation of the data generating model. As such, it
is not feasible to assess whether there are truly suppressing effects between va-
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lences and reinforcing effects within valences, or the relative size of these effects
(characteristics 5 and 6).

9.4.5 Summary: Analysis of ESM Time Series

In this section, we aimed to investigate to which extent lowering the sampling fre-
quency affects the the ability of our considered methods to recover the bistable
system. Our findings are summarized in Table 9.4. Our main findings are that,
in general, we remain able to recover global characteristics of the system using
simple methods, but that we are completely unable to recover any of themicrody-
namics. Since the dependencies close in time are not present in the data anymore,
the VARmodel, the TVARmodel and the DE-Estimation procedure have to fail to
recover these dependencies. This is despite the fact that the time series we used
in this section can be considered a highly idealized approximation to ESM time
series, in terms of the number of observations and the quality of measurements,
suggesting that sampling frequency is a fundamental barrier to inference which
needs further investigation.

Bis
tab

ilit
y (
1)

Po
sit
ion

(2)

Va
ria
nc
e (
3)

Tr
an
sit
ion

s (
4)

Su
pp
r./
Re
inf

. (5
)

Re
lat
ive

Siz
e (
6)

Tim
e-c

on
sta

nt
(7)

Data Visualization # # # × × × ×

HMM #
∗

# # # × × ×
Lag-0 / GGM × × × × × × #

∗

Lag-1 / VAR(1) × × × × × × #
∗

TVAR(1) #
∗

# # # × × ×

DE-Estimation × × × × × × ×

Table 9.4: Summary of which method recovered which of the seven qualitative characteristics listed
in Section 9.2.3 from the ESM time series. The first four characteristics are global dynamics, the
last three are microdynamics. The check marks with asterisk indicate that the method includes the
characteristic as a model assumption, and can therefore not be considered recovered from the time
series.

The recovery of global characteristics was more successful: Using data visu-
alization and the Hidden Markov Model it was still possible in principle to learn
about the position, variance around and frequency of transitions between fixed
points, and the threshold estimate form the TVAR model succeeded in capturing
the unstable fixed point. Finally, the predictions made by the best-fitting differ-
ential equation model did allow us to get some tentative indication of bistable
behaviour, and the possible location of stable fixed points. However, the result-
ing model suffered from a high degree of complexity, limiting both substantive
interpretation and our ability to extrapolate the model parameters to predict the
behaviour of the system under different conditions.
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In summary, the results in this section call into question to what extent it is
possible to investigate moment-to-momentmicrodynamics using data sampled at
a rate typical of ESM studies. We have showed that interpreting model estimates
from ESM time series as reflecting the microdynamics can be highly misleading,
when the process of interest is varying at a higher frequency than the sampling
frequency. Although the recovery of global characteristics is more promising, we
remind the reader that the time series considered here is still highly idealized,
with essentially infinite sampling size, and so the performance of these methods
should be considered an upper bound on performance in any realistic situation.

9.5 Discussion

In this chapter we explored to what extent dynamical systems models can be
recovered from psychological time series by investigating two successive ques-
tions: first, how well does a set of popular and more advanced methods recover
(characteristics of) a basic bistable system with an ideal data set sampled at ex-
tremely high sampling frequency (every six seconds)? And second, how is the
performance of each method affected when reducing the sampling frequency to
one measurement every 90min, which is typical for ESM studies.

When analyzing the ideal time series we found that the popular VAR model
(and the GGM fitted on its residuals) can in principle not recover the global dy-
namics of the true bistable system, and only recovers some of its microdynamics.
However, we showed that descriptive statistics, data visualization and statistical
models which are based on mixtures (the HMM and threshold VAR) were able
to capture the global dynamics of the bistable system. The only method that re-
covered the full bistable system was a differential equation (DE) model building
procedure. Reducing the sampling frequency from every six seconds to every 90
minutes affected the considered methods differently: The VAR model and its ex-
tensions no longer recover any microdynamics, and the DE-estimation procedure
fails. However, descriptives, data visualization and appropriate statistical mod-
els still recover the global dynamics. Overall, our analysis therefore suggests that
it is neither possible to estimate dynamical systems directly from realistic time
series, nor is it possible to reliably infer its microdynamics from the parameter
estimates of statistical models.

9.5.1 Implications for Studying Mental Disorders as Complex
Systems

Our results raise fundamental questions about how to study mental disorders
from a complex systems perspective. First, they show that it is unclear what
exactly one can in principle conclude from statistical models estimated from
psychological time series about an underlying dynamical system. Clearly, these
models are always misspecified (i.e., do not include the true system as a special
case), so one cannot hope to directly recover the underlying dynamical system.
More surprisingly, however, recovering the qualitative characteristics of the true
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system also turned out to be difficult: while it was possible to recover the global
dynamics, no statistical model correctly recovered the microdynamics. For exam-
ple, the VAR model fundamentally cannot capture the global characteristics (e.g.
location of fixed points) of the true bistable system and only recovered some of its
microdynamics (e.g., reinforcing vs. suppressing effect between two variables).
This is a problem for the emerging framework of studying mental disorders as
complex systems, because one is typically interested in the microdynamics (the
“mechanics”) of a disorder because one hopes to intervene on them. In contrast,
it is usually less clear how interventions can target global dynamics, since they
can be seen as the aggregate behavior implied by the microdynamics. Especially
the failure of the popular VAR model to correctly recover the qualitative nature
of the microdynamics in the true model is concerning, because it calls into ques-
tion whether it allows any reliable conclusions about an underlying dynamical
system. It therefore seems to be an open question how useful VAR models and
other statistical models are to studying mental disorders from a complex systems
perspective.

Second, the analysis of the ESM time series raises the question of which pro-
cess can be recovered with which sampling frequency. While we were still able
to recover the global dynamics of the system, each method that provides some
approximation of the microdynamics was strongly affected by sampling only ev-
ery 90min instead of every six seconds: The qualitative characteristics of the VAR
and TVAR models were even less in agreement with those of the true model, and
the DE-estimation method, which was the only fully successful method in the
ideal data case, returned a model with uninterpretable parameters and incorrect
global- and microdynamics. Thus, our results suggest what also seems intuitive:
it is impossible — or at least extremely difficult — to recover microdynamics at
a time scale that is much smaller than the sampling frequency. This intuition
is also in line with sampling theorems from the field of signal processing: for
example, the Nyquist-Shannon sampling theorem states that a sine wave (a pro-
cess much simpler than our bistable system) that completes one cycle within, say,
2 minutes, has to be sampled at least every minute to be recovered (e.g., Marks,
2012; Papoulis & Pillai, 2002). This suggests that it is futile to try use a time series
sampled every 90 minutes to directly recover dynamics of emotions that operate
on a time scale of seconds or minutes (Houben, Van Den Noortgate, & Kuppens,
2015) or even from moment to moment (Wichers et al., 2015). However, this also
means that ESM time series can certainly be used to recover processes that unfold
at a time scale of several hours or days.

To summarize, we identified two fundamental problems to studying mental
disorders from a complex systems perspective: first, even with extremely high
sampling frequency it is generally unclear how to make inferences from a statis-
tical model to an unspecified dynamical systems model. Second, the sampling
frequency of the data collection constrains the type of processes one can recover.
Specifically, a process can only be recovered if the sampling frequency is suf-
ficiently high. Clearly, these are profound problems every empirical discipline
struggles with and no simple answers can be expected. Indeed, they might imply
that studying some phenomena of mental disorders will always remain out of of
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reach. That said, we believe that that much progress can be made by studying
mental disorders as complex systems and that acknowledging and studying the
above issues allows one to do so more efficiently. As a way forward, in the follow-
ing section we suggest a new research strategy based on proposing substantively
plausible dynamical systems, which opens up avenues to creatively tackle the
two problems identified in this section.

9.5.2 Moving Forward: Proposing Plausible Dynamical Sys-
tems Models

A more abstract perspective on the first problem identified in the previous sec-
tion is the following: we have parameters of a statistical model which we esti-
mated from a time series sampled from some system, and we hope to infer some
characteristics (e.g., global or microdynamics) of the data generating system from
them. The problem, however, is that the mapping from parameters of statistical
model to the parameters and structure (and the implied dynamics) of the true
model is unknown. Thus, this inference cannot be made. The main reason this
mapping is unknown is the trivial reason that no true dynamical system model
is specified.

We propose that, in order to overcome this fundamental problem, researchers
must begin the research process by proposing a “first guess” model of the dy-
namical system. While this is clearly difficult and the validity of this model
should certainly be questioned, this approach has one major advantage: it is
much clearer how to draw conclusions from descriptive statistics, data visualiza-
tions or statistical models about the underlying dynamical systems model. This
is because one can generate time series from the “first guess” model and fit a sta-
tistical model of choice; that way, one always knows which statistical model is
implied by the dynamical systems model. This implied model can then be com-
pared to the model fitted to corresponding empirical data. If the implied model
and the empirical model are in agreement, we have tentative evidence that the
dynamical system model is correct; if not, we can use the nature of the disagree-
ment to improve the dynamical system model. Clearly, this modeling approach,
which is typical to more quantitative disciplines such as physics, chemistry and
biology, is different to the statistical modeling framework most psychological re-
searchers are familiar with. On the one hand these formal dynamical systems
models are harder to build, since they cannot be estimated directly from the
data. On the other hand, they are powerful enough to be plausible for complex
phenomena such as mental disorders, and have additional benefits such as syn-
thesizing knowledge, revealing unknowns, laying open hidden assumptions and
the checking the internal consistency of a model (Epstein, 2008; Lewandowsky &
Farrell, 2010; Smaldino, 2017).

This modeling approach also allows to tackle the problem of sampling fre-
quencies that are too low to recover the process of interest directly, as one can
generate a time series from the specified dynamical systems model and reduce
the sampling frequency to a level that is also available in empirical data. Then,
similarly to above, one can again compute the statistical model of choice that
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is implied by the dynamical systems model with a given sampling frequency,
compare it to the corresponding model fit on empirical data, and in the case of
disagreement adapt the dynamical systems model accordingly. Of course, this
approach is not a panacea: less information is available when the sampling fre-
quency is low, which makes model identification more difficult. However, spec-
ifying an initial dynamical systems model allows one to gauge how difficult it is
to recover a given type of process on a given time scale with a given sampling
frequency.

In addition, starting out with a dynamical systems model also allows to study
the measurement function that defines the mapping from the variables in the
dynamical systems to the obtained measurements, a topic we only touched on
briefly in this chapter. In our emulated ESM time series we took themeasurement
function to return the exact values of variables at the time point of measurement.
However, different questions imply different measurement functions. For exam-
ple, if the phrasing of a particular question refers to the entire period since the
last measurement, one could instead define the measurement as a function of the
variable values since the last measurement, such as the average. Next to formaliz-
ing which experiences an ESM question refers to exactly, defining a measurement
function also allows to formalize known response andmemory biases, such as the
recency effect (Ebbinghaus, 1913/2013).

Finally, having a plausible dynamical systems model allows one to explicitly
address a behavior that has been largely ignored in the psychological time series
modeling literature: the fact that humans sleep. Sleep interacts with essentially
everything physiological and psychological, is part of the definition of several
mental disoders (e.g., Major Depression) and related to many more (e.g., Walker,
2017). Thus, for many mental disorders, it seems necessary for a plausible model
to include sleep. This may also allow using existing data in new ways, because
data around the “day-night shift” does not have to be excluded anymore, but
instead can be used to test hypotheses about the sleep-related assumptions of the
dynamical systems model.

Clearly, this brief outline of the proposedmodeling approach leaves many im-
portant questions unanswered: Where should the initial “first guess” dynamical
system come from? How to formalize different substantive aspects in a dynami-
cal systems model? Which statistical models should one choose to test which im-
plications of the dynamical systems model? Given some disagreement between
predicted and observed statistics, how should one adapt the existing dynamical
systems model? These and other questions are difficult ones and answering them
requires the combined creativity of a large research community. Nonetheless, a
more detailed account of our proposed new modeling approach would be desir-
able. However, since such a detailed account is beyond the scope of the present
work, we address it in Chapter 11.

9.5.3 Limitations

Several limitations of our work require discussion. First, our goal was to explore
to which extent one can recover (bistable) dynamical systems for mental disor-
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ders from psychological time series. However, we only studied a single bistable
system. Therefore, it could be that the fundamental problems identified in this
chapter and summarized in Section 9.5.1 are in fact a particularity of the chosen
bistable system. This, however, seems extremely unlikely: First, because we iden-
tify the problems in this chapter as examples of well-known issues such as model
misspecification and sampling systems with a sampling frequency that is suffi-
cient for recovery. Second, the bistable system we chose is arguably the simplest
bistable system for four variables one can find. Choosing a different model there-
fore results most likely in choosing a more complex model, and our intuition is
that the methodological difficulties discussed in this chapter become more and
not less relevant in such models.

Second, a more specific criticism of our bistable system could be that the time
scale of the process is unrealistically small, and we therefore exaggerated the
problem of recovering dynamics of psychological processes from ESM time se-
ries. We agree that it is possible that some psychological processes are easier to
recover from ESM data than the dynamical system used in this chapter. Thus,
strictly speaking, we only showed that it is impossible to recover a system if the
sampling frequency does not appropriately match the time scale of the system. In
principle, it is therefore an open question whether there is a mismatch between
the time scale of the system of interest and the available sampling frequency.
However, intuition — and the sampling theorems such as the one mentioned in
Section 9.5.1 — strongly suggest that it is impossible (or at least very difficult) to
recover a process that operates at a time scale of seconds or minutes from an ESM
time series that is measured every 1.5 hours. Clearly, however, our investigation
is only a first treatment of the important topic of sampling frequency, and much
work on it is required to establish a tight connection between psychological time
series and dynamical systems models.

Third, one could reverse the argument in the previous two paragraphs and
argue that our model is so ideal that many analyses perform better than in most
realistic applications. This is certainly the case for the Threshold VAR model,
which performs well only because of the simple dynamics of the bistable system
as we discussed in Section 9.3.5. Other examples are the descriptive statistics
and data visualization which may not be as insightful if fixed points are closer to
each other and if there is more noise in the system. Also, the two-step approach
to estimating the differential equations in Section 9.3.6 may work less well for a
more complicated model. Thus, we would agree with this assessment, however
chose to use a simple bistable system in order tomake the chapter more accessible
to applied researchers.

Fourth, we analyzed a bistable system whose structural parameters do not
change over time. However, much of the framework of considering mental dis-
orders as complex systems is based on the idea that pathology is defined with
respect to a structural change in the underlying system, and therefore structural
change is of central interest. We expect that structural change renders the recov-
ery of a system more difficult, and we therefore did not include this feature in
order to keep the chapter at a reasonable length. However, we believe that fu-
ture methodological research into how to recover such structural changes both in
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principle and with realistic time series would be extremely helpful to better un-
derstand phenomena such as early warning signals (Scheffer et al., 2009; van de
Leemput et al., 2014a) and more generally structural change in mental disorders.

Fifth, in order to estimate a differential equation from data, we took a rather
simple two-step approach based on local linear approximation of the derivative
(cf., Boker et al., 2010). This approach involves first estimating the derivative
itself using scaled difference scores, and then using this derivative as an outcome
variable in a regression model. While this method benefits from being extremely
simple to implement, we could expect that it would perform poorly in the pres-
ence of low sampling frequency as the quality of the derivative approximation
degrades (as we noted in Section 9.3.6.3 and observed in Section 9.4.4). There
are multiple alternative approaches to estimating DE equations which we did not
consider here. For example, approaches based on numerical integration of the DE
equation during estimation, such as implemented in dynR (Ou et al., 2019) and
stan (Carpenter et al., 2017) (with additional functionality in the ctsem package;
Driver, Oud, & Voelkle, 2017) may in general perform better than the two-step
procedure when the sampling frequency is low. However, for the analysis shown
in the present chapter, neither the ctsem nor dynr package performed better than
the two-step approach. In general, however, more research is needed to map out
which method deals best with the problem of low sampling frequencies.

Lastly, throughout our chapter we studied how well certain analysis meth-
ods can recover the true bistable system in principle. We did this by studying
the population properties of these methods, that is, the situation in which one
has essentially infinite sample size, which we approximated with a huge num-
ber (201600) of measurements. This was necessary in order to study the more
fundamental questions of (1) whether a given method can recover our bistable
system in principle and (2) whether a given method can recover our bistable sys-
tem based on a time series with realistic sampling frequency. We did this because
it would be meaningless to study the performance of a method as a function of
sample size, if the method alredy fails with infinite sample size. Clearly, however,
to apply any of the methods we studied in practice, one has to know how reliable
they are with which sample size, and much more research is necessary to map
our these sample size requirements (e.g., Dablander, Ryan, & Haslbeck, 2019).

9.5.4 Summary

In this chapter we identified two fundamental problems involved in studying
mental disorders from a complex systems perspective: first, it is generally un-
clear what to conclude from a statistical model about an unspecified underlying
complex systems model. Second, if the sampling frequency of a time series is not
high enough, it is futile to attempt to recover the microdynamics of the underly-
ing complex system. In response to these problems, we proposed a newmodeling
strategy that takes an initial substantively plausible dynamical systems model as
a starting point, and develops the dynamical systems model by testing its pre-
dictions. In this approach it is much clearer what we can learn from data and
statistical models about an underlying dynamical system, and in addition it pro-
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vides avenues to move the field forward by formalizing the sampling process,
measurement, response and memory biases, measurement reactivity and the in-
fluence of sleep.
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Chapter 10

A Formal Theory of Panic

Disorder

Abstract

The network theory of psychopathology posits that mental disorders
are complex systems of mutually reinforcing symptoms. This overarch-
ing framework has proven highly generative but does not specify precisely
how any specific mental disorder operates as such a system. We address
this gap in the literature by developing a network theory of Panic Disor-
der and formalizing that theory as a computational model. We first re-
view prior psychological theory and research on Panic Disorder in order
to identify its core components as well as the plausible causal relations
among those components. We then construct and evaluate a formal theory
of Panic Disorder as a non-linear dynamical system. We show that this for-
mal theory can explain a great deal, including individual differences in the
propensity to experience panic attacks, key phenomenological characteris-
tics of those attacks, the onset of Panic Disorder, and the efficacy of cogni-
tive behavioral therapy. We also show that the theory identifies significant
gaps in our understanding of Panic Disorder and propose a theory-driven
research agenda for Panic Disorder that follows from our evaluation of the
theory. We conclude by discussing the implications of the model for how
we understand and investigate mental disorders as complex systems.

This chapter has been adapted from: Robinaugh, D., Haslbeck, J. M. B., Waldorp, L., Kos-
sakowski, J. J., Fried, E. I., Millner, A., McNally, R. J., van Nes, E. H., Scheffer, M., Kendler, K. S.
& Borsboom, D. (submitted). Advancing the Network Theory of Mental Disorders: A Computational
Model of Panic Disorder. Preprint: https://psyarxiv.com/km37w/
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10.1 Introduction

The network theory of mental disorders posits that symptoms cohere, in part,
because of causal relations among the symptoms themselves (Borsboom, 2017).
From this perspective, mental disorders are analogous to an ecosystem. They
do not appear as a coherent whole because of a shared underlying essence, but
because of the web of causal interactions among the features of the disorder
(Kendler et al., 2011).

The notion that there are etiologically important causal interactions among
symptoms has prompted the development of new methods for assessing the
structure of relationships among symptoms (Marsman et al., 2015; Epskamp,
Maris, et al., 2016; Epskamp, Rhemtulla, & Borsboom, 2017) and a host of empir-
ical studies applying those methods across numerous psychiatric disorders (for
an overview, see Fried & Cramer, 2017). Moreover, the core idea that there are
causal relations among symptoms has expanded into an overarching theory of
mental disorders, how they develop, and how they remit (Borsboom, 2017). How-
ever, network theory remains abstract. It provides a conceptual framework for
thinking about mental disorders but does not posit specific relationships among
symptoms. Empirical network studies provide information about these relation-
ships, but are not rich enough on their own to fully inform a network theory, as
this requires a substantively interpreted model: a model that does not merely sta-
tistically associate variables, but rather specifies the mechanisms through which
variables influence one another. Consequently, the network approach has pro-
duced statistical models that suggest putative network structures, but no theories
that posit precisely how any given mental disorder operates as a complex system
of interacting symptoms.

We aim to address this gap in the literature by developing such a theory for
Panic Disorder. Panic Disorder is a suitable starting point for several reasons.
First, theories are about phenomena (Bogen & Woodward, 1988; Haig, 2005) and
panic attacks are a robust phenomenon: a “stable, recurrent, and general feature
of the world” (Haig, 2005, p. 374). Experiences resembling panic appear in med-
ical consultation reports as far back as the mid-18th century (Coste & Granger,
2014) and have been described consistently in the medical literature since the
late 19th century (Berrios, 1996; Dechambre, 1864)). Accordingly, these attacks
are a suitable phenomenon about which to develop a theory. Second, Panic Dis-
order symptoms are structurally inter-connected in the network of symptoms
from the Diagnostic and Statistical Manual (DSM; Boschloo et al., 2015), suggest-
ing that these symptoms commonly co-occur and, thus, represent precisely the
type of phenomenon that network theory seeks to explain. Third, theorists have
posited causal relations among Panic Disorder symptoms (e.g., a mutually rein-
forcing relationship between panic attacks and avoidance behavior; Goldstein &
Chambless, 1978). Indeed, some of these relationships are embedded in the disor-
der’s diagnostic criteria (e.g., to meet the diagnostic criterion, avoidance behavior
must be related to panic attacks; Borsboom, 2008). Fourth, there is strong body
of research on the etiology, phenomenology, and epidemiology of panic attacks
(Barlow & Craske, 1988; McNally, 1994). Moreover, there are well-established
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interventions that treat Panic Disorder (e.g., cognitive behavioral therapy; Bar-
low, 1997) and reliable ways to induce panic attacks (e.g., biological challenges;
Gorman, Liebowitz, Fyer, & Klein, 1987). This work provides criteria by which to
evaluate our theory, as any theory failing to account for these empirical findings
will be found wanting. The prior literature is thus sufficiently rich to both inform
theory development and to provide a basis for theory evaluation.

Our development of Panic Disorder theory will proceed as follows. In Section
10.2, we review theory and research on Panic Disorder, identifying its essential
components and the posited functional relations among them. In Section 10.3,
we integrate prior work and propose a formal theory of Panic Disorder as a com-
plex system, formalizing the relationships among individual symptoms of Panic
Disorder in a mathematical model. In Section 10.4, we implement this model
in R, a freely available software environment for statistical computing (R Core
Team, 2014). Computational modeling is an effective tool for theory develop-
ment because it allows us to simulate the model’s behavior and assess what the
theory can and cannot explain (Epstein, 2008). We will show that the theory can
explain a great deal, including core phenomenological qualities of panic attacks,
individual differences in the vulnerability to panic attacks, the onset of Panic Dis-
order following an initial panic attack, and the efficacy of cognitive behavioral
therapy for Panic Disorder. We will also show that explicating Panic Disorder
theory in this way reveals significant gaps in our understanding. Moreover, the
model fails to explain some key features of Panic Disorder. These shortcomings
suggest further theory development is needed. In Section 4, we propose a theory-
driven research agenda for Panic Disorder that follows from our evaluation of the
model. We give particular focus to the need for further theory development and
illustrate how such development could proceed using the model proposed here
as well as a previously proposed mathematical model of panic attacks (Fukano &
Gunji, 2012). Finally, in Section 5, we discuss the implications of the model for
our understanding of mental disorders.

10.2 A Survey of Panic Disorder Theory and Phe-
nomenology

The symptoms identified in diagnostic manuals provide a tractable starting point
for identifying the components of a mental disorder’s causal system (Borsboom,
2017). Current diagnostic criteria for Panic Disorder are rooted in work by Sig-
mund Freud from the late 19th century (Frances et al., 1993). In his work on
anxiety neurosis, Freud described angstfallen: sudden attacks of anxiety charac-
terized by “ideas of the extinction of life. . . or of a threat of madness” accompa-
nied by intense somatic symptoms (Freud, 1962, pp. 93-94). The key features of
his description can be traced from an early precursor to the DSM (Association &
for Mental Hygiene. Bureau of statistics, 1918), through the DSM-II (American
Psychiatric Association, 1968), to the first diagnostic criteria for anxiety neurosis
(Feighner et al., 1972), where these attacks were required to include apprehen-
sion, fearfulness, or a sense of impending doom accompanied by at least four
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of the following six somatic symptoms: dyspnea, heart palpitations, chest pain,
choking or smothering sensations, dizziness, and paresthesias. In the DSM-III,
these attacks were separated into the newly created Panic Disorder diagnosis
(Kendler, 2017; McNally, 1994), but the criteria used by Feighner and colleagues
were largely retained, defining panic attacks by the sudden and unexpected onset
of two symptoms: somatic symptoms and fear (American Psychiatric Association,
1980).

The DSM symptoms of a panic attack provide a fuzzy delineation of panic
phenomenology. The somatic symptoms include the experience of fear (e.g., the
fear of dying) and fear is itself characterized by many of the somatic symptoms
(American Psychiatric Association, 1980; Cacioppo et al., 2000; Cowen & Kelt-
ner, 2017). Consequently, these symptoms do not identify fully distinct compo-
nents. In the surge of research that followed Panic Disorder’s inclusion in the
DSM-III, researchers instead began to use a closely related but somewhat cleaner
delineation, identifying three components of panic phenomenology: physiology,
cognition, and behavior (Barlow & Craske, 1988; Salkovskis, 1988; Griez et al.,
1983). We will consider these to be the core building blocks of a panic attack.

10.2.1 Building Blocks of a Panic Attack

10.2.1.1 Physiological Arousal

Individuals experiencing panic attacks report the sudden onset of intense bod-
ily sensations, most commonly heart palpitations, difficulty breathing, sweating,
trembling, dizziness, and faintness (Barlow & Craske, 1988; Brown & Cash, 1990;
De Beurs et al., 1994; Hibbert, 1984), sensations long recognized as products
of the autonomic nervous system (Berrios, 1999). Consistent with patient re-
ports, panic attacks that occur in the laboratory in response to placebo injec-
tions or relaxation procedures are associated with increases in autonomic ner-
vous system activity, including heart rate, skin conductance, body temperature,
and ventilation (Cohen, Barlow, & Blanchard, 1985; Goetz et al., 1993; Lader &
Mathews, 1970). Ambulatory assessments have produced more equivocal find-
ings, with elevations in heart rate, temperature, and respiration observed dur-
ing many, but not all, patient-identified panic attacks (R. R. Freedman, Ianni,
Ettedgui, & Puthezhath, 1985; Cameron, Lee, Curtis, & McCann, 1987; Hoehn-
Saric, McLeod, Funderburk, & Kowalski, 2004; Margraf, Taylor, Ehlers, Roth, &
Agras, 1987; C. B. Taylor et al., 1986). However, bodily sensations more consis-
tently accompany attacks that patients rate as especially severe in these studies.
Together, patient self-report and studies of physiology suggest that autonomic
arousal is an important building block of prototypical panic attacks.

10.2.1.2 Perceived Threat

The second building block concerns perceived threat. Individuals experiencing
panic perceive themselves to be under threat. Early accounts of panic attacks
describe uncontrollable worry and “ideas of the extinction of life” (Freud, 1962;
Dechambre, 1864, pp. 93) and fear of dying or going crazy are among the DSM

230



10.2. A Survey of Panic Disorder Theory and Phenomenology

diagnostic criteria for panic (American Psychiatric Association, 2013). In early
cognitive studies, participants reported a fairly narrow range of thoughts that fo-
cused on perceived physical (e.g., heart attack), psychological (e.g., going crazy),
or social (e.g., making a fool of oneself) consequences of the bodily sensations
associated with panic (Hibbert, 1984; Ottaviani & Beck, 1987). Subsequent stud-
ies have shown that panic patients in non-Western cultures often fear additional
bodily sensations in keeping with local (“folk”) understandings of physiology
(Lewis-Fernández et al., 2011). For example, Cambodian refugees with Panic
Disorder commonly dread sensations of orthostatic dizziness, interpreting such
symptoms as signaling a potentially lethal episode of kyol goeu (“wind overload”;
Hinton, So, Pollack, Pitman, & Orr, 2004; Hinton, Um, & Ba, 2001). Although
“wind overload” and heart attacks are superficially distinct, they both concern
seemingly uncontrollable bodily sensations associated with increased autonomic
arousal (S. Taylor, 1994). Accordingly, the unifying theme of cognitions observed
during panic attacks is the appraisal of arousal-related bodily sensations as a
source or indicator of threat.

10.2.1.3 Escape Behavior

The third building block is behavioral. An “irresistible need to run” was noted
in the earliest medical literature on panic attacks (e.g., Millet, 1884; as cited in
Berrios, 1996) and the urge to escape is among the more strongly endorsed fea-
tures of these attacks (Norton, Zvolensky, Bonn-Miller, Cox, & Norton, 2008). In-
deed, some researchers have defined panic attacks in part by “the intense desire
to escape or flee the situation” (Chambless, Caputo, Jasin, Gracely, & Williams,
1985, p. 42). However, behavioral attempts to prevent feared consequences are
not confined to overt efforts to escape. “Patients sit down, hold onto walls. . . and
generally engage in behaviors which they believe may abort imminent disaster”,
(Salkovskis, 1988, p. 130). These behaviors can be subtle and idiosyncratic but
share the intent of mitigating the anticipated consequences of arousal-related
bodily sensations (Salkovskis, 1991).

10.2.2 The Building Blocks of Panic Disorder

Beginning with DSM-IV, recurrent panic attacks alone were no longer sufficient
for the diagnosis of Panic Disorder (American Psychiatric Association, 1994), one
also had to endorse persistent concern about additional attacks, worry about the
implications of an attack, or change in behavior related to the attacks (American
Psychiatric Association, 1994). These expanded criteria, retained in the DSM-5
(American Psychiatric Association, 2013), suggest two additional building blocks
of Panic Disorder.

10.2.2.1 Persistent Concern

“Concern” and “worry” about panic attacks suggests a cognitive component dis-
tinct from that observed in the panic attack itself. Some have argued for the
importance of “persistent concern”, noting that individuals with recurrent panic
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attacks tend to believe that panic-related bodily sensations are dangerous (Craske
et al. (2010, p. 104); McNally (1994, p. 8)). Episodic thoughts about panic at-
tacks and their consequences outside the context of panic attacks themselves (cf.
“worry”) are similarly endorsed by a large portion of those who experience panic
attacks (Craske et al., 2010). In the remainder of this article, we will focus on the
more enduring beliefs associated with panic and panic-related arousal.

10.2.2.2 Avoidance Behavior

The avoidance symptom of Panic Disorder suggests a behavioral component dis-
tinct from that observed in the panic attack itself. The “urge to escape” during
panic attacks concerns a threat that is already present. In contrast, avoidance
is preemptive. Individuals with reoccurring panic attacks refrain from activi-
ties that increase physiological arousal (e.g., drinking coffee) and avoid situations
where a panic attack may occur or where its consequences may be especially se-
vere (e.g., the middle of a crowded theater). This situational avoidance is closely
related to the concept of agoraphobia: the fear of situations where escape would
be difficult or help unavailable in the event of a panic attack or panic-like bodily
sensations (American Psychiatric Association, 2013). Although agoraphobia can
occur in the absence of panic attacks, agoraphobic avoidance remains an impor-
tant component of the Panic Disorder syndrome (Asmundson, Taylor, & Smits,
2014; Wittchen, Gloster, Beesdo-Baum, Fava, & Craske, 2010).

10.2.3 Functional Relations among Building Blocks

The components of a panic attack are intimately linked. Indeed, they are largely
defined in relation to one another. Perceived threat during panic is about the
bodily sensations tied to physiological arousal. Physiological arousal is the body’s
evolved response to perceived threat, preparing one to escape, the very behavior
observed during panic (Barlow & Craske, 1988; Cannon, 1916). Perhaps unsur-
prisingly then, numerous psychological theorists have postulated causal relations
among the components of a panic attack. Moreover, they have argued that those
relations figure prominently in Panic Disorder’s etiology. In the remainder of this
section, we provide a brief overview of these psychological theories.

10.2.3.1 The Vicious Cycle of Panic Attacks

The most well-known theory of Panic Disorder is Clark’s cognitive model (Clark,
1986; Roth, Wilhelm, & Pettit, 2005). In this model, panic attacks occur when
a person misinterprets benign arousal-related bodily sensations as portents of
danger (e.g., interpreting increased heart rate as a sign of an impending heart
attack; Clark, 1986). This “catastrophic misinterpretation” leads to a perception
of threat which, in turn, increases arousal, producing a self-amplifying feedback
loop that culminates in a panic attack (Clark, 1986, p. 463).

Clark’s cognitive model is neither the only nor the first theory positing this
“vicious cycle” (Roth et al., 2005). As far back as 1937, the physician T.A. Ross
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offered a remarkably similar formulation (Ross, 1937, p. 24) and in the years be-
fore and after Clark’s model was published, numerous theorists offered variations
on the vicious cycle theory of panic attacks (Barlow & Craske, 1988; Beck, 1988;
Ehlers & Margraf, 1989; Margraf, Ehlers, & Roth, 1986; Rapee, 1987; van den
Hout & Griez, 1983). In an early example of such a theory, Goldstein and Cham-
bless (1978) argued that individuals with recurrent panic attacks and agorapho-
bia have learned to fear the bodily sensations associated with arousal, rendering
them vulnerable to the vicious cycle between arousal and perceived threat. A
similar argument was advanced by Reiss, McNally, and colleagues, who used the
term anxiety sensitivity to denote the belief that the bodily sensations associated
with anxiety may have harmful consequences (McNally, 1990; Reiss & Mcnally,
1985). Anxiety sensitivity was characterized as a dispositional variable that can
exist prior to and independent of Panic Disorder and, thus, can help explain in-
dividual differences in the propensity to experience panic attacks and Panic Dis-
order. Individuals who believe anxiety-related bodily sensations to be harmful,
they posited, are more likely to interpret such sensations as portents of danger
and, consequently, are more likely to become entrapped in the vicious cycle that
culminates in a panic attack. There is now considerable evidence to support this
position (McNally, 2002). Individual differences in anxiety sensitivity predict
both the likelihood of panic in response to the induction of arousal-related bod-
ily sensations as well as the development of unexpected, “spontaneous” panic
attacks over time (Schmidt, Lerew, & Jackson, 1997, 1999; Schmidt, Zvolensky,
& Maner, 2006). These findings suggest that anxiety sensitivity acts as a mod-
erating variable, strengthening the effect of arousal-related bodily sensations on
perceived threat and, thereby, amplifying the vicious cycle that drives panic at-
tacks.

10.2.3.2 The Vicious Cycle of Panic Disorder

Reiss and Mcnally (1985) argued that a history of panic is not necessary for the
development of elevated anxiety sensitivity. However, they did identify panic
attacks as one path by which an individual may develop the belief that anxiety-
related bodily sensations have harmful consequences (Reiss, Peterson, Gursky, &
McNally, 1986). In doing so, like Goldstein and Chambless (1978), they posit a
second vicious cycle: a cycle that operates on the components of Panic Disorder,
rather than on the components of a panic attack. Here, panic attacks strengthen
the belief that bodily sensations are dangerous, thereby increasing vulnerability
to panic attacks.

Bouton, Mineka, and Barlow (2001) expanded on this vicious cycle, positing
that conditioning episodes play a fundamental role in the development of Panic
Disorder. The terrifying nature of an initial panic attack conditions the bodily
sensations associated with the early stages of the attack. As a result, these bodily
sensations themselves become signals of a possible impending attack. As Bouton
and colleagues note, “individuals who go on to develop Panic Disorder would
learn anxiety sensitivity or, more specifically, that somatic symptoms are poten-
tially dangerous” (Bouton et al., 2001, p. 22).
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A causal effect of panic attacks on beliefs about panic attacks can account for
how an initial attack may lead to the development of Panic Disorder. However, it
raises a critical question: why do those who develop Panic Disorder learn that the
bodily sensations associated with a panic attack are dangerous rather than harm-
less? The repeated failure of a catastrophe to materialize should lead to more
accurate beliefs regarding arousal, yet beliefs about their danger arise and per-
sist. Clark and colleagues have posited several processes that maintain such be-
liefs (Clark, 1999), including the possibility that escape behaviors engaged before
or during an attack may shield catastrophic beliefs from refutation (Salkovskis,
1991; Salkovskis, Clark, Hackmann, Wells, & Gelder, 1999). The absence of the
feared consequence is attributed to the escape behavior, leaving intact the belief
that bodily sensations are dangerous. Learning theorists have similarly argued
that these behaviors act as inhibitors, predicting an absence of the feared con-
sequence. As such, they serve to eliminate the discrepancy between prediction
and observation, and thereby prevent the individual from learning a more ac-
curate and benign prediction about the consequences of arousal-related bodily
sensations (Bouton et al., 2001). Hence, across theories, cognitive and behavioral
theorists have argued that escape behavior plays a critical role in determining
whether substantially elevated arousal strengthens or disconfirms the belief that
arousal is threatening.

10.2.4 Summary

Our survey of panic phenomenology identified five core building blocks of Panic
Disorder. Panic attacks include physiological arousal, perceived threat, and escape
behavior. Panic Disorder additionally includes persistent concern about panic-
related arousal (cf., anxiety sensitivity) and avoidance behavior. Our brief survey
of psychological theories suggests key functional relations among the compo-
nents of panic attacks and Panic Disorder that, together, form three interlocking
feedback loops: (1) a positive-feedback loop between physiological arousal and
perceived threat (i.e., the “vicious cycle” that gives rise to panic), (2) a negative
feedback loop between perceived threat and escape behavior, and (3) a learning
feedback loop in which panic attacks either strengthens the belief that arousal
is dangerous (a positive feedback loop) or disconfirms such beliefs (a negative
feedback loop), with the type of learning that occurs hinging on the presence
of escape behavior. In the next section, we integrate these feedback loops and
propose a model of Panic Disorder.

10.3 A Model of Panic Disorder as a Non-Linear Dy-
namical System

An integrated model of Panic Disorder derived from our survey of the literature
appears in Figure 10.1:
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Arousal Perceived 
Threat

Escape

Arousal
Schema

Context

  Avoid

Panic Disorder

Panic Attacks

Figure 10.1: A Causal Diagram of Panic Disorder. Circles represent individual components of the
causal system: the five components identified in our survey of the literature plus a “situational” con-
text variable (in our model we use the broader term “arousal schema” rather than anxiety sensitivity
as focused on in our survey of the literature, see text for further details). Panic attack components ap-
pear in the gray box. The remaining components, along with panic attacks, compose Panic Disorder.
Arrows indicate causal effects. Lines ending in an open circle indicate moderation of the causal effects
on which they terminate. Solid arrows indicate positive effects. Dashed arrows indicate negative ef-
fects. The dashed “self-loop” that initiates and terminates in arousal represents the regulating effects
of homeostatic feedback. Paired positive and negative arrows (i.e., the arrows terminating on Arousal
Schema) indicate an effect that can be either positive or negative. Notably, the arrows terminating on
Arousal Schema initiate from the panic attack as a whole rather than any individual components of
the attack, signifying that this effect is dependent on the aggregate behavior of these variables. Con-
versely, lines initiating from arousal schema and avoidance terminate on individual components or
the relationships among them, signifying the role of these components as parameters in the equations
that define panic attacks.

This causal diagram encodes how the symptoms of Panic Disorder directly
interact. Causal diagrams such as this are commonly and fruitfully used in
the Panic Disorder literature (Clark (1986, p. 463); Ehlers and Margraf (1989,
p. 4); Fava and Morton (2009, p. 630); Lader (1991, p. 157); Pauli et al. (1991,
p. 138); Pilecki, Arentoft, andMcKay (2011, p. 385); Rapee (1995, p. 430); Sandin,
Sánchez-Arribas, Chorot, and Valiente (2015, p. 38)). In this section, we aim
to take a step beyond causal diagrams by proposing a mathematical model: a
model that specifies not just which components are related, but also the func-
tional form of those relationships. That is, we aim to faithfully represent the
theoretical framework we have abstracted from the literature as a set of Ordi-
nary Differential Equations that define how each variable changes over time as a
function of itself and the other variables in the model (e.g., Strogatz, 2015). To-
gether, these equations and their substantive interpretation constitute the theory
of Panic Disorder that will be the focus of the remainder of this article.

In this section, we will gradually build up the model equations one variable at
a time, thereby allowing us to discuss how we incorporated each building block
of Panic Disorder into the model as well as our substantive interpretation of the
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equations. This description is intended to be as accessible and self-contained as
possible, though familiarity with Ordinary Differential Equations and dynamical
systems will likely facilitate understanding (for good introductions, see Feldman,
2012; Sayama, 2015; Strogatz, 2015). We will first introduce and analyze reduced
equations that define only the vicious cycle between arousal and perceived threat.
To help illustrate the behavior produced by these equations, we will also intro-
duce the concepts of alternative stable states and tipping points from the dy-
namical systems and ecology literatures (Scheffer, 2009). We will then expand
on these initial equations and incorporate two model components that play the
critical role of constraining the positive feedback loop between arousal and per-
ceived threat: escape behavior and homeostatic feedback. Finally, we will define
and explain the equations that incorporate the ability to learn from the experi-
ence of panic attacks, either reinforcing or disconfirming the belief that arousal
is dangerous, and, thereby, altering the vulnerability to panic attacks.

10.3.1 The Vicious Cycle of Panic Attacks

The central feature of the model is the positive feedback loop between arousal
and perceived threat, denoted A!T. It comprises four components: arousal (A),
perceived threat (T), the effect of perceived threat on arousal (T→A), and the
effect of arousal on perceived threat (A→T). We review each in detail below.

10.3.1.1 Arousal (A) & the Effect of Perceived Threat on Arousal (T→A)

The first building block modeled in these equations is Arousal, denoted A, which
is taken to represent all arousal-related bodily activity. We will assume arousal
to be continuous, with higher values indicating more arousal. A customary way
of expressing the behavior of A when modeling with differential equations is to
characterize the derivative of A with respect to time. This derivative, denoted dA

dt ,
represents the rate of change in arousal: that is, how arousal will change from its
current state as time progresses. If dA

dt is positive, arousal will increase. If dA
dt is

negative, arousal will decrease.
We will define dA

dt as a function of the current level of arousal and the current
level of perceived threat (T). Our objective in doing so is to represent the influ-
ence of perceived threat on arousal. We use a rate parameter, denoted α, to define
the intrinsic rate at which arousal can change, and a slope parameter, denoted ν,
to define the strength of the effect of perceived threat on arousal. Together, this
yields the equation:

dA

dt
= α(νT−A) (10.1)

The product of ν and T can be thought of as the level of arousal that would cor-
respond to the current level of perceived threat. If νT is greater than A (i.e., per-
ceived threat suggests arousal should be higher than the current level of arousal),
then the rate of change will be positive and arousal will increase. If νT is less
than A, the rate of change will be negative and arousal will decrease.
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This equation defines the effect of perceived threat on arousal (T→A), which
we will take to represent the body’s fight-or-flight response to perceived danger
(Cannon, 1916). Importantly, this simple equation is not intended to represent a
fully-developed quantitative theory of the body’s fight-or-flight system. Rather,
like each of the equations we will present, it is a minimal model: a simplified rep-
resentation that qualitatively characterizes the phenomenon of interest. Because
we assume small or distant threats will elicit low levels of arousal and severe or
proximal threats will elicit high levels of arousal, we defined the T→A effect to be
linear and increasing, with the slope given by the parameter ν. The assumption
of linearity is made for the sake of simplicity but is not essential to the model (a
non-linear monotonic curve would produce similar qualitative behavior).

10.3.1.2 Perceived Threat (T) & the Effect of Arousal on Perceived Threat
(A→T)

Perceived threat incorporates the perceived severity, proximity, and probability
of a perceived threat. In this model, we will focus only on perceived threat arising
from arousal. Like arousal, we will assume perceived threat to be continuous.
Thus, it may entail extreme predictions of impending catastrophe, such as those
emphasized by Clark (1986), but may also include appraisals of arousal as a low
severity, distal, or low probability threat.

We will define the rate of change of perceived threat dT
dt as a function of the

current level of perceived threat (T) and the current level of arousal (A). Like the
equation for arousal, we include a rate parameter, γ , which specifies the intrin-
sic rate at which perceived threat can change. In contrast to the linear effect of
perceived threat on arousal, we define the effect of arousal on perceived threat
(A→T) as being sigmoidal (s-shaped; see next paragraph for further detail). Two
parameters determine the shape of this sigmoidal effect: λ and µ. Together, this
yields the equation:

dT

dt
= γ

(

Aµ

Aµ +λµ
−T

)

(10.2)

Similar to Equation 10.1, the s-shaped Aµ

Aµ+λµ effect effect can be thought of
as the level of perceived threat that is elicited by the current level of arousal. If

Aµ

Aµ+λµ is greater than T, then the rate of change will be positive and Twill increase.

If Aµ

Aµ+λµ is less than T, the rate of change will be negative and T will decrease.
Thus, perceived threat will move toward the level dictated by the current level
of arousal, with the precise rate of change determined by the magnitude of the
discrepancy between Aµ

Aµ+λµ and T as well as the intrinsic rate parameter λ.
We will assume the A→T effect to incorporate both interoceptive awareness

of one’s arousal-related bodily sensations and the interpretation of those sensa-
tions. That is, detection and interpretation of arousal are the processes by which
arousal triggers a perception of threat, a signal detection process akin to a smoke
alarm (cf., Barlow & Craske, 1988). We chose an s-shaped function to represent
this process because, for such an “alarm system” to work effectively, it is imper-
ative that low level fluctuations in arousal arising from ordinary activities have
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negligible effect on perceived threat. However, beyond a given threshold of nor-
mal variation, arousal should begin to elicit perceived threat, with the strength
of that effect growing with increasing arousal until tapering as it approaches a
maximum level of perceived threat.

The s-shaped Aµ

Aµ+λµ function allows us to capture these aspects of the A→T
effect. The parameter λ determines the sigmoid curve’s half-saturation point and
the parameter µ determines its steepness. Together, these parameters determine
the threshold at which A begins to affect T and the strength of that effect. In do-
ing so, these parameters play a critical role in the model, as cognitive behavioral
theories posit that the strength of the A→T effect is central to the development of
panic attacks (see Section 10.2). In this model, we will use variation in the λ pa-
rameter to model variation in the strength of the A→T effect and, thus, variation
in sensitivity of this “alarm system”.

10.3.2 Moderating the Strength of the Vicious Cycle of Panic At-
tacks

10.3.2.1 Arousal Schema (S)

Psychological theories posit that “alarm system” sensitivity is dependent on one’s
arousal schema (i.e., one’s beliefs about and learned associations with autonomic
arousal). Schemata are cognitive structures: “organized elements of past re-
actions and experience that form a relatively cohesive and persistent body of
knowledge capable of guiding subsequent perception and appraisals” (Segal,
1988, p. 147). Arousal schema includes beliefs that arousal-related bodily sen-
sations are dangerous, as reflected in the concept of anxiety sensitivity, as well
as beliefs about the likelihood of panic attacks and the perceived ability to cope
with arousal or its consequences (i.e., panic self-efficacy; T, 1985; Casey, Oei, &
Newcombe, 2004). Arousal schema thus guides the perception and appraisal of
arousal, moderating the relationship between arousal and perceived threat.

10.3.2.2 Context (C)

In this model, wewill also consider one’s current context tomoderate the sensitiv-
ity of the A→T “alarm system.’ Individuals with Panic Disorder are more likely to
experience panic attacks in some situations than others, particularly those where
the perceived negative consequences of a panic attack are especially heightened
(e.g., a crowded theater; Klein & Klein, 1989). Importantly, for individuals with
Panic Disorder, the perception of threat is from arousal in the situational context,
not the context itself. To account for this moderating effect of situational context,
we added a binary context (C) variable to the model, representing the presence
or absence of any context that predisposes an individual to panic. The value of
C is chosen probabilistically and remains fixed for a specified period of time (see
Supplementary Materials G.1 for further details).
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10.3.2.3 The Moderating Effects of Arousal Schema and Context

Arousal schema and context have their moderating effect on the A→T relation
through their effect on the parameter λ (see Equation 10.2):

λ(S,C) = 1− S

S+ ξ
−πC (10.3)

As previously noted, λ is one of two parameters that determines the strength
of the effect of arousal on perceived threat. To signify the dependence of this
parameter on arousal schema (S) and situational context (C), we will denote the
parameter as λ(S,C). The parameters ξ and π constrain the strength of the mod-
erating effects of S and C, respectively. The dependence of λ(S,C) on arousal
schemameans that when arousal schema is high, then λ(S,C) is low. When λ(S,C)
is low, the A→T effect is strong. In other words, when arousal is believed to be
dangerous, it elicits greater perceived threat. Similarly, if a panic-predisposing
situation is present (C=1), then λ(S,C) is lowered and the A→T effect is strength-
ened. The dependence of λ(S,C) on arousal schema and context could be repre-
sented mathematically in any number of ways and the precise equation used here
should not be overinterpreted. The importance of Equation 10.3 is simply that
it allows arousal schema and context to moderate the strength of the A→T effect
and, thus, the strength of the A!T feedback loop.

10.3.2.4 Illustrating the Moderating Effect of Arousal Schema

In Figure 10.2, we have depicted the A!T feedback loop under different levels
of arousal schema to illustrate the effect of arousal schema on the behavior of
the A!T feedback loop. As seen in Panel B, when arousal schema is low (S =
0.25), the steepness of the s-shaped A→T effect is low. As a result, arousal has
relatively little effect on perceived threat and the A!T feedback loop is weak. As
arousal schema increases to being moderate (S = 0.50) or high (S = 0.75), the s-
shaped A→T effect becomes steeper and the A!T feedback loop is strengthened.
In Panels B-D of Figure 10.2, we illustrate how increasing arousal schema affects
the behavior of this simple dynamical system by using three complementary dia-
grams: vector fields, stability landscapes, and phase lines. Each diagram depicts
where the system will go next based on where it is now.

When arousal schema is low, the system will always move toward a state with
no arousal and no perceived threat. All paths traced through the vector field will
lead to the same point: no arousal and no perceived threat (0, 0). In the stability
landscape, any starting level of arousal will lead the system to move “downhill”
into the basin where A = 0. In the phase line, any initial level of arousal will fall
in the left-facing arrow pointing toward A = 0. The low-arousal schema system
thus has a single fixed point or stable state (denoted by the filled circle). The point
is a fixed because its rate of change is 0 (as indicated by the slope of 0 in the
stability landscape). It is stable because neighboring system states move toward
this point.
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Figure 10.2: Examining the Positive Feedback Loop Between Arousal and Perceived Threat. The
A!T feedback loop is presented under three conditions: low, medium, and high arousal schema
(S = 0.25, 0.50, and 0.75, respectively). Three diagrams appear for each condition: a vector field
(Panel B), a stability landscape (Panel C), and a phase line (Panel D). Each diagram describes how
the system evolves over time and can be used to determine where the system will go next based on
where it is now. In the vector fields, each vector (arrow) indicates the direction the system will move
from that point in the state space (the space defined by the values of A and T). Panel B also depicts
the effect of perceived threat on arousal (T→A, light grey) and of arousal on perceived threat (A→T,
black), illustrating how these effects affect the behavior of the A!T system. The stability landscapes
provides a less precise but perhaps more intuitive depiction (for further detail, see Meyer (2016);
Scheffer (2009, pp. 98-101)) . The landscapes depict the behavior of just one of the system’s state
variables: arousal. The lateral position of an imaginary ball on the landscape represents the system’s
current state of arousal. The topography of the landscape describes the rate of change in arousal, with
steeper slopes signifying larger rate of change. Movement along the landscape occurs under negative
gradient flow: a ball placed on a slope will roll downhill (Meyer, 2016). The phase lines (Panel D)
similarly depict the behavior of arousal, with the arrows indicating the direction arousal will move
from that point on the phase line.

As arousal schema increases, the A→T effect becomes steeper, the A!T inter-
action is strengthened, and the behavior of the system is altered. A bifurcation
occurs, and an alternative stable state emerges. In the stability landscapes, this
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bifurcation is marked by presence of two new features: a second stable fixed
point (marked by the filled circle in the newly formed basin) and an unstable
fixed point (marked by the open circle at the peak of the landscape). Like the
stable fixed point, the unstable fixed point has a rate of change of 0. However,
rather than attracting neighboring states, the unstable fixed point repels them.
Any deviation from the unstable fixed point will lead the ball to roll downhill
to one of the two stable fixed points: a state of no arousal or a state of extreme
arousal. Similarly, in the vector field and phase lines, arrows point away from
the unstable fixed point (open circle) and toward the stable fixed points (filled
circles).

The formation of an alternative stable state strongly affects the behavior of
this simple system. At medium arousal schema (S = 0.50), if the system is pushed
into a state of modestly elevated arousal, it will still return to the original stable
state of no arousal. However, if arousal is pushed beyond the unstable fixed
point, the system will enter a state of runaway positive feedback between arousal
and perceived threat and will fall into the newly formed alternative stable state
of high arousal. In other words, the unstable fixed point is a tipping point. Once
crossed, the system quickly flips into a state of high arousal and high perceived
threat. At high arousal schema (S = 0.75), this tipping point shifts toward lower
values of arousal and perceived threat and the system becomes increasingly vul-
nerable to runaway positive feedback. Even modest elevations in arousal flip the
system into an alternative stable state of extreme arousal and perceived threat.
Accordingly, the diagrams illustrate how changes in arousal schema (and, thus,
the equations defining the A!T feedback loop) create the conditions for a vicious
cycle that culminates in a panic attack.

10.3.3 Regulating Vicious Cycle of Panic Attacks

10.3.3.1 The Regulating Effect of Escape Behavior on Perceived Threat
(T!E)

Psychological theories not only posit a positive feedback loop between arousal
and perceived threat, but also a negative feedback loop between perceived threat
and escape behavior (T!E), in which increases in perceived threat lead to more
escape behavior and increases in escape behavior leads to less perceived threat.
Thus, escape is a behavioral intervention for regulating one’s inner state: if per-
ceived threat becomes sufficiently elevated, the person will engage in escape be-
havior until the perception of threat has been removed.

To model this process, we will incorporate escape behavior (E) into the model.
E includes any behavior aimed at coping with a perceived threat that is currently
present. We will treat E as continuous, comprising a range of behaviors from
subtle safety behavior (e.g., sitting down in case of fainting) to outright flight
from the situation (e.g., running out of a crowded theater). Its rate of change
( dEdt ) is a function of escape behavior and perceived threat (T). The parameter ε
gives the intrinsic rate at which escape behavior can change. The parameters ρ
and σ determine the threshold and rate at which perceived threat leads to escape
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behavior. Together, this yields the equation

dE

dt
= ε(

Tσ

Tσ + ρσ
). (10.4)

The addition of an effect of escape behavior on perceived threat also requires
that we update the equation that defines perceived threat, adding a negative ef-
fect of E that defines the rate of change in T, as well as a parameter τ that regulates
the strength of that effect. This yields an updated equation for T that replaces the
prior equation (Equation 10.2) in our model

dT

dt
= γ((

Aµ

Aµ +λµ
−T)− τE). (10.5)

Together, Equations 10.4 and 10.5 allow escape behavior to act like a thermo-
stat (Dretske, 1997): as perceived threat rises, escape behavior is engaged (T→E).
As escape behavior increases, it lowers perceived threat (E→T) in an effort to
prevent panic.

10.3.3.2 The Regulating Effect of Homeostatic Feedback on Arousal (A"H)

When panic attacks do occur, they typically peak within three to four minutes
of onset (Cohen et al., 1985; R. R. Freedman et al., 1985) and subside within 5
- 20 minutes (R. R. Freedman et al., 1985; Goetz et al., 1993). The termination
of panic attacks is surprisingly understudied (Radomsky, Rachman, Teachman, &
Freeman, 1998), but presumably homeostatic processes counteract unsustainably
elevated arousal and return it to baseline (cf., Ehlers & Margraf, 1989). To repre-
sent this effect, we added “homeostatic feedback” (H) to our model. The equation
defining homeostatic feedback takes the same form as the equation defining es-
cape behavior and is presented in Supplementary Materials G.1. The addition of
homeostatic feedback and its effect on arousal requires that we update the equa-
tion that defines arousal, adding the negative effect of H and a parameter (κ) that
regulates the strength of that effect, yielding the updated equation for A:

dA

dt
= α((νT−A)−κH) (10.6)

Together, this equation and the equation defining H allow homeostatic feed-
back to behave like a thermostat (cf. E!T). As arousal increases, homeostatic
feedback is engaged (A→H) and, in turn, homeostatic feedback lowers arousal
(H→A). Thus, H lowers arousal, fostering the termination of panic.

10.3.3.3 Illustrating the Regulating Effects of Escape Behavior (E→T) and
Homeostatic Feedback (H→A)

Together, escape behavior and homeostatic feedback introduce negative feedback
loops that constrain the positive feedback between arousal and perceived threat.
To illustrate this effect, we implemented the model with and without these neg-
ative feedback loops, as a series of difference equations in the software environ-
ment R (R Core Team, 2014).
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We then simulated the effect of assigning a moderate level of arousal (A =
0.50) to a system with high arousal schema (S = 0.75). The results of this simula-
tion appear in Figure 3. As seen in Panel A, in the absence of regulating feedback,
the system flips into an alternative stable state of extreme arousal and perceived
threat from which it does not recover. In contrast, with regulating feedback (see
Panel B), runaway feedback is initiated and the system moves toward the alter-
native stable state, but the effects of escape behavior and homeostatic feedback
pull the system back to a state of no arousal or perceived threat.
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Figure 10.3: Examining the Effects of Regulatory Feedback. To illustrate the effects of homeostatic
feedback (represented as a negative self-loop on arousal) and escape behavior, we simulated a mod-
erate perturbation to arousal (A = 0.5) at minute ten. In the left panel, this perturbation is applied
to model that includes only the A!T feedback loop and S. In the right panel, this same perturbation
is applied to the model, but with the incorporation of homeostatic feedback and escape behavior. In
both simulations, the perturbation to arousal is sufficient to initiate the vicious cycle of panic attacks
and move the system toward an alternative stable state. With the incorporation of homeostatic feed-
back and escape behavior, the system is ultimately pulled back from that alternative stable state and
returns to its original state of low arousal and perceived threat.

10.3.4 Natural Variation in Arousal

Arousal is determined by factors beyond the effects of perceived threat and home-
ostatic feedback. To account for fluctuations in arousal arising from either phys-
iological processes or the environment (e.g., running to catch a bus or drinking
coffee), we incorporated a final component to the equation that defines the rate of
change in arousal (dA/dt): a noise function (N) that induces stochastic variation
in arousal (Hasselmann (1976); van Nes and Scheffer (2004, p. 257)). A complete
description of how N is calculated appears in Supplementary Materials G.1. The
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incorporation of N gives the updated and final equation for arousal

dA

dt
= α((νT−A)−κH+N). (10.7)

10.3.5 The Vicious (or Virtuous) Cycle of Panic Disorder

At this stage, our effort to model Panic Disorder hits an important obstacle: the
variables that constitute Panic Disorder change on a significantly different time
scale than those that constitute a panic attack. For example, beliefs about the
danger of arousal-related bodily sensations (i.e., arousal schema) do not fluctuate
on the same seconds-to-minutes time scale as arousal and perceived threat. They
change over the course of days or weeks. These different time scales introduce a
challenge regarding how to connect the rapidly changing components of a panic
attack with the slower changing components of Panic Disorder.

In the ecology literature, researchers have addressed this problem by parti-
tioning variables into fast changing components (e.g., spruce budworms whose
population fluctuates on a timescale of months) and slow-moving components
(e.g., the spruce-fir trees on which the budworms reside, whose foliage changes
on a timescale of years; Ludwig, Jones, Holling, et al., 1978; Rinaldi & Scheffer,
2000). The behavior of the fast variables is then assessed with the slow vari-
ables held constant and the behavior of the slow variables is assessed with the
fast variables held at their equilibrium. Inspired by this approach, we divide the
components of the model into fast changing components (i.e., arousal, perceived
threat, escape, and context) and slow changing components (i.e., arousal schema
and avoidance), a division that corresponds to the components of a panic attack
and Panic Disorder, respectively (see Figure 10.1). We consider the “fast” chang-
ing panic attack variables to change on a time scale of minutes and the “slow”
Panic Disorder variables to change on a time scale of days (i.e., 1/1,440th the rate
at which the panic attack variables change). We then treat the slow-moving ele-
ments as constants with respect to the fast-changing elements. That is, the slow-
moving elements of Panic Disorder act as parameters in the equations determin-
ing the fast-changing elements, thereby “controlling” their behavior. Conversely,
as we will show, panic attack variables are also capable of “revolting” against this
control and affecting the slower Panic Disorder variables that constrain them (cf.
Schulze et al., 1996, p. 32).

10.3.5.1 The Effect of Panic Disorder Variables on Panic Attack Variables

The slow arousal schema (S) variable controls the behavior of the fast-changing
elements of a panic attack by being part of the equation that shapes the A→T
effect, specifically the λ(S,C) parameter (see Equation 10.3). As illustrated in
Figure 10.2, arousal schema has a substantial impact on the vicious cycle of panic
attacks through its effect on λ(S,C), with high arousal schema creating a system
that is vulnerable to runaway positive feedback between arousal and perceived
threat.
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Arousal schema also indirectly controls these variables through its effect on
Avoidance (V), the final variable in our model. We will consider avoidance to
represent the disposition to preemptively prevent elevated arousal (e.g., refrain-
ing from drinking coffee) or exposure to panic predisposing situational contexts
(e.g., avoiding public transportation). We will assume that avoidance arises as a
function of one’s beliefs about the stimuli or situations that may elicit elevated
arousal or exacerbate the consequences of a panic attack. That is, we will consider
avoidance behavior to be a function of arousal schema. To represent this effect,
we will define the rate of change in avoidance ( dVdt ) to be a function of the current
level of avoidance (V) and of arousal schema (S). The parameter η gives the in-
trinsic rate at which avoidance can change. The parameters ϕ and χ determine
the threshold and rate at which arousal schema affects avoidance:

dV

dt
= η(

Sχ

Sχ +ϕχ
−V ) (10.8)

If the level of avoidance suggested by arousal schema ( Sχ

Sχ+ϕχ ) is greater than

the current level of avoidance (V), then the rate of change will be positive and
avoidance will increase. Thus, with the incorporation of Equation 10.8 into the
model, increases in arousal above a given threshold will elicit avoidance behav-
ior. Avoidance, in turn, acts as an additional control on the rapidly-changing
panic attack variables. It does so by acting as a parameter in the equations that
determine stochastic variation in arousal (N) and situational context (C; see Sup-
plementary Materials G.1), thereby altering arousal and the effect of arousal on
perceived threat, respectively. As avoidance increases, the magnitude of fluctua-
tions in arousal is reduced and the probability of being in a panic-predisposing
situation is diminished. Accordingly, like escape behavior and homeostatic feed-
back, avoidance has a regulating effect on the vicious cycle of panic attacks.

10.3.5.2 The Effect of Panic Attacks on Panic Disorder Variables

By affecting arousal schema, the fast-changing panic attack variables “revolt”
against the control from slow-changing Panic Disorder variables. This effect re-
flects the ability to learn from experiences with elevated arousal and perceived
threat, such as a panic attack. Based on our review of psychological theories, we
determined that this learning effect should depend not on a single panic attack
variable, but on the aggregate behavior of the panic attack variables over time
(which we will indicate using the subscripts t −Ω and t). In other words, the
learning that occurs from a panic attack depends on how the panic attack un-
folds. To incorporate this effect of panic attacks on arousal schema, we defined
the rate of change in arousal schema ( dSdt ) as a function of current arousal schema
(S) and three core panic attack variables (A, T, and E). Two rate parameters rep-
resent the learning rate at which beliefs and associations regarding arousal are
either acquired (ζA) or extinguished (ζE ; see Equation 10.9 below).

We used two conditional statements to determine the appropriate calculation
of dS

dt . First, the parameter ψ is used to determine if arousal and perceived threat
are sufficiently present to allow for learning to occur. Tomake this determination,
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we calculated the joint level of A and T as their geometric mean (
√
AT), which we

will refer to as Fear (F) given that jointly experienced arousal and perceived threat
are core ingredients of fear (Lindquist & Barrett, 2008). We chose the geometric
mean to aggregate A and T to ensure that both variables are present for learning
to occur. If fear is insufficient (max{Ft−Ω , . . . ,Ft} < ψ) there is no opportunity for
learning and, arousal schema will not change ( dSdt = 0; see Equation 10.9).

If arousal and perceived threat are sufficiently elevated, there is opportu-
nity for learning and the lesson taken from this opportunity depends on the
second conditional statement: whether escape behavior was also present. The
parameter ω is used to determine if escape behavior is present. If so (i.e., if
max{Et−Ω , . . . ,Et} > ω), then arousal schema will move toward the maximum level
of perceived threat during the specified time period (i.e., max{Ft−Ω , . . . ,Ft}), at a
rate determined by ζA. If escape behavior is insufficient, then the arousal schema
variable will move toward 0 at a rate determined by ζE .

Thus, dS
dt is given by:

dS
dt =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, if max{Ft−Ω , . . . ,Ft} < ψ
ζA(max{Tt−Ω , . . . ,Tt}− S), if max{Ft−Ω , . . . ,Ft} ≥ ψ,max{Et−Ω , . . . ,Et} > ω
−ζES, if max{Ft−Ω , . . . ,Ft} ≥ ψ,max{Et−Ω , . . . ,Et} ≤ ω

.

(10.9)
Conceptually, this means that episodes of elevated arousal and perceived

threat provide an opportunity to modify arousal schema (S). If individuals en-
gage in escape behavior during these episodes, they will counterfactually infer
that the anticipated consequences of arousal would have occurred if not for the
escape behavior. Thus, they will learn that arousal is as dangerous as it was per-
ceived to be during the attack. If the individual does not engage in escape behav-
ior, they may learn that even without escape behavior, no catastrophe occurred,
and, thus, that arousal is not dangerous.

10.4 Evaluating the Theory of Panic Disorder

The Ordinary Differential Equations presented in Section 10.3 provide a mathe-
matical model of panic attacks. We implemented this model in the software envi-
ronment R (R Core Team, 2014) as a series of difference equations. We will refer
to this implementation as a “computational model”, in contrast to the “mathe-
matical model” defined by the differential equations. Whereas differential equa-
tions provide the instantaneous rate of change in continuous time, the difference
equations used in our computational model work in discrete time, using the val-
ues of the state variables at a time step t to calculate the values of those same
state variables at time t+1 (for further description, see Supplementary Materials
G.1). In this model, we treat each time step t as corresponding to one “minute”.
We used Euler’s method (Atkinson, 2008) with time step t/1000 to approximate
the solutions of the system of differential equations.

The computational model of Panic Disorder provides us with a tool to sim-
ulate the behavior implied by the theory, thereby allowing us to evaluate what
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it can and cannot explain (Epstein, 2008; Smaldino, 2017). In this section, we
focus our evaluation of Panic Disorder theory on its ability to produce five ro-
bust features of panic attacks and Panic Disorder. First, individuals vary in the
propensity to experience panic attacks. This is perhaps most clearly illustrated
in the biological challenge literature, where the same perturbation to arousal-
related bodily sensations elicits panic attacks in some individuals but not others
(Clark, 1993; Liebowitz et al., 1984; Rapee, 1995; Woods, Charney, Goodman,
& Heninger, 1988). Second, the core aspects of panic attack phenomenology: a
rapid surge of arousal and perceived threat in the absence of a clear external
provocation (Barlow & Craske, 1988). Third, recurrent panic attacks are often
accompanied by avoidance behavior and persistent beliefs regarding the danger
of panic attacks and the bodily sensations that accompany them (Buller, Maier,
& Benkert, 1986; White, Brown, Somers, & Barlow, 2006). That is, these symp-
toms often cohere as a syndrome. Fourth, panic attacks can occur in the absence
of Panic Disorder. Although only 3.7% of U.S. adults report a lifetime history of
Panic Disorder, more than a quarter report having had at least one panic attack
over the course of their lives (Kessler et al., 2006). Finally, cognitive behavioral
therapy, a well-established treatment for Panic Disorder (Barlow, 1997), reduces
symptoms of Panic Disorder. An adequate theory must be able to reproduce these
fundamental features of panic attacks and Panic Disorder. Throughout our ex-
amination of these features in this section, we continue to draw on concepts from
the ecology literature to deepen our understanding of the model’s behavior, es-
pecially the concepts of alternative stable states, tipping points, and resilience.

10.4.1 Feature 1: Individual Differences in Vulnerability to
Panic Attacks

To examine individual differences in vulnerability to panic attacks, we simulated
perturbations to the system and examined the system’s response. These simu-
lated perturbations are analogous to “biological challenges” in which researchers
use standard procedures (e.g., CO2 inhalation) to induce arousal-related bod-
ily sensations (Clark, 1993; Liebowitz et al., 1984; Rapee, 1995; Woods et al.,
1988). Here, we assigned specified levels of arousal at time step 10 (which we
will refer to as “minute” 10) and evaluated the system’s response to that pertur-
bation. The results of this simulation for low, moderate, and high arousal schema
(S=0.25, 0.50, and 0.75, respectively) at low, moderate, and high perturbation
strength (A=0.25, 0.50, and 0.75, respectively) appear in Figure 10.4. The most
noteworthy finding appears in the center panel depicting the effect of moderate
perturbations to arousal. At low or moderate arousal schema, moderate pertur-
bations cause only a brief and modest increase in arousal and perceived threat.
However, at high arousal schema (S=0.75), moderate perturbations lead to run-
away feedback between arousal and perceived threat and the system quickly tips
into an alternative stable state of extreme arousal and perceived threat. In other
words, at high arousal schema, moderate perturbations to arousal suffice to send
the system into a state of panic.

247



10. A Formal Theory of Panic Disorder

Minutes

Fe
ar

 (
A

×
T)

0 10 20 30 40

0.00

0.25

0.50

0.75

1.00
High Arousal Schema
Medium Arousal Schema
Low Arousal Schema
Perturbation

Minutes

Fe
ar

 (
A

×
T)

0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

Minutes

Fe
ar

 (
A

×
T)

0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

Perturbation: A = 0.25 Perturbation: A = 0.50 Perturbation: A = 0.75

Figure 10.4: Individual Differences in Vulnerability to Panic Attacks. We simulated perturbations
to arousal of varying strength (inducing arousal of 0.25, 0.50, and 0.75) in three conditions: low,
medium, and high arousal schema (S = 0.25, 0.50, and 0.75, respectively). To simplify this simu-
lation, we removed natural variation in arousal and the effects of escape behavior. At low arousal
schema (light grey lines), the system is highly resilient, recovering rapidly following low, moderate,
or high perturbation and never flipping into an alternative stable state. In contrast, when arousal
schema is moderate the time to recover is prolonged following mild perturbations (A = 0.25) and per-
turbations of moderate or greater strength (A = 0.50 and 0.75) are capable of pushing the system into
an alternative stable state of a panic attack. In other words, when arousal schema is low, the system is
resilient. When arousal schema is high, the system is vulnerable to panic attacks in reaction to even
moderate perturbation in arousal.

Importantly, this simulated behavior follows directly from the behavior of
the simple dynamical system created by the A!T feedback loop as depicted in
Figure 10.2. At low arousal schema, the feedback between arousal and perceived
threat is insufficient to create an alternative stable state, precluding a vicious
cycle that culminates in panic. Hence the low arousal schema system’s rapid
return to baseline following even the most extreme perturbations. In contrast,
when arousal schema is high, the feedback between arousal and perceived threat
is sufficient to create an alternative stable state with a relatively low tipping point,
rendering the system vulnerable to the vicious cycle of panic attacks following
even moderate perturbations to arousal.

This simulation suggests that varying arousal schema allows the model to ac-
count for individual differences in the propensity to experience panic attacks,
aligning well with the literature on anxiety sensitivity as a predictor of response
to biological challenge (McNally, 2002). Importantly, however, individual dif-
ferences in any other parameter in the A"T feedback loop can produce similar
system behavior. For example, varying the effect of perceived threat on arousal
(T→A) while holding the A→T effect constant produces stability landscapes for
arousal similar to those depicted in Figure 10.2 (see Supplementary Materials
G.2). Regardless of which factor produces change in the system’s behavior, if the
strength of the A"T feedback loop is sufficient to produce an alternative stable
state of high arousal and perceived threat, then the system is vulnerable to panic
attacks.
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10.4.1.1 Resilience

The question of whether a system is vulnerable can be reframed as a question
about the system’s resilience: its ability to recover from disturbance. Researchers
studying dynamical systems, such as ecosystems, have developed indices for
quantifying a system’s resilience. One such index is the amount of disturbance
the system can tolerate before shifting into an alternative stable state (Holling,
1973; Scheffer et al., 2009). This index is referred to as ecological resilience be-
cause of the focus in ecology on understanding and predicting catastrophic shifts
in the state of an ecosystem (e.g., from savanna to desert). For the A"T system,
we can consider ecological resilience to represent the strength of perturbation
(e.g., “biological challenge”) needed to push the system into a state of panic. In
other words, it corresponds to the location of the system’s tipping point (see Fig-
ure 10.2). As depicted in Figure 10.4, when arousal schema is low, the system
can recover from strong perturbations without shifting into an alternative state,
thus exhibiting high ecological resilience. However, when arousal schema is high,
the system flips into an alternative stable state following moderate perturbation,
thus exhibiting low ecological resilience.

Resilience can also be defined as the speed with which a system returns to its
stable state following perturbation. This index is sometimes referred to as engi-
neering resilience because engineered systems are often designed to remain very
close to a precise stable state (Holling, 1996). In the A"T model, engineering
resilience represents the time for the system to return to its stable state following
our simulated “biological challenge.” As seen in Figure 10.4, even for relatively
mild perturbations (e.g., A = 0.30), the time to recover is greater when arousal
schema is high, illustrating that even small perturbations may be sufficient to
assess individual differences in engineering resilience and, thus, individual dif-
ferences in vulnerability to experience panic attacks.

10.4.2 Feature 2: The Phenomenology of Panic Attacks

The simple A"T feedback loop can produce surges of arousal and perceived
threat in response to perturbation (see Figures 10.2 & 10.4). With the inclu-
sion of homeostatic regulation and escape behavior, the model can constrain the
“vicious cycle,” circumventing or terminating the panic attack (see Figure 10.3).
Here, we examined whether the model could also explain the spontaneous rise
and fall of arousal and perceived threat in the absence of an external provocation,
a critical feature of panic phenomenology. To do so we simulated 12 “hours” of
model behavior with stochastic variation in arousal under three conditions: low,
moderate, and high arousal schema (S = 0.25, 0.50, and 0.75). As seen in Figure
10.5, in the low andmoderate arousal schema conditions, arousal varies around a
relatively low baseline value. However, in the high arousal schema condition, the
model produces sudden surges of arousal and perceived threat. This simulation
suggests the model can explain the spontaneous and rapid onset of panic attacks
in response to natural variation in arousal, a defining feature of the panic attacks
observed in those with Panic Disorder.
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Figure 10.5: The Spontaneous Surge of Arousal and Perceived Threat. To examine the features of
panic attacks we simulated twelve “hours” of model behavior under conditions of low, medium, and
high arousal schema (S = 0.25, 0.50, and 0.75, respectively). When arousal schema is moderate or
low, arousal schema varies around a consistent low mean of arousal. When arousal schema is high,
sudden and rapid spikes in arousal and perceived threat.

Interestingly, the model also suggests why people may perceive panic as be-
ing qualitatively distinct from a state of anxiety. In the presence of strong posi-
tive feedback and, thus, the development of an alternative stable state, the shift
between states does not occur gradually. It occurs as a sudden transition: a
catastrophic shift into a state of panic (see Figure 10.5). This categorical shift
in the state of the system is especially interesting because it arises from dimen-
sional changes in the components of the positive feedback loop, illustrating a
general feature of complex systems: in some parameter settings (e.g., low arousal
schema), they can behave continuously, whereas in others (e.g., high arousal
schema) they can only occupy a limited number of discrete states (Borsboom
et al., 2016). Thus, the model may explain why panic attacks are experienced
as discontinuous with the normal state of being, even though they key variables
involved are all continuous.

10.4.3 Feature 3: Coherence of the Panic Disorder Syndrome

We next evaluated whether the model was able to reproduce the onset and coher-
ence of the Panic Disorder syndrome. To do so, we specified an initial value of the
arousal schema variable (S = 0.50) and simulated twelve “weeks” of model behav-
ior. We chose an initial value for arousal schema for which there is an alternative
stable state in the system (and, thus, some vulnerability to panic attacks; see Fig-
ure 10.2 and 10.4) but for which there is not yet recurrent panic attacks or sig-
nificant avoidance behavior. The results of this simulation appear in Figure 10.6.
For the first seven weeks of the simulation, arousal varies but does not cross the
tipping point that leads to panic. However, during the seventh week, the tipping
point is crossed and runaway feedback leads to a spike in arousal and perceived
threat (reported as “fear”). Critically, this spike of fear is accompanied by escape
behavior (see bottom panel). The aggregate experience of fear and escape be-
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havior teaches the belief that arousal is dangerous, as reflected by the increased
arousal schema. This heightened arousal schema, in turn, renders the system
more vulnerable to panic attacks (see inset B) and the system falls into a slow
vicious cycle: panic attacks lead to higher arousal schema and higher arousal
schema increases vulnerability to panic attacks. The increase in arousal schema
also leads to corresponding increases in avoidance behavior (see bottom panel)
which, in turn, leads to reductions in both arousal variation and the likelihood of
being in a panic-predisposing situation. By week 12, arousal schema is elevated,
the system is highly vulnerable to panic attacks (see inset C), and panic attacks
are recurrent, constrained only by avoidance. This simulated behavior is highly
reminiscent of Panic Disorder, particularly if we regard the arousal schema vari-
able as a proxy for the “persistent concern” symptom of Panic Disorder. The
model thus provides an account for how causal relations among the symptoms of
Panic Disorder can mutually reinforce one another, leading them to emerge and
cohere as a syndrome.

10.4.3.1 Avoidance Promotes Engineering Resilience

The efforts to regulate arousal through avoidance behavior can be understood
as an effort to promote the system’s engineering resilience (i.e., the time it takes
to recover to the stable state; Holling, 1996). It is a “near equilibrium” strategy
aimed at keeping the system as close to the desired stable state as possible (i.e.,
a state of low arousal and low perceived threat) by reducing variation in arousal.
Escape behavior similarly pushes the system toward a desirable state as soon as
a deviation from that state has been detected.

In ecology, action taken to promote engineering resilience often achieves
greater near-equilibrium stability (Holling, 1986). However, these actions can
also come at the long term cost of diminishing the system’s ecological resilience
(i.e., its ability to withstand perturbation without shifting into an alternative sta-
ble state; Holling, 1996). For example, fish hatcheries produce more stable and
predictable fish populations. However, the larger and more stable fish popula-
tions encourage commercial fishing, depleting natural stocks. Consequently, the
system becomes dependent on a limited number of hatcheries and, thus, more
vulnerable to catastrophic shifts in the fish population if those hatcheries fail.
Analogously, in the Panic Disorder model, escape and avoidance behavior suc-
cessfully reduce variability in arousal and, thus, reduce the frequency of panic
attacks. However, they also create and sustain a system that is highly vulnerable
to panic attacks when those strategies fail. They promote engineering resilience
at the cost of ecological resilience.
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Figure 10.6: The Onset and Coherence of the Panic Disorder Syndrome. This figure presents a twelve
“week” simulation of model behavior beginning with moderately elevated arousal schema (S = 0.50).
The bottom row depicts the stability landscape and phase line for arousal at three points during the
simulation: (A) Week 6 , (B) Week 8, and (C) Week 10. Rows 1-3 plot the values of arousal schema,
fear (calculated as the geometric mean of arousal and perceived threat), and escape and avoidance
behavior across the full simulation, respectively.

10.4.4 Feature 4: Non-clinical Panic Attacks

We next evaluated whether the model adequately captures the phenomenon of
non-clinical panic attacks: infrequent attacks in the absence of Panic Disorder.
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We did so by again simulating 12-weeks of the model’s behavior, but now re-
peated the simulation 100 times across a range of initial arousal schema val-
ues. Arousal schema values were drawn from a normal distribution with a rela-
tively low mean (.25) because most individuals endorse minimal beliefs regard-
ing the danger of arousal-related bodily sensations (Deacon, Abramowitz, Woods,
& Tolin, 2003). We specified a standard deviation for the distribution (SD = 0.15)
so that the proportion of systems with an alternative stable state (and, thus, the
potential to experience a panic attack) would be approximately 28%, roughly cor-
responding to the lifetime prevalence of panic attacks (Kessler et al., 2006). We
then evaluated whether some simulations exhibited panic attacks without de-
veloping other symptoms of Panic Disorder (e.g., elevated arousal schema and
avoidance).
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Figure 10.7: The Phenomenon of Non-Clinical Panic. This figure presents one-hundred iterations of
the twelve “week” simulation of model behavior where each iteration began with an arousal schema
value randomly drawn from a normal distribution (M = 0.25, SD = 0.15). The circles representing
each iteration are shaded by their initial level of arousal schema. The figure depicts the final arousal
schema value (x-axis), the final avoidance value (y-axis), and the cumulative number of panic attacks
that occurred during the twelve-week simulation (z-axis). In no iteration was a panic attack observed
in the absence of eventual elevations in arousal schema, avoidance, and recurrence of panic attacks.
That is, these simulations did not find evidence that the model can produce the phenomenon of non-
clinical panic attacks.

A panic attack was observed in 4 of the 100 simulations (see Figure 10.7). In
each case, there were recurrent panic attacks (range = 18 − 24), elevated arousal
schema (range = 0.80 − 0.81) and elevated avoidance (0.63 − .64) by the end of
the simulation. Thus, the experience of a panic attack during the twelve-week
simulations always led the system to fall into a highly similar state of Panic Dis-
order. Indeed, because panic attacks are always accompanied by escape behavior
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in the current model (and, thus, always lead to increased arousal schema), we can
anticipate that given sufficient time, any system capable of experiencing a panic
attack under the conditions simulated here will eventually develop the full Panic
Disorder syndrome. Accordingly, the model fails to explain the phenomenon of
non-clinical panic attacks.

10.4.5 Feature 5: The Efficacy of Cognitive Behavioral Therapy
for Panic Disorder

Cognitive behavioral therapy is a well-established, effective treatment for Panic
Disorder (Barlow, 1997). An adequate model of Panic Disorder should be able to
provide some account for its efficacy. We represented treatments for Panic Dis-
order as external interventions on specific components of the model (cf. Lader &
Mathews, 1970, p. 159). By simulating those targeted effects, the impact of the
intervention on the system can be evaluated. Here, we simulated a 5-week cogni-
tive behavioral therapy intervention (Otto et al., 2010) that included four active
treatment components: psychoeducation, cognitive restructuring, interoceptive
exposure, and in vivo exposure (see Supplementary Materials G.3 for a complete
description of the intervention on the model). The results of this treatment sim-
ulation appear in Figure 10.8. As depicted in the first row, the simulation begins
with a system that is highly vulnerable to panic attacks. In treatment sessions 1
and 2, psychoeducation and cognitive restructuring produce modest reductions
in arousal schema. Cognitive restructuring (R) also introduces a new negative
feedback loop for perceived threat (T!R). Beginning in session 2, daily intero-
ceptive exposure exercises perturb arousal with increasing perturbation strength
(A = 0.30, 0.50, 0.70 and 0.70 for the weeks beginning with Sessions 2-5, respec-
tively). Critically, escape behavior is prohibited during these exposures. As a
result, each experience with substantially elevated arousal and perceived threat
leads to a reduction in the arousal schema variable. By session 3, the treatment
has bolstered the system’s resilience, but panic attacks remain possible (i.e., the
tipping point has shifted but not been eliminated; see second row). Between
sessions 3 and 5, interoceptive exposure exercises repeatedly perturb the sys-
tem and lead to further reductions in arousal schema. In Session 5, interocep-
tive exposures are combined with in vivo exposure, in which the model “enters”
panic-predisposing contexts when arousal is perturbed, producing stronger per-
turbations to the system. By the end of treatment, the system no longer has an
alternative stable state of extreme arousal and perceived threat (see third row).
In other words, the system is resilient: no longer vulnerable to the runaway feed-
back that gives rise to panic.
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Figure 10.8: The Effect of Cognitive Behavioral Therapy. This figure depicts a seven week simulation
of a “cognitive behavioral therapy” intervention beginning in Session 1 (Week 1). The bottom row
depicts the stability landscape and phase line for arousal one week before treatment (Session 0), at
third treatment session (Session 3), and one week after the final treatment session (Post-Tx 1) in insets
A, B, and C, respectively. Rows 1-3 plot arousal schema, fear (calculated as the geometric mean of
arousal and perceived threat), and escape and avoidance behavior over the course of the full treatment
simulation, respectively.

The extent to which this treatment simulation is a valid method for drawing
precise inferences about cognitive behavioral therapy for Panic Disorder is de-
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pendent on the adequacy of the model. As already noted, the model has limita-
tions and, thus, inferences drawn from the model behavior should be made with
caution. Nonetheless, our simulated intervention does suggest that the model
can plausibly account for the efficacy of cognitive behavior therapy.

10.4.5.1 Cognitive Behavioral Therapy Promotes Ecological Resilience

Viewing Panic Disorder treatment through the lens of dynamical systems pro-
vides some insight into the mechanisms by which cognitive behavioral therapy
may have its effect. In contrast to the engineering resilience promoting strategy
of avoidance, cognitive behavioral therapy can be viewed as a strategy that pro-
motes ecological resilience. Patients are encouraged to refrain from escape and
avoidance behavior in favor of strategies that modify arousal schema and, thus,
diminish the feedback between arousal and perceived threat. In other words,
this therapy does not aim to control the position of the system on the stability
landscape, but rather to change the topography of the landscape itself. By re-
peatedly pushing the system away from its desired stable state through exposure
exercises, the intervention produces a system with greater ecological resilience:
one that does not permit catastrophic shifts into panic. In future work, it may be
beneficial to investigate other psychological and pharmacological interventions
for Panic Disorder with the aim of identifying those that solely promote the sys-
tem’s engineering resilience, thereby leaving it vulnerable to relapse after the in-
tervention is removed, and those that promote the system’s ecological resilience,
thereby producing gains more likely to be sustained after treatment.

10.5 A Theory Driven Research Agenda for Panic
Disorder

The explanatory power of the model makes it tempting to conclude that theorists
have largely solved Panic Disorder. Indeed, there is reason to think that such a
mentality is present in the field. The number of papers published on Panic Disor-
der has declined in recent years (Asmundson&Asmundson, 2018) and there have
been few noteworthy advances to psychological theories of Panic Disorder since
the bevy of “fear of fear” theories proposed in the 1980s (for valuable exceptions,
see e.g., Bouton et al., 2001; Casey et al., 2004). Yet, the model presented here
reveals substantial limitations to our understanding of Panic Disorder. By requir-
ing us to make the theory explicit, this exercise in modeling reveals that there is
little theoretical or empirical guidance for defining the functional form of the
relationships among Panic Disorder symptoms. Moreover, as illustrated by the
model’s inability to produce the phenomenon of non-clinical panic attacks, there
are limitations to what the theory can explain. We consider these limitations
to be among the model’s most important contributions to our understanding of
Panic Disorder as they identify what remains unknown and, thereby, identify key
directions for future research. In this section, we describe three areas of future
research suggested by the model: (a) continued development of Panic Disorder
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theory, (b) empirical research that grounds the model parameters in data and (c)
empirical research that tests predictions made by the model.

10.5.1 Developing Panic Disorder Theory

In the previous section, we identified one robust feature of Panic Disorder that
is not explained by the model: non-clinical panic attacks. There are further lim-
itations to what the model can explain. For example, in the current model, suf-
ficiently elevated arousal always leads to a panic attack in vulnerable systems.
Yet, some patients with Panic Disorder can engage in activities that significantly
increase arousal without experiencing panic attacks (e.g., exercise; C. B. Taylor et
al., 1987). Thus, as with any model, the current model is incomplete and further
theory development is needed to improve the coherence between the theory and
the observed facts about Panic Disorder.

10.5.1.1 Cumulative Theory Development with Computational Modeling

We encourage researchers interested in further developing Panic Disorder theory
to freely adapt the model developed here. A significant advantage of mathe-
matical and computational modeling is that it facilitates cumulative theory de-
velopment. We implemented the model in freely available software, the code
implementing the model appears in our Supplementary Materials, and the code
is described in further detail in Supplementary Materials G.1. We aimed to make
the model sufficiently explicit that it can be divorced from any specific theorist.
In other words, the model makes predictions, not the current authors, thereby
allowing other researchers to independently evaluate, refute, revise, and extend
the model.

We especially hope that the explication of the model in this formalized man-
ner will allow for a “patchy reductionism” approach to developing Panic Disorder
theory, with researchers able to improve upon those components in which they
are expert (Kendler, 2005; Schaffner et al., 1994). Several aspects of the model are
scientific fields unto themselves, suggesting that contributions from researchers
across disciplines will be necessary to fully develop the theory. For example,
simple learning mechanism used in this model is sufficient to reproduce the on-
set and treatment of Panic Disorder, but may be improved by rooting the model’s
learning mechanisms in existing learning theories, especially those with well-
developed computational models that could potentially be incorporated here
(e.g., Rescorla, Wagner, et al., 1972). More broadly, there is considerable litera-
ture on biological factors relevant to Panic Disorder (for a review of these factors
from a causal systems perspective, see Hassan, 2008) and biological theories of
Panic Disorder (Klein, 1993; Ley, 1985) that could potentially be used to further
develop the biological components of the currentmodel. This workmay allow the
model to address phenomena that presumably operate through principally bio-
logical mechanisms (e.g., why inhaling carbon dioxide induces arousal-related
bodily sensations) and could potentially allow the model to distinguish between
different types of panic attack (e.g., respiratory vs. nonrespiratory; Roberson-
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Nay & Kendler, 2011; Kendler et al., 2011). Similarly, we modeled homeostatic
feedback here as a simple negative feedback loop. Although this feedback loop al-
lows the model to behave in a manner that resembles a panic attack, it can likely
be further informed by the literature on homeostasis and allostasis (Ramsay &
Woods, 2014).

10.5.1.2 Theory Evaluation

The call for further theory development raises the question of how to determine
whether an alternative to the current model constitutes an improvement in Panic
Disorder theory. A complete review of the criteria for theory evaluation is be-
yond the scope of this chapter (for extended discussions, see Haig, 2014; Kuhn,
1977; Lakatos, 1970; McMullin, 1982), but we would broadly recommend that
researchers consider at least four criteria when evaluating competing Panic Dis-
order theories: (a) explication, (b) accuracy, (c) consilience, and (d) simplicity.

We believe that theories made explicit through mathematics or computational
modeling are, other things being equal, preferable to narrative accounts of a
theory where the vagaries of language can mask unknowns and contradictions
within the theory. Although not a necessary criterion for a well-developed theory,
the ability to analyze or simulate the behavior produced by a theory so greatly fa-
cilitates other aspects of theory evaluation that explication should be considered
when evaluating a theory’s merits. In this context, it is worth noting that we
are not the first to explicate a mathematical model of the vicious cycle of panic
attacks. Fukano and Gunji (2012) proposed such a model in which “physical
symptoms” and “fear” (cf. arousal and perceived threat) are defined by coupled
logistic equations with Allee effects (an approach commonly used to model pop-
ulation growth Stephens, Sutherland, & Freckleton, 1999). Although not a model
of the full Panic Disorder syndrome, we believe this model makes a highly valu-
able contribution to the theory of panic attacks by serving as the first effort to
mathematically model them. By proposing a mathematical model, the authors
produced a theory that can be readily reproduced and evaluated according to our
remaining suggested criteria for theory evaluation.

Accuracy refers to agreement between the consequences deduced from a the-
ory and the observed facts about that phenomena (Kuhn (1977, p. 103); cf. ex-
planatory coherence; Thagard (1989)). The Fukano and Gunji (2012) model of
panic attacks can explain the defining feature of a panic attack: the sudden rise of
fear and arousal-related physical symptoms (see Supplementary Materials G.4).
However, it also ascribes intrinsic behavior to arousal-related physical symptoms
that is inconsistent with observation of those with panic attacks. For example,
the model implies that above a critical threshold, physical symptoms will always
rise to an elevated stable equilibrium, even in the absence of any feedback rela-
tionship with fear (see Supplementary Materials G.4). This prediction does not
accord with the simple observation that physiological arousal tends to diminish
toward a low stable equilibrium and is also inconsistent with the observation
that intervening on the feedback relationship between fear and physical symp-
toms (e.g., in cognitive behavioral therapy) is sufficient to eliminate the surge of
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physical symptoms characteristic of a panic attack.
The Fukano and Gunji model also exhibits limited consilience: the amount a

theory explains (Thagard, 1978). As a model of panic attacks alone, it does not
explain features of the broader Panic Disorder syndrome, such as the coherence
of Panic Disorder symptoms or their treatment in cognitive behavioral therapy.
Together, the limited accuracy and consilience of the Fukano and Gunji model
suggest that an alternative model is needed.

The model we have proposed avoids several of the inaccuracies of the Fukano
and Gunji model and it accounts for more features of Panic Disorder, thus ex-
hibiting both greater accuracy and greater consilience. Yet, as previously noted,
the current model has its own limitations in both of these criteria, suggesting fur-
ther development is still needed. In Supplementary Materials G.5, we illustrate
how continued development of this theory could occur. Specifically, we propose
the incorporation of an Escape Schema (SE) variable that moderates the effect of
perceived threat on escape behavior, just as the arousal schema variable in our
model moderates the effect of arousal on perceived threat. To our knowledge, no
theory explicitly posits that individual differences in beliefs about escape behav-
ior plays a prominent role in the etiology of Panic Disorder (hence its omission
in the model that was the focus of this chapter). Nonetheless, such a model com-
ponent plausibly fits with theory and research on Panic Disorder. For example,
those with higher panic self-efficacy (i.e., confidence in one’s ability to cope with
a panic attack) may not believe escape behavior to be uniquely helpful and, thus,
may be less likely to engage in such behavior. In other words, panic self-efficacy
may be a component of an escape schema variable rather than arousal schema
as we originally proposed. With this revision, individuals who believe arousal
is dangerous (high S) but who do not believe that escape is their most effective
means of coping with perceived threat (low SE) can experience surges of arousal
and perceived threat without engaging in escape behavior and, thus, do not de-
velop the belief that arousal is dangerous (indeed, the revised model suggests
they will learn it is not dangerous, see Supplementary Materials G.5). By allow-
ing themodel to explain non-clinical panic attacks, the addition of escape schema
improves the theory’s consilience.

The final criterion, simplicity, aims to limit the incorporation of ad hoc hy-
potheses that explain no more than the facts that they were introduced to ex-
plain (Thagard, 1978). The merit of incorporating an Escape Schema variable
thus hinges not only on whether it improves the theory’s consilience, but also
on whether this addition explains features of Panic Disorder beyond the specific
feature it was designed to address (i.e., non-clinical panic attacks). For example,
adding the escape schema variable may allow it to better account for the effects
of cognitive behavioral therapy (Gallagher et al., 2013) or explain the observa-
tion that individuals frequently refrain from escaping the situation during panic
attacks despite the urge to do so. When a modification expands the model’s ex-
planatory breadth beyond the specific facts it is originally intended to address,
the theory exhibits dynamic consilience (Thagard, 1978) (Thagard (1978, p. 84);
cf. progressive problem shifts, Lakatos (1970)). That is, the amount it can ex-
plain grows over time. In future research, it will be important to evaluate escape
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schema and other potential revisions to the model to determine if they expand
the explanatory breadth of the theory while retaining its simplicity.

10.5.2 Grounding the Model in Data

A critical step to facilitate theory development will be to ground the model’s
parameters in data. We found minimal guidance from theory or research when
choosing the model parameters that shape the relationships among model com-
ponents. Accordingly, we chose parameter values based on their plausibility and
their ability to produce the behavior of interest rather than being derived from
observation of the model components. It will be critical to rectify this shortcom-
ing by rigorously examining the individual components of Panic Disorder and the
relationships among them. Improving our understanding of the specific form of
the relationships between arousal and perceived threat alone would constitute a
significant advance in our understanding of Panic Disorder, as these relationships
determine much of the behavior of the system.

This endeavor, as well as the practical value of the model, will be strength-
ened by rooting the state variables in substantively meaningful scales. For ex-
ample, researchers should ground the arousal variable in measurable indices of
autonomic arousal. We suspect there is unlikely to be an absolute level of arousal
that triggers perceived threat, but rather a relative value that reflects a person-
specific calibration (e.g., a deviation in heart rate from one’s within-person mean
or a discrepancy from an expected level of heart rate given the current context).
Clarifying the precise nature and scale of arousal and other state variables will
advance our understanding of how arousal-related bodily sensations elicit per-
ceived threat and will allow theorists to ground the model in data. The model
can then be more precisely applied to understanding individual patients by gath-
ering behavioral data and deriving individual parameter values that characterize
the individual patient’s system, a process referred to as computational phenotyping
(Patzelt, Hartley, & Gershman, 2018).

10.5.3 Testing Theory Predictions

The ultimate aim of further research and theory development efforts should be to
produce a model sufficiently well-developed that it can generate specific numer-
ical point predictions (e.g., a precise value of peak arousal predicted by a given
perturbation under a given level of arousal schema) as such a theory would lend
itself to rigorous empirical scrutiny (Meehl, 1990b). The current model cannot
make such predictions. Nonetheless, the model does make broad predictions that
can be tested as a means of evaluating core features of the model. For example,
the model predicts that the time to recover from a biological challenge (i.e., its en-
gineering resilience) should be a marker of the system’s vulnerability and, thus,
should prospectively predict panic attacks. In practice, measures of engineering
and ecological resilience tend to be highly correlated, suggesting either will be
appropriate tests of vulnerability (Van Nes & Scheffer, 2007). However, because
assessments of ecological resilience would require perturbing the system to the
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point of eliciting a panic attack, assessments of engineering resilience, which al-
low for more moderate perturbations, may be more appropriate. In addition to
its utility as a test of Panic Disorder theory, such a tool could prove valuable for
detecting risk for Panic Disorder, thereby enhancing the clinical utility of “bio-
logical challenge” paradigms (Forsyth & Karekla, 2002).

The model also posits that escape behavior plays a critical role in both the eti-
ology and treatment of Panic Disorder. There is reason to question whether such
a prominent role for escape behavior is appropriate. For example, Rachman and
colleagues found that agoraphobic patients instructed to engage in escape behav-
ior responded as well to treatment as those instructed refrain from such behavior,
an observation at odds with the model’s predictions (Rachman, Craske, Tallman,
& Solyom, 1986). There are limitations to this study as a test of the model pre-
sented here. For example, subjects in the ’escape’ condition frequently refrained
from escaping and the researchers used a more restrictive definition of escape
behavior than we have argued for here (for further discussion, see Salkovskis,
1991). Moreover, other studies have reported greater improvements in those that
refrain from escape behavior, as predicted by the model (Salkovskis et al., 1999).
Nonetheless, these inconsistent results regarding the effects of escape behavior
suggest caution is warranted and serves as a reminder that the model’s ability to
produce the behavior of interest does not ensure that the model is accurate. If
future research fails to support the crucial role of escape behavior, it will be nec-
essary to alter the model and propose alternative mechanisms by which substan-
tial elevations in arousal and perceived threat can produce both the development
and remission of Panic Disorder.

10.6 Understanding and Investigating Mental Disor-
ders as Complex Systems

The model proposed in this chapter explains key features of Panic Disorder by
modeling the causal relations among Panic Disorder symptoms. The model thus
illustrates how a mental disorder can arise from mutually reinforcing relation-
ships among symptoms. Indeed, one advantage of mathematical and computa-
tional models is that they can illustrate and even reveal behavior implied by a
theory that is difficult to discern or anticipate from a narrative account alone. By
modeling Panic Disorder as a non-linear dynamical system, the model presented
here illustrates several noteworthy features of dynamical systems that have im-
plications for how we understand and investigate mental disorders. These fea-
tures are worthy of some attention.

10.6.1 Harmful Stable States and the Definition of Disorder

The model illustrates how we might define mental disorders from a dynamical
systems perspective, a definition based on two dimensions: (a) the current state
of the system and (b) the presence vs. absence of a harmful alternative stable
state as determined, in part, by the structure of relationships among symptoms
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(cf. Borsboom, 2017, Figure 7). Panic Disorder can be characterized as a system
residing in a harmful alternative stable state. Symptoms are active and will re-
main so barring influence from outside the Panic Disorder system (e.g., treatment
or change in beliefs prompted by elicited social support). Conversely, a system
that has a single desirable stable state in which it currently resides can be charac-
terized as a resilient and healthy system. If this resilient system is pushed into a
state of elevated symptom activation, it is perhaps no longer in a state of mental
health, but is also not in the harmful equilibrium state that defines psychopathol-
ogy. Symptoms will remit independent of external intervention. Such a system is
thus better characterized as being in a state of transient symptom elevation and
likely warrants a different level of clinical attention than that of Panic Disorder.
Interestingly, current diagnostic criteria require the repeated occurrence of panic
symptoms for at least one month, implicitly drawing a boundary between tran-
sient symptoms (symptom elevations in the absence of an alternative stable state)
and persistent symptoms that do not appear likely to remit naturally (symptom
elevations in a state of equilibrium). Finally, these two dimensions provide a
fourth classification: a system that has a harmful alternative stable state but is
currently in a stable state of low symptom activation. Although such a system
appears to be in a state of health, it is nonetheless vulnerable to Panic Disorder
and could benefit from preventative intervention.

Notably, defining mental disorder in this way suggests potential tools from
the complexity literature that could be applied in psychiatric research. In this
chapter, we used engineering and ecological resilience to quantify the vulner-
ability of the panic attack system, an approach that could potentially be used
to identify those vulnerable to panic attacks before the onset of Panic Disorder
symptoms. Relatedly, researchers investigating other dynamical systems, such as
ecosystems, have used early warning signals, such as increased autocorrelation
among the system’s state variables, to detect systems approaching a tipping point
that would push it into an alternative stable (Scheffer et al., 2009). Such early
warning signals may portend a shift into a depressive episode (Bos & De Jonge,
2014; van de Leemput et al., 2014b; Wichers et al., 2016). Although preliminary,
this work suggests that the toolbox used to investigate, anticipate, and control
non-linear dynamical systems may be applied to identifying and treating indi-
viduals with vulnerable systems, even absent a current disorder.

10.6.2 Mental Disorders as Emergent Phenomena

The characterization of Panic Disorder as a system in a harmful stable state il-
lustrates an interesting feature of the model. The most important phenomena
explained by the model are not explicit components in the model, but rather
emerge from interactions among components. “Panic attack” is not a component
in the model nor can it be reduced to any one component. It is a systemic state
emerging from the interaction between arousal and perceived threat. Likewise,
Panic Disorder is not a component of the system, but a state of the system aris-
ing from interactions among the elements that define its presence: panic attacks,
cognitions regarding panic-related arousal, and avoidance behavior.
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10.6.3 Explanatory Pluralism and Equifinality

The model allows for factors across levels of analysis to operate together in the
development and treatment of Panic Disorder, thereby accommodating both psy-
chological and biological theories of the disorder. In our evaluation of the model,
we focused on psychological components (e.g., arousal schema). However, bio-
logical components (e.g., physiological regulation of arousal or the effect of per-
ceived threat on arousal) play similarly critical roles in shaping system behavior
and individual differences in these components can just as readily produce a sys-
tem vulnerable to the development of Panic Disorder (see Supplementary Mate-
rials G.2). Systems with feedback across multiple levels of analysis such as this
generally preclude the attribution of causal priority to one level of description.
Instead, such models exploit the interactions between these levels to achieve the
rich set of adaptive and maladaptive behaviors characteristic of complex systems
(Barabási, 2012). Notably, because of the mutual causal relationships among its
components, the system arrives at a similar state regardless of the specific factors
that initiate its movement toward that state (cf. Bystritsky, Nierenberg, Feusner,
& Rabinovich, 2012, p. 430). Whether instigated by impaired physiological regu-
lation or the receipt of news about one’s cardiovascular health, the feedback rela-
tionships in the model will ultimately lead the system to a state of Panic Disorder.
These properties of explanatory pluralism and equifinality are common in psy-
chopathology and in the broader domain of complex systems (Nolen-Hoeksema
& Watkins, 2011; Von Bertalanffy, 1972).

10.6.4 Dysfunction from Function

Dysfunction in an individual component of the model can contribute to the de-
velopment of Panic Disorder. However, the model’s ability to produce Panic Dis-
order does not require component-level dysfunction. Indeed, there is no essen-
tially dysfunctional component in the model as we have presented it here, nor
are any of the relations among components dysfunctional. On the contrary, they
are utterly necessary. Any species that does not react to perceived threat with
increased arousal, does not engage in escape behavior in the face of perceived
threat, or that is incapable of learning that a given stimulus may be dangerous
will surely and rapidly go extinct. Although the belief that autonomic arousal
is dangerous may be inaccurate, the model comes by this falsehood honestly,
through the appropriate functioning of its ability to learn. Thus, although this is
a model of a pathological phenomenon, none of its specific ingredients need be
pathological.

10.6.5 Developing Theories for Other Mental Disorders

The overarching aim of this chapter was to develop a theory that posits precisely
how a mental disorder may operate as a complex system. In doing so, we hewed
closely to the abductive theory of scientific method (ATOM; Haig, 2005). We
identified a robust phenomenon (panic attacks) and used the overarching net-
work theory of mental disorders (Borsboom, 2017) as well as the prior litera-
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ture on Panic Disorder to generate an initial theory of Panic Disorder as a com-
plex system. We developed this theory using the analogy of mental disorders as
ecosystems and the production of a computational model. Finally, we appraised
the theory by examining the model’s accuracy, consilience, and simplicity (an
approach similar to, though distinct from, the explanatory coherence approach
embraced by ATOM; Haig, 2005).

We anticipate that this framework can be successfully applied to other men-
tal disorders. There are many resources from which one could generate or adopt
initial theories about a mental disorder’s causal structure. We surveyed the liter-
ature on Panic Disorder, integrating prior psychological theories. We suspect this
approach will be effective for somemental disorders but that others may not have
as strong a theoretical base upon which to draw as was available in the context of
Panic Disorder. In such cases, alternative approaches may be fruitful, including
the use of exploratory network analysis to investigate the structure of relation-
ships among symptoms (Cramer et al., 2016), reviews of the empirical research
on relationships among specific features of a disorder (van den Hout, 2014; Wit-
tenborn, Rahmandad, Rick, & Hosseinichimeh, 2016), and the assessment of clin-
ician or patient beliefs about the causal relationships among symptoms (Frewen,
Schmittmann, Bringmann, & Borsboom, 2013; N. S. Kim & Ahn, 2002)

The computational model proposed here can also serve as a resource for de-
veloping theories. We suspect that many emotional disorders arise from the same
dynamical system motifs we used to construct this model, including positive
feedback loops (e.g., between rumination and depressed mood; Hosseinichimeh,
Wittenborn, Rick, Jalali, & Rahmandad, 2018), negative feedback loops (e.g., be-
tween social anxiety and avoidance of social situations), and an interaction be-
tween fast-changing variables and the slow-changing variables that guide their
behavior. Indeed, the similarity of system motifs across emotional disorders is
implicitly posited and exploited to greater effect in recent transdiagnostic ap-
proaches to treatment, which argue that there is a similar structure in the causal
relationships among cognitions, emotions, and behavior across emotional disor-
ders (Barlow et al., 2011, 2017). In addition, many psychological theories posit
that functional short-term behavior heightens long-term vulnerability to psy-
chopathology, suggesting that our efforts to model the relationships among fast
and slow-changing variables may be applicable to other mental disorders.

10.7 Conclusions

This chapter offers a formalized theory of Panic Disorder as a complex system. In
essence, we aimed to condense a century of psychological theory and research on
recurrent panic attacks into a minimal set of mathematical equations that define
the causal relations among symptoms of panic attacks and Panic Disorder. The
ensuing minimal model explains how causal relationships among symptoms can
produce the key features of Panic Disorder, including the core phenomenological
features of panic attacks, individual differences in the propensity to experience
panic attacks, the development of the full Panic Disorder syndrome, and the ef-
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fects of cognitive behavioral therapy on Panic Disorder.
The model also reveals significant gaps in our understanding of Panic Disor-

der, identifying three critical avenues for future research. First, further theory
development is needed to increase the accuracy and consilience of the model.
Second, the model parameters require empirical grounding. Third, the model
makes predictions that should be tested. We believe future research should pro-
ceed in the order presented here, prioritizing continued development of Panic
Disorder theory and careful observation of Panic Disorder symptoms, thereby fa-
cilitating the development of a model that is capable of making more precise and
testable predictions.

We hope that the approach taken to theory development here can guide sim-
ilar efforts for other mental disorders and, ultimately, move the field toward
an ongoing exchange between theory and empirical research in which well-
developed formalized theories summarize what is known about a mental dis-
order and guide the ongoing investigation into how the disorder operates as a
complex system.
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Chapter 11

From Data Models to Formal

Theories

Abstract

Over the past decade there has been a surge of empirical research in-
vestigating mental disorders as complex systems. In this chapter, we in-
vestigate how to best make use of this growing body of empirical research
and move the field toward its fundamental aims of explaining, predict-
ing, and controlling psychopathology. We first review the contemporary
philosophy of science literature on scientific theories and argue that fully
achieving the aims of explanation, prediction, and control requires that we
construct formal theories of mental disorders: theories expressed in the
language of mathematics or a computational programming language. We
then investigate three routes by which one can use empirical findings (i.e.,
data models) to construct formal theories: (a) using data models them-
selves as formal theories, (b) using data models to infer formal theories,
and (c) comparing empirical data models to theory-implied data models in
order to evaluate and refine an existing formal theory. We argue that the
third approach is the most promising path forward and conclude by ex-
panding on this approach, proposing a framework for theory construction
that details how to best use empirical research to generate, develop, and
test formal theories of mental disorders.

This chapter has been adapted from: Haslbeck*, J. M. B., Ryan* O., Robinaugh*, D., Waldorp, L.
J. & Borsboom D. (under review). Modeling Psychopathology: From Data Models to Formal Theories.
Preprint: https://psyarxiv.com/jgm7f
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11.1 Introduction

Mental disorders are complex phenomena: highly heterogeneous and massively
multifactorial (e.g., Kendler, 2019). Confronted with this complex etiological and
ontological picture, researchers have increasingly called for approaches to psy-
chiatric research that embrace this complexity (Gardner & Kleinman, 2019). The
“network approach” to psychopathology addresses these calls, conceptualizing
mental disorders as complex systems of interacting symptoms (e.g., Borsboom &
Cramer, 2013; Schmittmann et al., 2013; Borsboom, 2017). From this perspec-
tive, symptoms are not caused by an underlying disorder, rather the symptoms
themselves and the causal relations among them constitute the disorder.

In recent years, empirical research within the network approach literature
has rapidly grown (for reviews see e.g., Robinaugh, Hoekstra, & Borsboom, 2019;
Contreras et al., 2019). Most of this work employs statistical models that allow re-
searchers to study the multivariate dependencies among symptoms, thereby pro-
viding rich information about the relationships among those symptoms. How-
ever, this quickly expanding empirical literature has raised a critical question:
how can we best make use of this growing number of empirical findings to ad-
vance the fundamental aims of psychiatric science? This problem is not unique to
the network approach. Psychiatry has produced countless empirical findings, yet
genuine progress in our efforts to explain, predict, and control mental disorders
has remained stubbornly out of reach.

In this chapter, we will argue that empirical research can best advance these
aims by supporting the development of scientific theories. We will begin in Sec-
tion 11.2 by discussing the nature of scientific theories and how they achieve the
explanation, prediction and control sought by psychiatric science. We will argue
that to fully achieve these aims, psychiatry requires theories formalized as math-
ematical or computational models. In Section 11.3, we will explore how models
estimated from data can best be used to develop formal theories. We examine
three possible routes from data model to formal theory: first, treating data mod-
els themselves as formal theories; second, drawing inferences from data models
to generate a formal theory; and third, using data models to develop formal the-
ories with an abductive approach. We will argue that the third approach is the
most promising path forward. In Section 11.4, we will expand on this approach
and propose a framework for theory construction, detailing how best to use em-
pirical research to advance the generation, development, and testing of scientific
theories of mental disorders.

11.2 The Nature and Importance of Formal Theories

In this section we will examine the nature of scientific theories and how they
support explanation, prediction, and control. We will begin by introducing four
key concepts that we will use throughout the remainder of the chapter: theory,
target system, data, and data models. We will illustrate each of these concepts
using the example of panic disorder.
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Figure 11.1: The figure illustrates the concepts target system, theory, data and data model. The target
system is the system consisting of interacting components that gives rise to phenomena. Phenomena
are robust features of the world captured by data models. Theories represent the structure of the
target system, proposing a set of components C and the relations among them and positing that they
give rise to the phenomena. Data for variables V are obtained by probing the target system.

11.2.1 Theories and Target Systems

Theories seek to explain phenomena: stable, recurrent, and general features of the
world (Bogen & Woodward, 1988; Haig, 2008, 2014) such as the melting point of
lead, the orbit of planets, and the tendency for some individuals to experience
recurrent panic attacks. Well developed theories can predict these phenomena
and show how they can be controlled. Although the precise nature of theories
remains a subject of ongoing debate among philosophers of science, the past half
century has seen a growing consensus that theories are best understood as mod-
els.1 Specifically, theories are models that aim to represent target systems: the
particular parts of the real world that give rise to the phenomena of interest. We
use the word “system” here because we assume that the part of the real world giv-
ing rise to any psychiatric phenomena can be partitioned into components and
the relations among them. We use the term “target”, because it is this system that
a theory aspires to represent (cf. Elliott-Graves, 2014).

In psychiatry, the most common phenomena to be explained are symptoms

1The precise relationship between theories and models is muddled by inconsistent and often con-
flicting use of these terms across time, disciplines, and scientists (for a brief history of models and
their relation to theory, see Bailer-Jones, 2009). In this chapter, we will adopt the perspective that
theories are models (Suárez & Pero, 2019). However, the core arguments presented in this chapter
do not require this precise conceptualization of theories and would similarly hold for pragmatic ac-
counts that regard models as an intermediary between theory and the real world (e.g., Bailer-Jones,
2009; Cartwright, 1983).
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and syndromes. For example, researchers seek to explain the tendency for some
individuals to experience panic attacks and the tendency for recurrent panic at-
tacks to be accompanied by persistent worry about those attacks and avoidance
of situations in which they may occur (Spitzer, Md, &Williams, 1980). The target
system in psychiatric research comprises the components of the real world that
give rise to these symptoms and syndromes, and may include genetic, neuro-
biological, physiological, emotional, cognitive, behavioral or social components.
Psychiatric theories aim to represent these target systems, positing a specific set
of components and relationships among them that give rise to the phenomena
of interest. For example, researchers have generated numerous theories of panic
disorder, specifying a set of components that they believe interact to give rise to
panic attacks and panic disorder. Among these, perhaps the most influential is
Clark’s cognitive model of panic attacks, which posits that “if [stimuli] are per-
ceived as a threat, a state of mild apprehension results. This state is accompanied
by a wide range of body sensations. If these anxiety-produced sensations are in-
terpreted in a catastrophic fashion, a further increase in apprehension occurs.
This produces a further increase in body sensations and so on round in a vicious
circle which culminates in a panic attack” (Clark, 1986). This cognitive theory of
panic attacks specifies components (e.g., bodily sensations and a state of appre-
hension) and the relations among them (e.g., the “vicious cycle” of positive causal
effects), positing that this is the target system that gives rise to panic attacks.

Because theories represent the target system, we can reason from theory in
order to draw conclusions about the target system. It is this capacity for surroga-
tive reasoning (Swoyer, 1991) that allows theories to explain, predict, and control.
For example, we can explain the rise and fall of predator and prey populations in
the real world by appealing to the relationships between components specified
in mathematical models representing these populations (H. I. Freedman, 1980;
Nguyen & Frigg, 2017). We can predict what will occur when two atoms col-
lide by deriving the expected outcome from models of particle physics (Higgs,
1964). We can determine how to intervene to prevent panic attacks by appealing
to the relationships posited in the cognitive model of panic attacks, determin-
ing that an intervention modifying a patient’s “catastrophic misinterpretations”
should prevent the “vicious cycle” between arousal and perceived threat, thereby
circumventing panic attacks (Clark, 1986). This ability to support surrogative
reasoning makes theories such powerful tools.

11.2.2 The Importance of Formal Theories

Surrogative reasoning relies on a theory’s structure: its components and the re-
lations among them (Pero, 2015; Suárez & Pero, 2019). This structure can be
expressed in a written or spoken language (i.e., verbal theory) or in the lan-
guage of mathematics or computation (i.e., formal theory). For example, a ver-
bal theory would state that the rate of change in an object’s temperature is
proportional to the difference between its temperature and the temperature
of its environment. A formal theory would instead express this relationship
as a mathematical equation, such as dT

dt = −k(T − E), where dT
dt is the rate of
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change in temperature, T is the object’s temperature, and E is the tempera-
ture of the environment; or in a computational programming language, such as:
for(t in 1:end) { T[t+1] = T[t]-k*(T[t]-E) }.

Expressing a theory in a mathematical or computational programming lan-
guage gives formal theories many advantages over verbal theories (e.g., Smith &
Conrey, 2007; Epstein, 2008; Lewandowsky & Farrell, 2010; Smaldino, 2017).
There is one advantage especially relevant to the present chapter: Formalization
enables precise deduction of the behaviour implied by the theory. Verbal theo-
ries can, of course, also be used to deduce theory-implied behavior. However, due
to the vagaries of language, verbal theories are typically imprecise, thereby pre-
cluding their ability to make exact predictions. For example, the verbal theory of
temperature cooling described in the previous paragraph allows for some general
sense of how the object’s temperature will evolve over time, but cannot be used
to make precise predictions about how it will change or where temperature will
be at any given point in time. Indeed, because of the imprecision of verbal the-
ories, there are often multiple ways in which those theories could be interpreted
and implemented, each with a potentially divergent prediction about how the
target system will evolve over time. Consider the interpersonal theory of suicide,
which posits that suicide arises from the simultaneous experience of perceived
burdensomeness and thwarted belongingness (Van Orden et al., 2010). This the-
ory fails to specify many aspects of this causal structure, such as the strength of
these effects or the duration for which they must overlap before suicidal behav-
ior arises (Hjelmeland & Loa Knizek, 2018). As a result, there are many possible
implementations of that verbal theory, each of which could potentially lead to a
different prediction about when suicidal behaviour should be expected to arise.
This imprecision thus substantially limits the theories ability to support surrog-
ative reasoning and the degree to which we can empirically test the theory.

In contrast to most verbal theories, formal theories are precise in their im-
plementation as the mathematical notation or code in a computer programming
language forces one to be specific about the structure of the theory (e.g., speci-
fying the precise effect of one component on another).2 The precision of formal
theories allows for the provision of singular and precise predictions about how
the target system will behave. These predictions can either be obtained analyti-
cally from the mathematical equation or computed by implementing the formula
in a programming language. For example, we can use the formal theory of cool-
ing to predict the exact temperature of our object at any given point in time.
Similarly, a formal implementation of the interpersonal theory of suicide would
make precise predictions that could inform the prediction of suicide attempts. In
other words, formal theories substantially strengthen surrogative reasoning, the
very characteristic of scientific theories upon which we wish to capitalize.

2It is, of course, possible to express verbal theories with the same level of precision as is provided
by a mathematical equation (e.g., there are very few equations in the Principia, yet the laws Newton
describes are not lacking in precision). Nonetheless, the specificity required by mathematics or com-
putational programming makes them more amenable to expressing theories precisely and has the
considerable practical advantage of supporting the derivation of predictions from the theory.
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11.2.2.1 A Formal Theory of Panic Disorder

The cognitive model of panic attacks posited by Clark is a verbal theory and is
limited by the imprecision characteristic of most verbal theories. Indeed, in two
recent papers, Fukano and Gunji (Fukano &Gunji, 2012) and Robinaugh and col-
leagues (Robinaugh, Haslbeck, et al., 2019) independently proposed two distinct
formal implementations of this theory, taking the verbal theory and expressing
it in differential equations. Notably, these distinct implementations of the same
verbal theory make divergent predictions about when panic attacks should occur,
illustrating the limitations of failing to precisely specify the theory (for further
detail, see Robinaugh, Haslbeck, et al., 2019).

In this chapter, we will make extensive use of the formal theory proposed
by Robinaugh and colleagues. A complete description of the generation of this
theory can be found in Robinaugh, Haslbeck, et al. (2019). For the purposes of
this chapter, it is sufficient to note that the aim in developing this model was
to take extant verbal theories, especially cognitive behavioral theories, and ex-
press them in the language of mathematics. For example, Clark’s verbal theory
posits that a perception of threat can lead to arousal-related bodily sensations.
However, the actual form and strength of this effect remain unspecified. In our
mathematical model, we used a differential equation to precisely define this ef-
fect: dA

dt = α(νT −A). In this equation, there is a linear effect of Perceived Threat
(T ) on the rate of change of Arousal (A), with the strength of this effect specified
by the parameter ν. The product of ν and T is the value Arousal is pulled to-
ward: if νT is smaller than the current level of Arousal, dA

dt will be negative and

Arousal will decrease toward νT ; if νT is greater than Arousal, dA
dt is positive and

Arousal increases toward νT . Eachmodel component was defined as a differential
equation in this way (see middle panel in Figure 11.2).
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Figure 11.2: The left panel displays the key components of the theory proposed by Robinaugh,
Haslbeck, et al. (2019) at play during panic attacks: Arousal, Perceived Threat, Escape Behavior and
arousal schema. The arrows indicate the direct causal relationships which are posited to operate
between these components in the formal theory. The middle panel displays the formal theory that
specifies the precise nature of the relations among these components. The right panel depicts the
simulated behavior implied by the theory.

By specifying the structure of the theory in this way, we are able to solve
the system numerically, thereby deducing the theory’s predictions about how the
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target system will behave. For example, the theory shows that when the effect of
Arousal on Perceived Threat is sufficiently strong, the positive feedback between
these components is sufficient to send the system into runaway positive feed-
back, producing the characteristic surge of arousal, perceived threat, and escape
behavior that we refer to as a panic attack (see right panel in Figure 11.2). As this
example illustrates, specifying the theory as a computational model substantially
strengthens our ability to deduce the behavior implied by the theory. A full re-
alization of a theory’s usefulness thus all but requires that theory be formalized.
For that reason, we believe the ultimate goal of psychiatric research should not
only be the production of theories, but the production of formal theories.

11.2.3 Data and Data Models

Our brief overview of the philosophy of science literature on theories suggests
that if our aim is the explanation, prediction, and control of mental disorders,
what we are after are well-developed formal theories: mathematical or computa-
tional models that represent the target system. The key question then becomes:
how can we best determine such a formal theory?

The answer to this question will, of course, involve the collection and analysis
of data. Empirical data plays at least two key roles in the development of formal
theories. First, data gathered about the target system are key to establishing what
our theories must explain. Yet, theories typically do not aim to explain data di-
rectly. Data are sensitive to the context in which they are acquired and subject
to myriad causal influences that are not of core interest (Woodward, 2011). For
example, panic disorder researchers collect data from diagnostic interviews, self-
report symptom inventories, assessments of physiological arousal during panic
attacks, time-series data, and a host of other methods. Data about panic attacks
gathered using these methods will be influenced not only by the experienced at-
tacks, but also by recall biases, response biases, sensor errors, and simple human
error. Accordingly, theories do not aim to account for specific “raw” data. Rather,
theories explain phenomena identified through robust patterns in the data that
cannot be attributed to the particular manner in which the data were collected
(e.g., researcher biases, measurement error, methodological artifacts, etc.). To
identify these empirical regularities in data, researchers use data models, which
are representations of the data (Suppes, 1962; Kellen, 2019). Data models can
take many forms. These can range from the most basic canonical descriptive
tools, such as a mean score, a correlation, or a fitted curve, to more complex sta-
tistical tools which are common in different areas of psychology and beyond; such
as structural equation models, time-series models, hierarchical models, network
models, mixture models, loglinear models and so forth. Essentially, we can con-
sider a data model to be any (statistical) model that summarizes the data in some
way. Thus, data models, particularly robust and replicable data models, play a
key role in determining what a theory must explain.

Second, data models also inform our understanding of the components and
the relations among them that are posited to give rise to a phenomenon (i.e., the
theory’s structure). It is this role which we will focus on in the next part of this
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chapter. This role is especially noteworthy in the context of the data models most
commonly used in the network approach literature: the Ising model, the Gaus-
sian Graphical Model, and the Vector Autoregressive model. In Section 11.3 we
will describe each of these models in more detail, but here it is sufficient to note
their most salient feature: these analyses estimate the structure of relationships
among a set of variables; specifically, the structure of conditional dependence
relationships (see Figure 11.1; Top Right). There is a strong intuitive appeal to
these analyses as they seem to hold the promise of directly informing the very
thing we are after: the structure of relations among components of the mental
disorder (see Figure 11.1; Top Left). In Section 11.3, our overarching aim will be
to critically evaluate that promise and determine how best to use (network) data
models to guide the development of theories about specific mental disorders.

11.3 Identifying Formal Theories from Data

In this section we will explore how data models can best contribute to the devel-
opment of formal theories. We will do so within the broader theoretical frame-
work of conceptualizing mental disorders as complex systems and will focus on
three data models that have become popular among researchers adopting this
framework: the Ising model, the Gaussian Graphical Model (GGM), and the Vec-
tor Autoregressive (VAR) model. Specifically, we evaluate three routes that make
use of data models in different ways to obtain a formal theory. We believe that
the first two routes describe how data models are currently used in the literature,
and the third route is an alternative that addresses some of the shortcomings of
the first two approaches.

The first route arrives at formal theories directly by treating these data mod-
els as formal theories. In this case, the transition from data model to formal
theory is largely an act of interpretation. Instead of interpreting a data model
as a representation of the data, we interpret it as a representation of the target
system (see Figure 11.3, Left Panel). Specifically, the variables of the data model
are treated as the components of the target system, and the statistical relation-
ships are treated as the structural relationships among the components. From
this perspective, research is carried out by conducting an empirical study, es-
timating a data model, and treating the data model as a theory. If viable, this
approach would be extremely powerful, because a well-developed theory would
be just one well-designed study away. We evaluate this route in Section 11.3.1.

The second possible route arrives at formal theories by drawing inferences
from data models (Figure 11.3, Middle Panel). That is, the data model is not
directly treated as a theory, but rather is used to inform the theory. From this
perspective, research is carried out by conducting an empirical study, estimat-
ing a data model, and using the data model to infer characteristics of the target
system, thereby informing the development of a theory. For example, one could
observe a conditional dependence relationship between two variables and infer
the presence of a causal relationship between the corresponding components in
the target system. To evaluate this approach we need to know the data-generating
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target system. We do so in Section 11.3.2 by treating the Panic Model introduced
in the previous section as the target system of interest, simulating data from that
target system, and examining how well inferences drawn from data models can
be used to inform our understanding of the target system.
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Figure 11.3: The figure provides an overview of three routes to developing formal theories using
data models. In the left panel, data models are treated as formal theories. In the middle panel, data
models are used to draw inferences about the target system and, thereby, to generate formal formal
theories of that system. In the right panel, data models used to develop formal theories by deducing
implied data models and comparing them with empirical data models.

The third possible route puts formal theories at the heart of theory develop-
ment. From this perspective, research is carried out by first generating an initial
formal theory. From this formal theory we simulate data which we use to ob-
tain the theory-implied data model. We subsequently compare the implied data
model with the empirical data model, and adapt the formal theory based on the
discrepancy between the two. This route thus leverages the “immense deduc-
tive fertility” of formal theories to make precise predictions that clarify how the
model must be revised to be brought in line with empirical data (Meehl, 1978).
From this perspective, formal theory is not only the ultimate goal of the research
process, but also plays an active role in theory development. We evaluate this
route in Section 11.3.3 by deriving predicted data models from a formal theory
of Panic disorder, and showing how the model can be improved by comparing
the predicted data models to empirical data models.

11.3.1 Using Data Models as Formal Theories

If data models are to serve as formal theories of a target system, the properties of
those data models must be able to represent the properties we expect in the target
system. Accordingly, in this section, we discuss the properties we expect in the
target systems ofmental disorders from the complex systems perspective (Section
11.3.1.1) and evaluate whether these properties are captured by the properties
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of three data models: the VAR model, the GGM, and the Ising model (Section
11.3.1.2).

11.3.1.1 Properties of Mental Disorder Target Systems

Target systems consist of components and the relations among them. From the
network perspective there are a number of properties we would expect to be
present in the target systems of mental disorders. First, feedback loops among
components are likely present. Researchers have frequently posited “vicious cy-
cles”, where the initial activation of one component (e.g., arousal) elicits activa-
tion of other components (e.g., perceived threat) and, in turn, is reinforced by
the activation of those components. Second, causal effects between components
are likely to be asymmetrical. That is, the effect of component A on component
B may differ from the effect of component B on component A. For example, it is
unlikely that concentration has the same effect on sleep as sleep has on concen-
tration or that compulsions have the same effect on obsessions that obsessions
have on compulsions.

Third, interactions among components are likely to occur at different time
scales. For example, the effect of intrusive memories on physiological reactivity
in Post-traumatic Stress Disorder is likely to occur on a time scale of seconds to
minutes, whereas an effect of energy on depressed mood may play out over the
course of hours to days, and the effect of appetite on weight gain may occur on
a time scale of days to weeks. Fourth, it is likely that there are higher order
interactions among components. For example, the presence of sleep difficulties
may strengthen the effect of feelings of worthlessness on depressed mood or the
effect of intrusive trauma memories on physiological reactivity. If data models
are to serve as formal theories of the target system, they must be able to represent
these types of causal structures.

We would further suggest that most, perhaps all, mental disorder target sys-
tems are likely to have multiple stable states, that is, states into which the system
settles and will remain in the absence of external perturbation. In the simplest
case, the system will be characterized by the presence of two stables states: an
unhealthy state (i.e., a state of elevated symptom activation, such as a depres-
sive episode), and a healthy state (e.g., a state without elevated symptom activa-
tion). In other cases, there may be multiple stable states (e.g., healthy, depressed,
and manic states in Bipolar Disorder). The presence of multiple stable states
is, in turn, accompanied by other behavior often observed in mental disorders,
including spontaneous recovery and sudden shifts into or out of a state of psy-
chopathology, further suggesting that a model of any given mental disorder will
almost certainly need to able to produce alternative stable states.

11.3.1.2 Comparing Target System Properties with Data Model Properties

The first model we will consider is the VAR model. The VAR model for multi-
variate continuous time series data linearly relates each variable at time point t
to all other variables and itself at previous time points (Hamilton, 1995), typi-
cally the time point immediately prior t − 1 (i.e., a first order VAR, or VAR(1),
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model; e.g., Bringmann et al., 2013; Pe et al., 2015; Fisher et al., 2017; Snippe
et al., 2017; Groen et al., 2019). The estimated lagged effects of the VAR models
indicate conditional dependence relationships among variables over time. The
dynamics of the VAR model is such that the variables are perturbed by random
input (typically Gaussian noise) and the variables return to their means, which
represent the single stable state of the system.

As depicted in Figure 11.4, the VAR model is able to represent some key
characteristics likely to be present in mental disorder target systems. Most
notably, it allows for feedback loops. Variables can affect themselves both di-
rectly (e.g., Xt → Xt+1), or via their effects on other variables in the system (e.g.,
Xt → Yt+1 → Xt+2). The VAR model also allows for asymmetric relationships,
since the effect Xt → Yt+1 does not have to be the same effect as Yt → Xt+1 in
direction or magnitude. However, because the lag-size (i.e., the distance between
time points) is fixed and consistent across all relationships, the VAR model does
not allow for different time scales. Moreover, because the VAR model only in-
cludes relations between pairs of variables, it is unable to represent higher-order
interactions involving more than two variables. Finally, the VAR model has a
single stable state defined by its mean vector and thus cannot represent multiple
stable states of a system, such as a healthy state and unhealthy state.
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Figure 11.4: The figure shows whether the five properties of mental disorders discussed above can
be represented by the three most popular network data models, the VAR(1) model, the GGM, and
the Ising model with Glauber dynamics. Note that there is a check mark at feedback loops for GGMs
because one could in principle endow the GGM with a dynamic similar to the Ising model, which
would essentially lead to a restricted VARmodel but with symmetric relations. The asterisk is present
because this endowment of dynamics is not done in practice.
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The second model we will consider is the Gaussian Graphical Model (GGM).
The GGM linearly relates pairs of variables in either cross-sectional (Haslbeck &
Fried, 2017) or time series data (Epskamp, Waldorp, et al., 2018). In the case of
time series data the GGMmodels the relationships between variables at the same
time point. Because it does not model any dependency across time, it is typically
not considered a dynamic model and, thus, could not be used to represent the
behavior of a mental disorder target system as it evolves over time. In principle
the GGM could be augmented by a dynamic rule similar to one commonly used
with the Ising model (i.e., “Glauber dynamics”, see below). However, in that
case, the GGM would become a model similar to, but more limited than, the
VARmodel described above (e.g., it would be limited to symmetric relationships).
Accordingly, the GGM is similarly unable to represent key features we expect to
observe in a mental disorder target system.

The final model we will consider is the Ising model. The Ising model again
represents pairwise conditional dependence relations between variables (Ising,
1925), however, it is amodel formultivariate binary data. While the original Ising
model does not model dependencies over time, it can be turned into a dynamic
model by augmenting it with Glauber dynamics (Glauber, 1963).3 Like the VAR
model, the Ising model is able to represent feedback loops. Moreover, due to its
non-linear form it is able to exhibit multiple stable states (and the behavior that
accompanies such stable states, such as hysteresis and sudden shifts in levels of
symptom activation, see e.g., Cramer et al., 2016; Lunansky et al., 2019; Dalege
et al., 2016). It is perhaps not surprising then, that the Ising model is used as
a theoretical model across many sciences (Stutz & Williams, 1999), and to our
knowledge, is the only of the three data models examined here that has been
used as a formal theory of a mental disorder target system (Cramer et al., 2016).
Unfortunately, the Ising model falls short in its ability to represent the remaining
characteristics likely to be present in mental disorders. The relationships in the
Ising models are exclusively symmetric; with the standard Glauber dynamics,
there is only a single time scale; and the Isingmodel includes exclusively pairwise
relationships, precluding any representation of higher-order interactions.

11.3.1.3 Data Models as Formal Theories?

The analysis in this section shows that the VAR, GGM, and Ising models are un-
able to represent most key properties we would expect in the target systems giv-
ing rise to mental disorders, and therefore cannot serve as formal theories for
those disorders. Of course, more complex models would be able to produce more
of the characteristics likely to be present in mental disorders. For example, one
could extend the VARmodel with higher-order interactions or a latent state (Tong
& Lim, 1980; Hamaker et al., 2010), thereby allowing it to represent multiple
stable states. However, estimating data models is subject to fundamental con-

3This dynamics works as follows: After specifying an initial value for each variable, it randomly
picks one variable Xi at t = 1 and takes a draw from the distribution of Xi conditioned on the values
of all other variables. This value (either 0 or 1) is set to be the new value of Xi and then the same
process is repeated, thereby allowing the model to evolve over time.
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straints. More complex models require more data, and larger sample sizes which
are often unavailable in psychiatric research. For example, around 90 observa-
tions (about 2.5 weeks of a typical ESM study) are needed for a VARmodel to out-
perform the much simpler ARmodel (Dablander et al., 2019). Models more com-
plex than the VAR model would require even more data to be estimated reliably.
In addition, the sampling frequency (e.g., measurement every 2 hours) might be
too low to capture the structure of the target system of interest (Haslbeck & Ryan,
2019). In this situation a data model still contains some information about the
target system, but cannot capture the structure of the target system to the extent
that it can serve as a formal theory. Even if large amounts of high frequency data
were widely available, it is unclear how to estimate many complex models. For
example, one could extend the Ising model with a second time scale (e.g., Lunan-
sky et al., 2019), but it would be unclear how to estimate such a model from data.
Finally, even if such models could be estimated, more complex models are often
uninterpretable. For example, nonparametric models (e.g., splines; J. Friedman
et al., 2001, p. 139), which can capture extremely complex behavior, typically
consist of thousands of parameters, none of which can be interpreted individ-
ually. Accordingly, it is unlikely that any data model estimated from the type
of data typically available in psychiatric research will be both interpretable and
capable of capturing the characteristics of psychopathology in such a way that
would allow it to serve as a formal theory of a mental disorder.

11.3.2 Using Data Models to Infer Formal Theories

An alternative route from data models to formal theories is to use data models
to draw inferences about a target system, inferences that we can use to construct
a formal theory. There is good reason to think that this approach could work.
Because the data are generated by the target system, and data models summarize
these data, the parameters of any data model certainly somehow reflect charac-
teristics of the target system. This means that it should be possible, in principle,
to infer something about the target system and its characteristics from data and
data models. Although we have seen already that the GGM, Ising and VAR mod-
els cannot directly reproduce the key characteristics of the target system, their
parameters could potentially still yield insights into the structure or patterns of
relationships between components. In line with this intuition, it has frequently
been suggested that the GGM, the Ising model, and the VAR models can serve as
“hypothesis-generating tools” for the causal structure of the target system (e.g.,
Borsboom & Cramer, 2013; van Rooijen et al., 2017; Fried & Cramer, 2017; Ep-
skamp, van Borkulo, et al., 2018; Epskamp, Waldorp, et al., 2018; Jones, Mair,
Riemann, Mugno, & McNally, 2018).

Although this approach seems intuitive, in practice it is unclear how this in-
ference from datamodel to target system should work. For example, if we observe
a strong negative cross-lagged effect of Xt on Yt+1 in a VARmodel, what does that
imply for the causal relationship between the corresponding components in the
target system? A precise answer to this question would require a rule that con-
nects parameters in particular data models to the structure of the target system.
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For some simple systems, such a rule is available. For example, if the target sys-
tem can be represented as a Directed Acyclic Graph (DAG), then under certain
circumstances its structure can be inferred from conditional (in)dependence re-
lations between its components: Conditional independence implies causal inde-
pendence, and conditional dependence implies either direct causal dependence
or a common effect (Pearl, 2009; Ryan, Bringmann, & Schuurman, 2019). How-
ever, it is generally unclear how we can use the parameters of typical data models
to make inferences about the types of non-linear dynamic systems we expect in
a psychiatric context (although Mooij, Janzing, & Schölkopf, 2013 and Forré &
Mooij, 2018 have established some links in this regard). The consequences of
this are twofold. First, any inference from data model to target system must rely
instead on some simplified heuristic(s) in an attempt to approximate the link be-
tween the two. Second, it is unclear how well the combination of common data
models and simple heuristics perform in allowing us to make inferences about
the target system.

In this section, we evaluate whether the three data models introduced above
can be used to make inferences about mental disorder target systems. To do this,
we treat the Panic Model discussed in Section 11.2 as the data-generating target
system and compare the causal structure inferred from the data models to the
true causal structure. To yield these inferences we use a very simple and intu-
itive set of heuristics: a) if two variables are conditionally dependent in the data
model, we will infer that the corresponding components in the target system are
directly causally dependent; b) if there is a positive linear relationship, we will
infer that the causal relation between the corresponding components is positive
(i.e., reinforcing); c) if there is a negative linear relationship, we will infer that
the causal relationship among components is negative (i.e., suppressing).

11.3.2.1 Inferring the Panic System from Network Data Models

To be able to evaluate the success of the simple heuristics described above, we
must first represent the structure of the Panic Model (see Section 11.2) in the
structure of a square matrix, that is, in the same form as the parameters of
the VAR, GGM, and Ising models. Since the relationships between components
are formalized through differential equations, a natural choice is to represent the
Panic Model as a network of moment-to-moment dependencies, drawing an ar-
row X → Y if the rate of change of Y is directly dependent on the value of X
(known as a local dependence graph; Didelez, 2007). Figure 11.5 (a) displays these
moment-to-moment dependencies. Note that this structure cannot capture many
aspects of the true model, such as the presence of two time scales or the mod-
erating effect of Arousal Schema (AS) (see Section 11.2 for details). It is, thus,
already clear that the models cannot recover the exact causal structure of the
Panic Model. Nonetheless, we can still investigate whether applying the simple
heuristics to these three data models allows us to infer this less detailed pattern
of direct causal dependencies.

We next compare this true causal structure to the causal structure inferred
based on the three data models. To obtain the three data models, we first gen-

280



11.3. Identifying Formal Theories from Data

erate data from the target system (See Appendix H.1). Specifically, we use four
weeks of minute-to-minute time-series data for 1000 individuals. These individ-
uals differ in their initial value of Arousal Schema, with the distribution chosen
so that the proportion of individuals for whom a panic attack is possible was
equivalent to the lifetime history prevalence of panic attacks in the general pop-
ulation (R. R. Freedman et al., 1985). For the VAR model analysis, we create a
single-subject experience-sampling-type dataset by choosing the individual who
experiences the most (16) panic attacks in the four-week period. To emulate ESM
measurements, we divide the four week period into 90-minute intervals, taking
the average of each component in that interval, yielding 448 measurements. For
the GGM analysis, we create a continuous cross-sectional dataset by taking the
mean of each component for each individual over the four weeks. For the Ising
model analysis, we obtain cross-sectional binary data by taking a median split
of those same variables. The resulting VAR, GGM and Ising model networks are
displayed in Figure 11.5 panels (b), (c) and (d), respectively.4
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Figure 11.5: Panel (a) shows the true model in terms of local dependencies between components;
panel (b) shows the VAR model estimated from ESM data sampled from the true model; panel (c)
shows the GGM estimated from the cross-sectional data of 1000 individuals, generated from the
true model; panel (d) shows the Ising model estimated on the same data after being binarized with
a median split. Solid edges indicate positive relationships, dotted indicate negative relationships.
For panels (b) to (d), the widths of edges is proportional to the absolute value of the corresponding
parameter. Note that in panel (b) we do not depict the estimated auto-regressive parameters as the
primary interest is in inferring relationships between variables.

4Note that in the Ising model the parameter estimates are somewhat unstable due to near-
deterministic relationships between some binarized variables.
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We will focus our evaluation on two important causal dependencies in the
target system: the positive (i.e., reinforcing) moment-to-moment feedback loop
between Perceived Threat and Arousal, and the positive effect of Arousal Schema
(i.e., beliefs that arousal-related bodily sensations are dangerous) on Avoidance
(i.e., efforts to avoid situations or stimuli that may elicit panic attacks). In the
VAR model (panel (b) in Figure 11.5) we see a lagged positive relationship of
Arousal to Perceived Threat, a strong negative lagged relationship from Perceived
Threat to Arousal, and a weak positive effect of Arousal Schema on Avoidance.
Applying the heuristics, we would infer a reinforcing relationship from Arousal
to Perceived Threat, a suppressing relationship from Perceived Threat to Arousal,
and a reinforcing effect of Arousal Schema on Avoidance. In the GGM (panel (c)
in Figure 11.5) we see a positive conditional dependency between mean values
of Arousal and Perceived Threat, but we also see a weak negative dependency
between mean values of Arousal Schema and Avoidance. Applying the heuris-
tics to the GGM, we would infer a reinforcing relationship between Arousal and
Perceived Threat, and a suppressing relationship between Arousal Schema and
Avoidance. Finally, in the Ising model (panel (d) in Figure 11.5), we see a strong
positive dependency between Arousal Schema and Avoidance, and a very weak
positive relationship between PT and Arousal. This leads us to infer two reinforc-
ing relationships, between Arousal and Perceived Threat, and Arousal Schema
and Avoidance.

For the VAR model, the heuristics yield one correct and one incorrect infer-
ence. For the GGM, we make exactly the opposite inferences, with again one
correct and one incorrect. In the Ising Model, we yield two correct inferences.
However, inspecting the rest of the Ising Model edges we can see a variety of
incorrect inferences about other relationships, with independent components in
the target system connected by strong edges in the Ising model, and the valences
of various true dependencies flipped. At best, we can say that in each of the three
network models, some dependencies do reflect the presence and/or direction of
direct causal relationships, and some do not. Unfortunately, it is not possible to
distinguish which inferences are trustworthy and which are not without know-
ing the target system, and in any real research context, the target system will be
unknown. Consequently, these data models cannot be used to confidently and
reliably draw inferences about the target system using these simple heuristics.

11.3.2.2 The Mapping between Data Model and Target System

Importantly, our inability to draw accurate inferences from these data models
is not a shortcoming of the data models themselves. Each data model correctly
captures some form of statistical dependency between the components in a par-
ticular domain (e.g., lagged 90 minute windows). Moreover, the statistical de-
pendencies in the data models are produced by causal dependencies in the target
system, so we know there is some mapping from the causal dependencies in the
target system to statistical dependencies in the data model. The fundamental bar-
rier to inference is that the form of this mapping is unknown and considerably
more complex than the simple heuristics we have used to draw inferences here.
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For example, consider the relationships between Perceived Threat and Arousal.
The VAR model (panel (b) in Figure 11.5), identifies a negative lagged relation-
ship from Perceived Threat to Arousal in the data generated by the target system.
Yet in the target system, this effect is positive. This “discrepancy” occurs because
of a very specific dynamic between these components: After a panic attack (i.e. a
brief surge of Perceived Threat and Arousal) there is a “recovery” period in which
arousal dips below its mean level for a period of time. As a result, when we av-
erage observations over a 90 minute window, a high average level of Perceived
Threat is followed by a low average level of Arousal whenever a panic attack oc-
curs. That same property of the system produces the observed findings for the
GGM and Ising Model through yet another mapping (for details, see Appendix
H.2).

As this example illustrates, the mapping between target system and data
model is intricate, and it is unlikely that any simple heuristics can be used suc-
cessfully to work backwards from the data model to the exact relationships in
the target system. We can expect this problem to arise whenever we use rela-
tively simple statistical models to directly infer characteristics or properties of a
complex system (c.f. the problem of under-determination or indistinguishabil-
ity; Eberhardt, 2013; Spirtes, 2010). Indeed, the same problem arises even for
simpler dynamical systems when analyzed with more advanced statistical meth-
ods (e.g., Haslbeck & Ryan, 2019). Of course, in principle, it must be possible to
make valid inferences from data and data models to some properties of a target
system using a more principled notion of how one maps to the other. For exam-
ple, under a variety of assumptions, it has been shown that certain conditional
dependency relationships can potentially be used to infer patterns of local causal
dependencies in certain types of dynamic system (Mooij et al., 2013; Bongers &
Mooij, 2018; Forré & Mooij, 2018). However, the applicability of these methods
to the type of target system we expect to give rise to psychopathology (see Sec-
tion 11.3.1) is as yet unclear and even under the strict assumptions under which
they have been examined, these methods still do not recover the full structure of
the target system.5 This means that the intricacy of the mapping between target
system and data model currently precludes us from making reliable inferences
about the target system. Accordingly, we cannot use those inferences to build
formal theories.

5Specifically, Mooij et al. (2013) and Bongers and Mooij (2018) have shown that cyclic causal mod-
els can be conceptualized as encoding causal dependencies between the equilibrium positions of de-
terministic differential equations and differential equations with random initial values. Forré and
Mooij (2018) formally link the conditional dependencies between equilibrium position values to the
causal dependencies in these cyclic causal models using a considerably more complex mapping rule
than that which holds for DAGs. Their applicability to the current context is limited in the sense
that 1) to our knowledge these rules have not been extended to dynamic systems with time-varying
stochastic terms (SDEs) as we would expect to see in complex psychological systems (and on which
the Panic Model is based), and 2) the use of these methods is reliant on data that reflects equilibrium
positions. Future developments in this area may prove to yield useful tools for psychological theory
development however, and we consider this area to be ripe for future research beyond the scope of
the present chapter.

283



11. From Data Models to Formal Theories

11.3.3 Using Data Models to Develop Formal Theories

In Section 11.3.2, we saw that themapping between target system and datamodel
is intricate and would be nearly impossible to discern when the target system is
unknown. However, we also saw that when the target system is known, we can
determine exactly which data models the target system will produce. Indeed,
this is precisely what we did when we simulated data and fit data models to it in
the previous section. In this section we consider a third route to formal theories,
which makes use of this ability to determine which data models are implied by a
given target system (or formal theory).

This third route works as follows. First and foremost, we must propose some
initial formal theory which we take as a representation of the target system. The
quality or accuracy of this representation may be good or bad, but crucially the
theory must be formalized in such a way as to yield unambiguous predictions
(see Section 11.2.2). Second, we can use this initial theory to deduce a theory-
implied data model. This can be done by simulating data from the formal theory
and fitting the data model of interest. Third, we can learn about and adapt the
formal theory by comparing implied data models with their empirical counter-
parts. This approach is represented in schematic form in the right-hand panel
of Figure 11.3. It can be seen as a form of inference, but it is abductive inference:
inference to the best explanation (Haig, 2005). We first infer the best explanation
for the core phenomena to generate an initial theory. We then infer the best expla-
nation for any discrepancies between empirical and theory-implied data models,
inferences which inform subsequent theory development. Given the importance
of abductive inference to this approach, we adopt this term to refer to this third
route. In this sub-section, we will illustrate this approach using the example of
panic disorder (for an overview, see Figure 11.6).

11.3.3.1 Obtaining Theory-Implied and Empirical Data Models

In this section, we will treat the Panic Model introduced in Section 11.2 as our
initial formal theory, which should represent the target system that gives rise to
panic disorder (Figure 11.6, bottom row). The Panic Model can be used to sim-
ulate data and, in turn, to derive predictions made by the theory in the form of
theory-implied data models (left-hand column of Figure 11.6). While in principle
many data models can (and should) be used to perform the abductive inference
described above, here we will examine the implied cross-sectional Ising model of
the three core panic disorder symptoms: 1) Recurrent Panic Attacks (PA), 2) Per-
sistent Concern (PC) following a panic attack and 3) Avoidance (Av) behaviour
following a panic attack (American Psychiatric Association, 2013). If our formal
theory of panic disorder is an accurate representation of the target system that
gives rise to panic disorder, the implied Ising model derived from this theory
should be in agreement with a corresponding Ising model derived from empiri-
cal data.

Critically, obtaining an implied data model requires not only a formal the-
ory from which we can simulate data, but also a formalized process by which
variables are “measured” from those data. The Panic Model is used to generate
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Figure 11.6: Illustration of the third route to formal theories. We take the Panic Model discussed in
Section 11.2 as our formal theory, representing the unknown target system that gives rise to panic
disorder. To obtain an implied data model from this theory, we first formalize how the components
of the theory produce the data of interest, emulating the measurement process. With this in place,
we can simulate data from the model in the form of cross-sectional binary symptom variables. We
obtain the theory-implied Ising Model by estimating it from these simulated data (top-left corner).
To estimate the empirical Ising Model (top-right corner) we make use of empirical measurements of
binary symptom variables from the CPES dataset.

intra-individual time series data for multiple individuals (as described in Ap-
pendix H.1) and so we need to define how cross-sectional symptom variables can
be extracted from those time series. We specify that Recurrent Panic Attacks (PA
= 1) are present for an individual in our simulated data if there are more than
three panic attacks in the one month observation period. Persistent Concern is
determined using the average levels of jointly experienced arousal and perceived
threat (i.e., anxiety) following a panic attack. If an individual has a panic attack,
and their average anxiety following a panic attack exceeds a threshold determined
by “healthy” simulations (i.e., those without panic attacks), they are classified as
having Persistent Concern (PC = 1). Avoidance is defined similarly, with this
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symptom present if an individual has a panic attack, and their average levels of
avoidant behaviour following that attack are higher than we would expect to see
in the healthy sample. A more detailed account of how we generated these data
can be found in Appendix H.3. This simulated cross-sectional data was then used
to estimate the implied Ising Model (top left-hand corner, Figure 11.6).6

We obtained the corresponding empirical Ising model (right-hand column of
Figure 11.6) using the publicly available Collaborative Psychiatric Epidemiology
Surveys (CPES) 2001-2003 (Alegria, Jackson, Kessler, & Takeuchi, 2007). The
CPES is a nationally representative survey of mental disorders and correlates in
the United States, with a total sample size of over twenty thousand participants
(of which n = 11367 are used in the current analysis; for details see Appendix
H.3). The CPES combines more than 140 items relating to panic attacks and
panic disorder, with a diagnostic manual describing how these items can be re-
coded into binary symptom variables reflecting Recurrent Panic Attacks, Persis-
tent Concern and Avoidance. PA is present if the participant reported more than
three lifetime panic attacks. PC is present if, following an attack, the participant
experienced a month or more of persistent concern or worry. Av is present if the
participant reports either a month of avoidance behaviour following an attack, or
a general avoidance of activating situations in the past year.

11.3.3.2 Theory Development: Comparing Model-Implied and Empirical
Data Models

As seen in Figure 11.6, there is a similar pattern of conditional dependencies in
the implied and empirical data models. In both, all pairwise dependencies are
positive, and all thresholds are negative. There is also a similar ordering of con-
ditional dependencies in terms of their magnitude. Within each model, the con-
ditional relationships of PAwith Av and PAwith PC are of the same order of mag-
nitude, and the conditional relationship between Av and PC is an order of mag-
nitude greater. However, we also see some differences between the models. First,
the absolute value of pairwise dependencies and thresholds are much greater in
the implied Ising Model (Figure 11.6 (a)) than the empirical Ising Model (Figure
11.6 (b)). Second, we see that the relationships in the implied model are perfectly
symmetric, with exactly the same thresholds for Av and PC, and precisely the
same weights relating PA to both. In the empirical network, these weights and
thresholds are much smaller.

The bivariate contingency tables of all symptom-symptom relationships clar-
ify the nature of these relationships (see Figure 11.7). In both the implied and
empirical data models only a small proportion of individuals experience Recur-
rent Panic Attacks (Empirical 4.3%, Simulated 3.72%). Crucially, in the simulated
dataset, the symptom relationships are almost deterministic: If one symptom is
present, so too are all others, and vice versa for the absence of symptoms (apart
from three individuals who experience less than three panic attacks in the time
window). This is because there is a deterministic relationship between the com-

6Here again the Ising model estimates are somewhat unstable due to near-deterministic relation-
ships between the variables.
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Figure 11.7: Contingency Tables showing percentages for each pair of symptom variables (one per
column) for the empirical data (top row) and simulated data (bottom row). The CPES contingency
tables are based on nCPES = 11367 observations. The simulated dataset contains nsim = 1000 obser-
vations.

ponents underlying these symptoms in the Panic Model: All participants who
experience one panic attack have Persistent Concern and Avoidance behaviour
after those attacks. In contrast, there are non-deterministic relationships in the
empirical data. For example, it is actually more common to have Recurrent Panic
Attacks without Persistent Concern than with Persistent Concern (column (a)).
Similarly, more individuals experience Avoidance without Persistent Concern,
than with Persistent Concern (column (c)) Conversely, there are no individuals
who experience Persistent Concern but not Avoidance.

The discrepancies between the implied and the empirical data model could
arise at any step in the process from formal theory/target system to implied and
empirical data model illustrated in Figure 11.6. It could be the case that a dis-
crepancy is due to inaccuracies in how we emulate the measurement process. For
example, perhaps Persistent Concern and Avoidance co-occur equally, but the
former suffers from a greater degree of recall bias than the latter (for an example
of differential symptom recall bias in depressed patients, see Ben-Zeev & Young,
2010). There are also different time scales at which the simulated and empiri-
cal symptoms are defined. The simulated symptoms are defined over a month
period whereas the CPES items are defined over lifetime prevalence. Due to the
deterministic nature of the Panic Model, we believe a month period is a good ap-
proximation for lifetime experience of panic symptoms in this case. Nonetheless,
it is a discrepancy in measurement that could lead to discrepancies between the
implied and empirical data models. It could also be that the discrepancy is due
to estimation issues. However, due to the large sample sizes and simple models
used, we suspect it is unlikely that sampling variance is a problem in this in-
stance. For present purposes, we will assume here that discrepancies are to due
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to inaccuracies in how the theory represents the target system, and as such we
can use these discrepancies to directly evaluate our theory.7

On a global level there is a good match between the empirical and implied
models: The theory implies positive symptom-symptom dependencies, which we
also observe in the empirical data. However, the implied model over-estimates
the strength of these relationships. This is largely explained by the determin-
istic causal effects in the theory. In the simulated data, everybody who experi-
ences panic attacks also develops Persistent Concern and, in turn, Avoidance. As
seen in Figure 11.7, this is inconsistent with empirical data, identifying a seri-
ous shortcoming in the theory. To improve the model, we must include some
mechanism by which individuals can experience a panic attack without devel-
oping the remaining symptoms of panic disorder. In the empirical data, there is
a near deterministic effect of Persistent Concern on Avoidance, suggesting that
once Persistent Concern develops, Avoidance will follow; an observation that is
consistent with the formal theory. However, inconsistent with the formal theory,
the empirical data suggests a relatively low probability of Persistent Concern fol-
lowing panic attacks, suggesting that this is where the theory must be revised if
it is to better account for the observation that some individuals experience recur-
rent panic attacks without developing the full panic disorder syndrome.

This is just one discrepancy in these data that can inform model development
and more insights may be gained by focusing on others. Many more insights can
be gained by considering different data models based on different data. For ex-
ample, experimental data on the relation between Arousal and Perceived Threat
may allow us to refine the specification of the feedback between those two vari-
ables. In general this route offers a great deal of flexibility in theory development.
Although the theory is likely to be complex, dynamic and non-linear, the form of
the data models used to learn about that theory need not be. Instead, by starting
with an initial theory, the researcher can use any data about the phenomena of
interest to further develop that theory. In the following section we will provide
a full account of this third route by discussing the full process of theory devel-
opment from establishing the phenomenon, to making novel predictions with a
well-developed formal theory.

11.4 An Abductive Approach to Constructing For-
mal Theory

In Section 11.3.3 we illustrated a clear approach to use empirical data to develop
an existing formal theory. However, our description of this approach so far has
omitted several critical steps, including how to generate an initial formal theory

7In practice, inaccurate conceptualizations of how measurements represent the target system will
be problematic for any approach to theory development or indeed any scientific endeavour, as evi-
denced by the growing attention on measurement in psychopathology literature (e.g., Fried & Flake,
2018). Our proposed approach to formal theory development forces us to be specific about the mea-
surement process, just as we are forced to explicate the theory itself. Although we focus on the formal-
ized theory itself here, we consider the formalization of measurement to be a significant advantage of
this approach, and one that warrants further development.
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and how to test that theory. In this section, we propose a three-stage process of
formal theory construction, with an emphasis on the role data models play at
each stage (see Figure 11.8). First, in the theory generation stage, we establish
the phenomenon to be explained, generate an initial verbal theory, and formalize
that theory. Second, in the theory development stage, the theory is developed
beyond this initial proposal by adapting it such that it is consistent with as many
empirical findings as possible. Finally, in the theory evaluation stage, the the-
ory is subjected to strong tests within a hypothetico-deductive framework. The
approach to theory construction proposed here places considerable emphasis on
the theory’s ability to explain phenomena, especially during the generation and
development of the theory. Accordingly, the framework we have proposed is a
largely abductive approach (Haig, 2005).

Establish

Phenomenon
Generate

Theory

Use of

Data Models

Stage of Theory

Construction

Abduction

Develop
Theory

Test
Theory

Compare

Implied &

Empirical 

Evaluate Risky

PredictionDeduction

Abduction

Deduction

Figure 11.8: Flowchart depicting the process of developing a formal theory with the abductive ap-
proach put forward in this section. In the theory generation step we first establish the phenomenon
(Section 11.4.1.1) and then generate an initial verbal theory (Section 11.4.1.2) which is subsequently
formalized (Section 11.4.1.3). In the second step (Section 11.4.2) the theory is validated by testing
whether it is consistent with existing empirical findings that are not part of the core phenomenon. If
the formal theory is not consistent with some findings, it is adapted accordingly. If these adaptations
lead to a “degenerative” theory (Meehl, 1990a) we return to the first step; otherwise we continue to
the final step, in which we test the formal theory using risky predictions (Section 11.4.3). If many
tests are successful, we tentatively accept the theory. If not, the theory must either be adapted (step
two) or a new theory generated (step one).

11.4.1 Generating Theory

11.4.1.1 Establishing the Phenomenon

The goal of a formal theory is to explain phenomena. Accordingly, the first step
of theory development is to specify the set of phenomena to be explained. Estab-
lishing phenomena is a core aim of science and a full treatment of how best to
achieve this aim is beyond the scope of this chapter (for a possible way to organize
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this process see Haig, 2005). However, we suspect that the most appropriate phe-
nomena for initial theory development will often include things that researchers
would not think to subject to empirical analysis, as the most robust phenomena
may simply be taken for granted as features of the real world. For example, in
the case of panic disorder, the core phenomena to be explained are simply the ob-
servations that some people experience panic attacks and recurrent attacks tend
to co-occur with persistent worry or concern about those attacks and avoidance
of situations where such attacks may occur.These are empirical phenomena so
robust that it is typically not empirically examined but instead simply assumed
to be a feature of the real world.

11.4.1.2 Generate Initial Verbal Theory

Once the phenomena to be explained have been established, how do we go about
generating an initial theory to explain them? A brief survey of well-known sci-
entific theories reveals that this initial step into theory is often unstructured and
highly creative. For example, in the 19th century August Kekulè dreamt of a
snake seizing its own tail, leading him to the generate the theory of the benzene
ring, a major breakthrough in chemistry (Read, 1995). In the early 20th cen-
tury, Alfred Wegener noticed that the coastlines of continents fit together simi-
lar to puzzle pieces, and consequently developed the theory of continental drift
(Wegener, 1966), which formed the basis for the modern theory of plate tectonics
(Mauger, Tarbuck, & Lutgens, 1996). In the late 20th century, Howard Gard-
ner explained that he developed his theory of multiple intelligences in the 1980s
using “subjective factor analysis” (Walters & Gardner, 1986, p. 176). Although
more codified approaches to theory development exist (e.g., Grounded Theory;
Strauss & Corbin, 1994), we are unaware of any evidence to suggest that any one
approach to theory generation is superior to any other.

Nonetheless, the nature of theories does provide some guidance for how they
might initially be generated. Theories achieve their aim of explaining phenom-
ena by representing a target system. Accordingly, generating an initial theory
will require that we specify the components thought to compose the target sys-
tem. This process entails dividing the domain of interest into its constituent
components (i.e., “partitioning”) and selecting those components one believes
must be included in the theory (i.e., “abstraction”), thereby producing a system
of components that will be the object of the theory (cf. Elliott-Graves, 2014).
For researchers adopting a “network perspective”, the target system is typically
presumed to comprise cognitive, emotional, behavioral, or physiological com-
ponents, especially those identified in diagnostic criteria for mental disorders
(Borsboom, 2017). For example, as we have seen in Section 11.2, the target sys-
tem could consist of Arousal, Perceived Threat, Avoidance and other symptoms
of panic attacks or panic disorder. Having identified the relevant components we
next specify the posited relations among them. For example, specifying that Per-
ceived Threat leads to Arousal. Within the domain of the network approach, this
second step will typically entail specifying causal relations among symptoms or
momentary experiences (e.g., thoughts, emotions, and behavior).
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Notably, in psychiatry, we do not necessarily need to rely on creative insight
about the components and relations among them in order to generate an initial
theory. There are already a plethora of verbal theories about mental disorders. If
the initial verbal theory is well supported and specific, it will lend itself well to
formalization and subsequent theory development. However, even poor verbal
theories can be a useful starting point to developing a successful formal theory
(Wimsatt, 1987; Smaldino, 2017).

11.4.1.3 Formalize Initial Theory

Once a verbal theory has been specified, the next step is to formalize the theory.
To do so, we first need to choose a formal framework. A common formal frame-
work is the use of difference or differential equations, which model how vari-
ables change across discrete time steps and continuous time, respectively (e.g.,
Strogatz, 2015). Specifically, the relations between components is specified by
defining the rate of change of each component as a function of all other com-
ponents and itself. The Panic Model, which we used as an example throughout
this chapter, uses this formal framework. Another common framework is Agent
based Modeling (ABM), in which autonomous agents interact with each other us-
ing a set of specified rules (e.g., Grimm & Railsback, 2005). Here, each agent has
local rules on how to interact with other agents. Both frameworks can be imple-
mented in essentially any computer programming language and both are likely
to be relevant to psychiatric and psychological research as a whole.

Having chosen a formal framework, the next step is to specify the relations
between each component in the language of that framework. This process of
formalizing relations is an exercise in being specific. Mathematics and compu-
tational programming languages require theorists to specify the precise nature
of the relationship between variables. Requiring this level of specificity is one
advantage of computational modeling, as it has the effect of immediately clari-
fying what remains unknown about the target system of interest, thereby guid-
ing future research. However, this also means that theorists will often be in the
position of needing to explicate relationships when the precise nature of those
relationships is uncertain. We believe that, even in the face of this uncertainty,
it is better to specify a precise relationship and be wrong than to leave the rela-
tionship ambiguously defined, as it is in a verbal theory. Nonetheless, we suspect
that theorists will be on firmer foundation for subsequent theory development
the more that they are able to draw on empirical data and other resources to in-
form this initial formal theory. There are several sources of information that can
guide the formalization process.

First, empirical research can inform specification of components and the re-
lations among them. For example, one could use the finding that sleep quality
predicts next-day affect, but daytime affect does not predict next-night sleep (de
Wild-Hartmann et al., 2013) to constrain the set of plausible relationships be-
tween those two variables in the formal theory. There could also be empirical data
on the rate of change of variables, for example, Siegle, Steinhauer, Thase, Stenger,
and Carter (2002) and Siegle, Steinhauer, Carter, Ramel, and Thase (2003) have
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shown that depressed individuals exhibit longer sustained physiological reac-
tions to negative stimuli than healthy individuals, a finding which is echoed in
self-report measures of negative affect (Houben et al., 2015).

Second, we can possibly derive reasonable scales for variables and relation-
ships between variables from basic psychological science. For example, classical
results from psychophysics show that increasing the intensity of stimuli in almost
all cases leads to a nonlinear response in perception (e.g., Fechner, Howes, & Bor-
ing, 1966): When increasing the volume of music to a very high level, individuals
cannot hear an additional increase.

Third, in many cases we can use definitions, basic logic, or common sense to
choose formalizations. For example, by definition emotions should change at a
time scale of minutes (Houben et al., 2015), while mood should only change at
a time scale of hours or days (Larsen, 2000). And we can choose scales of some
variables using common sense, for example one cannot sleep less than 0 andmore
than 24 hours a day, and heart rate should be somewhere between 50 and 180.

Fourth, we could use an existing formal model of another target system,
which we expect to have a similar structure as the target system giving rise to
the phenomenon of interest. This approach is called “analogical modeling”. For
example, Cramer et al. (2016) formulated amodel for interactions between symp-
toms of Major Depression using the Ising model, which was originally formu-
lated to model magnetism on an atomic level (Ising, 1925). Similarly, Fukano
and Gunji formulated a model for interactions among core components of panic
attacks using a Lotka-Volterra model originally formulated to represent predator-
prey relationships (Fukano & Gunji, 2012).

Fifth, it is also important to note that there are methods by which we can
potentially estimate the parameters for a formal theory from empirical data.8

These approaches require considerable development of the formal theory (e.g.,
the form of a differential equation), suitable data (typically intensive longitudi-
nal data), and a clear measurement model relating observed variables to theory
components (as we did in Section 11.3.3). Accordingly, this approach already re-
quires considerable progress in generating a formal theory and may be limited
by practical considerations. Nonetheless, it remains a valuable resource that, if
successfully carried out, would likely strengthen subsequent efforts at theory de-
velopment.

The aim of this initial stage is to generate a formal theory able to explain a
set of core phenomena. As we have emphasized throughout this chapter, formal
theories precisely determine the behavior implied by their theory. Accordingly,
explanation in this context means that the theory has demonstrated its ability to
produce the behavior of interest. For example, a theory of panic attacks must be
able to produce sudden surges of arousal and perceived threat; a theory of de-
pression must be able to produce sustained periods of low mood; and a theory of

8For example, if the theory is formalized in a system of differential equations, the parameters of
such equations can in principle be estimated from time series data using, amongst others, Kalman
filter techniques and state-space approaches (e.g., Einicke, 2019; Kulikov & Kulikova, 2013; Durbin
& Koopman, 2012). For implementations of these estimation methods see Ou et al. (2019); Carpenter
et al. (2017); King, Nguyen, and Ionides (2015)
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borderline personality disorder must be able to produce affective instability. We
would note that there are very few theories in psychiatry that have reached this
stage of not merely positing, but demonstrating, that the theory can explain the
phenomena of interest. Accordingly, completing this stage of theory construction
would constitute a significant advance in psychiatric theories. Once a theory has
reached this stage, it is ready for the next stage of theory construction.

11.4.2 Developing Theory

The formal theory produced in the first stage of theory construction will have
demonstrated its ability to explain the core phenomena of interest. However,
the fact that the formal theory provides some explanation does not mean it is the
correct explanation. In other words, demonstrating an ability to explain the phe-
nomena of interest is a critical first step, but does not guarantee that the formal
theory is a good representation of the target system. To achieve this aim, we pro-
pose a stage of theory development in which the theory is refined by deducing
implied data models and comparing them to empirical data models. If the two
data models align we take this as evidence that the current formal theory is ad-
equately representing the target system; if there are discrepancies between the
two data models, we analyze the nature of those discrepancies, consider the best
explanation for how they arose, and adapt the formal theory to be able to account
for these discrepancies.

This process of further developing a theory through comparisons between
implied and empirical data models is exactly the process that we have illustrated
already in Section 11.3.3. In that illustration, we derived the implied Ising model
for the three variables Panic Attacks, Persistent Concern, and Avoidance, and we
compared it to the empirical Ising model for the same variables. We discussed
possible explanations for this discrepancy and corresponding adaptations of the
Panic Model, for example including a mechanism by which individuals can ex-
perience Panic Attacks without experiencing Persistent Concern and Avoidance.
If we were to continue in this stage of theory development, we would iterate this
process, adapting the Panic Model to include such a mechanism, deriving the
implied Ising model from this adapted Panic Model, and determining whether it
better accounts for the implied Ising model.

This stage of theory development can make use of many different types of
data such as physiological, psychological and behavioral measurements from in-
dividuals, cross-sectional data such as clinical interviews and questionnaire data,
or experimental data. Depending on the empirical phenomenon we would like to
account for, different kinds of data and data models will be appropriate. In gen-
eral, however, more complex data models tend be more powerful tools to tease
apart competing theories. For example, a great many formal theories might be
consistent with a set of means, but it is likely that fewer are consistent with the
means and the conditional relationships between the variables, captured, for ex-
ample, by a GGM or Ising model. In other words, there are a more constrained
number of possible formal theories that may account for more complex datamod-
els, thereby doing more to guide theory development.
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There are two important considerations when working through this stage.
First, it is important to consider how much trust to place in the empirical data
at hand. Discrepancies between the empirical data model and theory-implied
model may be due to shortcomings of the formal theory, but they may also be
due to poor measurement, insufficient samples, or poor estimation of the param-
eters of the data model. How do we know when to adapt the formal theory in the
face of some discrepancy? For some guidance on this question, we can draw on
the large literature on model evaluation and model comparison. A straightfor-
ward way to decide whether to adapt the theory would be to derive an implied
model of the adapted theory, and then compare the likelihood of the empirical
data given the initial theory and the adapted theory. In order to decide whether
to accept the adaptation we can use, for instance, a likelihood ratio test or a Bayes
factor. This procedure ensures that we only make adaptations to our theory if we
are certain enough that they actually lead to a better representation of the tar-
get system, and not only the idiosyncratic features of the empirical data at hand.
That is, whether we accept an adaptation of the formal theory depends both on
how large the improvement is, and how certain we are about it (i.e. how large the
sample size is).

Second, it is important to consider the danger of making too many ad hoc re-
visions to the model that account only for idiosyncratic features of a given data
model or, worse, yield new implications that are inconsistent with other empiri-
cal findings. For some guidance on this question, we can draw on the literature
on theory evaluation from the philosophy of science literature (Meehl, 1990a;
Lakatos, 1976), which would suggest that the theory development phase has two
possible outcomes. If the theory is adapted almost every time it is tested against
empirical data, if those adaptations are making the theory increasingly unwieldy,
and if additional changes are increasingly difficult to make without causing the
theory to be inconsistent with earlier tested empirical findings, the theory can
be considered to be “degenerative” (Meehl, 1990a; Lakatos, 1976). In such a sit-
uation, the initial theory was inappropriate and we return to the first step to
generate a different initial formal theory. On the other hand if modifications
to a theory expand, rather than contract, its ability to account for other empiri-
cal data beyond those it was originally introduced to explain, then we can have
greater confidence in those modifications and, in turn, the formal theory. Ulti-
mately, theorists must strive for a balance between the simplicity of the model
and its consistency with empirical data models.

The aim of the theory development stage is a formal theory that not only
explains the core phenomena of interest, but is also consistent with a range of
empirical data models. Our confidence in such a theory will grow the more data
models and the more complex the data models that are consistent with theory,
especially if the theory is able to achieve this consistency with minimal ad hoc
adjustments. In other words, if a theory has achieved these aims, we can be in-
creasingly confident that it is a good representation of the target system and can
prepare to subject the theory to more rigorous testing.
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11.4.3 Testing Theory

Much of psychiatric research begins at this stage: positing and testing a hypothe-
sis, typically through null hypothesis testing. However, the theories from which
these hypotheses are derived are often unclear and, as we have argued elsewhere
in this chapter, the process by which hypotheses (i.e., predictions) are derived
from these theories is opaque and likely prone to error. This is perhaps not sur-
prising as the hypothetico-deductive framework in which much of this research
is conducted has very little to say about where these theories come from or how
they should be developed (Haig, 2005). In the framework proposed here, we have
attempted to detail a process by which theories can be generated and developed
and by which clear hypotheses can be unambiguously derived from those theo-
ries. Accordingly, while we have characterized this framework as being primarily
abductive in nature with a focus on its ability to explain phenomenona, we also
believe it substantially strengthens hypothesis testing as a tool for evaluating the-
ories.

Importantly, the theory testing stage calls for strong tests of a theory: risky
predictions (Meehl, 1990a) that render the theory vulnerable to refutation.
Strong tests have at least two key features. First, strong tests entail the predic-
tion of observations that, absent the theory, we would not otherwise expect. For
example, the panic disorder model we have discussed throughout this chapter
predicts that the time to recover from an induction of arousal-related bodily sen-
sations should indicate vulnerability to panic attacks and, thus, should prospec-
tively predict the onset of panic attacks (for details, see Robinaugh, Haslbeck, et
al., 2019). To our knowledge, this is not a prediction that has arisen in the con-
text of any other theory and has never been tested. A study testing and finding
support for this prediction would lend more credence to this theory than a study
testing a prediction we would otherwise expect (e.g., that recurrent panic attacks
will be correlated with avoidance behavior).

Second, strong tests entail precise predictions. That is, a prediction that goes
beyond merely positing a refutation of the null hypothesis (e.g., a statistically
significant association) or even a directional prediction (e.g., a positive associa-
tion) to instead make precise point predictions about what should be observed.
For example, a very well-developed theory of panic disorder would be able to
predict the precise value of perceived threat (or interval of perceived threat val-
ues) which are likely to result from a particular arousal-inducing manipulation
(e.g., by breathing CO2 enriched air; Roberson-Nay et al., 2017). In other words,
just as in the theory development stage, the theory testing stage calls for us to
deduce the precise data models implied by our theory and to compare those im-
plied data models to empirical data models. There is, thus, a fine distinction
between theory testing and theory development in this framework. In the theory
development stage, these comparisons are carried out in the spirit of improving
upon and refining the theory. In the theory testing stage, these comparisons are
carried out with the aim of subjecting the theory to refutation. A discrepancy be-
tween theory-implied and empirical data models in the development stage calls
for refinement of the theory. A discrepancy between the theory-implied and em-
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pirical data models in the testing stage calls for the theorist to deeply consider
the appropriateness of the theory.

Importantly, we are not proposing a “naive falsificationism” approach to the-
ory testing in which a failed test requires abandonment of the theory (Meehl,
1990a). A discrepancy between theory implied and empirical data models can
provide an opportunity to improve upon a theory, returning us to the stage of
theory development. Nonetheless, a risky test should entail risk and repeated
failures at this stage should push the theorist toward the generation of a new
competing theory. For that reason, we believe that these risky tests should be
engaged in only when the theorist is sufficiently confident in the theory that they
would be willing to stake its survival on the outcome of the test. To that end,
we would make several recommendations. First, as we have stressed throughout
this chapter, formal theories will strengthen confidence in the predictions being
tested by ensuring that they have been correctly deduced. Indeed, the level of
specificity required for predictions to constitute a strong test of the theory all but
requires that the theory be formalized. Second, the stage of theory development
should be used to not only improve upon the theory, but also the assumptions
about the instruments, measurements, and analyses that may also be responsi-
ble for any discrepancies between the theory-implied and empirical data models.
The approach we have argued for in producing implied data models is helpful in
this regard, as it forces the theory to formalize not only the theory, but also the
measurement of variables; what we have termed “emulated measurement” (see
Section 11.3.3). Strengthening confidence in these “emulated measurements”
will strengthen the test of the theory, as such issues cannot so readily be blamed
should the test fail. Third, research at this stage must be confirmatory in the
strictest sense of the term (Wagenmakers, Wetzels, Borsboom, van der Maas, &
Kievit, 2012). These studies should be preregistered, ideally with model simula-
tions showing the precise theory, measurement, and analysis that will be used in
the study.

If a theory fails a strong test, the decision of how to proceed depends upon
what Meehl referred to as the “money in the bank” principle (Meehl, 1990a): If
a theory has a track record of success, it would be unwise to discard the theory
in the face of a single, or even several, failed tests. For Meehl, money in the bank
was accumulated by passing risky tests. A theory that has passed many such tests
should be retained more readily than a theory with no such record. We would
argue for a broader conceptualization that draws on a wider range of criteria for
theory appraisal, with particular emphasis on explanatory breadth. A formal
theory that can explain a range of phenomena should be retained more readily
than a theory that accounts for only a narrow set of phenomena. Nonetheless,
we believe that any failure of a strong test should be taken as a serious challenge
to the theory that, at a minimum, warrants careful consideration about how to
proceed.

If a theory passes a strong test, it is corroborated, with the strength of corrob-
oration proportional to the strength of the test. Notably, because strong tests all
but require the evaluation of predictions made by the theory, a theory that has
passed several such tests will have demonstrated a strong capacity for support-

296



11.5. Conclusions

ing prediction. Accordingly, a theory that has moved from generation, through
refinement, and testing will emerge well equipped to support not only the expla-
nation, but also the prediction and control of mental disorders.

11.5 Conclusions

In this chapter, we have argued that psychiatry needs formal theories and we
have examined how data models can best inform the development of such the-
ories. We focused especially on the network approach to psychopathology and
considered three possible routes by which conditional dependence networks may
inform formal theories about how mental disorders operate as complex systems.
We found that these data models were not themselves capable of representing the
structure we presume will be needed for a theory of mental disorders. Perhaps
more surprisingly, we also found that we were unable to draw clear and reli-
able inferences from data models about the underlying system. Together, these
findings suggest that merely gathering data models alone is unlikely to readily
inform a well-developed formal theory. Instead, we found that the most promis-
ing use of empirical data models for theory development was to compare them
to “implied data models” derived from an initial formal theory. In this approach,
formal theories play an active role in their own development, with initial formal-
ized theories being refined over time through ongoing comparison of implied and
empirical data models.

Importantly, our analysis is not a critique of the specific data models we ex-
amined here, nor is it a dismissal of their value. Quite the opposite. We believe
these data models provide rich and valuable information about the relationships
among components of a system. However, our analysis strongly suggests that
the network approach to psychopathology cannot survive on these data models
alone. Formal theory is needed if the network approach is to move toward the ex-
planation, prediction, and control of mental disorders. Indeed, there is growing
recognition that formal theories are needed if we are to avoid problems associated
with conflicting empirical results (i.e., the “Replication Crisis”; Collaboration et
al., 2015) and move toward an accumulation of knowledge in scientific research
(e.g., Muthukrishna & Henrich, 2019; Szollosi & Donkin, 2019; Yarkoni, 2019;
Ioannidis, 2014). Accordingly, as a field psychiatry must grapple not only with
methods for the collection and analysis of data, but also methods for the genera-
tion and development of formal theories

The research framework we proposed in Section 11.4 is intended to be a first
step toward such a method of theory construction. At the heart of this approach
is the use of formalized initial theories to start a cycle of theory development in
which empirical data informs ongoing theory development and these improved
theories inform subsequent empirical research. Critically, this research frame-
work is not intended to suggest that all researchers must develop expertise in
computational modeling. Data and the detection of robust empirical phenom-
ena are central to psychiatric research in our proposed framework. However, our
framework does suggest that, as a field, psychiatry must do more to develop ex-
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pertise in computational modeling within its ranks. We suspect that it will only
be through ongoing collaboration among theorists and empirical researchers that
we will be able to leverage the empirical literature to produce genuine advances
in our ability to explain, predict, and control psychopathology.
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Chapter 12

Discussion

In the first part of my dissertation I developed a number of datamodels to capture
the multivariate dependencies between symptoms and other variables related to
psychopathology. In the second part my goal was to convince the reader that
fitting data models is not enough to explain, predict and control psychopathol-
ogy. To achieve these goals we need to construct formal theories. Of course, data
and data models are critical to constructing such formal theories. I therefore
concluded with a chapter on how to use data models to construct formal theo-
ries. However, the necessity of moving from data models to formal theories is not
something I saw clearly when I started working on my dissertation. In fact, this
transition reflects how my own thinking developed during the four years of my
PhD. In this last chapter I would like to retrace this path and then conclude by
suggesting directions for future research that I believe would benefit the devel-
opment of formal theories of psychopathology.

12.1 Data Models

When I started working onmy dissertation in 2015, applied researchers whowere
working within the network approach to psychopathology were limited to only a
few models: The Ising model for binary-valued variables, the multivariate Gaus-
sian distribution for continuous variables, and the Vector Autoregressive (VAR)
model for continuous time series data. The estimation routines implemented in
the R-package mgm, which I developed, extended the range of available mod-
els considerably. In Chapter 2 I introduced Mixed Graphical Models (MGMs)
which allow one to capture the dependency structure between variables defined
on different domains, such as continuous or categorical. Such mixed data occur
often in psychopathology research. For example, while symptom severity scores
and psychological constructs are typically defined on a continuous or ordinal
scale, variables relating to social context, work environment, or treatment are
often (nominal) categorical. In addition, allowing one to model continuous and
ordinal variables as categorical variables provides a way to detect non-linear in-
teractions. Finally, I adapted the estimation routines for MGMs to mixed Vector
autoregressive (mVAR) models, in which different types of variables predict each
other over periods of time.

Statistical network models are typically reported using network visualiza-
tions. In these figures, the absolute values of parameters are represented by the
width of edges, which are scaled relative to the largest parameter in the model.
While these relative edge-widths lead to an optimal visual representation of the
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relative sizes of parameters, they do not convey how well the variables predict
each other on an absolute scale. To address this problem, in Chapter 3 I pro-
posed to compute a nodewise predictability measure and suggested a way to
incorporate it into network visualizations. In Chapter 4 I re-analyzed the then
nascent literature of empirical network papers on psychopathology with a focus
on predictability and discussed how predictability can be a theoretically interest-
ing quantity that indicates the extent to which a system is self-sustained.

A crucial limitation of the statistical network models used in the network
literature was that they only included interactions between pairs of variables.
In other words, they cannot model moderation effects. This is a major limi-
tation because moderation effects are very plausible in a contextualized field
such as psychology. They are also of central interest in the network approach
to psychopathology, as they may point to possible interventions at the edge-
level (Borsboom, 2017). To detect such moderation effects in network models, in
Chapter 5 I introduced Moderated Network Models (MNMs), which allow one to
model each pairwise interaction as a function of all other variables in the model.
Since MNMs are implemented within the MGM framework, they allow one to
fit a large variety of models. For example, one can have pairwise interactions be-
tween continuous and categorical variables, which are simultaneously moderated
by both continuous and categorical variables. This implies that an MNM with a
single categorical moderator provides an alternative way to discover differences
in network models across groups, which does not require multiple steps such as
resampling and significance testing.

The central idea of the network approach to psychopathology is that mental
disorders arise from causal interactions between symptoms. This suggests that
the interactions between symptoms in healthy and unhealthy individuals are dif-
ferent, and that those interactions change within an individual when they tran-
sition between sustained healthy and unhealthy states. To detect such changes
in individual time series, in Chapter 6 I introduced a method to estimate time-
varying VAR models. In addition, I mapped out in an extensive simulation study
to which extent time-varying parameters can be detected in realistic data. While
this chapter focused on VAR models for simplicity, the R-package mgm also
implements the estimation of time-varying mVAR models and MGMs. Time-
varying models are crucial for answering a variety of research questions. They
allow one to detect changes in the structure of interactions in observational stud-
ies and explain those changes using additional variables. Another application
would be to monitor patients and use the time-varying models as multivariate
Early Warning Signals (EWS; Scheffer et al., 2009), which could pinpoint periods
in which treatment is most effective (Olthof et al., 2019). Finally, time-varying
models can be used to study how the structure of interactions change in response
to treatments (Wichers et al., 2016).

While Chapters 2 - 6 were concerned with making new data models available
to applied researchers, the last two chapters on data models tackled more specific
methodological problems. In Chapter 7 I discussed the topics of bias-variance
trade-off and model selection in the context of choosing between the VAR model
and a special case of the VAR model, the AR model, which only includes autore-

302



12.2. From Data Models to Formal Theories

gressive effects. Next to discussing these theoretical issues, this chapter included
a simulation study which indicated how many observations are necessary for the
VARmodel to outperform the ARmodel, when simulating from different types of
VARmodels. Finally, in Chapter 8 I discussed how the interpretation and dynam-
ics of the Ising model change if one switches the domain of the binary variables
from {0,1} to {−1,1}. Amongst other results, this chapter showed that the com-
mon belief that dense networks lead to elevated symptom levels is not generally
true, but that this result is contingent on the characteristics of the model at hand.

12.2 From Data Models to Formal Theories

While at the beginning of my PhD I focused on statistical problems, the con-
stant exposure to psychopathology research in the Psychosystems group had its
effect on me and I could not help but become interested in the subject matter
myself. This developing interest led me to think about whether the data mod-
els I have been working on are actually good models for mental disorders. Key
phenomena of psychopathology include that individuals can transition between
states with different symptom patterns (e.g., leading to diagnosis / no diagnosis),
that underlying processes evolve at different time scales (e.g., momentary experi-
ence vs. learning), and that causes are to be found at many levels (e.g., symptom
level, cognitive-behavioral level, societal level). Accordingly, a good model for
psychopathology should be able to capture these phenomena. However, the mul-
tivariate Gaussian distribution and the VARmodel do not achieve this. Andwhile
the Ising model produces a surprising amount of interesting behavior given its
simplicity, it is still insufficient to match the complexities of mental disorders
(e.g., in its standard formulation it does not allow for different time scales). It
became clear to me that while the data models I have been working on are cru-
cial to capture data patterns and to evaluate their robustness, they do not allow
one to model mental disorders at the level of detail that is most likely necessary
to provide satisfying explanations and to develop efficacious treatments. This
realization motivated the second part of my dissertation, which investigated the
nature of models that represent mental disorders in sufficient detail — which I
call formal theories — and how to use data and data models to construct them.

My initial reaction to the problem that current data models were insufficient
to fully capture mental disorders was to use more complex data models. In Chap-
ter 9 I set out to explore this possibility by simulating data from a simple but non-
trivial model for psychopathology and evaluating how difficult it is to recover the
model in different settings. The results showed that if the data are sampled at an
extremely high sampling frequency, one is able to recover the true set of differ-
ential equations. This is the basic logic of statistical estimation and in no way
surprising. However, when sampling at a rate that is typical for the Experience
Sampling Method (ESM), the dependencies across time were largely lost and it
was therefore impossible to recover the true model. While this result is contin-
gent on how we set up our model, it illustrates that low sampling frequencies
can render the recovery of certain processes impossible. And it is plausible that

303



12. Discussion

this presents a problem in many applications. For example, it seems intuitive
that emotion dynamics, which are defined on a time scale of seconds or minutes
(Houben et al., 2015), are difficult to recover from ESM measurements taken at
an interval of 90 minutes. The dynamics of mood, on the other hand, which are
defined on a time scales of hours or days (Larsen, 2000) may well be feasible to
study with ESM time series. Assuming that the sampling frequency is sufficient
to recover the process of interest, one still needs to sample a long enough time
series. However, the simulation results in Chapter 7 suggest that it is unrealistic
to reliably estimate models that are more complex than the VAR model with the
100 observations or less of a typical ESM study.

Since it is difficult to estimate a more appropriate complex model from data,
can we instead fit simpler models (like the VAR model) and make inferences
about the underlying complex model? This is the second question I explored in
Chapter 9. Such inferences would require knowledge of the mapping between
the parameters in the estimated statistical model and the characteristics of the
true model. However, since the true model is unknown, no exact mapping is
available. I illustrated this problem by showing that even straightforward infer-
ences such as “the effect between A and B is stronger than the effect between C
and D in the statistical model, therefore the same has to be the case in the true
model” do not need to be valid. This paints a sobering picture for the emerging
literature that claims to be able to use statistical time series models to uncover
the “complex dynamics” underlying mental disorders. While the goal in this
literature is typically to obtain a model that appropriately captures the complex-
ities of mental disorders, Chapter 9 suggests that it is currently unclear how such
a model should be inferred from popular time series models such as the VAR
model.

The first take away from Chapter 9 is that for most mental disorders it is un-
realistic to fit a model directly from data that satisfies its complexities; the second
one is that it is extremely difficult to make direct inferences from statistical mod-
els about the underlying system. Together, these findings suggest that the goal of
obtaining formal theories for mental disorders cannot be reached with the frame-
work of statistical estimation alone.

12.3 Formal Theories

I was very fortunate that at around the same time that I became interested in
general formal modeling, Don Robinaugh visited our lab to construct a formal
theory of panic disorder. I participated in this project by taking over some of its
technical aspects, and therefore had the chance to be involved in most stages of
theory development. To develop the theory, we employed an approach that has
already been used by van der Maas et al. (2006) to create the mutualism model
for intelligence and by Dalege et al. (2016) to develop the Causal Attitude Net-
work (CAN) model for attitudes. Instead of starting out by fitting a data model
to a specific data set, this approach begins by listing facts that are considered to
be established in the literature. In the case of panic disorder, this involved list-
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ing the components underlying the disorder and the relations between them, but
also relatively simple empirical facts such as that panic attacks typically have
a duration of 5-20 minutes. We first implemented the core dynamics of panic
attacks by adapting a model from ecology such that it could produce realistic
panic attacks, and then added a slower learning process which is necessary to ex-
plain panic disorder. Finally, the formal theory was tweaked to produce plausible
predictions and to be consistent with basic empirical facts about panic disorder.
The resulting formal theory has been presented in Chapter 10 of this disserta-
tion. Participating in this project was extremely insightful because it provided
me with experience in how to create a formal theory in a framework that is much
more general than statistical estimation.

Working on the formal theory of panic disorder further strengthened my be-
lief that fitting data models and interpreting their parameters alone is unlikely to
produce a good theory for panic disorder and much less for other, typically more
complex, mental disorders. What does this mean for the status of data models? Is
the focus of the growing network literature on data models misguided? While it
is indeed not entirely clear how to use data models to create formal theories, such
a verdict seems unwarranted. Formal theories have to be grounded in empirical
data, and therefore data models have to play an important role in their develop-
ment. To wrap our heads around this question, Don Robinaugh, Oisı́n Ryan and
myself spent a full month in Boston discussing this issue which eventually led to
the final Chapter 11 of this dissertation.

In Chapter 11 we consider three different routes from data models to formal
theories. First, treating data models as formal theories; second, drawing infer-
ences from data models to create a formal theory; and third, using data models
to develop theories with an abductive approach. As discussed above, the first
route is unlikely to work because data models typically either do not match the
complexity of mental disorders, or it is unrealistic to estimate them from data.
The second route is problematic because it is generally unclear how to draw such
inferences from data models to formal theories. We therefore advocate the third
route, which uses data models in an abductive approach to constructing theories.
In this route, data models are derived from competing formal theories, which
are then used to evaluate which formal theory fits the data best. In addition, we
provided an explicit description of the theory construction methodology used in
Chapter 10 by laying out a four-step procedure for theory construction. This ap-
proach involves the steps of establishing the phenomenon, formulating, develop-
ing, and testing the formal theory, and thereby provides a general methodology
to construct formal theories of mental disorders.

12.4 Future Directions

The abductive approach laid out in Chapter 11 provides in broad strokes a gen-
eral methodology for theory construction. I conclude by suggesting three direc-
tions for future work that build on this approach.
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12.4.1 Refining Theory Development

In Chapter 11 we suggested that formal theories should be developed by deriving
implied data models, comparing them against empirical data models and using
discrepancies to come up with changes to the original theory. Subsequently, one
derives a data model from the altered theory and evaluates whether the empiri-
cal data are more likely given the original implied data model or the one derived
from the adapted theory. However, this approach leaves many important ques-
tions unanswered.

For example, it remains unclear which data models should be derived (i.e.,
which predictions should be made) from the formal theory to optimally develop
the theory. Should we always prefer a more complex model since it makes more
specific predictions? Or should we derive predictions to test specific assumptions
in the formal theory? And which of those assumptions should we test first? To
answer questions related to how to optimally develop a formal theory requires
specifying what makes a formal theory a good theory. Ultimately, we would hope
to end up with formal theories which provide satisfying explanations, allow us
to develop effective preventions and interventions, and neatly fit into existing
theoretical frameworks. However, such judgments are often not possible during
the early stages of theory development. For example, it will typically take many
years before one can decide whether a theory led to the development of effective
treatments. We therefore require more tangible ways to evaluate theories in early
stages of development. An obvious way to evaluate the quality of a formal the-
ory would be to evaluate how well it fits the data. However, in contrast to data
models, a formal theory typically predicts many different data sets (e.g., different
sets of variables, coupled with different measurement models, experimental vs.
observational, within- vs. between-subjects data). This means that there is no
straightforward way to compute a prediction error that can be used to compare
the predictive adequacy of theories. Clearly, this is a problem that must be solved
in any field that employs formal theories that are not data models. It is therefore
likely that much can be learned from fields with a stronger modeling tradition
such as biology or ecology.

The accuracy of predictions, however, is not the only dimension along which
one can evaluate the quality of a formal theory. An alternative strategy, which we
already used in the approach suggested in Chapter 11 and which is referred to
as abduction (Peirce, 1931) or inference to the best explanation (Harman, 1965),
evaluates theories based on their explanatory worth. While these approaches are
necessarily qualitative, some operationalizations and concrete examples of ap-
plications do exist. For example, the theory of explanatory coherence (Thagard,
1989) provides a system of seven principles which allow to evaluate theories on
the dimensions explanatory breath, simplicity and analogy. Note that one’s def-
inition of explanation can also include predictive adequacy, which means that
quantitative and qualitative measures can be considered together to evaluate a
formal theory (cf., Haig, 2009). Since abductive approaches are based on ex-
planation, and the nature of explanation itself is subject to active debate in the
philosophy of science literature (Salmon, 1989; Woodward, 2014), they will al-
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ways remain somewhat vague. Nonetheless, exploring the literature on theory
evaluation seems a promising way to develop heuristics that productively steer
theory development.

Another step in theory development that requires further specification is how
to adapt a formal theory when its predictions do not line up with the empirical
data. In Chapter 11 we only suggested to take the nature of the discrepancy be-
tween the predicted and empirical data models as a starting point and somehow
come up with an adaptation to the formal theory that improves its prediction.
Importantly, this process does not only concern tweaking parameters but can
also involve changing the functional form of some relationship or even adopting
a different overall architecture of the formal theory. Knowledge about the theory
at hand and its dynamics will always be crucial to generating candidate adapta-
tions. However, this process can probably be optimized by following a structured
methodology. Again, a promising way forward would be to evaluate how disci-
plines with a strong formal modeling tradition such as biology or ecology deal
with this problem. One solution from those fields that facilitates tweaking pa-
rameters is to fix a large number of parameters to simplify the formal theory
sufficiently so that a likelihood function can be formulated over the remaining
parameters. Then, at least a subset of parameters can be estimated directly from
data. In some situations parameters can even be estimated when no likelihood
can be defined by using Approximate Bayesian Computing (ABC; Csilléry, Blum,
Gaggiotti, & François, 2010; Sunnåker et al., 2013). These methods also provide
an avenue for adapting parameters to (groups of) individuals, which would im-
prove predictions in clinical practice.

12.4.2 Formalizing Measurement Models

Every formal theory is based on a number of variables, such as arousal, mood, or
avoidance. However, we never observe these variables directly, but we observe
measurements of them instead. This can present a problem for drawing infer-
ences about formal theory from data: If the measurement model used to compute
the predictions from the formal theory is systematically different from the true
measurement process, then differences in predicted data models and empirical
data models could be due to this difference and not due to inadequacies in the
formal theory. This problem has been recognized for a long time. For example,
Meehl (1978) referred to such measurement models in the context of hypothe-
ses tests as auxiliary hypotheses, which may render inferences from statistical
hypothesis tests to theories invalid.

Formalizing measurement models does not immediately solve this problem.
However, it addresses the problem that the measurement process often remains
unexamined. Formalizing measurement models allows one to formulate the
problem precisely and to determine what is known and unknown, or even know-
able. For example, in Chapter 9 we simulated data from a dynamical system
and showed that this particular system cannot be recovered with data collected
at a sampling frequency of 90 minutes. In this instance the measurement func-
tion was extremely simple: We took a measurement every 90 minutes from the
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continuous-time state variables. Such methodological studies are useful for plan-
ning empirical studies, because it allows one to get an idea about whether the
process of interest can in principle be recovered from a certain type of data.

The most interesting questions about measurement, however, concern the re-
sponse dynamics within an individual when being probed by an experiment or
a questionnaire. While much of these response dynamics are unknown, at least
rudimentary measurement models seem to be within reach. For example, differ-
ent formulations of questions in ESM studies suggests different types of measure-
ment functions: “What is your current level of anxiety?” refers to a snapshot of
the variable anxiety, while “What was your level of anxiety since the last measure-
ment?” will be a function of the anxiety values since the last measurement, such
as its mean. However, using the ample psychological knowledge about memory
and recall, we can probably do better than that. For example, one could compute
a weighted mean using a realistic forgetting curve (Ebbinghaus, 1913/2013). An-
other example are shifting reference points for scales across time. For example,
a mood rating of 4 on a 1-5 scale probably refers to a different mood level when
mood has been very low in the preceding weeks than when mood would have
been very high. Hasselman and Bosman (2020) suggest to address this issue by
modeling the differences between responses and a time-varying mean instead of
the raw responses. Finally, formalizing measurement models would help to open
new lines of research into problems that are less well understood such as mea-
surement reactivity (French & Sutton, 2010; Barta, Tennen, & Litt, 2012). In a
distant future such efforts could lead to a measurement theory alike in physics,
which, for instance, allows to take the temperature of the thermometer into ac-
count when measuring the temperature of a glass of water.

12.4.3 Dysfunction from Function

The network approach conceptualizes mental disorders as systems of mutually
reinforcing symptoms (Borsboom, 2017). Consequently, most work within this
framework has aimed at identifying possible causal links between symptoms,
typically by analyzing the dependencies between symptoms with statistical net-
work models (for reviews see Robinaugh, Hoekstra, Toner, & Borsboom, 2019;
Contreras et al., 2019). However, in what follows I will point out limitations of
the symptom level and argue that powerful theories of mental disorders are prob-
ably better developed at a level of cognitive, affective and behavioral variables.

A general problem of symptoms is the fact that they are typically aggre-
gate variables. For example, take the following depression symptom: “Signif-
icant weight loss when not dieting or weight gain (e.g., a change of more than 5%
of body weight in a month), or decrease or increase in appetite nearly every day)”
(American Psychiatric Association, 2013). It seems intuitive that it is difficult to
define mechanistic relationships with a variable that actually includes two vari-
ables, both codes their increase and decrease, and is additionally subject to two
temporal qualifiers (“nearly every day” above and “for at least two weeks” from
the overall definition of major depression). Another consequence of these aggre-
gate variables is that posited relationships do not make very specific predictions:

308



12.4. Future Directions

For example, the causal effect between two binary symptoms can be captured in
a simple 2 × 2 table. Instead of modeling this symptom, one could model the
two separate variables weight and appetite in an individual across time. This
modeling choice both greatly simplifies the specification of mechanistic relations
and makes much more precise predictions. Instead of predicting only that the
above symptom correlates with, say, the symptom depressed mood, we can pre-
cisely specify how each variable evolves over time, the exact nature and lag of
the effect of, say, depressed mood on appetite, the distribution of all variables,
etc. Modeling on a cognitive-behavioral level therefore provides much more pre-
cise predictions, which makes it easier to develop and test a formal theory using
empirical data.

While causal relations between symptoms can explain why an individual can
get stuck in a state of elevated symptom activation (Borsboom, 2017), they do not
explain why any single symptom appears initially, or what the exact mechanics of
these direct causal effects between symptoms are. This means that analyzing the
symptom level alone provides little insight into how to perform an intervention,
either on symptoms directly or the causal relations between them. Efficacious
interventions on symptoms typically require to deconstruct the symptom itself.
For example, interventions such as sleep restriction therapy (SRT; Kyle et al.,
2015) for insomnia are based on a careful investigation of the underlying vari-
ables related to sleep and the variety of problems associated with it. Similarly,
any intervention on the causal relation between two symptoms requires us to de-
construct the causal relation into its cognitive, affective and behavioral parts and
their interplay.

Another limitation of the symptom level is that it provides no answer to the
question of why individuals differ in their causal relationships between symp-
toms. Even worse, it is not actually clear whether the causal relations do differ be-
tween healthy and diagnosed individuals. One reason for this lack of knowledge
is that studying statistical relations between symptoms requires active symp-
toms, which are by definition hardly present in healthy individuals. A popular at-
tempt to sidestep this problem is to analyze groups with different severity levels.
However, selecting groups based on symptom sum scores can in some situations
lead to biases which render results difficult to interpret (de Ron, Fried, & Ep-
skamp, 2019). These limitations of the symptom level may be part of the expla-
nation of why the evidence on the relationship between connectivity of symptom
networks and symptom activation does not seem to converge (Robinaugh, Hoek-
stra, Toner, & Borsboom, 2019). However, being able to identify causal relations
between symptoms before they actually appear would be crucial to determine
an individual’s resilience and to design any type of prevention. To sharpen the
concept of resilience and to generate ideas for prevention and intervention, the
best way forward is probably to deconstruct causal relations between symptoms
into cognitive, affective and behavioral variables and their interrelations. This
provides us with a more flexible framework to identify the nature of the causal
relation, both because we can describe them in much more detail and because
the non-symptom variables are more likely than symptoms to show variation in
healthy individuals.
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Formulating theories of mental disorders at a level of cognitive, affective, and
behavioral variables opens up a more refined perspective on the causes of mental
disorders on an individual level. Processes such as perception, memory, decision-
making, emotion, mood or behaviors such as sleeping, exercising, working or
engaging in social interaction are operating in any individual. In healthy indi-
viduals the system comprised of all these processes is operating in a functional
way, thereby not giving rise to any (elevated levels of) symptoms. Consequently,
in unhealthy individuals who experience symptoms the system has to be differ-
ent in some dysfunctional way. This suggests that we can explain the presence
of symptoms and the causal relations between them with one or several dysfunc-
tional changes to an in principle functional system. The formal theory of panic
disorder in Chapter 10 illustrates this perspective. This model consists of vari-
ables such as arousal, perceived threat, and avoidance, which arguably can be
measured in any individual. However, the dynamics of the formal theory imply
that if one experiences a panic attack, one will escape from the current situation,
and consequently have a higher arousal schema (S), which is a composite vari-
able describing to which extent arousal is perceived as a threat, and determines
the probability of future panic attacks. The fact that panic attacks always lead
to escape, and that the escape behavior always leads to a higher S-value are the
dysfunctional parts of the system. If either of the two is fixed, according to our
theory it is not possible anymore to develop panic disorder. This illustrates how
explaining a mental disorder in terms of dysfunctional relations between cogni-
tive and behavioral variables can readily provide ideas for tangible interventions.
In Appendix G.3 of Chapter 10 we expanded on this idea by deriving a treatment
plan with several interventions from our theory.

Formal theories which explain mental disorders with dysfunctional systems
of cognitive, affective and behavioral variables allow one to also include a func-
tional state of the system. Indeed, this is necessary if the formal theory is sup-
posed to be able to predict successful treatment outcomes. Including both dys-
functional and functional states allows us to remove dysfunctions from the sys-
tem and demonstrate how the change impacts the presence of symptoms. In
other words, the formal theory allows us to simulate interventions. The fact that
a formal theory should include a functional state suggests that formal theories
of mental disorders can be constructed based on models of functional cognition,
affect and behavior. This possibly allows one to leverage the vast body of research
in cognitive psychology on processes such as perception, memory, learning, belief
formation, and decision-making, all of which are involved in, or even at the core
of all mental disorders. For example, body dysmorphic disorder is clearly related
to perception, manic episodes impede decision-making, and delusions and para-
noid ideation are related to problems with the formation of beliefs. Fortunately,
cognitive and mathematical psychology have a strong tradition in formalization,
which means that formalizing theories of mental disorders can build on a wealth
of formalized models of cognition and behavior. However, many formalized the-
ories of relevant functional systems exist also outside the core areas of cognitive
psychology. For example, there is a rich literature of well-developed formal the-
ories of sleep (Borbely & Achermann, 1992), there is work that models emotional
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processes in terms of inferences about interoceptive bodily states (Seth, Suzuki,
& Critchley, 2012), and there are formal theories of mood that are rooted in evo-
lutionary theory and game theory (Nettle, 2009; Eldar, Rutledge, Dolan, & Niv,
2016).

I have argued that we should model mental disorders as dysfunctional ver-
sions of typically functional systems on a cognitive, affective and behavioral level.
However, explanations for mental disorders also exist at other levels. For exam-
ple, the field of computational psychiatry uses formal theories of brain func-
tion to characterize the mechanisms of psychopathology (Wang & Krystal, 2014;
Stephan & Mathys, 2014; Friston, Stephan, Montague, & Dolan, 2014; Friston,
Redish, & Gordon, 2017). This field is especially interesting due to its strong tra-
dition in formal modeling. Certainly, theories at the cognitive-behavioral level
can be informed by theories at the synaptic or circuit level in the brain and vice
versa. In addition to the cognitive and brain level, there are also social, economic
and cultural variables that are related to mental disorders (e.g., Kendler, 2008).
Ultimately, formal theories on all of these levels should be integrated in order to
obtain an explanation of mental disorders that does justice to their complexity.

12.5 Conclusions

This dissertation dealt with the problem of modeling psychopathology. Its first
part considerably extended the range of data models that are available to applied
researchers by introducing and implementing estimation routines for Mixed
Graphical Models (MGMs), mixed VAR (mVAR) models, Moderated Network
Models (MNMs), nodewise predictability and time-varying models. The second
part aimed to shift the focus of our field towards developing formal theories
as opposed to only fitting data models. It included a methodological study of
the problems of undersampling and misspecification in recovering systems from
data, and presented a formal theory of panic disorder. The last chapter provided
a general analysis of the relationship between data models and formal theories
and put forward a general approach for how to construct formal theories.

In this concluding chapter I outlined three directions for future research.
First, the general approach to theory construction described in the last chapter
should be worked out in much more detail, for example answering the ques-
tions of how to optimally derive predictions from theories, and how to adapt
theories in case their predictions fail. This requires developing new methodol-
ogy or adapting existing ones from fields with a strong formal modeling tradi-
tion. Second, the measurement process should be formalized next to the theory
itself in order to increase the validity of inferences drawn from the data about
formal theories. Finally, I proposed to create formal theories about mental disor-
ders at the level of cognitive, affective, and behavioral variables. This shift in the
level of analysis may lead to a better understanding of mental disorders, facilitate
the discovery of intervention targets, allow for a sharper definition of resilience
and vulnerability, and allow integration with neighboring fields such as cognitive
psychology and neuroscience.
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Tschitsaz-Stucki, A. (2013). The ups and downs of psychotherapy: Sud-
den gains and sudden losses identified with session reports. Psychotherapy
Research, 23(1), 14–24.

MacKinnon, D. P., & Luecken, L. J. (2008). How and for whom? mediation
and moderation in health psychology. Health Psychology, 27(2S), S99. doi:
10.1037/0278-6133.27.2(Suppl.).S99

Margraf, J., Ehlers, A., & Roth, W. (1986). Sodium lactate infusions and panic
attacks: A review and critique. Psychosomatic Medicine, 48(1/2), 23.

Margraf, J., Taylor, B., Ehlers, A., Roth, W. T., & Agras, W. S. (1987). Panic attacks
in the natural environment. Journal of Nervous and Mental Disease.

333



Marks, R. J. I. (2012). Introduction to shannon sampling and interpolation theory.
Springer Science & Business Media.

Marsman, M., Maris, G., Bechger, T., & Glas, C. (2015). Bayesian inference for
low-rank ising networks. Scientific Reports, 5, 9050.

Marsman, M., Tanis, C., Bechger, T., & Waldorp, L. (2019). Network psychomet-
rics in educational practice. In Theoretical and practical advances in computer-
based educational measurement (pp. 93–120). Springer.

Mauger, R., Tarbuck, E. J., & Lutgens, F. K. (1996). Earth: An introduction to
physical geology. Prentice-Hall.

McMullin, E. (1982). Values in science. In Psa: Proceedings of the biennial meeting
of the philosophy of science association (pp. 3–28).

McNally, R. J. (1990). Psychological approaches to panic disorder: A review.
Psychological Bulletin, 108(3), 403.

McNally, R. J. (1994). Panic disorder: A critical analysis. Guilford Press.
McNally, R. J. (2002). Anxiety sensitivity and panic disorder. Biological Psychiatry,

52(10), 938–946.
McNally, R. J., Robinaugh, D. J., Wu, G. W., Wang, L., Deserno, M. K., & Bors-

boom, D. (2015). Mental disorders as causal systems a network approach
to posttraumatic stress disorder. Clinical Psychological Science, 3(6), 836–
849.

Meehl, P. E. (1978). Theoretical risks and tabular asterisks: Sir karl, sir ronald,
and the slow progress of soft psychology. Journal of Consulting and Clinical
Psychology, 46(4), 806.

Meehl, P. E. (1990a). Appraising and amending theories: The strategy of
lakatosian defense and two principles that warrant it. Psychological Inquiry,
1(2), 108–141.

Meehl, P. E. (1990b). Why summaries of research on psychological theories are
often uninterpretable. Psychological Reports, 66(1), 195–244.
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Appendix A

Nodewise Predictability:

Reanalysis

A.1 Details about Literature Review

We performed a literature search on the databases PsycNET, ISI Web of Sci-
ence and GoogleScholar using “Network AND X” as a keyword, where we
made 9 separate searches, where X was either “Psychopathology”, “Comorbid-
ity”, “Post Traumatic Stress Disorder”, “De-pression”, “Anxiety”, “Schizophre-
nia”,“Psychosis”, “Personality Disorder”, or “Substance”. We con-strained our
search to the period 2010 – 2016 as we consider the paper of Cramer et al. (2010)
as the first ’network paper’ in the field of psychopathology. While we checked all
search results for PsycNET and ISI Web of Science. For GoogleScholar we only
went through the first 10 pages of results, because going through all results was
not feasible (e.g. the search query “Network” + “Psychopathology” led to 187,000
results (10/7/2016)).

Table A.1 lists the 23 papers we found by combining papers the authors knew
of with the additional papers found in the literature review.
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Paper Outcome of Data Request
Anderson et al. (2015) Obtained
Armour et al. (2017) Obtained
Beard et al. (2016) Obtained
Borsboom and Cramer (2013) Obtained

Boschloo et al. (2015)
New policy of U.S. National Institute on Alcohol

Abuse and Alcoholism does not allow sharing data
anymore (personal communica-tion)

Boschloo, van Borkulo, et al. (2016) Obtained

Boschloo, van Borkulo, et al. (2016)
Requirements to obtain data from NESDA
for re-analysis unfeasible for this project)

Curtiss and Klemanski (2016) Did not share their data
Cramer et al. (2010) Data Identical to Borsboom and Cramer (2013)
Deserno et al. (2017) Obtained
Fried et al. (2015) Obtained
Fried, Epskamp, et al. (2016) Obtained
Goekoop and Goekoop (2014) Obtained
Hoorelbeke et al. (2016) Obtained
Koenders et al. (2015) Obtained
McNally et al. (2015) Obtained
Rhemtulla et al. (2016) Obtained
Robinaugh et al. (2014) Obtained
Robinaugh et al. (2016) Obtained
Ruzzano et al. (2015) Obtained
Santos Jr et al. (2017) Obtained

van Borkulo et al. (2015)
Requirements to obtain data from NESDA
for re-analysis unfeasible for this project)

Wigman et al. (2016) Obtained

Table A.1: All 23 papers retreived from the literature review and the outcome of the data request.

348



Appendix B

Moderated Network Models

B.1 Mean-centering in Moderation Analysis

In the procedure to estimate MNM described in Section 5.2.5 we mean-center all
variables before estimation. The reason is that for centered variables, the inter-
pretation of parameters is more meaningful. We illustrate this issue in Figure
B.1:

●−2 −1 0 1 2 3 4 5

(a) Mean centered moderator

C

P(C)

Effect

B → A

●−2 −1 0 1 2 3 4 5

(b) Uncentered moderator

C

P(C)

Effect

B → A

Figure B.1: Illustration of the advantages of mean-centering predictors in moderated regression. For
the mean-centered moderator in (a) the effect of B on A for C = 0 is the same as the effect of B on
A when ignoring C (dotted blue line), which allows to compare parameters in models with/without
moderation. In (b) this is not the case. Indeed, the effect of B on A if C = 0 is an effect that is hardly
ever observed because the probability of observing values of C close to 0 is extremely small.

In Figure B.1 (a), the red dashed line represents the partially moderated effect
which we already considered above in Figure 5.1 (d). In this case the moderator
C was mean-centered and its mean is therefore equal to zero. Recall the inter-
pretation of the parameter βB in (5.3): it is the effect of B on A when C = 0. The
blue dotted line represents the effect of B on A when averaging over all values
of C, which is the effect of B on A one would obtain from a regression without
moderation effects. We see that the red and blue line intersect at C = 0: this
means that βB in the moderated regression in (5.3) has the same value as βB in
the regression without moderation in (5.1). This is desirable because it allows
to compare the parameters in models with/without moderation. Second, mean-
centering moderators ensures that the parameter βB is meaningful in the sense
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B. Moderated Network Models

that the probability of C-values close to zero is large. This is in contrast to Figure
B.1 (b) in which the mean of the moderator C is equal to 3. Now the effect of B
on A when C = 0 does not intersect with the blue line at the appropriate level.
Therefore, βB captures the effect of B on A for values of C close to zero which
occur with an extremely low probability and are therefore irrelevant.

For a detailed discussion of interaction/moderation effects in linear regression
we refer the reader to Aiken et al. (1991) and Afshartous and Preston (2011).

B.2 Joint distribution for p = 3

Here we show for the case of p = 3 variables how to factorize p conditional distri-
butions to a joint distribution.

We begin with the standard formulation of the conditional univariate Gaus-
sian distribution

P(X1|X2 = x2,X3 = x3) =
1

√
2πσ2

exp

{

−
(X1 −µ1)2

2σ2

}

,

where the mean of X1, µ1 is a function of X2 and X3. If we let σ = 1 and expand
(X1 −µ1)2 we get

P(X1|X2 = x2,X3 = x3) =
1
√
2π

exp

{

−
X2
1 +µ21 − 2X1µ1

2

}

,

and can rearrange

P(X1|X2 = x2,X3 = x3) =
1
√
2π

exp

{

X1µ1 −
X2
1

2
−
µ21
2

}

.

Our focus is on µ1, so we absorb 1√
2π

and −µ21
2 in the log-normalizing constant

Ψ1(α,β,ω) and let C1 =
X2
1
2

P(X1|X2 = x2,X3 = x3) = exp
{

X1µ1 −C1 −Ψ1(α,β,ω)
}

(B.1)

where α,β, and ω are the parameter vectors defining the mean µ1, which is a
linear combination of the other variables X2,X3:

µ1 = α1 + β2,1X2 + β3,1X3 +ω2,3,1X2X3 (B.2)

where α1 is the intercept, β2,1,β3,1 are the parameters for the pairwise interac-
tions with X2 and X3, and ω2,3,1 is the parameter for the three-way interaction
with X2X3 (or equivalently, the pairwise interaction with X2 moderated by X3 or
the pairwise interaction with X3 moderated by X2).

Plugging the mean (B.2) into the conditional distribution (B.1) gives us

P(X1|X2 = x2,X3 = x3) = exp
{

X1(α1 + β2,1X2 + β3,1X3

+ω2,3,1X2X3)−C1 −Ψ1(α,β,ω)
}

.

350



B.3. Rejection Sampling

Multiplying out and collecting terms of the same order gives

P(X1|X2 = x2,X3 = x3) = exp{α1X1 +X1

3
∑

j=1,j!1

βi,jXj

+X1ω1,2,3X2X3 −C1 −Ψ1(α,β,ω)}.

Similarly define P(X2|X1 = x1,X3 = x3) and P(X3|X2 = x2,X1 = x1). Then fac-
torize the three conditional distributions to obtain a joint distribution. After re-
arranging terms we get

P(X1,X2,X3) = exp

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

3
∑

i=1

α1Xi +
3

∑

i=1

3
∑

j=1,j!i

βi,jXiXj (B.3)

+ω1,2,3X1X2X3 −
3

∑

i=1

[Ci +Ψi (α,β,ω)]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

where we combined the parameters βi,j ,βj,i and ωj,i,z,ωi,j,z,ωz,j,i into single pa-
rameters by taking their average.

The joint distribution can be constructed analogously for any p.
A sufficient condition for (B.3) to be normalizable is that the sum over all

terms in the exponential is negative (Yang et al., 2014a). However, the constraints
C(α,β,ω) on the parameter space {α,β,ω} to ensure this, are unknown. Note
that these constraints are possibly very complicated since they depend on the
variances of the conditional distributions and the structure of the factor graph
defining this higher order model (Koller & Friedman, 2009). To be able to sample
from (B.3), we use a rejection sampler as described in Appendix B.3.

B.3 Rejection Sampling

We do not know the constraints C(α,β,ω) on the parameter space that ensure that
the model in (B.3) (and it’s generalization to p variables) is normalizable. To still
be able to sample from this distribution we use a rejection sampler that rejects
diverging chains in the Gibbs sampler Casella and George (1992). Specifically,
we fix the MNM and sample cases using the Gibbs sampler, with a burn-in of 100
iterations. A chain is defined to diverge if |Xi | > τ for at least one i ∈ {1,2, . . . ,p},
where we set τ = 3.09, which is the 99.9% quantile of a standard normal distri-
bution.

This way we define C(α,β,ω) indirectly. If the chain remains within [−τ,τ]
we assume that the constraints C(α,β,ω) are satisfied. If the chain diverges, we
know that C(α,β,ω) is not satisfied. Note that diverging chains approach ±∞ very
quickly, therefore the exact value of τ has only a small impact on the sampling
procedure.
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With this procedure it would be possible to sample cases for any fixed MNM
generated with the procedure described in Section 5.3.1. However, for some
MNM the proportion of rejected samples might be high, and consequently the
running time until obtaining n = 1808 cases would be very large. To keep the
computational manageable, we sampled n = 10000 cases from 130 models as
specified in Section 5.3.1. We then ordered the 130 population models by in-
creasing proportion of diverged samples, and selected the first 100. In those 100
iterations the proportion of rejected samples varied between 0.287 and 0.886. We
take the n = 1808 first observations in each of the 100 data sets. These data are
used in the simulation study.

To check whether the rejection sampling introduced bias in the estimates, we
recover every single parameter in the 100 data sets, using standard linear regres-
sions in which we specified the correct moderator. Within data sets we take the
average over pairs of parameter types (unmoderated, partially moderated, fully
moderated) estimated from n = 1808 observations, and plot them as a function
of the proportion of finite samples in the given iteration in Figure B.2:
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Figure B.2: Each point is the average over the two estimates of a given type in a given iteration,
estimated with multiple regression with the correct moderator specified.

Figure B.2 shows that the unmoderated pairwise interactions are slightly bi-
ased downwards (β̄pw = 0.194). The remaining three parameter types show a
stronger downward bias (β̄pw(mod) = 0.186, ω̄mod(pw) = 0.187 and ω̄mod = 0.189).
The bias of the moderation effect seems to decrease with increasing proportion
of finite samples. However, all parameter estimates are close to the value speci-
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fied in the Gibbs sampler and hence the data can be used in the simulation. The
result of this slight downward bias is that the performance across all conditions
and estimators is also slightly biased downward.

B.4 Sensitivity of Moderated Network Model across
Parameter Types

In Section 5.3.3 we claimed that the sensitivity to detect unmoderated pairwise
interactions (row 1 in Figure 5.4) and full moderations (row 2 in Figure 5.5) was
lower than for detecting the pairwise interaction (row 2 in Figure 5.4) and mod-
eration effect (row 2 Figure 5.5) in the partially moderated pairwise interaction.
This is not easy to see in these figures and we therefore provide an additional
figure with this comparison in Figure B.3:
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(b) m sequential
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Figure B.3: Sensitivity to detect the four different parameter types, separately for the moderated
network model with (a) correctly specified moderator, (b) sequentially searching all moderators and
(c) specifying all moderators at once.

To explain this difference, we first run a simpler simulation in which we iso-
late all interaction types to exclude the possibility that the differences are ex-
plained by some characteristic of the graph (Appendix B.5). We will find that in
such a ”clean” setting the difference is even larger. Then we explain this differ-
ence in terms of the number of uncorrelated neighbors (Appendix B.6).

B.5 Simulation with Isolated Interaction Types

Here we run a simplified version of the simulation reported in Section 6.3 to
exclude the possibility that the sensitivity differences discussed in Appendix B.4
can be explained by some graph characteristic. We generate data from the graph
shown in Figure B.4 panel (a):
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Figure B.4: Panel (a): simplest possible graph including all four parameter types that separates all
types as far as possible; panel (b): sensitivity to recover each parameter type for different numbers of
observation for the moderated network model with specified moderator.

Except the graph structure, we use the same setup as reported in Section 5.3.1.
In this graph the four parameter types are isolated as much as possible, so that
the graph structure does not have any influence on estimation: 7-8 is isolated;
the fully moderated pairwise interaction (or 3-way interaction) 1-2-3 is isolated;
and the partially moderated pairwise interaction 4-5-6 is isolated. Note that the
pairwise interaction 5-6 and the moderation effect 4-5-6 cannot be separated by
definition.

We estimated the moderated network model with specified moderator (here
variables 4 and 1). If we find the same sensitivity difference in this simulation
as in Appendix B.4, we know that it is not a function of some unexpected graph
characteristic. Figure B.4 panel (b) shows the sensitivity for the four parameter
types as a function of the number of observations. We observe the same sensitiv-
ity difference as in Appendix B.4.

What is the difference between the pairwise interaction 7-8 and the modera-
tion effect (or 3-way interaction) 1-2-3 on the one hand, and the pairwise interac-
tion and the moderation effect in 4-5-6 on the other hand? The difference is that
in the respective nodewise regressions, in the former case there is one nonzero
predictor and in the latter case there are two nonzero predictors (see equation
(5.2) in Section 5.2.1). The presence of two nonzero predictors results in that
the EBIC selects a smaller (compared to the presence of one nonzero predictor)
penalty parameter λs, which increases sensitivity. This reasoning is based on the
assumption that the predictors are uncorrelated, which is the case if all variables
and interaction effects are centered as in the present case. In Appendix B.7, we
show that X is uncorrelated with XY if both X and Y are centered. In Appendix
B.6, we test this explanation directly by investigating sensitivity as a function of
the number of uncorrelated neighbors in a GGM.
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B.6 Sensitivity as Function of Number of Uncorre-
lated Neighbors

Here the goal is to directly test the hypothesis that the sensitivity to detect the
edges between nodes X1 and X2, . . . ,Xp increases with the number of nonzero
edges, if X2, . . . ,Xp are uncorrelated. To this end we generate a GGM with p =
20, which matches the maximum neighborhood size of each node to that of the
simplified simulation in Appendix B.5. We compare four versions of this GGM,
across which we vary the number of uncorrelated neighbors from 1-4. The 1-
4 nonzero partial correlations have all the value β = 0.2, matching the setup of
the simulations in Section 6.3 and Appendix B.5. We show the average (over 1-4
edges in the four conditions, respectively) sensitivity in Figure B.5:
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Figure B.5: Sensitivity to detect a neighbor connected to node X1 as a function of the number of
uncorrelated neighbors of X1.

The results confirm the hypothesis that the sensitivity to detect neighbors
increases as a function of the number of uncorrelated neighbors.

B.7 XY is uncorrelated with X and Y if the latter are
mean-centered

For independent and identically distributed variables X,Y with finite variances,

let Z = XY . We show ρ(X,Z) = cov{X,Z}
σXσZ

= 0. Since σX,σZ > 0, ρ(X,Z) = 0 iff

cov(X,Z) = 0. However,
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cov(X,Z) = E[XZ]−E[X]E[Z]

= E[X2Y ]−E[X]E[XY ]

= E[X2]E[Y ]−E[X]E[X]E[Y ]

= (E[X2]− (E[X])2)E[Y ]

= σ2
XE[Y ],

so ρ(X,Z) = 0 if E[Y ] = 0, and similarly, ρ(Y,Z) = 0 if E[X] = 0.

B.8 Additional Tutorial: Estimate MNM on Iteration
2 of Simulation Study

In this section, we show how to use the R-package mgm (Haslbeck & Waldorp,
2020) to fit a moderated network model to n = 858 observations generated from
themodel shown in Figure 5.3. Themgm implements functions to estimateMixed
Graphical Models (MGMs), of which GGMs are a special case. The package can
be installed and loaded in the following way:

install.packages("mgm")

library(mgm)

We will also present different options for visualizing the moderated network
model using factor graphs.

B.8.1 Fit Moderated Network Model to Data

The data set is automatically available in the list object modnw when loading the
mgm package. As specified in Section 5.3.1, the data set contains 13 continuous
variables and we sampled 858 observations:

> dim(modnw)

[1] 858 13

We provide the data in modnw to the estimation function mgm() of the mgm
package. Next to the data we specify the types and levels for each variable. Since
we model all variables as continuous Gaussian distributions, we specify "g" for
each variable and the number of levels as 1 by convention for continuous vari-
ables. This specification is necessary in mgm, because the package also allows to
model Poisson variables and categorical variables with k categories. Via the ar-
gument moderator one specifies the moderators to be included in the model. For
instance, if we select moderator = c(3, 7) all moderation effects of variables
3 and 7 are included in the model. Here we pretend not to know that variable
13 is the only moderator in the model and and therefore include all variables as
moderators by setting moderator = 1:13.
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The estimation algorithm uses p nodewise penalized regressions, for each of
which an appropriate regularization parameter λs has to be selected (see Sec-
tion 5.2.5). We select the λs that minimizes the EBIC with the hyperparameter
γ = 0.5 by setting lambdaSel = "EBIC" and lambdaGam = .5. Alternatively one
could select λs using cross-validation (lambdaSel = "CV"). With scale = TRUE
we specify that all predictors are scaled to mean zero and SD = 1. This is a stan-
dard procedure in regularized regression and avoids that the penalization of a
given parameter depends on the standard deviation of the associated variable.
With ruleReg = "AND" we specify that the nodewise regressions are combined
with the AND-rule (see Section 5.2.5).

mgm_mod <- mgm(data = modnw,

type = rep("g", 13),

level = rep(1, 13),

moderator = 1:13,

lambdaSel = "EBIC",

lambdaGam = 0.5,

ruleReg = "AND",

scale = TRUE)

The main output is stored in mgm_mod$interactions. For a detailed descrip-
tion of the output see the helpfile ?mgm and themgm paper (Haslbeck &Waldorp,
2020). The list entry mgm_mod$interactions$indicator contains a list of all
estimated parameters separately for each order (2-way, 3-way, etc.):

> mgm_mod$interactions$indicator

[[1]]

[,1] [,2]

[1,] 1 12

[2,] 2 4

[3,] 4 11

[4,] 8 11

[[2]]

[,1] [,2] [,3]

[1,] 1 12 13

[2,] 6 7 13

[3,] 8 10 13

[4,] 8 11 13

The first level contains pairwise (2-way) interactions and the second en-
try contains moderation effects (or 3-way interactions). Thus, in the above
output the entry mgm_mod$interactions$indicator[[1]][2, ] indicates that
there is a nonzero pairwise interaction between variables 2-4. And the entry
mgm_mod$interactions$indicator[[2]][4, ] indicates that there is a nonzero
moderation effect (or 3-way interaction) between variables 8-11-13. In the
present model we estimated four pairwise interactions and four moderation ef-
fects. To obtain more information about a given interaction we use the function
showInteraction(). Here is how to obtain the parameter for the pairwise inter-
action 4-11:
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> showInteraction(object = mgm_mod, int = c(4,11))

Interaction: 4-11

Weight: 0.103782

Sign: 1 (Positive)

The pairwise interaction can be interpreted as in a linear regression: when
increasing X4 by one unit, X11 increases by ≈ 0.104 units, when keeping all other
variables constant. The parameters for the moderation effects can be obtained
similarly: let’s say we are interested in the moderation effect 6-7-13. Then we
obtain the absolute value and the sign of the parameter via:

> showInteraction(object = mgm_mod, int = c(6,7,13))

Interaction: 6-7-13

Weight: 0.1174669

Sign: 1 (Positive)

We can interpret this moderation effect in the following way: the pairwise
interaction between X6 and X7 is zero when X13 is equal to zero. When increasing
X13 by one unit, the pairwise interaction between X6 and X7 is equal to ≈ 0.117.
Similarly, this parameter can be interpreted the moderation effect of X6 on the
pairwise interaction between X7 and X13, or the moderation effect of X7 on the
pairwise interaction between X6 and X13.

The interpretation is slightly different if a variable is involved in a partially
moderated pairwise interaction (or equivalently, in both a 2-way and 3-way in-
teraction). We take variable 12 as an example. We have a pairwise interaction

> showInteraction(object = mgm_mod, int = c(1,12))

Interaction: 1-12

Weight: 0.1269736

Sign: 1 (Positive)

and a moderation effect:

> showInteraction(object = mgm_mod, int = c(1,12,13))

Interaction: 1-12-13

Weight: 0.1467114

Sign: 1 (Positive)

In this case the pairwise interaction between X1 and X12 is equal to β1,12 ≈
0.130 if X13 = 0. If X13 increases one unit, then the pairwise interaction between
X1 and X12 increases by ≈ 0.147, so ≈ 0.130+1 · 0.147.

B.8.2 Moderated Network Model as Factor Graph

Moderation effects (3-way interactions) cannot be visualized in a standard graph.
However, they can be visualized in a factor graph, which introduces a new node
for each interaction parameter. Such a factor graph can be drawn using the
FactorGraph() function that takes the output of mgm() as input:
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FactorGraph(object = mgm_mod,

PairwiseAsEdge = FALSE)

The FactorGraph() function plots the graph visualization in Figure B.6 (a):
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Figure B.6: Two different factor graph visualizations: (a) variable-nodes are displayed as circle nodes,
pairwise interactions are displayed as square nodes, and moderation effects (3-way interactions) are
displayed as triangles; (b) Only moderation effects (3-way interactions) are displayed as triangle
nodes, pairwise interactions are displayed as simple edges. Green edges indicate parameters with
positive sign. The widths of edges is proportional to the absolute value of the parameter.

The green (red) edges indicate parameters with positive (negative) sign,
and the width of edges is proportional to the absolute value of the parameter.
FactorGraph() is a wrapper around the qgraph() function from the qgraph pack-
age epskamp2012qgraph and all qgraph() arguments can passed to customize
the visualization.

In larger graphs with many pairwise interactions this visualization may be-
come unclear. For these situations, the factors representing pairwise interactions
can be replaced by simple edges by setting PairwiseAsEdge = TRUE. The result-
ing visualization is shown in Figure B.6 (b). While this graph is not a typical
factor graph anymore, the visualization contains the same information as the vi-
sualization in (a).

B.9 Varying Moderation Effects across Nodewise Re-
gresssions: A closer Look

In Section 5.4.2.2 we used a data set of three mood variables to illustrate that
moderation effects can differ across nodewise regressions, if the data are skewed.
Here we provide some intuition for how this is possible, by conditioning on dif-
ferent values of one of the three variables, and show the resulting conditional
scatter plots and linear relationships of the remaining two variables.
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Wefirst estimate the three conditional distributions of themoderated network
model using unregularized linear regression:

> lm(afraid˜ashamed*distressed, data = msq_p3) # On afraid

Call:

lm(formula = afraid ˜ ashamed * distressed, data = msq_p3)

Coefficients:

(Intercept) ashamed distressed

-0.0481 0.1194 0.3210

ashamed:distressed

0.1142

> lm(ashamed ˜ afraid*distressed, data = msq_p3) # On Ashamed

Call:

lm(formula = ashamed ˜ afraid * distressed, data = msq_p3)

Coefficients:

(Intercept) afraid distressed

-0.04104 0.16279 0.25054

afraid:distressed

0.08581

> lm(distressed ˜ afraid*ashamed, data = msq_p3) # On Distressed

Call:

lm(formula = distressed ˜ afraid * ashamed, data = msq_p3)

Coefficients:

(Intercept) afraid ashamed afraid:ashamed

0.01339 0.40273 0.30110 -0.02984

We estimatedmoderation effects with positive sign in the regressions on afraid
and ashamed and a moderation effect with negative sign in the regression on
distressed. This is reflecting the results obtained from ℓ1-regularized regression
shown in Figure 5.8 in Section 5.4.2.2.

We visualize the phenomena of different moderation effects across nodewise
regressions in Figure B.7 by conditioning on different values of one of the pre-
dictors and inspect the linear relationship between the response variable and the
remaining predictor. We do this for each of the three regressions:
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Figure B.7: Row 1: The linear relationship between afraid and distressed depicted by a scatter plot and
the best linear fit, for the four different values of ashamed. We added some noise in the visualization to
capture the amount of data at each combination of afraid and distressed; row 2: the same visualization
as in row 1, however, for the regression on ashamed, conditioning on the values of distressed; and row
3: the same visualization as in row 1, however, for the regression on distressed, conditioning on values
of afraid.

The first row of Figure B.7 shows the scatter plot of variables afraid and dis-
tressed together with the best fitting regression line (red line) and its slope, for the
different values of ashamed. To make the density of the data visible we added a
small amount of noise to each data point for the visualization. The best regression
line was calculated on the original data. We see that the positive linear relation-
ship between afraid and distressed becomes stronger for larger values of ashamed.
Similarly in row 2, the positive linear relationship between ashamed and afraid
becomes stronger for larger values of distressed. The linear relationship between
afraid and distressed increases more as a function of ashamed, than does the linear
relationship between ashamed and afraid as a function of distressed. This reflects
the fact that the moderation/interaction parameter in the regression on afraid is
larger than in the regression on ashamed.

Finally, row 3 shows that the linear relationship between ashamed and dis-
tressed first decreases, then increases, and then decreases again as a function of
afraid. Thus, we see a non-linear moderation effect of afraid on the linear relation-
ship between ashamed and distressed. It happens to be the case that this non-linear
moderation effect is not canceled out exactly, but is best approximated by a small
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B. Moderated Network Models

negative linear moderation effect.

B.10 Correlations between lower- and higher-order
terms

If predictors X and Y are centered and independent distributions of any kind,
we have cor(X,XY ) = 0. That is, the lower order terms (singleton predictors such
as X) and higher order terms (product term such as XY ) are uncorrelated. We
prove this in Appendix B.7. Also, if X,Y are Gaussian distributions and linearly
dependent, cor(X,XY ) = 0. However, if X,Y are skewed and linearly dependent,
we have cor(X,XY ) ! 0. We illustrate these four cases (distribution symmetric vs.
non-symmetric and dependent vs. independent X and Y ) in Figure B.8.

In the first row we generated n = 500 observations from two uncorrelated
Gaussian distributions X = N (µ = 0,σ = 1) and Y = N (µ = 0,σ = 1). We then
mean-centered both distributions. The first column shows the scatter plot, the
best fitting regression line (red line) and the correlation cor(X,Y ). As we would
expect the correlation is close to zero. We then plotX againstXY . Andwe see that
the correlation cor(X,XY ) remains close to zero as claimed. In the second row we
sampled from two correlated Gaussian distributions X = N (µ = 0,σ = 1) and
Y = X +N (µ = 0,σ = 1) and mean-centered both distributions. As expected, we
find a linear relationship between X and Y . However, the correlation cor(X,XY )
remains close to zero. In the third row we sampled from two uncorrelated expo-
nential distributions with rate parameter λ = 1, and mean-centered both distri-
butions. We see that cor(X,Y ) is close to zero as expected. And also cor(X,XY )
is zero, as expected. Row four shows the problematic case. We correlated the ex-
ponential distributions by adding X to Y , and mean-centered both distributions.
Now we get a linear relationship between X and Y as expected. However, in con-
trast to the symmetric Gaussian case, this correlation now also implies a nonzero
correlation cor(X,XY ) between X and XY .
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B.10. Correlations between lower- and higher-order terms
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Figure B.8: The correlation between lower- and higher-order terms cor(X,XY ) for the four combi-
nations of symmetric (Gaussian) / skewed (Exponential) and correlated/uncorrelated (see text for
details).

Uncorrelated predictors are a desirable property for two reasons: if correla-
tions between predictors (also called collinearity) are very high, the model be-
comes unstable in the sense that changing only a few data points can substan-
tially change the parameter estimates. Second, ℓ1-regularized regression has the
property to select only one of several highly correlated predictors. If cor(X,XY ) is
large the ℓ1-regularized estimator is likely to estimate a nonzero value for one of
the two corresponding parameters, even though both parameters are nonzero in
the true model. This problem is more severe for large regularization parameters
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B. Moderated Network Models

λ (which imply strong regularization) which tend to be selected if the number of
observations n is small.

The problem of correlated predictors can be diagnosed by correlating all
lower-order terms with all higher-order terms. If they are highly correlated one
solution is to transform the skewed variables towards a symmetric distribution,
which reduces the correlation. Popular transformations are taking the log, the
square-root or computing the nonparanormal transform (Liu et al., 2009). How-
ever, transforming variables always has the disadvantage that a meaningful in-
terpretation of relationships with transformed variables becomes difficult. For
example, many people will have little intuition for relationships like ”increasing
Feelings of Guilt by one unit increases log Mood by 0.15 units”. A solution for the
problem of ℓ1-regularized (LASSO) estimators is to use an estimator that does
not use an ℓ1-penalty. This could for instance be a regularized estimator with an
ℓ2-penalty (Ridge regression). But then we loose the convenient LASSO property
of setting small parameters to zero with the result that every network (or factor
graph) will be fully connected. Another option would be to use significance-test
based estimators. However, then one would have to deal with the problem of
multiple testing, which is a serious issues in moderated network models due to
the potentially large number of estimated parameters. A detailed investigation
of solutions to this particular problem of model misspecifications is beyond the
scope though and we leave it for future research.

B.11 Simulation Results in Tables

In Section 6.3 we reported simulation results in Figures 5.4 and 5.5. Here, we
report the same findings in tables. Table B.1 shows the performance in recovering
unmoderated pairwise interactions (first row Figure 5.4):

n
30 43 63 92 133 193 280 407 591 858 1245 1808

MNM (1) SE 0.01 0.00 0.01 0.02 0.06 0.14 0.28 0.59 0.83 0.97 1.00 1.00
MNM (2) SE 0.01 0.01 0.03 0.04 0.08 0.18 0.36 0.66 0.84 0.98 1.00 1.00
MNM (3) SE 0.00 0.00 0.00 0.01 0.02 0.06 0.13 0.40 0.70 0.96 1.00 1.00
MNM (1) PR 0.50 0.33 0.80 0.85 0.92 0.97 0.98 0.98 0.98 0.98 0.98 0.98
MNM (2) PR 0.50 0.57 0.82 0.90 0.90 0.97 0.98 0.97 0.97 0.95 0.95 0.94
MNM (3) PR 0.80 0.89 0.97 0.98 1.00 1.00 1.00 0.99 1.00

Table B.1: Sensitivity and precision of all compared methods as a function of sample size n. The
missing values for precison indicate that no edges were estimated in 95 or more iterations.

For the different methods, (1) indicates that the correct moderator was spec-
ified, (2) that moderators were specified in p = 13 sequential models, and es-
timates were combined, and (3) indicates that all moderators are specified in a
single model (see also Figures 5.4 and 5.5).

Table B.2 shows the results on moderated pairwise interactions shown in the
second row of Figure 5.4:
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B.11. Simulation Results in Tables

n
30 43 63 92 133 193 280 407 591 858 1245 1808

MNM (1) SE 0.00 0.01 0.03 0.04 0.08 0.20 0.55 0.86 0.98 1.00 1.00 1.00
MNM (2) SE 0.01 0.03 0.05 0.06 0.13 0.27 0.60 0.86 0.98 1.00 1.00 1.00
MNM (3) SE 0.00 0.00 0.01 0.01 0.04 0.10 0.31 0.70 0.94 1.00 1.00 1.00
MNM (1) PR 0.50 0.33 0.80 0.85 0.92 0.97 0.98 0.98 0.98 0.98 0.98 0.98
MNM (2) PR 0.50 0.57 0.82 0.90 0.90 0.97 0.98 0.97 0.97 0.95 0.95 0.94
MNM (3) PR 0.80 0.89 0.97 0.98 1.00 1.00 1.00 0.99 1.00

Table B.2: Sensitivity and precision of all compared methods as a function of sample size n. The
missing values for precison indicate that no edges were estimated in 95 or more iterations.

Table B.3 shows the results on moderation effects with pairwise part shown in
the first row of Figure 5.5:

n
30 43 63 92 133 193 280 407 591 858 1245 1808

MNM (1) SE 0.00 0.00 0.00 0.02 0.04 0.14 0.36 0.82 0.99 1.00 1.00 1.00
MNM (2) SE 0.00 0.00 0.00 0.02 0.05 0.20 0.46 0.79 0.95 0.98 0.98 0.98
MNM (3) SE 0.00 0.00 0.00 0.01 0.01 0.10 0.25 0.71 0.96 1.00 1.00 1.00
NCT (1) SE 0.00 0.00 0.00 0.01 0.03 0.10 0.22 0.40 0.67 0.90 1.00 1.00
NCT (2) SE 0.00 0.00 0.01 0.01 0.02 0.10 0.22 0.41 0.65 0.88 0.99 1.00
FGL (1) SE 0.00 0.00 0.02 0.06 0.18 0.33 0.71 0.92 0.99 1.00 1.00 1.00
FGL (2 SE 0.02 0.02 0.06 0.12 0.24 0.43 0.76 0.92 0.98 1.00 1.00 1.00
MNM (1) PR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MNM (2) PR 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.98
MNM (3) PR 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
NCT (1) PR 0.71 0.92 0.96 0.94 0.97 0.98 0.98 0.98
NCT (2) PR 0.25 0.08 0.13 0.32 0.45 0.58 0.49 0.38 0.34 0.33
FGL (1) PR 0.00 0.43 0.54 0.79 0.85 0.83 0.82 0.74 0.66 0.57 0.59
FGL (2) PR 0.08 0.15 0.19 0.19 0.32 0.37 0.46 0.48 0.45 0.34 0.28 0.26

Table B.3: Sensitivity and precision of all compared methods as a function of sample size n. The
missing values for precision indicate that no edges were estimated in 95 or more iterations.

Table B.4 shows the results on moderation effects without pairwise part
shown in the second row of Figure 5.5:

n
30 43 63 92 133 193 280 407 591 858 1245 1808

MNM (1) SE 0.00 0.00 0.00 0.01 0.04 0.08 0.32 0.70 0.95 1.00 1.00 1.00
MNM (2) SE 0.00 0.00 0.00 0.02 0.05 0.13 0.32 0.66 0.91 0.96 0.96 0.96
MNM (3) SE 0.00 0.00 0.00 0.00 0.03 0.06 0.22 0.57 0.88 0.98 1.00 1.00
NCT (1) SE 0.00 0.00 0.00 0.00 0.00 0.04 0.11 0.35 0.65 0.90 0.98 1.00
NCT (2) SE 0.00 0.00 0.00 0.00 0.01 0.04 0.12 0.34 0.60 0.90 0.98 0.99
FGL (1) SE 0.00 0.00 0.00 0.00 0.03 0.02 0.10 0.23 0.53 0.86 1.00 1.00
FGL (2 SE 0.00 0.01 0.00 0.00 0.03 0.02 0.10 0.24 0.54 0.86 1.00 1.00
MNM (1) PR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MNM (2) PR 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.98
MNM (3) PR 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00
NCT (1) PR 0.71 0.92 0.96 0.94 0.97 0.98 0.98 0.98
NCT (2) PR 0.25 0.08 0.13 0.32 0.45 0.58 0.49 0.38 0.34 0.33
FGL (1) PR 0.00 0.43 0.54 0.79 0.85 0.83 0.82 0.74 0.66 0.57 0.59
FGL (2 PR 0.08 0.15 0.19 0.19 0.32 0.37 0.46 0.48 0.45 0.34 0.28 0.26

Table B.4: Sensitivity and precision of all compared methods as a function of sample size n. The
missing values for precision indicate that no edges were estimated in 95 or more iterations.
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Appendix C

Time-varying VARModels

C.1 Sampling Variation around Aggregated Abso-
lute Errors

In Figure 6.5 we reported the mean absolute error, averaged over time points and
iterations. These population level mean errors indicate which method has the
lowest expected error in a given scenario. However, it is also interesting to eval-
uate how large the population sampling variance is around the mean errors. We
therefore display a version of Figure 6.5 that includes the 25% and 75% quantiles
of the population sampling distribution.

How can we interpret these quantiles? Let’s take the performance of GAM
and KS for n = 103 in panel (b) as an example. The population mean error is
larger for GAM than for KS in this scenario. Note that this difference in mean
errors is on the population level and therefore no test is necessary to judge its
significance. However, we see that the sampling distributions of the two errors
are largely overlapping. This implies that also the difference of the two errors
has a large variance, which means that if n = 103, it is difficult to predict for a
specific sample whether GAM or KS has a larger error.

We see that for unregularized methods the confidence interval is large for
small n and becomes smaller when increasing n. For the ℓ1-regularized methods,
the quantiles are first small, then increase, and then decrease again as a function
of n. The reason is that for small n, these methods set all most estimates to zero,
and therefore the upper and lower quantiles have the same value. An extreme
case is the true zero constant function in Figure C.1 panel (e). Here both quantiles
are zero for all n, while the mean absolute error is larger than 0 and approaches
0 with increasing n.
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Figure C.1: The five panels show the mean absolute estimation error (solid lines) averaged over the
same type, time points, and iterations as a function of the number of observations n on a log scale.
We report the error of six estimation methods: stationary unregularized regression (blue), stationary
ℓ1-regularized regression (red), time-varying regression via kernel-smoothing (yellow), time-varying
ℓ1-regularized regression via kernel-smoothing (green), time-varying regression via GAM (pink), and
time-varying regression via GAMwith thresholding at 95% CI (orange). Some data points are missing
because the respective models are not identified in that situation (see Section 6.3.1.2). The dashed
lines indicate the 25% and 75% quantiles, averaged over time points.
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C.2 Sampling Variation around Absolute Errors over
Time

Figure C.2 displays the mean estimates also shown in Figure 6.6 in Section
6.3.1.3, but in addition displays the 10% and 90% quantiles of the estimates.
The sampling variance is small for n = 103, but approaches zero as n becomes
large.
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Figure C.2: Mean (tick line) and standard deviations (thin line) of estimates for the constant param-
eter (left column), and the linear increasing parameter (right column), for n = 103 (top row), n = 530
(second row) and n = 1803 (bottom row) averaged over iterations, separately for the five estimation
methods: stationary ℓ1-regularized regression (red), unregularized regression (blue), time-varying
ℓ1-regularized regression via kernel-smoothing (green), time-varying regression via GAM (pink), and
time-varying regression via GAM with thresholding at 95% CI (orange).
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C.3 Computational Cost

In Figure C.3 we depict the computational cost of the KS(L1) method versus
the GAM(st) method. The computational complexity of the KS(L1) method is
O(|E|p logp|L|), where p is the number of variables, |E| is the number of estima-
tion points and |L| is the number of lags included in the VAR model. The compu-
tational complexity for the bandwidth selection is O(|F ||Fs|p logp|L|), where |F | is
the number of folds and |Fs| the number of time points in the leave-out set of each
fold. For details see (Haslbeck & Waldorp, 2020). For the standard GAM func-
tion from the R package mgcv the computational complexity is O(nq2), where n
is the number of time points modelled, and q is the total number of coefficients,
which increases if the number of basis functions increases (Wood & Augustin,
2002). Note that the credible intervals necessary for thresholding require addi-
tional computational cost. Figure C.3 shows the average running time (in min-
utes) of the two methods as a function of n in the simulation reported above on a
2.60 GHz processor.

20 30 46 69 103 155 234 352 530 798 1808

1

5

10

15

Number of time points n

C
o
m

p
u
ta

tio
n
a
l c

o
st

 (
m

in
u
te

s)

KS(L1)
Bandwidth Selection for KS(L1)
GAM(st)

Figure C.3: Computational cost in minutes to fit time-varying VAR models with the KS(L1) method
(solid line) and the GAM(st) method (dotted line) as a function of observations n. The dashed line
indicates the computational cost for selecting an appropriate bandwidth for the KS(L1) method.

As expected, the computational cost of KS(L1) hardly increases as a function
of n. The computational cost of GAM(st) increases roughly linear as a function of
n. Also, the cost of the bandwidth selection scheme increases roughly linearly as
a function of n. When considering that KS(L1) requires the data-driven selection
of a bandwidth parameter, the computational cost of both method is larger for
the KS(L1) method for the current setting of p = 10 variables. However, since the
computational complexity of the GAM method includes a quadratic term of the
number of parameters, it is likely to perform worse when increasing the num-
ber of variables to p > 20. The KS(L1) method also works for huge number of
variables, since its computational complexity only includes log(p).
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C.4 Code to select Appropriate Bandwidth in KS(L1)
Method

The function bwSelect() fits time-varying VARmodels with different bandwidth
parameters to a set of training sets and computes the out-of-sample prediction er-
ror in the hold-out sets. We then select the bandwidth that minimizes this predic-
tion error across variables and hold-out sets. For details about how these train-
ing/test sets are chosen exactly see ?bwSelect or (Haslbeck & Waldorp, 2020).

Since we fit the time-varying VAR model of our choice repeatedly, we provide
all parameters we specified to the estimation function tvmvar() as described in
Section 6.4.3. In addition, we specify via bwFolds the number of training set
vs. test set splits, via bwFoldsize the size of the test sets, and via bwSeq the se-
quence of candidate bandwidth-values. Here, we chose ten equally spaced values
in [0.01,1].

bwSeq <- seq(0.01, 1, length = 10)

set.seed(1)

bw_object <- bwSelect(data = mood_data,

type = rep("g", 12),

level = rep(1, 12),

bwSeq = bwSeq,

bwFolds = 1,

bwFoldsize = 20,

modeltype = "mvar",

lags = 1,

scale = TRUE,

timepoints = time_data$time_norm,

beepvar = time_data$beepno,

dayvar = time_data$dayno,

pbar = TRUE)

bandwidth <- bwSeq[which.min(bw_object$meanError)]

[1] 0.34

The output object bw_object contains all fitted models and unaggregated
prediction errors. We see that the bandwidth 0.34 minimized the average out-
of-sample prediction error. The full bandwidth path is shown in Figure C.4.
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Figure C.4: Average out-of-sample prediction error for different bandwidth values obtained from the
function. The bandwidth value 0.34 returns the smallest error, indicated by the dashed line.

The bandwidth value of 0.01 is clearly too small, indicated by a large pre-
diction error. The error then tends to become smaller as a function of b until
its minimum at 0.34 and then increases again. Note that if the smallest/largest
considered bandwidth value minimizes the error, another search should be con-
ducted with smaller/larger bandwidth values.

C.5 Estimating time-varying VAR model via
GAM(st)

Here we show how to estimate a time-varying VAR model via the GAM(st)
method. All analyses are performed using the R-package tvvarGAM (Bringmann
& Haslbeck, 2017) and the shown code is fully reproducible, which means that
the reader can execute the code while reading. The code below can also be found
in an R-file on Github: https://github.com/jmbh/tvvar paper.

C.5.1 Load R-packages and dataset

Similar to Section 6.4.2 we load the dataset from themgm package, and subset the
12 mood related variables. In addition, we load the tvvarGAM package (version
0.1.1).

library(mgm) # Version 1.2-8

mood_data <- as.matrix(symptom_data$data[, 1:12]) # Subset variables

mood_labels <- symptom_data$colnames[1:12] # Subset variable labels

colnames(mood_data) <- mood_labels

time_data <- symptom_data$data_time
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# Install from Github:

library(devtools)

install_github("LauraBringmann/tvvarGAM")

library(tvvarGAM)

C.5.2 Estimating time-varying VAR model

We use the function tvvarGAM() to estimate the time-varying VAR model. We
provide the data via the data argument and provide an integer vector of length
n indicating the successiveness of measurements by specifying the number of
the recorded notification and the day number via the arguments beepvar and
dayvar. The latter is used similarly as in the mgm package to compute the VAR
design matrix. Via the argument nb we specify the number of desired basis func-
tions (see Section 6.2.2). First, we estimated the model with 10 basis functions.
However, because some of the edf of the smooth terms were close to 10, we dou-
bled the number of basis functions (see discussion in Section 6.2.2).

tvvargam_obj <- tvvarGAM(data = mood_data,

beepvar = time_data$beepno,

dayvar = time_data$dayno,

nb = 20,

scale = TRUE)

The output object consists of a list with three entries:
tvvargam_obj$Results_GAM$Estimate is a (p + 1) × p × timepoints array that
contains the parameter estimate at each time point. The first row contains
the estimated intercepts. The two other list entries have the same dimen-
sions and contain the 5% and 95% confidence intervals for the estimates in
tvvargam_obj$Results_GAM$Estimate. Thus, in case of the tvvarGAM package
no separate resampling scheme is necessary in order to get a measure for the
reliability of parameters.

C.5.3 Visualize time-varying VAR model

Figure C.5 visualizes the part of the time-varying VAR like Figure 6.10 above,
however, now with the estimates from the tvvarGAM package. Notice that for
visualization purposes we used the tresholded version of the time-varying VAR,
thus showing only the arrows that are significant (p-value < 0.05).
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Figure C.5: Top row: visualization of thresholded VAR models at estimation points 2, 10 and 18,
estimated with the spline-based method. Blue arrows indicate positive relationships, red arrows
indicate negative relationships, and the width of the arrows is proportional to the absolute value of
the corresponding parameter. The self-loops indicate autocorrelations. Bottom row: three parameters
plotted as a function of time; the points are unthresholded point estimates, the shading indicates the
5% and 95% credible intervals at each estimation point.

Similarly to the analysis performed with the KS(L1) method we visualize the
VAR parameters at estimation points 2, 10 and 18 (top row Figure C.5. We see
that less edges are present than in the results of the KS(L1) method, which indi-
cates that the GAM(ks) method is more conservative. The bottom row of Figure
C.5 shows a line plot of the same three parameters as in the analysis with the
KS(L1) method. We see that the effect of Relaxed on itself tends to decrease over
the measured time interval, which is consistent with the results of the KS(L1)
method. However, results of the cross-lagged effects of Satisfied on Strong, and
of Guilty on Satisfied are only consistent with the results of the KS(1) method in
the middle of the time series. The largest difference between the two methods is
the increase of the effect of Guilty on Satisfied is noteworthy, while the KS(L1)
method estimates a decrease. It seems that the GAM(st) estimates in the second
half of the time series are incorrect, because because if one splits the time series
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in half and estimates two unregularized stationary VAR models, then the effect
of Guilty on Satisfied is clearly negative in the second half of the time series. In
general, the large changes and the much larger credible intervals at the begin-
ning and the end of the time series indicate that the estimates are very unstable
in those regions. This is consistent with the high standard deviation of estimates
of the GAM and GAM(st) method shown in Figure C.2. The code to fully repro-
duce Figure C.5 is not shown here due to its length, but can be obtained from
Github https://github.com/jmbh/tvvar paper.
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Appendix D

Selecting between AR and

VARModels

D.1 Sampling cells on the R×D grid

Figure D.1 shows the R and D values of the 10000 VARmodels sampled from the
mixed VAR model estimated from the “MindMaastricht” data (Geschwind et al.,
2011):
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Figure D.1: R and D values for the initially sampled 10000 VAR models.

Each point in Figure D.1 represents one of the 10000 VAR models we initially
sampled from the mixed model. We see that there are 60 cells in which at least
one model has been sampled. We then discarded these initial models and sam-
pled from the mixed model until each of the 60 cells was filled with 100 models.
We used these 60×100 = 6000 in the simulation study reported in the main text.

377



D. Selecting between AR and VAR Models

378



Appendix E

The Input Matters:

Interpreting the Ising Model

E.1 Statistical Equivalence worked out for two vari-
able example

Here we show that the two models shown in Figure 8.1 are statistically equiva-
lent. Two models statistically equivalent if they output the same probability for
any of states on which the models are defined.

We begin with the model estimated on the domain {−1,−1}. We first compute
the potentials for the four states {(−1,−1), (−1,1), (1,−1), (1,1)}:

exp {0.318(−1) + 0.318(−1) + 0.193(−1)(−1)} = 0.6415304

exp {0.318(−1) + 0.318(1) + 0.193(−1)(1)} = 0.8248249

exp {0.318(1) + 0.318(−1) + 0.193(1)(−1)} = 0.8248249

exp {0.318(1) + 0.318(1) + 0.193(1)(1)} = 2.29118

and then the normalization constant

Z = 0.6415304+0.8248249+0.8248249+2.29118 = 4.58236

We divide the potentials by Z and obtain the probabilities

P(Y1 = −1,Y2 = −1) =
0.6415304

Z
= 0.14

P(Y1 = −1,Y2 = 1) =
0.8248249

Z
= 0.18

P(Y1 = 1,Y2 = −1) =
0.8248249

Z
= 0.18

P(Y1 = 1,Y2 = 1) =
2.29118

Z
= 0.5
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We now repeat the same with domain {0,1} and first compute the potentials
for the states {(0,0), (0,1), (1,0), (1,1)}:

exp {0.251(0) + 0.251(0) + 0.77(0)(0)} = 1

exp {0.251(0) + 0.251(1) + 0.77(0)(1)} = 1.285714

exp {0.251(1) + 0.251(0) + 0.77(1)(0)} = 1.285714

exp {0.251(1) + 0.251(0) + 0.77(1)(0)} = 3.571429

and then the normalization constant

Z = 1+1.285714+1.285714+3.571429 = 7.142857

We divide the potentials by Z and obtain the probabilities

P(X1 = 0,X2 = 0) =
1

Z
= 0.14

P(X1 = 0,X2 = 1) =
1.285714

Z
= 0.18

P(X1 = 1,X2 = 0) =
1.285714

Z
= 0.18

P(X1 = 1,X2 = 1) =
3.571429

Z
= 0.5

We see that both models predict the same probabilities and are therefore sta-
tistically equivalent.

E.2 Increasing interaction parameters only changes
the marginal probabilities domain in {0,1}

Here we show that for an Ising model with p = 2 variables with α1,α2 = 0 and
β12 > 0 it holds that

P(X1 = −1) = P(X2 = −1) = P(X2 = 1) = P(X2 = 1) (E.1)

for the domain {−1,1}, and that

P(X1 = 0) = P(X2 = 0) < P(X1 = 1) = P(X2 = 1) (E.2)

for the domain {0,1}.
We first show (E.1). We assume α1,α2 = 0 and β12 > 0. Then the Ising model

is given by
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E.2. Increasing interaction parameters only changes the marginal probabilities
domain in {0,1}

P(X1,X2) =
1

Z
exp{α1X1 +α2X2 + β12X2X1}

=
1

Z
exp{β12X2X1},

where Z is the normalizing constant summing over all 2p = 4 states. We calculate
the probability of the four possible states:

P(X1 = 1,X2 = −1) =
1

Z
exp{−β12},

P(X1 = 1,X2 = 1) =
1

Z
exp{β12},

P(X1 = −1,X2 = −1) =
1

Z
exp{β12},

P(X1 = −1,X2 = 1) =
1

Z
exp{−β12}.

And average over the state of X2 to obtain the marginals probabilities P(X1):

P(X1 = 1) = P(X1 = 1,X2 = −1) +P(X1 = 1,X2 = 1) =
1

Z
exp{−β12}+

1

Z
exp{β12}

P(X1 = −1) = P(X1 = −1,X2 = −1) +P(X1 = −1,X2 = 1) =
1

Z
exp{β12}+

1

Z
exp{−β12}

We see that P(X1 = 1) = P(X1 = −1). By symmetry the same is true for X2,
which proves our claim.

We next prove (E.2). We again assume α1,α2 = 0 and β12 > 0 and calculate the
probabilities of the four possible states:

P(X1 = 1,X2 = 0) =
1

Z
exp{0},

P(X1 = 1,X2 = 1) =
1

Z
exp{β12},

P(X1 = 0,X2 = 0) =
1

Z
exp{0},

P(X1 = 0,X2 = 1) =
1

Z
exp{0}.

The marginal probabilities P(X1) are:

P(X1 = 1) = P(X1 = 1,X2 = 0) +P(X1 = 1,X2 = 1) =
1

Z
exp{0}+ 1

Z
exp{β1,2}
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P(X1 = 0) = P(X1 = 0,X2 = 0) +P(X1 = 0,X2 = 1) = 2
1

Z
exp{0}

Since exp{β12} > exp{0}, we have P(X1 = 1) > P(X1 = 1), if β12 > 0. By
symmetry the same is true for X2, which proves our claim.

Note that if we assume β12 < 0, (E.1) holds again for {−1,1}, while for {0,1} we
have

P(X1 = 0) = P(X2 = 0) > P(X2 = 1) = P(X2 = 1)

instead.

E.3 Derivation of Transformation from {0,1} to {−1,1}
and vice versa

In this section, we first introduce the Ising model for p variables with domain
{−1,1}, which is the domain used in physics applications. Next, we introduce the
Ising model for p variables with domain {0,1}, which is mostly used in the statis-
tics literature. We connect both models by deriving a formula of the parameters
of one parameterization as a function of the parameters of the other parameteri-
zation. This allows us to transform the parameterization based on domain {−1,1}
into the parameterization of domain {0,1} and vice versa.

In the physics domain, variables can take on values in {−1,1}. The probability
distribution of the Ising model for p such random variables is specified by

p(y) =

exp

⎛

⎜

⎜

⎜

⎜

⎝

p
∑

i=1
αiyi +

p−1
∑
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p
∑

j>i
βij yiyj

⎞

⎟

⎟

⎟

⎟
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∑

y
exp
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⎜
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p
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αiyi +
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∑

i=1

p
∑

j>i
βij yiyj

⎞

⎟

⎟

⎟

⎟

⎠

, (E.3)

where y,y ∈ {−1, 1}p , denotes a configuration of the p random variables, and the
sum

∑

y
in the denominator denotes a sum that ranges over all 2p possible config-

urations or realizations of y.
From a statistical perspective, the Ising model is a model that is completely

determined by the spin variables’ main effects and their pairwise interactions. A
spin variable in the network tends to have a positive value (yi = 1) when its main
effect is positively valued (αi > 0), and tends to have a negative value (yi = −1)
when its main effect is negatively valued (αi < 0). Furthermore, any two variables
yi and yj in the network tend to align their values when their interaction effect is
positive (βij > 0), and tend to be in different states when their interaction effect is
negative (βij < 0).

In statistical applications, the Ising model is typically used to describe the
probability distribution of p binary random variables,
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p(x) =

exp
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, (E.4)

where x, x ∈ {0, 1}p , denotes a configuration of the p binary random variables, and
again we use

∑

x
to denote the sum that ranges over all 2p possible configurations

or realizations of x.
Even though the model is again completely determined by main effects and

pairwise interactions, its interaction parameters β∗ carry a different interpreta-
tion than the interaction parameters of the Ising model for variables Y in the
{−1,1} domain. Here, two binary variables xi and xj in the network tend to both
equal one (xixj = 1) when their interaction effect is positive (β∗ij > 0), but their

product tends to equal zero (xixj = 0) when their interaction effect is negative
(β∗ij < 0). That is, whenever the interaction between two binary variables xi and

xj in the network is negative (βij < 0), they tend to be in one of the states {0, 0},
{0, 1} or {1, 0}.

Despite the different interpretations of the two Ising model formulations, one
can traverse the two specifications by a simple change of variables. To wit, assume
that we have obtained an Ising model for p binary variables p(x) and wish to
express its solution in terms of the variables in the {−1,1} domain, then we require
the change of variables

xi =
1

2
(yi +1) with inverse relation yi = 2xi − 1. (E.5)

We use this transformation in the distribution of the binary random variables,
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and observe that this transformation affects both main effects and pairwise inter-
actions. Working out the sum over pairs of variables, we find

383



E. The Input Matters: Interpreting the Ising Model

p−1
∑

i=1

p
∑

j>i

β∗ij
1

2
(yi +1)

1

2
(yj +1) =

p−1
∑

i=1

p
∑

j>i

1

4
β∗ij

(

yiyj + yi + yj +1
)

=

p−1
∑

i=1

p
∑

j>i

1

4
β∗ij yiyj +

p−1
∑

i=1

p
∑

j>i

1

4
β∗ij yi +

p−1
∑

i=1

p
∑

j>i

1

4
β∗ij yj

+

p−1
∑

i=1

p
∑

j>i

1

4
β∗ij

=

p−1
∑

i=1

p
∑

j>i

1

4
β∗ij yiyj +

p
∑

i=1

p
∑

j=1
j!i

1

4
β∗ij yi +

p−1
∑

i=1

p
∑

j>i

1

4
β∗ij

=

p−1
∑

i=1

p
∑

j>i

1

4
β∗ij yiyj +

p
∑

i=1

1

4
β∗i+yi +

p−1
∑

i=1

p
∑

j>i

1

4
β∗ij , (E.7)

where the first term reflects pairwise interactions between the variables y, the

second term reflects main effects of the variables with main effect β∗i+ =
p
∑

j=1
β∗ij ,

and the last term is constant with respect to (w.r.t.) the variables y. Similarly, we
can express the sum over the main effects as

p
∑

i=1

α∗i
1

2
(yi +1) =

p
∑

i=1

α∗i
1

2
yi +

p
∑

i=1

α∗i
1

2
, (E.8)

where the last term is again constant w.r.t. the variables y. Collecting the main
effects,

p
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4
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and constant terms,

C =

p
∑

i=1

1

2
α∗i +

p
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p
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j=1

1

4
β∗ij , (E.10)

we obtain:
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, (E.11)

which is equal to the Ising model for variables in the {−1,1} domain when we
write αi =

1
2α
∗
i +

1
4β
∗
i+ and βij =

1
4β
∗
ij . In a similar way, one can obtain the pa-

rameter values of the binary case from a solution of the Ising model for variables
in the {−1,1} domain using α∗i = 2αi − 2βi+ and β∗ij = 4βij . Thus, we can obtain

the binary Ising model parameters α∗ and β∗ from a simple transformation of the
{−1,1} coded Ising model parameters α and β, and vice versa. Table E.1 summa-
rizes these transformations:

Transformation α β
{0,1}⇒ {−1,1} αi =

1
2α
∗
i +

1
4β
∗
i+ βij =

1
4β
∗
ij

{−1,1}⇒ {0,1} α∗i = 2αi − 2βi+ β∗ij = 4βij

Table E.1: Transformation functions to obtain the threshold and interaction parameters in one param-
eterization from the threshold and interaction parameters in the other parameterization. Parameters
with asterisk indicate parameters in the {0,1} domain.

E.4 Model equivalence across domains with penal-
ized estimation

If one estimates the Ising model with an unbiased estimator, one can estimate
with domain {0,1} and obtain by transformation the estimates one would have
obtained by estimating with domain {−1,1} (and vice versa). In this section we ask
whether this is also the case for penalized estimation, which is a popular way to
estimate the Ising model (e.g., Van Borkulo et al., 2014; Ravikumar, Wainwright,
Lafferty, et al., 2010).

In penalized estimation, the likelihood is maximized with respect to a con-
straint c, typically on the ℓ1-norm of the vector of interaction parameters βij

p
∑

i=1

p
∑

j=1
j!i

|βij | < c.
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Estimation with an ℓ1-penalty is attractive because it sets small parameter
estimates to zero, which makes it easier to interpret the model. The key problem
in this setting is selecting an appropriate constraint c. A popular approach is to
consider a sequence of candidate constraints C = {c1, . . . , ck} and select the ci that
minimizes the Extended Bayesian Information Criterion (EBIC) (Foygel & Drton,
2010), which extends the BIC (Schwarz et al., 1978) by an additional penalty
(weighted by γ) for the number of nonzero interaction parameters

EBICci = −2LLci + s0 logn+4s0γ logp,

where LLci is the maximized log-likelihood under constraint ci , s0 is the number
of nonzero interaction parameters, n is the number of observations and p the
number of estimated interaction parameters.

We are interested in whether selecting models with this procedure in the two
domains, {0,1} and {−1,1}, leads to statistically equivalent models. This is indeed
the case for the following reason: assume that c∗ minimizes the EBIC for domain
{0,1}, then from the transformation in Table 8.2, c∗

4 should give the lowest EBIC
in domain {−1,1}, because the constraint ||β∗||1 < c∗ on {0,1} is equivalent to the
constraint ||β∗||1 < c∗

4 on Y . Thus, if c∗
4 is included in the candidate set C, when

estimating in domain {−1,1}, two statistically equivalent models should be se-
lected. Note that exactly c

4 has to be included, because a slightly larger/smaller
constraint can lead to a very different model, if the number of nonzero param-
eter changes. This nonlinearity arises from the EBIC, in which s0 decreases by
1 (large change) if some parameter with a tiny value (e.g. 0.0001) is set to zero
(small change). Therefore, in order to ensure statistically equivalent models one
would need to search a dense sequence C. Clearly, this is unfeasible in practice.
This means that, in practice ℓ1-regularized estimation can return models from
domains {0,1} and {−1,1} that are not statistically equivalent. We leave the task
of investigating this issue for different estimation algorithms for future research.
In what follows we provide an extended version of this argument.

We define:

c∗ = argc∈CminEBICc

= argc∈Cmin−2log
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⎢

⎢

⎢

⎢
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⎪

⎩
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α∗i Xi +

p
∑

i=1

p
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β∗ijXiXj
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⎪

⎪

⎪

⎪
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⎪
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⎥

⎥

⎥
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⎥
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⎥

⎥

⎦

+ s0 logn+4s0γ log[p(p − 1)/2],

with constraint

p
∑

i=1

p
∑

j=1
j!i

|β∗ij | < c,
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where s0 is the number of nonzero interaction parameters, n is the sample size,

p is the number of variables p(p−1)
2 is the total number of interaction parameters,

and γ is a tuning parameter.
Now, we would like to show that if c∗ minimizes the EBIC in domain {0,1},

then 4c∗ minimizes the EBIC in {−1,1}.
We use the transformation in Table 8.2 to rewrite the EBIC into the parame-

terization implied by {−1,1}:

c∗ = argc∈CminEBICc

= argc∈Cmin−2log
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⎢

⎢

⎢

⎢
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⎥

⎦

+ s0 logn+4s0γ log[p(p − 1)/2],

with constraint

p
∑

i=1

p
∑

j=1
j!i

|1
4
β∗ij | < c∗.

We can rewrite the constraint into

p
∑

i=1

p
∑

j=1
j!i

|β∗ij | < 4c∗.

The last inequality shows that the constraint is 4 times larger for the param-
eterization in domain {0,1}. Or the other way around, the constraint is 1

4 times
smaller in {−1,1} compared to {0,1}.

We know that the models are statistically equivalent across domains. There-
fore, the likelihood of the model with constraint c in domain {0,1} is equal to
the likelihood of the model with constraint c

4 in domain {−1,1}. Now, since the
transformation never changes a zero estimate in a nonzero estimate or vice versa
with probability 1, also the terms s0 logn+4s0γ log[p(p−1)/2] in the EBIC remain
constant across domains. It follows that, if c∗ = argc∈CminEBICc in domain {0,1},
then c∗

4 = argc∈CminEBICc in domain {−1,1}.
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Appendix F

Recovering Bistable Systems

from Time Series Data

F.1 Determine Fixed Points of Bistable System

In this section we show how to compute the fixed points of the deterministic
part of our model, which we report in Section 9.2.1. The fixed points of a
set of differential equations is found by setting all equations to zero and solv-
ing that system. In our case this means solving the nonlinear system of equations:

0 = r1x1 +
4

∑

j=1

C1,j xjx1 + a1

0 = r2x2 +
4

∑

j=1

C2,j xjx2 + a2

0 = r3x3 +
4

∑

j=1

C3,j xjx3 + a3

0 = r4x4 +
4

∑

j=1

C4,j xjx4 + a4

Since we have r1, r2 = 1 and a = [1.6,1.6,1.6,1.6] in all studied situations, we fill
in those values and write out the summation:

0 = x1 +C1,1x1x1 +C1,2x1x2 +C3,1x1x3 +C4,1x1x4 + 1.6

0 = x2 +C2,1x2x1 +C2,2x2x2 +C2,3x2x3 +C2,4x2x4 + 1.6

0 = r3x3 +C3,1x3x1 +C3,2x3x2 +C3,3x3x3 +C3,4x3x4 + 1.6

0 = r4x4 +C4,1x4x1 +C4,2x4x2 +C4,3x4x3 +C4,4x4x4 + 1.6

We can exploit the symmetries in r and C to simplify finding the fixed points.
The derivatives of x1 and x2 are actually identical, and the derivatives of x3 and
x4 are identical. Thus also their integrals are identical. Thus, we can substitute
x1 into x2, and x3 into x4 to arrive at a simpler 2-dimensional system. Making the
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F. Recovering Bistable Systems from Time Series Data

substitutions, and filling in the parameter values, the differential equations then
reduce to

0 = 1x1 − 0.2x21 + 0.04x21 − 0.4x1x2 + 1.6

0 = r3x3 − 0.2x23 − 0.4x3x1 + 0.04x23 + 1.6

where r3 is the stress level for which the fixed points should be computed.
We now solve these systems for a number of stress values (r3) using Math-

ematica (Wolfram Research, Inc., n.d.). This way, we computed the following
fixed points shown in Table F.1, which are displayed in panel (a) of Figure 9.1 in
Section 9.2.1:
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F.2. Mean-Switching Hidden Markov Model

Stress Healthy:PE Healthy:NE Unhealthy:PE Unhealthy:NE Unstable:PE Unstable:NE
0.90 5.28 1.15
0.91 5.26 1.16
0.91 5.24 1.17
0.92 5.22 1.18
0.93 5.19 1.19
0.93 5.17 1.20
0.94 5.15 1.22
0.95 5.12 1.23
0.95 5.10 1.24
0.96 5.08 1.26
0.90 5.28 1.15
0.91 5.26 1.16
0.91 5.24 1.17
0.92 5.22 1.18
0.93 5.19 1.19
0.93 5.17 1.20
0.94 5.15 1.22
0.95 5.12 1.23
0.95 5.10 1.24
0.96 5.07 1.26 1.83 3.96 2.03 3.66
0.97 5.05 1.27 1.66 4.25 2.25 3.30
0.97 5.02 1.29 1.57 4.42 2.39 3.22
0.98 4.99 1.31 1.50 4.56 2.50 3.10
0.99 4.96 1.33 1.45 4.69 2.61 2.99
0.99 4.92 1.34 1.40 4.79 2.71 2.89
1.00 4.89 1.36 1.36 4.89 2.80 2.80
1.01 4.85 1.39 1.33 4.98 2.90 2.72
1.01 4.80 1.41 1.30 5.06 2.99 2.64
1.02 4.76 1.44 1.27 5.15 3.09 2.56
1.03 4.71 1.47 1.24 5.23 3.19 2.48
1.03 4.65 1.50 1.22 5.30 3.29 2.40
1.04 4.59 1.54 1.19 5.38 3.40 2.32
1.05 4.51 1.58 1.17 5.45 3.52 2.23
1.05 4.41 1.65 1.15 5.52 3.67 2.12
1.06 4.24 1.75 1.13 5.59 3.87 1.98
1.06 1.12 5.63
1.07 1.11 5.66
1.07 1.09 5.72
1.08 1.08 5.79
1.09 1.06 5.85
1.09 1.04 5.91
1.10 1.03 5.98

Table F.1: Fixed points of the emotion model for different values of stress (rows), rounded to two
decimals. The 2nd and 3rd columns refer to the fixed points of the healthy fixed points for positive
and negative emotions; the 4th and 5th columns reger to the unhealthy fixed points; and the last two
columns refer to the unstable fixed point.

F.2 Mean-Switching Hidden Markov Model

In this appendix we provide additional details with respect to the specification of
the mean-switching Hidden Markov Model, and using model selection to obtain
the number of components, described in Section 9.3.2
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F. Recovering Bistable Systems from Time Series Data

F.2.1 Model Specification

The mean-switching Hidden Markov Model is denoted

P(X,S |µ,σ) = πiN (X1)
T−1
∏

t=1

AjiN (Xt+1),

where X = {X1, . . . ,XT } is a matrix of p−variate elements Xj , S ∈ {1, . . . ,K}T is a
vector of length T indicating the state at each time point, πi is the probability of
being in state i ∈ {1, . . . ,K}, Ai,j is the probability of transitioning from state i to
state j , and µ,σ parameterize the multivariate Gaussian distributionN with zero
covariances.

In Section 9.3.2 we chose K = 2 components, and fix the covariances of the
Gaussian distribution to zero. Since we model four variables, this gives us 2 × 4
means and 2 × 4 standard deviations. The transition matrix A has three param-
eters since the last one is determined by the remaining three. Similarly, the
marginal probabilities π1,π2 are determined by A and therefore do not count
as additional parameters. We therefore fit a model with 19 freely estimated pa-
rameters.

F.2.2 Model Selection for Mean-Switching HMM

In Section 9.3.2 we inserted bistability as an assumption in the model by spec-
ifying that the HMM exhibits two states, and therefore the HMM does not pro-
vide us any evidence with respect to which number of states represents the data
best. This can be done by performing model selection between HMMs with
different numbers of states. A popular way to select between mean-switching
HMMs / Gaussian mixtures is the Bayesian Information Criterion (BIC) (Schwarz
et al., 1978), because it has been shown to consistent in estimating Gaussian mix-
tures (Leroux, 1992), and has outperformed other information criteria (includ-
ing the AIC) in simulations (Steele & Raftery, 2010). Here we fit HMMs with
K ∈ {1, . . . ,10} and report the BIC values in Figure F.1:
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Figure F.1: The figure depicts BIC values as a function of the number of states K , for HMMs fitted to
the ideal data.

392



F.3. Data Generated from Estimated Models

We see that the BIC is highest for K = 1 and then decreases for larger K , however
the the change in BIC becomes less and less when adding additional states. Since
we know from the true bistable system that the number of states is K = 2, we see
that the BIC does not select the true number of states. The reason is that the BIC
has been shown to be a consistent estimator of K if the data is generated from
a Gaussian mixture. However, in the present case the data is generated from
a bistable dynamical system. This failed attempt at model selection based on
statistical models again highlights the problems of using misspecified statistical
models to make inferences about dynamical systems models.

F.3 Data Generated from Estimated Models

In this Appendix we show data generated from estimated models for the time
period of two weeks of the original time series.

F.3.1 Mean Switching Hidden Markov Model

Figure F.2 displays a time series of two weeks generated from the Mean switching
HMM estimated in Section 9.3.2:
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Figure F.2: A time series of two weeks generated from the HMM estimated in Section Section 9.3.2.

The generated time series looks similar to the original data in that it switches
between the two fixed points at around (1,6) and (6,1). However, there are also
differences. In the original data there are less switches that lead to a long-lived
change in fixed point, but more switches that are very short-lived. Second, due to
the form of the Mean-Switching HMM, there are no “intermediate” observations
leading from one fixed point to the other. These observations exist in the original
time series (see panel (b) in Figure 9.2).
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F. Recovering Bistable Systems from Time Series Data

F.3.2 First-order Vector Autoregressive (VAR(1)) model

Figure F.3 displays a time series of two weeks generated from the VAR(1) model
in Section 9.3.4:
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Figure F.3: A time series of two weeks generated from the VAR(1) model estimated in Section Section
9.3.4.

The generated data does not show bistability, which is expected because the
VAR(1) model exhibits only a single fixed point. What looks approximately like
oscillating behaviour is a result of the high auto-regressive effects present in the
estimated VAR(1) model: given a stochastic input, the high auto-regressive ef-
fects ensure that the system is slow to eventually return to equilibrium. This
oscillating behaviour is also evident in the eigenvalues ofΦ, which consist of one
complex conjugate pair (Strogatz, 2015).

394



F.4. Residual Partial Correlations of TVAR(1) Model

F.3.3 Threshold VAR(1) Model

Figure F.4 displays a time series of two weeks generated from the TVAR(1) model
in Section 9.3.5:
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Figure F.4: A time series of two weeks generated from the TVAR(1) model estimated in Section Section
9.3.5.

The data generated from the TVAR(1) model looks similar to the original time
series in that the position of the fixed points and the variance around them is
very similar. However, the system seems to switch less often between states, and
similarly to the data generated from the HMM above, there are much fewer ob-
servations on the transitions between states.

F.4 Residual Partial Correlations of TVAR(1) Model
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Figure F.5: Residual partial correlation networks for both regimes in the TVAR model described in
Section 9.3.5 in the main text.
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F.5 Differential Equation Model Building Details

In this appendix we present additional information relating to the two-step DE
model building procedure utilized in Sections 9.3 and 9.4. This includes details
on how model fit is computed, as well as full model fit results and parameter
estimates for each of the models described in the main text.

F.5.1 Evaluating Model Fit

The fit of each model is evaluated with the mean out-of-bag explained variance,
referred to throughout as R2. This metric is calculated using 10-fold cross-
validation. First, the given dataset is randomly partitioned into ten mutually
exclusive training and test sets. Second, for each partitioned dataset, regression
models A through G, (defined by the expression in the second column of Table
F.2) are fit to the training set four times, once each of the four outcome variables

ˆdxi /dt,∀i ∈ {1,2,3,4}. Third, the resulting parameters are then used to predict the
values of the outcome variable in the test set ˆdxi /dt. The variance of the resulting
residuals VAR(dxi /dt − ˆdxi /dt) is then divided by the variance of the outcome
variable in the test set, VAR(dxi /dt) yielding an out-of-bag variance explained
for variable i based on model m in partition k, R2

i,k,m. Averaging the explained
variance across each of the partitions yields an average explained variance for
variable i in model m, R2

i,m, and averaging this number across all four outcome
variables yields the average out-of-bag explained variance for model m.

F.5.2 Ideal Data

In Table F.2 we show the fit of models A through G for the ideal dataset analysis
in Section 9.3.6. In Table F.3 we show the full parameter estimates, standard
errors and p−values for the selected model, Model C.

Model
dxi,t
dt ∼ a+ rixi + . . . q R2

A
∑

j!i rjxj 5 .04464

B
∑

j!i Rijxj +
∑p

j Cijxjxi 9 .06874

C
∑

j!i Rijxj +
∑p

(j,k)βjxjxk 15 .06870

D
∑

j!i Rijxj +
∑p

(j,k) βjxjxk +
∑p

j γjx
3
j 19 .06871

E
∑

j!i Rijxj +
∑p

(j,k) βjxjxk +
∑p

j γjx
3
j +

∑p
j!k!l ζj (xjxkxl ) 23 .06870

F
∑

j!i Rijxj +
∑p

(j,k) βjxjxk +
∑p

j γjx
3
j +

∑p
(j,k,l) ζj (xjxkxl ) 35 .06860

G

∑

j!i Rijxj +
∑p

(j,k) βjxjxk +
∑p

j γjx
3
j +

∑p
(j,k,l) ζj (xjxkxl )

+
∑p

(j,k,l,m) ηj (xjxkxlxm)
70 .06846

Table F.2: Model fit results for each of the seven models described in text in Section 9.3.6 for the ideal
dataset. The second column gives the model equation for each variable, q denotes the number of pa-
rameters estimated per univariate regression model, and the final column indicates R2, the explained
variance, as calculated based on the prediction error on a hold-out set, using 10-fold cross-validation.
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dx1/dt dx2/dt dx3/dt dx4/dt
Est SE p Est SE p Est SE p Est SE p

a 1.40 0.13 < .01 1.37 0.12 < .01 1.25 0.12 < .01 1.27 0.12 < .01
x1 0.88 0.05 < .01 0.03 0.02 0.19 -0.02 0.02 0.33 0.04 0.02 0.05
x2 0.02 0.02 0.34 0.95 0.05 < .01 0.05 0.02 0.02 -0.01 0.02 0.57
x3 -0.01 0.02 0.72 0.01 0.02 0.68 0.96 0.05 < .01 0.08 0.02 < .01
x4 0.01 0.02 0.51 < .01 0.02 0.80 0.04 0.02 0.10 0.91 0.05 < .01

x1× x1 -0.18 0.01 < .01 - - - - - - - - -
x1× x2 0.04 0.01 < .01 0.03 0.01 < .01 - - - - - -
x1× x3 -0.17 0.01 < .01 - - - -0.18 0.01 < .01 - - -
x1× x4 -0.18 0.01 < .01 - - - - - - -0.19 0.01 < .01
x2× x2 - - - -0.19 0.01 < .01 - - - - - -
x2× x3 - - - -0.19 0.01 < .01 -0.19 0.01 < .01 - - -
x2× x4 - - - -0.19 0.01 < .01 - - - -0.18 0.01 < .01
x3× x3 - - - - - - -0.19 0.01 < .01 - - -
x3× x4 - - - - - - 0.03 0.01 < .01 0.02 0.01 < .01
x4× x4 - - - - - - - - - -0.18 0.01 < .01

Table F.3: Full parameter estimates, standard errors and p-values for Model B in Section 9.3.6, for the
DE model fit to ideal data.

F.5.3 ESM Data

In Table F.4 we show the fit of models A through G for the emulated ESM dataset
analysis, from Section 9.4.4. In Table F.5 we show the full parameter estimates,
standard errors and p−values for the selected model, Model G.

Model
dxi,t
dt ∼ a+ rixi + . . . q R2

A
∑

j!i rjxj 5 0.13991

B
∑

j!i Rijxj +
∑p

j Cijxjxi 9 0.16827

C
∑

j!i Rijxj +
∑p

(j,k) βjxjxk 15 0.16928

D
∑

j!i Rijxj +
∑p

(j,k) βjxjxk +
∑p

j γjx
3
j 19 0.19455

E
∑

j!i Rijxj +
∑p

(j,k)βjxjxk +
∑p

j γjx
3
j +

∑p
j!k!l ζj (xjxkxl ) 23 0.19801

F
∑

j!i Rijxj +
∑p

(j,k)βjxjxk +
∑p

j γjx
3
j +

∑p
(j,k,l) ζj (xjxkxl ) 35 0.19940

G

∑

j!i Rijxj +
∑p

(j,k)βjxjxk +
∑p

j γjx
3
j +

∑p
(j,k,l) ζj (xjxkxl )

+
∑p

(j,k,l,m) ηj (xjxkxlxm)
70 0.20420

Table F.4: Model fit results for each of the seven models described in text, for the ESM time series,
described in Section 9.4. The second column gives the model equation for each variable, q denotes the
number of parameters estimated per univariate regression model. The final two columns indicate R2,
the explained variance, as calculated based on the prediction error on a hold-out set, using 10-fold
cross-validation, for the snapshot ESM data and the mean-aggregated ESM data, respectively. R2 for
Model G in the mean-aggregated ESM data case was not available due to multicollinearity problems
encountered when fitting the model.
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dx1/dt dx2/dt dx3/dt dx4/dt
Est SE p Est SE p Est SE p Est SE p

(Intercept) -0.07 0.73 0.92 -0.16 0.73 0.82 0.31 0.74 0.68 0.20 0.74 0.78
x1 0.19 0.31 0.53 0.16 0.31 0.61 -0.09 0.31 0.78 -0.12 0.31 0.71
x2 0.07 0.30 0.80 0.18 0.30 0.54 -0.29 0.30 0.34 -0.21 0.30 0.48
x3 -0.06 0.31 0.86 0.01 0.31 0.96 -0.05 0.31 0.88 -0.07 0.31 0.82
x4 -0.01 0.31 0.97 -0.04 0.31 0.89 0.01 0.31 0.98 0.10 0.31 0.74

x1× x1 -0.02 0.06 0.78 -0.01 0.06 0.87 -0.03 0.06 0.65 -0.01 0.06 0.81
x1× x2 -0.11 0.09 0.21 -0.10 0.09 0.22 0.14 0.09 0.10 0.13 0.09 0.13
x1× x3 -0.02 0.10 0.86 -0.04 0.10 0.66 < .01 0.10 0.99 0.02 0.10 0.80
x1× x4 -0.05 0.10 0.59 < .01 0.10 0.99 0.01 0.10 0.94 < .01 0.10 0.98
x2× x2 0.01 0.06 0.83 -0.02 0.06 0.76 0.02 0.06 0.72 0.01 0.06 0.82
x2× x3 < .01 0.10 0.98 -0.01 0.10 0.94 0.05 0.10 0.58 0.06 0.10 0.57
x2× x4 -0.01 0.10 0.95 -0.05 0.10 0.60 0.06 0.10 0.57 0.02 0.10 0.86
x3× x3 0.02 0.06 0.68 0.01 0.06 0.87 -0.01 0.06 0.87 0.02 0.06 0.73
x3× x4 0.01 0.09 0.92 0.01 0.09 0.92 0.01 0.09 0.94 -0.04 0.09 0.62
x4× x4 0.02 0.06 0.80 0.03 0.06 0.68 -0.03 0.06 0.69 -0.03 0.06 0.68

x1× x1× x1 < .01 0.01 0.71 < .01 0.01 0.92 0.01 0.01 0.38 0.01 0.01 0.33
x1× x1× x2 0.02 0.01 0.19 0.01 0.01 0.48 -0.01 0.01 0.33 -0.02 0.01 0.15
x1× x1× x3 < .01 0.01 0.95 0.01 0.01 0.61 0.01 0.01 0.64 < .01 0.01 0.82
x1× x1× x4 < .01 0.01 0.78 < .01 0.01 0.71 < .01 0.01 0.73 < .01 0.01 0.81
x1× x2× x2 < .01 0.01 0.87 0.01 0.01 0.49 -0.01 0.01 0.39 < .01 0.01 0.76
x1× x2× x3 0.01 0.02 0.58 0.01 0.02 0.69 -0.02 0.02 0.32 -0.02 0.02 0.27
x1× x2× x4 0.02 0.02 0.25 0.02 0.02 0.22 -0.03 0.02 0.21 -0.02 0.02 0.34
x1× x3× x3 < .01 0.01 0.79 < .01 0.01 0.96 < .01 0.01 0.81 < .01 0.01 0.98
x1× x3× x4 0.01 0.02 0.73 < .01 0.02 0.80 < .01 0.02 0.99 < .01 0.02 0.99
x1× x4× x4 < .01 0.01 0.98 -0.01 0.01 0.62 < .01 0.01 0.80 < .01 0.01 0.75
x2× x2× x2 < .01 0.01 0.92 < .01 0.01 0.96 < .01 0.01 0.98 < .01 0.01 0.82
x2× x2× x3 < .01 0.01 1.00 < .01 0.01 0.87 < .01 0.01 0.79 < .01 0.01 0.79
x2× x2× x4 -0.01 0.01 0.70 < .01 0.01 0.90 < .01 0.01 0.89 < .01 0.01 0.96
x2× x3× x3 < .01 0.01 0.92 < .01 0.01 0.93 < .01 0.01 0.89 -0.01 0.01 0.50
x2× x3× x4 -0.01 0.02 0.70 < .01 0.02 0.79 < .01 0.02 0.83 0.01 0.02 0.59
x2× x4× x4 < .01 0.01 0.91 0.01 0.01 0.63 < .01 0.01 0.83 < .01 0.01 0.78
x3× x3× x3 < .01 0.01 0.95 < .01 0.01 0.93 < .01 0.01 0.97 < .01 0.01 0.51
x3× x3× x4 -0.01 0.01 0.40 -0.01 0.01 0.68 0.01 0.01 0.63 0.01 0.01 0.39
x3× x4× x4 0.01 0.01 0.44 < .01 0.01 0.76 -0.01 0.01 0.56 < .01 0.01 0.73
x4× x4× x4 -0.01 0.01 0.36 -0.01 0.01 0.42 0.01 0.01 0.33 0.01 0.01 0.40

Table F.5: First part of full parameter estimates, standard errors and p-values for Model G in Section
9.4.4, for the DEmodel fit to the emulated ESM data. See Table F.6 below for the remaining estimates.
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dx1/dt dx2/dt dx3/dt dx4/dt
Est SE p Est SE p Est SE p Est SE p

x1× x1× x1× x1 < .01 < .01 0.94 < .01 < .01 0.71 < .01 < .01 0.91 < .01 < .01 0.48
x1× x1× x1× x2 < .01 < .01 0.82 < .01 < .01 0.55 < .01 < .01 0.52 < .01 < .01 0.92
x1× x1× x1× x3 < .01 < .01 0.99 < .01 < .01 0.74 < .01 < .01 0.46 < .01 < .01 0.40
x1× x1× x1× x4 < .01 < .01 0.80 < .01 < .01 0.78 < .01 < .01 0.83 < .01 < .01 0.88
x1× x1× x2× x2 < .01 < .01 0.25 < .01 < .01 0.23 < .01 < .01 0.15 < .01 < .01 0.36
x1× x1× x2× x3 < .01 < .01 0.70 < .01 < .01 0.66 < .01 < .01 0.43 < .01 < .01 0.22
x1× x1× x2× x4 < .01 < .01 0.33 < .01 < .01 0.76 < .01 < .01 0.84 < .01 < .01 0.81
x1× x1× x3× x3 < .01 < .01 0.37 < .01 < .01 0.44 < .01 < .01 0.19 < .01 < .01 0.17
x1× x1× x3× x4 < .01 < .01 0.27 < .01 < .01 0.16 < .01 < .01 0.36 < .01 < .01 0.19
x1× x1× x4× x4 < .01 < .01 0.47 < .01 < .01 0.12 < .01 < .01 0.23 < .01 < .01 0.17
x1× x2× x2× x2 < .01 < .01 0.35 < .01 < .01 0.51 < .01 < .01 0.43 < .01 < .01 0.52
x1× x2× x2× x3 < .01 < .01 0.96 < .01 < .01 0.92 < .01 < .01 0.97 < .01 < .01 0.80
x1× x2× x2× x4 < .01 < .01 0.82 < .01 < .01 0.35 < .01 < .01 0.28 < .01 < .01 0.44
x1× x2× x3× x3 < .01 < .01 0.28 < .01 < .01 0.18 < .01 < .01 0.10 < .01 < .01 0.04
x1× x2× x3× x4 < .01 < .01 0.39 < .01 < .01 0.16 < .01 < .01 0.27 < .01 < .01 0.12
x1× x2× x4× x4 < .01 < .01 0.13 < .01 < .01 0.05 < .01 < .01 0.07 < .01 < .01 0.06
x1× x3× x3× x3 < .01 < .01 0.76 < .01 < .01 0.90 < .01 < .01 0.99 < .01 < .01 0.98
x1× x3× x3× x4 < .01 < .01 0.96 < .01 < .01 0.99 < .01 < .01 0.66 < .01 < .01 0.80
x1× x3× x4× x4 < .01 < .01 0.82 < .01 < .01 0.94 < .01 < .01 0.74 < .01 < .01 0.88
x1× x4× x4× x4 < .01 < .01 0.75 < .01 < .01 0.53 < .01 < .01 0.52 < .01 < .01 0.59
x2× x2× x2× x2 < .01 < .01 0.52 < .01 < .01 0.57 < .01 < .01 0.56 < .01 < .01 0.50
x2× x2× x2× x3 < .01 < .01 0.76 < .01 < .01 0.60 < .01 < .01 0.64 < .01 < .01 0.49
x2× x2× x2× x4 < .01 < .01 0.71 < .01 < .01 0.68 < .01 < .01 0.63 < .01 < .01 0.69
x2× x2× x3× x3 < .01 < .01 0.47 < .01 < .01 0.32 < .01 < .01 0.30 < .01 < .01 0.44
x2× x2× x3× x4 < .01 < .01 0.57 < .01 < .01 0.26 < .01 < .01 0.18 < .01 < .01 0.29
x2× x2× x4× x4 < .01 < .01 0.41 < .01 < .01 0.43 < .01 < .01 0.37 < .01 < .01 0.36
x2× x3× x3× x3 < .01 < .01 0.64 < .01 < .01 0.80 < .01 < .01 0.89 < .01 < .01 0.31
x2× x3× x3× x4 < .01 < .01 0.28 < .01 < .01 0.48 < .01 < .01 0.76 < .01 < .01 0.36
x2× x3× x4× x4 < .01 < .01 0.55 < .01 < .01 0.77 < .01 < .01 0.74 < .01 < .01 0.77
x2× x4× x4× x4 < .01 < .01 0.68 < .01 < .01 0.95 < .01 < .01 0.86 < .01 < .01 0.91
x3× x3× x3× x3 < .01 < .01 0.70 < .01 < .01 0.99 < .01 < .01 0.95 < .01 < .01 0.64
x3× x3× x3× x4 < .01 < .01 0.44 < .01 < .01 0.83 < .01 < .01 0.96 < .01 < .01 0.83
x3× x3× x4× x4 < .01 < .01 0.79 < .01 < .01 0.96 < .01 < .01 0.77 < .01 < .01 0.72
x3× x4× x4× x4 < .01 < .01 0.75 < .01 < .01 0.76 < .01 < .01 0.48 < .01 < .01 0.54
x4× x4× x4× x4 < .01 < .01 0.30 < .01 < .01 0.33 < .01 < .01 0.18 < .01 < .01 0.23

Table F.6: Remaining full parameter estimates, standard errors and p-values for Model G in Section
9.4.4, for the DE model fit to the emulated ESM data. For the other estimates see Table F.6 above.

F.6 Additional Model Results from ESM Time Series

In this appendix, we provide additional figures to visualize the results of the
statistical models fit to the ESM time series in Section 9.4.
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Figure F.6: The histograms of the emotion intensity of the four modeled emotions Cheerful, Content,
Anxious and Sad, for the ESM data
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Figure F.7: Panel (a) shows the relationship between Content and Cheerful, two emotions with the
same valence, at the same time point The red line indicates the best fitting regression model, for ESM
time series. Similarly, panel (b) shows the relationship between Anxious and Content, two emotions
with different valence. Panel (c) displays the correlation matrix as a network, and panel (d) displays
the partial correlation matrix as a network.
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Figure F.8: Time series of the four emotion variables, also shown in panel (a) of Figure 9.2, with
background color indicating whether a given time point is assigned to the first or second component
of the mean-switching HMM estimated from the ESM dataset.
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Appendix G

A Formal Theory of Panic

Disorder

G.1 Overview of Mathematical and Computational
Models of Panic Disorder

In this section we provide the exact specification of the model presented in the
main chapter. Figure G.1 provides an overview of the specified relationships be-
tween variables; Table G.1 provides an overview of the most important difference
equations; Table G.2 provides an overview of the variables and their notation in
difference equations and the R-code; and Table G.3 provides an overivew of the
parameters used in the model.

Arousal Perceived 
Threat

Escape

Arousal
Schema

Avoid

Context

H

N
a

c

b

g

e

h

i

f

d

j

k
l

n

m

Figure G.1: An annotated conceptual model of Panic Disorder. The model includes the six state
variables focused on in the main text as well as two additional variables that play an important role
in the model behavior: homeostatic feedback (H) and a noise function (N) that induces stochastic
variation in arousal. The lowercase English letters provide labels for the relations among the state
variables. Below, we use these annotations to further detail how we implemented this conceptual
model in the statistical software environment R.

The computational model developed here implements the mathematical
model of Panic Disorder using difference equations: iterative functions that use
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the value of the state variables at time t to calculate the value of those same vari-
ables at time t+1. Below, we present and describe the equations used to calculate
each of our state variables. In addition, we present the code used to implement
the equations in R. Throughout this overview, we will refer to state variables (the
variables the causal diagram in Figure G.1) and the parameters that shape the
behavior of either the state variables themselves (e.g., the rate at which they can
change) or the relationships between them (e.g., the slope of a linear relation-
ship).

In our model equations, state variables will be represented by uppercase En-
glish letters (e.g., A for arousal) and parameters will be represented by lowercase
Greek letters (e.g., κ for the slope of the effect of homeostasis on arousal).

In our R code, uppercase English letters will again be used to represent state
variables (e.g., A for arousal). However, here, lowercase English letters will be
used to refer to the type of parameter variable (e.g., s for the slope of a linear
relationship) and specific parameter variables will be further identified by the
state variable(s) related to that parameter (e.g., s H A for the slope of the linear
effect of homeostasis on arousal).

Variable Difference Equation
Arousal At+1 = At +α((νTt −At)−κtHt +Nt)

Perceived Threat
Tt+1 = Tt +γ

(

(
A
µ
t

A
µ
t +λ(S,C)

µ
t
−Tt)− τEt

)

λ(S,C)t = 1− St
St+ξ
−πCt

Escape Behavior Et+1 = Et + ε
(

Tσt
Tσt +ρ

σ −Et

)

Arousal Schema dS
dt =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

St − ζESt , if max{Ft−Ω , . . . ,Ft} < ψ
St + ζA(max{Tt−Ω , . . . ,Tt}− St), if max{Ft−Ω , . . . ,Ft} ≥ ψ,max{Et−Ω , . . . ,Et} > ω
St − ζESt , if max{Ft−Ω , . . . ,Ft} ≥ ψ,max{Et−Ω , . . . ,Et} ≤ ω

Avoidance Vt+1 = Vt + η
(

Sχt
Sχt +φ

χ −Vt

)

Table G.1: Key Difference Equations for Computational Model. Our computational model uses dif-
ference equations rather than differential equations. This table introduces the difference equations
corresponding to the differential equations introduced in the main text. Uppercase English letters
represent state variables (e.g., A for arousal). Lowercase Greek letters represent parameters (e.g., α
for the intrinsic rate of change of arousal).
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Variable Time Scale Notation Difference Equation Notation R Code
Arousal Fast A A
Perceived Threat Fast T PT
Escape Behavior Fast E E
Homoestatic Feedback Fast H H
Noise Fast N N
Situational Context Fast C sit
Arousal Schema Slow S AS
Avoidance Slow V AV

Table G.2: State Variables in Difference Equations and R-Implementation

Parameter Type Notation Difference Equation Notation R-Code Reference to Fig G.1 Default Value
Rate α r A Arousal 0.50
Rate β r H Homoestasis 0.01
Rate γ r PT Perceived Threat 1.00
Rate ε r E Escape 0.50
Rate ζA r AS a Arousal Schema 0.25
Rate ζB r AS e Arousal Schema 0.10
Rate η r AV Avoidance 1.00
Relationship θ h A H b 0.75
Relationship ι p A H b 8.00
Relationship κ s H A c 10.00
Relationship λ h A PT d 0.50
Relationship µ p A PT d 5.00
Relationship ν s PT A e 1.00
Relationship ξ h AS APT f 0.50
Relationship π s sit APT g 0.05
Relationship ρ h PT E h 0.50
Relationship σ p PT E h 10.00
Relationship τ s E PT i 0.20
Relationship ϕ h AS AV l 0.75
Relationship χ p AS AV l 7.00
Relationship ψ cr F AS k 0.50
Relationship ω cr E AS k 0.25
Time Ω daydef 1440

Table G.3: Model Parameters for Mathematical and Computational Model Equations. This table de-
picts the model parameters for key equations that define the computational model. The first column
indicates the type of parameter. Rate parameters define the rate at which a variable can change. Re-
lationship parameters define the relationships among state variables. For each parameter we provide
the notation used in difference and differential equations (column 2), the notation used to implement
the difference equations in R (column 3), the variables or relationships affected by the parameter (col-
umn 4), and the default value we used for the parameter in our implementation of the computational
model (column 5).

In what follows, we provide the difference equation and its implementation
in R for each of the variables in Table G.2.

G.1.1 Arousal

As described in the main text, arousal (A) is a function of itself and three vari-
ables: perceived threat (T), homeostatic feedback (H), and a correlated noise vari-
able (N) that creates variability in arousal. These effects are denoted as a, c, and
e in Figure G.1, respectively.
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G. A Formal Theory of Panic Disorder

In the main text, we described the differential equations that constitute our
mathematical model. These differential equations provide the instantaneous rate
of change in continuous time. The computational model uses difference equa-
tions which operate in discrete time. The differential and difference equations
used to define arousal are shown in equations G.1 and G.2, respectively.

dA

dt
= α((νT−A)−κH+N) (G.1)

At+1 = At +α((νTt −At)−κtHt +Nt) (G.2)

In the computational model we used Euler’s method to allow our difference
equations to adequately approximate the differential equations. The basic idea
of this approach is that we take only a very small discrete step in the direction
dictated by the difference equation, thus allowing us to re-evaluate the direction
we should move after this very small step. In doing so, we avoid under- or over-
shooting the destination and better approximate the differential equation. In this
case, we use a step size of .001, meaning we take 1000 “small steps” for each time
step. The smaller the step size, the more precise the model. This same procedure
is followed for all equations in the model.

We used the following code to implement the difference equation for arousal
in R:

A_eq <- s_PT_A * PT[i]

A_eq2 <- - s_H_A * H[i]

A_eq3 <- s_N_A * N[i]

A[i + 1]<- A[i] + r_A*((A_eq - A[i]) + A_eq2 + A_eq3) * stepsize

A[i + 1][A[i + 1] < 0] <- 0

Note that the subscript i is used to indicate each discrete time step (or itera-
tion). Also note that arousal is restricted to being greater than or equal to zero.

G.1.2 Perceived Threat

Perceived Threat (T) is a function of itself and two other state variables: arousal
(A) and escape (E), depicted as effects d and i in Figure G.1, respectively. The
differential and difference equations used to define perceived threat are shown in
equations G.3 and G.4, respectively.

dT

dt
= γ((

Aµ

Aµ +λµ
−T)− τE) (G.3)

Tt+1 = Tt +γ

(

(
A
µ
t

A
µ
t +λ(S,C)

µ
t

−Tt)− τEt

)

(G.4)

We used the following code to implement the difference equation for arousal
in R:
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ifelse(is.na(sit[i] == 1), c <- 0, c <- sit[i])

h_A_PT[i] <- 1 - (AS[i] / (AS[i] + h_AS_APT)) - s_sit_APT * c

PT_eq <- (A[i]ˆp_A_PT) / ((A[i]ˆp_A_PT) + (h_A_PT[i]ˆp_A_PT))

PT_eq2 <- - s_E_PT * E[i]

PT[i + 1] <- PT[i] + r_PT * ((PT_eq-PT[i]) + PT_eq2) * stepsize

PT[i + 1][PT[i + 1] < 0] <- 0

Importantly, the value of the parameter λ is dependent on two other variables
in the model: the current level of arousal schema (S) and the current level of the
situational context variable (C). To signify this dependence, we will denote the
parameter λ(S,C). The difference equation for λ(S,C) is given by

λ(S,C)t = 1− St
St + ξ

−πCt (G.5)

and implemented in R as:

h_A_PT[i] <- 1 - (AS[i] / (AS[i] + h_AS_APT)) - s_sit_APT * c

G.1.3 Context

Situational Context (C) in our model is chosen probabilistically and remains
fixed for a specified period of time. The specified period of time is drawn
from a Gaussian distribution with specified mean (mu_S) and standard devia-
tion (sd_S). We used a mean of 30 and a standard deviation of 5, meaning that
panic-predisposing contexts lasted, on average, 30 “minutes.” In our our code
presented below, this randomly drawn duration time is labeled dur_sit.

When a new period begins (which is indicated by a missing value for the sit-
uation variable; is.na(sit[i])==TRUE), we assign to this new period a context
that either predisposes one to experiencing a panic attack (i.e., assigning a value
of 1) or does not predispose one to experiencing a panic attack (i.e., assigning a
value of 0). This value remains (1 or 0) until the period is over (i.e., for the dura-
tion specified by dur_sit). When a period is over, the above steps are repeated.

We implement the above with the following R code:
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if(is.na(sit[i]))

{
dur_sit <- round(rnorm(n = 1, mean = mu_S, sd = sd_S))

sit_steps <- dur_sit / stepsize

max_step <- min((i + sit_steps-1), nIter)

sit[i : max_step] <- rep(sample(0:1, size = 1,

prob = c(1 - v_prob_S[i], v_prob_S[i])),

times = max_step - i + 1)

}

Importantly, the probability of being in a panic predisposing situation is de-
termined, in part, by avoidance behavior (AV). As avoidance increases, the prob-
ability of being in a panic predisposing situation decreases. We implemented
this in R by making v_prop_S a function of avoidance behavior and an initial
probability value (prob_S) which represents the probability of being in a panic
predisposing context in the absence of avoidance. We implement the above with
the following R code:

v_prob_S[i:nIter] <- prob_S * 2 / (1 + exp(6 * AV[i]))

We used an initial probability (prob_S) value of .10 (i.e., 10% probability of
being in a panic predisposing context). With this equation, a mild level of avoid-
ance (AV=.20) reduces the probability of being in a panic-predisposing context
to approximately 5%. A moderate level of avoidance (AV=.50) reduces the prob-
ability to 1%. With more extreme avoidance, the probability approaches 0.

If escape behavior is sufficiently engaged at any point (i.e., exceeds a critical
threshold cr_E_sit), then the situation variable is set to 0 for the length of the
most recently selected “duration” variable (sit_steps). We implement this with
the following R code:

if(E[i] > cr_E_sit) {
max_steps<-min(i + sit_steps-1, nIter)

sit[i:max_steps] <- 0

}

G.1.4 Escape Behavior

Escape behavior (E) is a function of itself and perceived threat (T), as depicted in
effect h in Figure G.1. The differential and difference equations are given in G.6
and G.7, respectively:

dE

dt
= ε(

Tσ

Tσ + ρσ
) (G.6)

Et+1 = Et + ε

(

Tσt
Tσt + ρ

σ −Et

)

(G.7)

The difference equation is implemented with the following R-code:

E_eq <- PT[i]ˆp_PT_E / ((PT[i]ˆp_PT_E) + (h_PT_Eˆp_PT_E))

E[i+1] <- E[i] + r_E * (E_eq - E[i]) * stepsize
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G.1.5 Homoestatic Feedback

Homeostatic feedback (H) is a function of itself and arousal (A), as depicted in
effect “b” in Figure G.1. The equation defining homeostatic feedback takes the
same form as the equation defining escape behavior. The differential and differ-
ence equations are given by

dH

dt
= β

(

Aι

Aι +θι
−H

)

(G.8)

and

Ht+1 = Ht + β

(

Aιt
Aιt +θ

ι −Ht

)

. (G.9)

The difference equation is implemented with the following R-code:

H_eq <- A[i]ˆp_A_H / ((A[i]ˆp_A_H) + (h_A_Hˆp_A_H))

H[i+1] <- H[i] + r_H * (H_eq - H[i]) * stepsize

G.1.6 Noise

To incorporate stochastic variation in arousal arising from either physiological
processes or from the environment, we added a noise variable into the model.
Following prior models defined using difference equations, we used a difference
equation for red noise (Hasselmann, 1976; van Nes & Scheffer, 2004). Concep-
tually, red noise at time point t is generated by adding white noise to the red
noise at t-1. The red noise variable is therefore dependent on the previous time
step. Noise that is dependent across time is more realistic than white noise, be-
cause it is unrealistic to assume that either arousal or the environmental effects
on arousal would change erratically on a minute-to-minute basis. The red noise
variable used here allows arousal to vary while also remaining similar from one
minute to the next.

The difference equation we used to compute red noise at time step t is given
below. In this equation, λ gives the approximate period of the noise in a given
time step (we used a default of λ = 2), N0 is the approximate mean of the red
noise, β is a parameter that expresses the daily deviation, and ε (white_noise in
the R code below) drawn from a standard normal distribution.

Nt =
(

1− 1

λ
(Nt−1 −N0) +N0 + βεt

)

(G.10)

The difference equation is implemented with the following R-code:

white_noise <- rnorm(n= nIter , mean = .1, sd = sd[i + 1])

red_noise[1] <- white_noise[1]

for(j in 2:nIter) red_noise[j] <- (1 - 1/lambda) * (red_noise[j-1])

+ beta * white_noise[j]
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We calcualted β as

β = σ

√

2

λ
− 1

λ2
,

whereλ is the same parameter as used in the calculation of Nt and σ is defined
as a function of Avoidance. That is, just as Avoidance was part of the equation
defining the probability of being in a panic-predisposing context, Avoidance is
also part of the equation that defines variation in arousal (see effect a in Figure
G.1). We implemented the calculation of σ and β in R as follows:

sd[(i+1):nIter] <- s_AV_sd * AV[i+1] + initial$sd

beta <- sd[i + 1] * sqrt(2/lambda - 1 / lambdaˆ2)

We used a default value of s_AV_sd = -1/3*initial$sd and initial$sd=.1.
As a result, as Avoidance increases from 0 to 1, sd decreases from .1 to approxi-
mately .066, a 1/3 reduction in the variability in arousal.

G.1.7 Avoidance

Avoidance (V) is a function of arousal schema (effect l in Figure G.1). Like arousal
schema, avoidance updates every 1440 time steps and grows as a function of
Arousal Schema. The differential and difference equations are given by:

dV

dt
= η

(

Sχ

Sχ +ϕχ
−V

)

(G.11)

and

Vt+1 = Vt + η

(

Sχt
Sχt +ϕχ

−Vt

)

(G.12)

We implemented the difference equation with the following R-code:

AV_eq <- AS[i]ˆp_AS_AV / ((AS[i]ˆp_AS_AV) + (h_AS_AVˆp_AS_AV))

AV[(i+1):nIter] <- AV[i] + r_AV * (AV_eq - AV[i])

G.1.8 Arousal Schema

Arousal Schema (S) is affected by panic attacks (represented by effect k in Fig-
ure G.1). Importantly, the effect of panic attacks on arousal schema cannot be
reduced to a single variable, but rather is determined jointly by arousal (A), per-
ceived threat (T) and escape behavior (E). Note that we define the new variable
Fear (F) as F =

√
AT to make S dependent on A and T.

As noted in the main text, arousal schema changes on a much slower time
scale than the panic attack variables, operating on a time scale of days rather
than minutes (i.e., 1,440th the rate of panic attack variables). To ease the com-
putational burden of the model, we thus defined arousal schema to update only
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G.1. Overview of Mathematical and Computational Models of Panic Disorder

every 1440 time steps, rather than every time step as is done for arousal, per-
ceived threat, and escape behavior.

As described in greater detail in the main text, the calculation of arousal
schema is based on two conditional statements. First, is there sufficient arousal
and perceived threat to provide the opportunity for learning to occur? Second, is
escape behavior present?

The differential equation is given by

dS
dt =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, if max{Ft−Ω , . . . ,Ft} < ψ
ζA(max{Tt−Ω , . . . ,Tt}− S), if max{Ft−Ω , . . . ,Ft} ≥ ψ,max{Et−Ω , . . . ,Et} > ω
−ζES, if max{Ft−Ω , . . . ,Ft} ≥ ψ,max{Et−Ω , . . . ,Et} ≤ ω

(G.13)

and the difference equation is given by:

dS
dt =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

St − ζESt , if max{Ft−Ω , . . . ,Ft} < ψ
St + ζA(max{Tt−Ω , . . . ,Tt}− St), if max{Ft−Ω , . . . ,Ft} ≥ ψ,max{Et−Ω , . . . ,Et} > ω
St − ζESt , if max{Ft−Ω , . . . ,Ft} ≥ ψ,max{Et−Ω , . . . ,Et} ≤ ω

(G.14)

And we implemented the difference equation with the following R-code:

if(max(fear[(i-daydef+1):i]) >= cr_F_AS)

{
ifelse (max(E[(i-daydef+1):i]) > cr_E_AS,

newAS <- AS[i] + r_AS_a * (max(PT[(i - daydef + 1):i]) - AS[i]),

newAS < - AS[i] - r_AS_e * AS[i])

AS[(i+1):nIter] <- newAS

}

Note that arousal schema is updated for all remaining iterations (i.e., the next
iteration through the final iteration [i+1:nIter]). Accordingly, if no further
opportunities for learning occur, then arousal schema will remain the same for
the remainder of the simulation.
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G.2 Further Examining the Vicious Cycle of Panic
Attacks
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Figure G.2: Like Figure 10.2 in the main chapter, this presents the vector field, stability landscape,
and phase line depictions of the A!T feedback loop under varying conditions. In the main chapter,
we varied arousal schema (thereby altering the A→T effect) and examined the impact of these changes
on the broader feedback loop. Here, arousal schema is kept constant (S = 0.50) and the strength of
T→A effect is varied from 0.75 (left column) to 1.25 (right column). As seen in Panels B-D, when the
strength of the T→A effect is weak, there is no alternative stable state. Runaway positive feedback
is not possible. As the strength of T→A increases, an alternative stable state is formed (see middle
column). As T→A strengthens, the tipping point into runaway positive feedback shifts to lower levels
of arousal. Note, in the right column, the alternative stable state has shifted beyond the bounds of
the figure, indicating the system will settle at a higher state of arousal than observed when we varied
arousal schema alone.

In main chapter, we analyzed the behavior of the positive feedback loop between
arousal and perceived threat (A!T) with a focus on the impact of arousal schema
and, in turn, the strength of the A→T effect, on the behavior of the broader posi-
tive feedback loop (see Figure 10.2). In Figure G.2, we further examine the feed-
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Model

back loop by keeping arousal schema constant and, instead, varying the strength
of the T→A effect (i.e., the extent to which a perception of threat elicits arousal).
As seen in Panel B-D, the impact of varying the strength of T→A on the vector
field, stability landscape, and phase line diagrams is similar to what was reported
in the main chapter when moderating the strength of the A→T effect. When the
effect of T→A is weak, there is no alternative stable state and arousal and per-
ceived threat always tend toward zero. However, as the T→A effect strengthens,
an alternative stable state is formed and the tipping point into that alternative
stable state shifts to lower levels of arousal. Accordingly, individual differences
in both the A→T and T→A effects can create vulnerability or resilience to panic
attacks.

G.3 Further Examining Cognitive Behavioral Ther-
apy Intervention on the Model

In the main text, we simulated a brief cognitive behavioral therapy intervention
(Otto et al., 2010). Here, we further describe that intervention. Mirroring the
procedure we used to develop the model, we first identified individual treatment
components and plausible causal effects of the treatment components on compo-
nents of the model. We identified four treatment components: psychoeducation,
cognitive restructuring, interoceptive exposure, and in vivo exposure. Figure G.3
presents the posited mechanisms by which they affect the model.

Psychoeducation conducted during Week 1 has its effect directly on the pa-
tient’s Arousal Schema by presenting a model for understanding arousal-related
bodily sensations and panic attacks themselves that explicitly identifies those ex-
periences as benign. Cognitive restructuring during Week 2 similarly directly af-
fects Arousal Schema by challenging one’s thoughts about the danger of arousal
and panic. Cognitive restructuring also equips patient’s with a means of regulat-
ing their perception of threat when it arises, thereby adding a new negative feed-
back loop into the model between perceived threat and cognitive restructuring.
In our implementation of this negative feedback loop, cognitive restructuring has
modest affect on perceived threat relative to the effect of escape behavior.
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Figure G.3: Plausible relations between treatment components and model components

Interoceptive Exposure begins at the conclusion of Week 2 with a procedure
(head rolling) intended to produce a modest level of arousal-related bodily sen-
sations (e.g., dizziness). Daily interoceptive exposure continues for the remain-
der of the treatment, with exercises increasingly targeting those arousal-related
sensations that most resemble panic attacks and, thus, elicit the highest level of
perceived threat. These procedures are represented in our model as perturba-
tions of arousal with increasing strength as treatment proceeds. In Vivo Exposure
begins in Week 5. In this implementation, in vivo exposur is paired with ongo-
ing interoceptive exposure, meaning that the perturbation to arousal occurs in a
context in which the effect of arousal on perceived threat is strengthened. As a
result, the interoceptive exposure is able to elicit greater perceived threat than it
would without in vivo exposure, thus potentially allowing for more learning to
occur.
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G.4 Theory Evaluation

The panic attack model proposed by Fukano and Gunji (2012) is, to our knowl-
edge, the first effort to formalize a theory of the vicious cycle of panic attacks
by implementing it as a mathematical model. Accordingly, we consider their
model to be a significant contribution to the Panic Disorder literature. Fukano
and Gunji (2012) implemented prior Panic Disorder theory by defining “physi-
cal symptoms” and “fear” with coupled logistic equations with Allee effects (see
Fukano & Gunji, 2012, p. 461, Equation3). These variables correspond closely to
the “arousal” and “perceived threat” variables used in the model proposed in the
current chapter. The equations used to define “physical symptoms” (which we
will denote as P) and “fear” (which we will denote as F) are:

dF

dt
= F(F− a1)1−

F

b1
+P (G.15)

dP

dt
= P(P− a1)1−

P

b1
+ F (G.16)

In these equations, the parameters a1 and a2 specify critical thresholds above
which Fear and Physical Symptoms, respectively, will rise. Logistic equations
with Allee effects such as these are often used to model population growth. In
such models, the a parameters represent critical thresholds above which a pop-
ulation will grow. For example, if a = 100, then when the size of the population
exceeds 100, the rate of change in the population will be positive and, thus, the
population will grow. Analogously, in this panic attack model, the a parameters
specify thresholds above which Fear and Physical symptoms will increase. These
parameters play a critical role in the model as they are used to incorporate indi-
vidual differences in the vulnerability to panic attacks. Fukano and Gunji (2012)
defined three groups, which they refer to as “functional”, “acute phase” [of Panic
Disorder], and “chronic phase” [of Panic Disorder], with a1 and a2 values of 7,
5, and 2, respectively. That is, in the “functional” parameter setting, the thresh-
old at which Fear and Physical Symptoms will grow is higher than that of acute
phase, which, in turn, is higher than that in the chronic phrase.

The parameters b1 and b2 serve to regulate the severity of Fear and Physical
Symptoms, respectively. When used to model population growth, these parame-
ters define the “carrying capacity” of the population, representing constraints on
the maximum population size by factors such as the depletion of available food.
Analogously, the b parameters here represent constrains on the growth of Fear
and Physical Symptoms. Fukano and Gunji (2012) use the same value for b1 and
b2 (i.e., 10) across all models.

G.4.1 What can the model explain?

By explicating their theory as a mathematical model, we were able to imple-
ment it as a computational model in R and examine the behavior implied by
the theory. As described by Fukano and Gunji (2012) in their article, this model
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can explain the most fundamental feature of panic attacks (the sudden rise of
fear and arousal-related physical symptoms) as well as individual differences in
the propensity to experience those attacks. For example, we ran a “biological
challenge” simulation akin to that performed in our main text under the “func-
tional,” “acute,” and “chronic” parameter settings. In this simulation, we per-
turbed Physical Symptoms by setting it to value of 5 for one time step beginning
at time step 10.
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Figure G.4: A “biological challenge” simulation in which we simulated a perturbation (P=5) in three
conditions: “functional,” “acute,” and “chronic” (a = 7, 5, and 2, respectively).

As seen in Figure G.4, in the “functional” (i.e., non-Panic Disorder) param-
eter setting where the critical threshold value is high (a = 7), the perturbation
provokes only a transient increase in physical symptoms and a minimal increase
in fear. However, for the “acute” and “chronic” conditions, this same perturba-
tion is sufficient to send the system into an alternative stable state of elevated fear
and physical symptoms. Note that the stable state in the “acute” phase is slightly
higher (F = P = 11.5) than that of the “chronic” phase (F = P = 11.1), precisely as
discussed by Fukano and Gunji (2012, p. 464).

G.4.2 Limitations to the Model’s Accuracy and Consilience

As this simulation illustrates, the model is able to explain core features of panic
attacks. However, the model also has limitations. For example, the model can
account for the rapid rise of Fear and Physical Symptoms, but does not account
for the subsequent termination of the panic attack. As depicted in Figure G.4,
once the model enters an alternative stable state of a panic attack, it remains
there indefinitely. Thus there are limitations to the model’s consilience (i.e., the
amount the model can explain).

In addition, there are limitations to the model’s accuracy (i.e., its correspon-
dence with established facts about panic attacks). For example, if we “success-
fully treat” the feedback between Physical Symptoms and Fear by eliminating the
contribution of Physical Symptoms to Fear and vice versa
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dF

dt
= F(F− a1)1−

F

b1
, (G.17)

dP

dt
= P(P− a1)1−

P

b1
, (G.18)

then the equations imply that above the critical threshold a2, Physical Symptoms
will still rise to an elevated stable equilibrium. In other words, even without the
vicious cycle, Physical Symptoms will still flip into an alternative stable state of
panic. To illustrate this behavior, we repeated the simulation presented in Figure
G.4 under the same conditions, but with the feedback effects between Physical
Symptoms on Fear removed.
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Figure G.5: To determine the effect of eliminating the feedback between Fear and Physical symptoms,
we removed the effect of Physical Symptoms on Fear and the effect of Physical Symptoms on Fear and
repeated the “biological challenge” simulation presented in Figure G.4.

As seen in Figure G.5, in the “chronic” parameter settings, the perturbation
to physical symptoms (P = 5) remains sufficient to send the system into an al-
ternative stable. Importantly, this occurs solely because of the intrinsic behavior
of Physical Symptoms as we have removed the feedback between Physical Symp-
toms and Fear. This behavior is inconsistent with the simple observation that,
absent external effects, Physical Symptoms tend toward a low stable equilibrium.
More relevant to the context of Panic Disorder theory, it is inconsistent with the
robust finding that intervening on the feedback relationship between Physical
Symptoms and Fear is sufficient to prevent the onset of panic attacks in many pa-
tients. Accordingly, this simulation illustrates that the model also has limitations
to its accuracy.

Note that in the “acute” parameter setting, the perturbation pushes the system
into an alternative state that it remains in for the remainder of the simulation.
This is neither the stable state of no physical symptoms nor the alternative stable
state of elevated physical symptoms. Here, the system is precisely positioned at
an “unstable” fixed point. It is “unstable” because any increase or decrease in
Physical Symptoms would send the variable toward one of the two stable states.
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However, at this precise value (P = 5), the rate of change is 0 and the system
remains fixed. This can be readily seen by plugging in the relevant values (P = 5,
a2 = 5) and calculating the rate of change in P( dPdt = 0)

G.4.3 Conclusion

By explicating their theory as a mathematical model, Fukano and Gunji (2012)
produced a model that can be readily evaluated and further developed by other
researchers. As we have shown in this brief examination of the system, the model
is able to produce the most important features of a panic attack, but has sig-
nificant limitations to what it can explain and its correspondence with what is
known about panic attacks and Panic Disorder. This model thus identifies as-
pects of Panic Disorder theory in need of further development.

G.5 Theory Development

The model developed in the main text fails to explain the phenomenon of non-
clinical panic attacks, illustrating the need for further theory development. In
this section, we propose the incorporation of an Escape Schema (SE) variable that
moderates the effect of perceived threat on escape behavior, just as the arousal
schema variable moderates the effect of arousal on perceived threat.

Arousal Perceived 
Threat

Escape

Arousal
Schema

Context

  Avoid

Escape
Schema

Figure G.6: An extended causal diagram of Panic Disorder Theory that incorporates an Escape
Schema variable moderating the effect of Perceived Threat on Escape Behavior.

In order to incorporate the Escape Schema variable (SE), we followed the same
approach used for Arousal Schema, making the parameter that defines the half
saturation point of the T→E effect (ρ) dependent on the level of SE as follows:

ρ(SE) = 1.25− SE
SE + ξE

(G.19)
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As SE increases (i.e., as one’s beliefs about the value of escape behavior in-
crease), ρ is decreased and less perceived threat is needed in order to elicit escape
behavior. As SE decreases (i.e., one doesn’t believe escape behavior to be espe-
cially effective), ρ increases and more perceived threat is needed to elicit escape
behavior. The precise form of this equation should not be overinterpreted. The
equation is important only insofar as it allows us to constrain the range of ρ such
that, at high SE, the strength of the T→E effect is stronger than it was in our de-
fault implementation of the model as described in the main text whereas, at low
SE, very high levels of perceived threat are required to elicit escape behavior. We
modeled the effect of SE in this way to reflect the observation that, even in the
context of a panic attack, some individuals do not engage in significant escape
behavior (e.g., do not flee the situation).
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Figure G.7: Twelve “week” simulation of model behavior beginning with moderately elevated arousal
schema (S = 0.50) and very low escape schema (SE = 0). The bottom row depicts the stability land-
scape and phase line for arousal at three points during the simulation: Week 0, Week 6, and Week
12.
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G.5.1 What can this modification to the model explain?

To examine whether this revision to the model allowed the model to explain the
experience of panic attacks in the absence of Panic Disorder, we simulated 12-
weeks of data from the model beginning with a moderate level of arousal schema
(S = 0.50) such that panic attacks were possible but not yet recurrent (cf. the
simulations performed to examine Feature 3 (Section 10.4.3) in the main text).
We specified a very low level of the newly incorporated escape schema variable
(SE = 0), such that high levels of perceived threat were required to prompt escape
behavior.

As seen in Figure G.7, in this simulation the model goes through an extended
period of time (4 “weeks”) in which no panic attacks occur. Following the fourth
week, a panic attack does occur, setting the stage for a vicious cycle of learn-
ing that would send the system into a state of recurrent panic attacks. How-
ever, because perceived threat led to minimal escape behavior over the course of
the panic attack, the lesson imparted by this experience is that arousal did not
prove to be dangerous, even in the absence of significant escape behavior. Thus,
the arousal schema variable decreases and the system becomes less vulnerable to
panic attacks.

With the incorporation of the escape schema variable, the model is able to
explain the phenomenon of non-clinical panic attacks. A panic attack occurred
without being followed by recurrent panic attacks, increased persistent cogni-
tions about the danger of arousal, and avoidance behavior. Indeed, as a result
of the panic attack in the absence of escape behavior, the system becomes less
vulnerable to panic attacks, suggesting that even if another panic attack were to
occur, it would only further disconfirm the belief that arousal is dangerous.

In addition, the model provides an explanation for why some individuals do
not engage in escape behavior despite substantially elevated arousal and per-
ceived threat. For these individuals, beliefs about the danger of arousal-related
bodily sensations may be sufficient to create a system vulnerable to panic at-
tacks, but escape behavior is not regarded as an especially valuable behavior in
response to such attacks and, thus, is not engaged in despite the presence of ele-
vated arousal and perceived threat.

G.5.2 Future Research and Theory Development

Together, the added explanatory benefit of incorporating an escape schema vari-
able suggests that this component is worth examining further as a possible de-
velopment of Panic Disorder theory.

In the simulation depicted in Figure G.7, we modeled escape schema as a
static variable that can represent individual differences in the propensity to ex-
perience panic attacks. However, it is almost certainly the case that experiences
with elevated arousal and perceived threat provide opportunities to modify Es-
cape Schema, just as they do Arousal Schema. For example, it seems likely that
the relief in perceived threat achieved by engaging in escape behavior reinforces
the value of such behavior, thereby increasing escape schema and making fu-
ture escape behavior more likely. In contrast, refraining from escape behavior
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may further reduce one’s beliefs about the value of such behavior as it becomes
clear that escape behavior is unnecessary to manage arousal and perceived threat
(see Figure G.8). In future work examining the possible inclusion of an Escape
Schema variable, Panic Disorder theorists should also consider the impact of
panic attacks on the Escape Schema variable.

Arousal Perceived 
Threat

Escape

Arousal
Schema

Context

  Avoid

Escape
Schema

Figure G.8: An extended causal diagram of Panic Disorder Theory that incorporates a learning effect
by which panic attacks impact not only Arousal Schema, but also Escape Schema, either increasing
or decreasing beliefs about the value of escape behavior.
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Appendix H

From Data Models to Formal

Theories

H.1 Simulated Data from the Panic Model

In this appendix we describe in more detail how the simulated dataset, presented
in both Sections 11.3.2 and 11.3.3 are obtained.

Data is simulated from the Panic Model, the full specification of which is
given by (Robinaugh, Haslbeck, et al., 2019), using the statistical programming
language R. We use the Panic Model to generate time-series data of 1000 individ-
uals, on a single minute time scale, for 12 weeks, using Euler’s method with a step
size of .001. This yields a total of nt = 12,0960 repeated measurements per per-
son. Each individual starts with a different initial value of arousal schema, drawn
from a normal distribution with µ = 0.25 and σ = 0.0225. The parameters of this
distribution were chosen to roughly generate a representative number of panic
disorder sufferers (for more details see Robinaugh, Haslbeck, et al., 2019). Oth-
erwise each individual obtains the same parameter values and the same starting
values on all processes, with the stochastic noise terms drawn using a different
random seed for each individual. The mapping from this raw data to the vari-
ables used in the network models of Section 11.3.2 is described in the main text.
Code to reproduce this data-generation scheme can be found in the reproducibil-
ity archive of this paper.

H.2 Panic Model and Statistical Dependencies

In this appendix we describe in more detail the patterns of statistical dependen-
cies produced by the three data models fitted to data simulated from the Panic
Model in Section 11.3.2. While in the main text we discuss the statistical de-
pendencies between between Arousal and Perceived Threat, and Arousal Schema
and Avoidance, here we focus only on the former. Key to the Arousal-Perceived
Threat dependencies is the positive feedback loop between Arousal and Perceived
Threat in the Panic Model (as described in Section 11.2). If Arousal and Perceived
Threat become sufficiently elevated, this “vicious cycle” leads to runaway posi-
tive feedback, with a pronounced spike in both Arousal and Perceived Threat
(i.e., a panic attack). This spike initiates a process of homeostatic feedback that
brings Arousal down and suppresses Arousal below its baseline for a period of
time after this panic attack, a period which we will refer to as a recovery period.
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The panic attack itself lasts about 30 minutes. However, the recovery period lasts
for 2-3 hours (see Figure H.1 panel A).

Figure H.1: Panel (a) depicts Arousal during a panic attack, showing the short sharp peak of arousal
levels, followed by a longer recovery period of low arousal, before the system returns to the usual
resting state. The dotted line indicates the mean level of arousal over the observation window (0 - 10
hrs). Panel (b) depicts the state-space plot of Perceived Threat and Arousal at the next measurement
occasion, as captured by the emulated ESM study and VARmodel. Red points indicate an observation
window of 90 min in which either part of a panic attack or the following recovery period is captured.
The solid grey line reflects the marginal lagged relationship. Panel (c) depicts the cross-sectional
marginal relationship between the mean of Arousal and mean of Perceived Threat, as analyzed in the
GGM model. Red dots indicate individuals who suffer from panic attacks, and black dots represent
“healthy” individuals. The solid grey line shows the negative marginal relationship. The dotted blue
lines indicate the median of both variables, by which the binarized values used in the Ising model
analysis are defined.

In the VAR model in Figure 11.5 (b) in the main text, we observed a strong
negative conditional relationship between Perceived Threat at time t and Arousal
at time t + 1, conditioning on all other variables at time t. The distribution of
these lagged variables is shown in Figure H.1(b), with the grey line representing
the also negative marginal relationship. This strong negative cross-lagged rela-
tionship is a direct consequence of the recovery period of Arousal: High values
of Perceived Threat are closely followed by a long period of low Arousal values.
This can be seen in Figure H.1(b), where observations over windows in which a
panic attack and recovery period occur are shaded in red. By averaging arousal
values over a window of 90 minutes, the strong positive causal effects operating
locally in time (i.e. over a very short time-interval) are not directly captured, but
instead the VAR(1) model describes correctly describes the negative relationship
between the means of each variable over this window.

In the GGM in Figure 11.5 (c) in the main text, we saw a positive linear re-
lationship between Arousal and Perceived Threat in the estimated GGM. This
dependency indicates that high mean levels of Arousal are associated with high
mean levels of Perceived Threat, conditional on all other variables. We stress the
conditional nature of this relationship, because themarginal relationship between
the two variables is in fact negative as can be seen in Figure H.1 (c). This nega-
tive marginal relationship comes about by combining two groups of individuals
that have different mean values on both variables. Individuals who experience
panic attacks (red points) have high average Perceived Threat, but low average
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Arousal, due to the long recovery period of Arousal after a panic attack. On the
other hand, individuals who do not experience panic attacks have higher average
values of Arousal, and lower average values of Perceived Threat. When inspect-
ing the two groups separately, we see that there is a positive linear relationship
between mean Arousal and Perceived Threat in the group without panic attacks;
The group with panic attacks is too small to determine a relationship. Since
Escape and Avoidance behavior only occur after Panic attacks, conditioning on
those two variables amounts to conditioning on whether an individual had panic
attacks. This conditional relationship is then driven mostly by the positive re-
lationship in the (much larger) group of individuals who have no panic attacks,
indicated by the black dots in Figure H.1 (c).

Finally, we can explain the weak positive relationship between Arousal and
Perceived Threat in the Ising model (Figure 11.5 (d) in the main text): The lev-
els of these variables are defined by a median split of their mean values, de-
picted as dotted lines in Figure H.1 (c). Unlike in the GGM, there is a positive
marginal relationship between these binarized variables, as the majority of indi-
viduals without panic attacks (denoted by the black points) end up in the low
Perceived Threat and low Arousal groups (lower left quadrant Figure H.1 (c))
or high Perceived Threat and high Arousal groups (upper right quadrant). How
then do we end up with a weakly positive conditional relationship between these
two binary variables? Similarly to the GGM above, it turns out that conditioning
on variables such as Escape behaviour and Avoidance almost entirely separates
individuals into either the low Arousal and low Perceived Threat category (e.g.,
for low Escape values) or the high Arousal and high Perceived Threat category
(for high Escape value). This means that, once we have conditioned on other
variables which have direct and indirect causal connections to Arousal and Per-
ceived Threat, there is very little additional information which Arousal can add
to predicting Perceived Threat levels (and vice versa). This produces the weak
positive conditional relationship between Arousal and Perceived Threat, as well
as the stronger positive connections between Avoidance and Perceived Threat.

H.3 Details Empirical vs Simulated Ising Model

In this appendix we describe in more detail how the theory-implied and empiri-
cal Ising Models presented in Section 11.3.3 are obtained.

H.3.1 Simulated Data and Implied Ising Model

To obtain the theory-implied Ising Model we use the raw time series data gener-
ated from the Panic Model and described in Appendix H.1

To create the binary symptom variables in Section 11.3.3 we transformed the
raw time-series data of each individual as follows. First, we define Anxiety at
a given time point as the geometric mean of the Arousal and Perceived Threat
components at that point in time. Second, we define a panic attack as short, sharp
peak of Arousal and Perceived Threat. We code a panic attack to be present in
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the time series data if Anxiety takes on a value greater than 0.5. The duration of
a panic attack is the length of time Anxiety variable stays above this threshold,
and so we define a single panic attack as a sequence of consecutive time points
in which Anxiety stays over this threshold. This allows to define our first binary
symptom variable, Recurrent Panic Attacks:

1. Recurrent Panic Attacks (PA) : PA is present if the individual experience
more than three panic attacks over the observation window.

We define recurrent as more than three over the observation window for consis-
tency with how this symptom is defined in the CPES dataset, detailed below.

Next, we can define the symptom Persistent Concern (PC), again using the
time series of Anxiety. This symptom is typically described as experiencing a
heightened level of anxiety following a panic attack (American Psychiatric As-
sociation, 2013). To define this, for each individual who experiences a panic at-
tack, we calculate the mean level of Anxiety in a window of 1000 minutes (16.67
hours) following the end of each panic attack. If another panic attack occurs in
that window, we instead take the mean level of Anxiety between the end of one
panic attack and before the beginning of the next. This gives us a vector of mean
Anxiety levels per person, one for each panic attack experienced. Next, we must
define what we consider to be a “heightened” level of anxiety. We do this by ob-
taining the distribution of mean Anxiety levels for healthy individuals, that is,
those members of our sample who never experience a panic attack. We consider
mean Anxiety levels following an attack to be “heightened” if they are greater
than the 90th percentile of mean Anxiety levels in the healthy population. This
gives us our second binary symptom variable.

2 Persistent Concern (PC): PC is present if, following at least one panic attack,
higher average levels of Anxiety are present than in the healthy population,
as defined by the 90th percentile of average Anxiety in the healthy popula-
tion.

Finally we take a similar approach to defining the symptom Avoidance (Av),
typically described as engaging in a heightened level of avoidance behaviour fol-
lowing a panic attack. For this symptom, we use the time series of the Avoid
component. For each individual who experiences a panic attack, we calculate the
mean level of Avoid in a window of 1000 minutes (16.67 hours) following the
end of each panic attack, or before the beginning of the next attack, whichever
is shorter. Heightened avoidance behaviour is defined relative to the 90th per-
centile of Avoid levels in the healthy population. This gives us our third binary
symptom variable.

3 Avoidance (Av): Av is present if, following at least one panic attack, higher
average levels of Avoid are present than in the healthy population, as de-
fined by the 90th percentile of average Avoid in the healthy population.

The Ising model of these three symptom variables is fit using the EstimateIsing
function from the IsingSampler package (Epskamp, 2015), that is, using a non-
regularized pseudolikelihood method.
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H.3.2 Empirical Symptom Data

To test the empirical predictions of the Panic Model, we made use of the pub-
licly available Collaborative Psychiatric Epidemiology Surveys (CPES) 2001-2003
(Alegria et al., 2007). The CPES is a nationally representative survey of mental
disorders and correlates in the United States. The CPES is attractive to use for
testing the Panic Model, first because of the large sample size (20,013 partic-
ipants) ensuring reliable estimates of empirical dependencies, and second, be-
cause approximately 146 items in the survey assess either panic attack or panic
disorder experiences, characteristics, and diagnoses, typically in terms of lifetime
prevalence.

To define our three panic disorder symptoms, we first use the diagnostic man-
ual of the CPES to define whether individuals have ever experienced a panic at-
tack based on responses to 18 items. There are three criteria which must be met
for the individual to be classed as having experienced at least one lifetime panic
attack. These are shown in Table H.1. In coding the presence or absence of a
panic attack, individuals must positively report at least four out of the thirteen
charactersistics of a panic attack, according to the second criteria in Table H.1.
Missing values were taken as a failure to report that characteristic.

Criterion Description Item number(s)

A A discrete period of intense fear or discomfort SC20 or SC20a
B (four or more) Palplitations, pounding heart PD1a

Sweating PD1e
Trembling or shaking PD1f
Sensation of shortness of breath or smothering PD1b
Feeling of choking PD1h
Chest pain or discomfort PD1i
Nausea or abdominal distress PD1c
Feeling dizzy, unsteady, lightheaded or faint PD1d or PD1m
Derealization or depersonalization PD1k or PD1l
Fear of losing control or going crazy PD1j
Fear of dying PD1n
Paresthesias (numbing or tingling sensations) PD1p
Chills or hot flushes PD1o

C
Symptoms developed abruptly and reached a
peak within 10 minutes

PD3

Table H.1: Three criteria necessary to code an individual as having one lifetime panic attack based
on items from the CPES survey, based on the CPES diagnostic manual

With this definition of a panic attack in place, we define the three binary
symptoms of panic disorder, following the definitions laid out in the diagonistic
manual for Panic Disorder.

1. Recurrent Panic Attacks (PA). PA is present if participant reports more than
three lifetime occurrences of an unexpected, short, sharp attack of fear or
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panic (item PD4 and criteria in Table H.1), more than one of which is out
of the blue (PD17a)

2. Persistent Concern (PC). PC is present if reported that following an attack,
a month or more of at least one of: a) persistent concern about having an-
other attack (PD13a), or b) worry about the implications or consequences
of having an attack (PD13b)

3. Avoidance (Av). Av is present if participant reports at least one of a) follow-
ing an attack, changing everyday activities for a month or more (PD13c), b)
following an attack, avoiding situations due to fear of having an attack for
a month or more (PD13d), or c) in the past 12 months, avoiding situations
that might cause physical sensation (PD42).

In coding this, if two out of three PA criteria were present, and the third was
missing, we assigned a positive value to the PA item. The empirical Ising model
was fit using the same procedure as the theory-implied Ising model.
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Appendix J

Nederlandse Samenvatting

J.1 Data Models

In het eerste deel van mijn dissertatie heb ik verschillende modellen ontwikkeld,
die de multivariate afhankelijkheden tussen symptomen en andere variabelen in
de psychopathologie omvatten.

Toen ik, in 2015, begon te werken aan mijn dissertatie, waren toegepaste on-
derzoekers in het veld van netwerkmethoden in de psychopathologie beperkt
tot het gebruik van slechts enkele modellen: Het Ising model voor binaire vari-
abelen, de multivariate Gaussiaanse verdeling voor continue variabelen, en het
Vector Autoregressive (VAR) model voor continue tijdreeksmodellen. De schat-
tingsmethoden die geı̈mplementeerd zijn in het R-pakketmgm, dat ik ontwikkeld
heb, hebben de beschikbare modellen aanzienlijk uitgebreid. In Hoofdstuk 2 heb
ik Mixed Graphical Models (MGMs) geı̈ntroduceerd. Deze modellen kunnen de
afhankelijkheidsstructuur tussen variabelen omvatten die gedefinieerd zijn op
verschillende domeinen, zoals continu en categorisch. Zulke gemixte data komt
vaak voor in psychopathologisch onderzoek. Symptomen en psychologische con-
structen worden vaak gedefinieerd op een continue of ordinale schaal, terwijl
variabelen die gerelateerd zijn aan sociale context, werk omgeving, of behandel-
ing vaak gedefinieerd worden op een (nominale) categorische schaal. Tevens is
het nu mogelijk om non-lineaire interacties te vinden door het modelleren van
continue en ordinale variabelen als zijnde categorische variabelen. Ten slotte
heb ik de schattingsmethoden voor MGMs aangepast aan Vector autoregressieve
(mVar) modellen, waar verschillende types variabelen elkaar voorspellen over
tijd.

Statistische modellen worden doorgaans gerapporteerd met behulp van
netwerk visualisaties. In deze figuren worden absolute waarden van parame-
ters vertegenwoordigd door de wijdte van de verbindingen, die relatief aan de
grootste parameter afgebeeld worden. Deze relatieve verbindingswijdtes geven
een optimale visuele representatie van de relatieve groottes van de parameters,
maar laten niet zien hoe goed de variabelen elkaar voorspellen op een absolute
schaal. Om dit probleem te behandelen, heb ik in Hoofdstuk 3 voorgesteld om
een knoopsgewijze voorspelbaarheidsmaat te berekenen en om deze te verwerken
in de netwerkvisualisaties. In Hoofdstuk 4 heb ik een heranalyse gedaan van de
toen ontluikende empirische netwerk artikelen op het gebied van psychopatholo-
gie, en heb ik de nadruk gelegd op voorspelbaarheid en hoe voorspelbaarheid een
theoretisch interessante kwantiteit kan zijn, die aan kan geven tot in hoeverre een
systeem zelfvoorzienend kan zijn.
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Een cruciale beperking van de statistische netwerkmodellen die gebruikt wor-
den in de netwerk literatuur, is dat deze modellen enkel interacties tussen paren
van variabelen bevatten. In andere woorden, deze modellen kunnen geen mod-
eratie effecten modelleren. Dit is een grote beperking omdat moderatie effecten
erg plausibel zijn in een contextgebonden veld zoals psychologie. Moderatie ef-
fecten zijn ook van centraal belang in de netwerkmethode voor psychopathologie,
omdat deze effecten kunnen wijzen op mogelijke effecten van interventies op de
knopen van het netwerk (Borsboom, 2017). Om zulke moderatie effecten te vin-
den, heb ik in Hoofdstuk 5 Moderated Network Models (MNMs) geı̈ntroduceerd.
Deze modellen maken het mogelijk om elke paarsgewijze interactie te mod-
elleren als een functie van alle andere variabelen in het model. Omdat MNMs
geı̈mplementeerd zijn binnen het MGM kader, is deze methode in staat om een
grote verscheidenheid aan modellen te schatten, zoals paarsgewijze interacties
tussen continue en categorische variabelen die tegelijkertijd gemodereerd wor-
den door zowel continue als categorische variabelen. Dit impliceert dat eenMNM
met een enkele categorische moderatorvariabele een alternatief kan bieden om
verschillen te detecteren tussen verschillende groepen, zonder gebruik te maken
van meerdere stappen zoals ‘resampling’ en significantietoetsing.

Het centrale idee van de netwerkbenadering van psychopathologie is dat
mentale stoornissen voortkomen uit causale interacties tussen symptomen. Dit
suggereert dat interacties tussen symptomen in gezonde en ongezonde indi-
viduen verschillen, en dat deze interacties verschillen per individu wanneer het
individu zich in een transitie tussen een gezonde en ongezonde staat bevindt.
Om zulke transities te detecteren in individuele tijdreeksen, heb ik in Hoofdstuk
6 een methode geı̈ntroduceerd om VAR modellen te schatten die variëren over
tijd. Ook heb ik gestipuleerd tot in hoeverre de parameters van deze modellen
gedetecteerd kunnenworden in realistische data doormiddel van een uitgebreide
simulatiestudie. Hoewel dit hoofdstuk zich voor de eenvoudigheid richt op VAR
modellen, is het R-pakket mgm ook in staat om de parameters te schatten van
MGMs en mVAR modellen die variëren over tijd. Deze modellen zijn cruciaal
voor het beantwoorden van diverse onderzoeksvragen: ze kunnen gebruikt wor-
den voor het detecteren van veranderingen in de structuur van de interacties in
observationele onderzoeken en voor het verklaren van deze veranderingen door
middel van bijkomende variabelen. Een andere toepassing van deze methode
is het monitoren van patiënten en om de tijdsvariërende modellen te gebruiken
als multivariate “Early Warning Signals” (EWS; Scheffer et al., 2009). Op deze
manier kunnen de periodes vastgesteld worden waarin een behandeling het ef-
fectiefst is (Olthof et al., 2019). Ten slotte kunnen tijdsvariërende modellen ge-
bruikt worden om te bestuderen hoe de structuur van een interactie verandert
als gevolg van een behandeling (Wichers et al., 2016).

Hoewel Hoofdstukken 2 - 6 gericht zijn op het beschikbaar maken van nieuwe
modellen voor data voor toegepaste onderzoekers, zijn de laatste twee hoofd-
stukken over data modellen toegespitst op het oplossen van specifieke method-
ologische vraagstukken. In Hoofdstuk 7 bespreek ik de vertekening-variantie
afweging en modelselectie in de context van de keuze tussen het VAR model
en een speciaal geval van het VAR model, het AR model, wat enkel de autore-
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gressieve coëfficiënten bevat. Naast het bespreken van deze theoretische uitdag-
ing, bevat dit hoofdstuk een simulatiestudie die aantoont hoeveel waarnemingen
er nodig zijn alvorens het VAR model beter presteert dan het AR model, door
middel van simulaties uit verschillende types VAR modellen. In Hoofdstuk 8 be-
spreek ik hoe de interpretatie en dynamiek van het Ising model veranderen als
het domein van de binaire variabelen verandert van {0,1} naar {−1,1}. Dit hoofd-
stuk toont aan dat de gebruikelijke aanname dat sterk verbonden netwerken lei-
den tot een verhoging van de symptomen, over het algemeen niet waar is, maar
dat het resultaat afhangt van de eigenschappen van het gebruikte model.

J.2 Formele Theorieën

In het tweede deel van mijn dissertatie bespreek ik hoe formele theorieën
opgesteld kunnen worden met behulp van datamodellen, en introduceer ik een
formele theorie over de paniekstoornis.

Tot nu toe berust het merendeel van het modelleerwerk in psychopathologie
op het passen van statistische tijdreeksmodellen. In Hoofdstuk 9 hebben we on-
derzocht tot in hoeverre er inferentie gedaan kan worden over onderliggende sys-
temen in de psychopathologie doormiddel van tijdreeksmodellen. Dit hebbenwe
als volgt gedaan: we hebben een bistabiel systeem voor emotionele dynamieken
gedefinieerd als het ware onderliggende systeem. Dit systeem was gekozen om-
dat het plausibel is voor veel psychologische fenomenen en ingewikkelder is dan
de meeste populaire tijdreeksmodellen, ondanks dat dit systeem relatief makke-
lijk te begrijpen is. Nadat het systeem gedefinieerd was, hebben we de eigen-
schappen van het systeem proberen terug te schatten door tijdreeksmodellen toe
te passen op de data die gegenereerd was door het ware systeem. We hebben
hierbij gefocust op twee uitdagingen. De eerste uitdaging is dat het ware sys-
teem hoogstwaarschijnlijk niet een speciaal geval is van het tijdreeksmodel, wat
betekent dat het tijdreeksmodel verkeerd gespecificeerd is. We hebben aange-
toond dat het in zulke situaties erg moeilijk is om betrouwbare inferentie te doen
met het tijdreeksmodel over de dynamieken van het ware systeem. De tweede
uitdaging is dat we het systeem moeten meten met voldoende frequentie. We
tonen dit probleem aan door het generen van een typische ESM tijdreeks vanuit
het ware systeem, en laten vervolgens zien dat de steekproeffrequentie, voor het
huidige systeem, te laag is om de dynamieken van het ware system te achter-
halen. Dit probleem doet zich waarschijnlijk voor in veel toepassingen, zoals
het bestuderen van de emotie dynamieken (op een tijdschaal van seconden of
minuten) met ESMmetingen (op een tijdschaal van uren). Hoewel het moeilijk is
om de dynamieken op een korte tijdschaal te achterhalen, hebben we ook aange-
toond dat het mogelijk is om op een betrouwbare wijze de globale eigenschappen
van het systeem te beschrijven. We gebruiken deze resultaten om een methode te
onderbouwen voor het construeren van formele theorieën over dynamieken bin-
nen het individu die verder gaan dan het enkel toepassen van tijdreeksmodellen.
Deze methode is uitgewerkt in Hoofdstuk 11.

In Hoofdstuk 10 introduceer ik een formele theorie over paniekstoornis, waar
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ik heb bijgedragen aan het ontwikkelen en implementeren ervan. Om deze the-
orie te ontwikkelen, hebben we een benadering gebruikt die ontwikkeld is door
van der Maas et al. (2006) om het mutualisme model voor intelligentie op te
stellen, en door Dalege et al. (2016) om het Causal Attitude Network (CAN)
verder te ontwikkelen. In plaats van beginnen met het toepassen van een data-
model op een specifieke dataset, begint deze aanpak met het opsommen van door
literatuur onderbouwde feiten. In het geval van paniekstoornis betekende dit het
vinden van de onderliggende componenten van de stoornis en hoe deze compo-
nenten zich tot elkaar verhouden, maar ook relatief simpele empirische basis-
beginselen zoals de typische duur van een paniekaanval (5-20 minuten). We
hebben eerst de kerndynamieken van paniekaanvallen geı̈mplementeerd door
een model uit de ecologie dusdanig aan te passen, dat het in staat was om realis-
tische paniekaanvallen te produceren. Daarna hebben we een langzaam leerpro-
cess toegevoegd, wat nodig was om paniekstoornis te verklaren. Tot slot hebben
we de formele theorie aangepast zodat het plausibele voorspellingen kon maken,
en om het consistent te makenmet de empirische basisbeginselen van een paniek-
stoornis. In Hoofdstuk 11 wordt het process waarmee deze theorie opgesteld is,
verder ontwikkeld tot een expliciet kader voor het vormen van theorieën.

In Hoofdstuk 11 hebben we drie verschillende routes onder de loep genomen
om van datamodellen naar formele theorieën te gaan. De eerste route is om data-
modellen te behandelen als zijnde formele theorieën; de tweede route is om in-
ferentie te doen op basis van datamodellen om formele theorieën op te stellen; de
derde route is om datamodellen te gebruiken om theorieën op te stellen middels
een abductieve aanpak. De eerste route ”heeft weinig kans van slagen” omdat
datamodellen over het algemeen niet dezelfde complexiteit delen als de stoor-
nissen die gemodelleerd worden, of omdat het onrealistisch is om de modellen
te schatten op basis van de data. De tweede route is problematisch omdat het
doorgaans onduidelijk is hoe we inferentie doen over formele theorieën op basis
van datamodellen. Hierdoor stellen wij voor de derde route te gebruiken, waar
de datamodellen op een abductieve manier gebruikt worden om theorieën te vor-
men. Bij deze route worden datamodellen afgeleid uit concurrerende formele
theorieën, om deze vervolgens te gebruiken om te evalueren welke formele theo-
rie het beste bij de data past. Tevens geven wij een expliciete beschrijving van de
theorievorming methodologie die gebruikt wordt in Hoofdstuk 10 middels een
procedure. Dit kader bestaat uit de volgende vier stappen: vaststellen van het
fenomeen, formulering, ontwikkeling, en testen van de formele theorie. Hier-
mee geven we een algemene methodologie om theorieën te vormen over mentale
stoornissen.
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