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Abstract We address the issue of public or bank holidays

in electricity load modeling and forecasting. Special char-

acteristics of public holidays such as their classification

into fixed-date and weekday holidays are discussed in

detail. We present state-of-the-art techniques to deal with

public holidays such as removing them from the data set,

treating them as Sunday dummy or introducing separate

holiday dummies. We analyze pros and cons of these

approaches and provide a large load forecasting study for

Germany that compares the techniques using standard

performance and significance measures. Finally, we give

general recommendations for the treatment of public hol-

idays in energy forecasting to suggest how the drawbacks

particular to most of the state-of-the-art methods can be

mitigated. This is especially useful, as the incorporation of

holiday effects can improve the forecasting accuracy dur-

ing public holidays periods by more than 80%, but even for

non-holidays periods, the forecasting error can be reduced

by approximately 10%.

Keywords Public holidays, Bank holidays, Special day

effects, Forecasting, Electricity load, Holiday dummy

1 Introduction

In almost every data set of electricity load or price date

set we observe holiday effects. As public holidays occur

rarely and have a special impact, it is challenging to treat

them correctly in modeling and forecasting [1]. Further-

more, consideration of public holidays in energy forecast-

ing yields highly relevant practical benefits. For instance in

the Global Energy Forecasting Competition 2012 (GEF-

Com2012) one challenges posted by GEFCom2012 was

holiday modeling [2]. Similarly, in the Global Energy

Forecasting Competition 2014 (GEFCom2014) the proba-

bilistic price forecasting track contained one task relates to

public holidays [3]. Also recently, three of ten tasks of the

RTE Day-ahead Demand Forecasting Competition 2017

were dedicated to the topic of public holidays. So com-

pared to their relative frequency they seem to be overrep-

resented in energy forecasting competitions which

expresses the importance.

The question of holidays in electricity load is a very old

question [4]. Hence, many energy forecasters deal with the

problem of the treatment of public holidays (i.e. bank

holidays or federal holidays) but the methods they use to

approach this problem distinguish substantially. Also the

winners of beforementioned forecasting competitions used

different approach to deal with public holidays.

In this paper, we describe in detail special characteristics

of public holidays and how they influence regular weekly

consumption pattern. We also discuss the impact of specific

ways to account for public holidays effects in different

energy forecasting models and refer to the corresponding

literature. Furthermore, we provide a large forecasting

study for German electricity on 64 methodologies to deal

with public holidays, as there is no such study in literature.

Smaller studies of this kind can be found in [1, 5], but these
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studies are limited in size and show a lack of statistical

validity. Additionally we address the question of the impact

of univariate and multivariate modeling frameworks in the

context of holiday public holidays, see [6]. The forecasting

study gives substantial insight on the question how to deal

with public holidays in load forecasting which are also

summarized in the final conclusion section.

2 What is so special about public holidays

in energy forecasting?

In general, holidays are specific days of the year where

people change their behaviors. Thus, the electricity demand

is usually influenced by this change as well. This transfers

directly to formation of electricity prices and related

processes.

An important issue is that the occurrence of public

holidays (or bank holidays) is usually known years in

advance. Public holidays are set by governments of a

country, state or region and affect the human activity by

law. From the energy and load forecasting perspective,

these can be modeled appropriately. However, sometimes

it happens that governments designate, suspend or carry

over public holidays. These structural breaks in the holiday

pattern complicate load forecasting. However, their impact

is minor and is ignored in the modeling part of this

article.

All over the world, holidays tend to decrease human

working activity. Usually, this decreases the electricity

demand of a certain region. However, the smaller the

aggregation level, the less this general statement holds. In

almost every country, there are certain regions which

increase their electricity consumption during public holi-

days, especially those ones in touristic areas.

A public holiday occurs usually once a year. In energy

forecasting this can be regarded as a rare event. Hence, it is

rather difficult to establish a model which would be able to

credit for such a day. Most load series have a clear weekly

seasonal pattern in which especially the behavior on

Saturdays and Sundays is different to those on the other

days. Often public holidays violate weekly pattern quite

clearly and shift the consumption behavior towards the

weekend pattern.

2.1 Two classes of public holidays

As noted by e.g. [1, 7, 8], public holiday can be cate-

gorized into two groups. The first group contains the fixed-

date public holidays. They are those that always occur on

the fixed day each year. Typical examples are New Year’s

Day which is always on 1 January and also Christmas Day

which is celebrated in many African, American and

European countries at 25 December. Additionally, many

national holidays (such as Independence Day in the US)

fall into this category, because they are linked to histori-

cally important dates and events of the corresponding

country.

The second group contains the so called weekday public

holidays [9] (which can be analogously referred to as

variable date public holiday or flexible date public holidays

[8], or fixed weekday holidays [1]). These holidays are not

fixed in their date, but in the weekday of their occurrence.

The date of occurrence of the public holiday can thus vary

from year to year, but usually falls on a similar part of the

year. In many European countries, several Christian public

holidays days such as Easter or Ascension can be classified

into the second group. In countries like the US or the UK,

some bank holidays fall into this category as well. For

instance, in the UK, the Spring bank holiday is always at

last Monday of May. In states with Islamic oriented public

holidays, there are weekday holidays as well. Most of these

countries have the so called Lunar Events and Solar

Events. The latter ones depend on the Sun and thus match

the standard (Georgian) calendar year. The Lunar Events

depend on the Moon cycle, typical examples are e.g.

Ramadan or Ashura. These public holidays are very special

because they move in the long run around the entire year.

This is because the Luna year (or Islam/Muslim year) does

not match the periodicity of the sun. From the modeling

and forecasting perspective tracking, this phenomenon is

very challenging. As temperature cycles follow the Solar

year and the energy consumption depends on the temper-

ature (due to cooling and/or heating), this leads to changing

interactions between Luna public holidays and temperature

effects.

Note that, depending on a country, there can be either

more fixed-date public holidays or weekday public holi-

days within a course of a year. However, almost every

country has representatives of both groups. In some

countries (esp. those with Islamic holidays) it is also pos-

sible that a weekday public holiday falls on the same date

with fixed-date public holiday.

Figure 1 illustrates the two types of holidays in selected

weeks for seven subsequent years (2010–2016) for the

German electricity load. We clearly see that the two

weekday public holidays (W.Hld), Good Friday and Easter

Monday, which occur around Easter, are always fall on the

dates between the end of March and the end of April.

Taking a closer look, we observe that even though the date

is varying, the impact seems to be quite stable over the

years. In contrast, the fixed-date public holiday (F.Hld),

Labor Day (1 May), has clearly different effects. If it falls

on a Sunday (2011 and 2016), there is no (distinct) impact

observable, whereas the impact is quite obvious for the

other days. Still, reference [10] argues that if a fixed-date
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public holiday is on a Sunday, the load tends to be reduced

even more, at least for the considered Turkish load data.

Finally, there are very few exceptions of holidays that

can not be clearly grouped into the classes. These are

public holidays which have neither date nor weekday fixed.

Notable examples are the Vernal Equinox Day in Japan or

the Tomb-Sweeping Day in China.

Another issue is that some public and bank holidays are

only celebrated in parts of the corresponding regions. We

refer to these days as to regional public holidays. There are

modeling techniques available that can cover these issues

[11]. Still, in this German load forecasting study, we focus

only on the impact of standard public holidays and ignore

an impact of regional public holidays (Table 1).

3 Modeling framework of the forecasting study

For dealing with public holidays, there are many tech-

niques used in the energy forecasting community. They

range from extremely simple techniques up to very

sophisticated methodologies. In this and the subsequent
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Fig. 1 Electricity load in Germany from 24-March to 4-May for the years from 2010 to 2016 with highlighting of the weekdays and public

holiday. Fixed-date public holidays: Labor day (1-May), weekday public holidays: Good Friday and Easter Monday)
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section, we list and describe the majority of used

approaches.

Therefore, we denote Yt the electricity load at time t that

we want to forecast. Moreover, let Yd;h be the corre-

sponding hour-day representation, that gives Yt with its

corresponding day d and hour h, so formally

Yt ¼ Y24ðd�1Þþh. Without loss of generality we consider

hourly data with 24 observations each day, if we consider

another frequency (e.g. half-hourly data with 48 observa-

tions) we require obvious adoptions.

As highlighted by [6] there are two main modeling

streams in energy forecasting. In one stream a single big

model is fitted to hourly process Yt and this ‘high-fre-

quency’ time series is forecasted many hours ahead using a

recursive forecasting approach. The alternative approach,

is based on the consideration of 24 single model equations,

for each hour separately. These 24 single models may be

interrelated or span a (fully) multivariate model. Here each

hour is forecasted separately. We refer the first high-fre-

quent approach to be a univariate modeling framework, and

the second one to be a multivariate modeling framework as

in [6].

This empirical study shows that the public holiday

impact depends substantially on the considered modeling

framework. Intuitively this makes sense as in the multi-

variate framework less observations are taking into account

for the estimation. So if we have e.g. three years of data

available, we have only three observations for a public

holiday at a certain hour, so the forecasting methods might

struggle to capture the right behavior well. In contrast, in

the hourly data approach we would have 3� 24 ¼ 72

observations on a holiday available which potentially

increases to chance explore the holiday behavior correctly.

Still, the 24 consecutive hours of a day are usually highly

depended (esp. highly correlated) which reduces the

potential gain in the forecasting accuracy.

In the next subsection we introduce two benchmark

models, for the univariate and multivariate modeling

framework. Both will capture exactly the same effects and

will serve as basis for including public holiday modeling

methods. These public holiday extensions will be described

in the subsequent section leading to 32 models out of 8

model classes which can be applied to the univariate and

multivariate modeling framework.

3.1 Two benchmark models

For all modeling approaches, we consider a core

benchmark model that does not capture the public holiday

effects, but allows for simple addition of holiday effects.

Therefore, denote Yt ¼ ðt; Yt�1; Yt�2; . . .Þ all available load

information which includes time-information (represented

by t) and past load values. The available load information

set can be denoted in the day-hour notation Yd;h ¼

ðd; h; Yd;h�1; Yd;h�2; . . .; Yd;1; Yd�1;24; Yd�1;23; . . .Þ so that it

contains exactly the same information as Yt.

We denote the considered univariate benchmark model

by:

Yt ¼ f ðYtÞ þ et ð1Þ

and a considered benchmark multivariate model by

Yd;h ¼ fhðYd;hÞ þ ed;h ð2Þ

where et and ed;h are the error terms (also noise or inno-

vation). So, in the model we have as an input the available

data, such as the actual time information, coded by t or d

and h. Note that for the univariate approach, a single

function f must be determined, whereas for the multivariate

approach 24 functions fh are required. If the underlying

data is only of daily frequency then of course everything

can be applied by just considering one single equation as in

the multivariate model (2) (e.g. h ¼ 1).

We design the benchmark models so that they capture

the most relevant features in a suitable way, these are

autoregressive effects, such as daily, weekly and annual

seasonal effects. We first introduce the multivariate model

first, and then then the univariate one.

The considered multivariate benchmark model is:

fhðYd;hÞ ¼
XJ

j¼1

asinj;h sin
2pd

jA

� �
þ acosj;h cos

2pd

jA

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
annual effects

þ
X7

k¼1

bk;h � DoWkðdÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
weekly effects

þ
Xph

k¼1

/k;hYd�k;h

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
autoregressive effects

ð3Þ

where bk;h are weekly dummy parameters, asinj;h and acosj;h

annual component parameters; and /k;h the autoregressive

parameters. Moreover, DoWkðdÞ denotes the day-of-the-

week dummy which is always zero expect if d falls on the

k’s weekday. So if d is a Monday then DoW1ðdÞ is 1.

Additionally, A ¼ 365:24 is the number of days in a

Table 1 Public holiday classification for the nine public holidays in

Germany

Fixed-date public holiday Weekday public holiday

New Years Day (1 Jan) Good Friday

Labor Day (1 May) Easter Monday

German Unity (3 Oct) Ascension (Thu)

Christmas Day (25 Dec) Pentecost (Mon)

Boxing Day (26 Dec)

194 Florian ZIEL

123



(meteorologic) year; J is the order of the Fourier approxi-

mation of the annual seasonal component; p is the order of

autoregressive lags. We choose an Fourier approximation

order of J ¼ 2, which introduces 2� 2 ¼ 4 parameters

describing the annual effects and is sufficient to capture the

standard heating and cooling cycles in electricity load data.

The autoregressive effects in captured by the ph autore-

gressive parameters. We choose ph ¼ 7 which leads to a

memory of a week to capture weekly autoregressive

effects. All in all this model specification has 7þ 4þ 7 ¼

18 parameters for each hour of the day. As we have 24

hours for each day, they are in total 24� 18 ¼ 432

parameters in the full specification of model (3).

The univariate model that we introduce now will have

the same amount of parameters (also for the corresponding

effects). We consider for the univariate framework the

function:

f ðYtÞ ¼
X24

k¼1

HoDkðtÞ
XJ

j¼1

asinj;k sin
2pt

j24A

� �
þ acosj;k cos

2pt

j24A

� � !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
annualeffects ðwithdaily interactionsÞ

þ
X168

k¼1

bk �HoWkðtÞ

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
weeklyeffects

þ
Xp

k¼1

/kYt�k

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
autoregressiveeffects

ð4Þ

where HoDk and HoWk denote the hour-of-the-day dummy

and hour-of-the-week dummy, and again J as order of the

annual Fourier approximation such as p as order of autore-

gressive lags. The parameters bk, asinj;k , acosj;k and /k are

unknown and have to be determined given the data. The hour-

of-the-day dummyHoDkðtÞ is always zero except if t is the k’s

hour of the day, and similarly the hour-of-the-week dummy

HoWkðtÞ is always zero except if t is the k’s hour of the week.

So they are 7� 24 ¼ 168 hour-of-the-week variables bk in

the model which capture the weekly profile in the data.

Additionally, there are the annual effects which are in fact

annual effects with daily interactions, so the annual seasonal

effects can vary of the day. These effects are modeled by a

Fourier approximation of order Jwhich is multiplied with the

hour-of-the-day dummy to allow for the mentioned interac-

tion effects. Again,we choose an Fourier approximation order

of J ¼ 2, which introduces 2� 2� 24 ¼ 96 parameters

describing the annual effects. The autoregressive effects in

captured by choosing p ¼ 168, which leads to a memory of a

week, as for 3. The univariate model specification has in total

168þ 96þ 168 ¼ 432 parameters, which is the same as for

the multivariate specification.

The specification of fh and f [(3) and (4)] are very similar

from the modeling perspective. Both models have in total

the same amount of parameters (24� ð7þ 4þ 7Þ ¼ 432)

which represent similar effects.

Here the daily and weekly seasonality is described by

24� 7 ¼ 168 parameters, and the annual effects by 24�
4 ¼ 96 parameters. For the annual component we use a

Fourier approximation, up to order 2 with a periodicity of a

year. Note that other choices like periodic B-splines,

periodic wavelets, oder calender month dummies would be

possible as well.

The autoregressive effects are described by 7� 24 ¼
168 parameters in both core models. Note that if we would

delete the the autoregressive effects from the model (3) and

(4), then both models would be identical, in the sense that

the OLS fit would be the same. So they would yield the

same forecast. Only the autoregressive effects are treated

slightly differently.

Moreover, both models are different from the estima-

tion/training perspective and provide different forecasting

results. The first univariate model description to be more

robust, whereas the multivariate specification is able to

take different levels variation in the data into account. This

is because implicitly, most estimation/training methods

assume for the univariate approach that the variance of the

error is constant whereas the multivariate approach allows

for variation over the day.

Finally, the models are simple in the sense that no

complicated or external regressors effects are included, like

non-linear effects, change points, temperature effects,

clock-change effects and long-term trends. Only historic

load information and deterministic time information is

used. Note that for this empirical load forecasting study,

the effect of ignoring non-linearities is acceptable, as in

Germany, only heating plays a major role but no cooling,

therefore there are no strong non-linearities observable.

Still, remember that most non-linear modeling techniques

embed the linear approaches that are considered here. For

instance, both models above can be written as a special

artificial neural network (ANN) with a feed forward neural

network skip-layer and no hidden layer.

4 Public holiday models

As mentioned, we will use the benchmark models (3)

and (4) to build up public holiday extended versions.

Therefore we have to treat the public holidays and intro-

duce the following notations: F is the set of all fixed-date

holidays of the target region; FkðdÞ is the fixed-date public
holiday dummy of public holiday k 2 F. It is 1 if the day d

is holiday k and zero otherwise. For instance if k is New

Years day, then FkðdÞ is 1 if d is on 1 January and 0

otherwise; F(d) is the (overall) fixed-date public holiday

dummy, which is 1 if day d is any fixed-date public holi-

day. Formally, we have FðdÞ ¼
P

k2F FkðdÞ; W is the set

Modeling public holidays in load forecasting: a German case study 195

123



of all weekday holidays. For the US, this contains Birthday

of Martin Luther King, Jr., Washington’s Birthday,

Memorial Day, Labor Day, Columbus Day and Thanks-

giving Day; WkðdÞ is the fixed-date public holiday dummy

of public holiday k 2 W. It is 1 if the day d is holiday k and

zero otherwise. For instance, if k is on Christmas Day, then

WkðdÞ is 1 if d is the 25 Dec and 0 otherwise; W(d) is the

(overall) weekday public holiday dummy, which is 1 if day

d is any weekday public holiday. Formally, we have

WðdÞ ¼
P

k2W WkðdÞ. H ¼ F [W is the set of all holi-

days. HðdÞ ¼ FðdÞ þWðdÞ is the overall holiday dummy.

(In countries where weekday public holidays can fall on a

fixed-date holiday this definition should be adopted to

HðdÞ ¼ minfFðdÞ þWðdÞ; 1g to avoid that the day is

counted twice.)

Analogously to the holiday dummies which depend on

the day d we define the same dummies depended on the

time index t.

For the estimation/training of the forecasting model we

suppose that we have always the past D days of load

observations available, or alternatively T ¼ 24D hours of

load data. Without loss of generality we denote this

available sample by YD;h ¼ ðY1;h; Y2;h; . . .; YD;hÞ
0
of length

D and YT ¼ ðY1; Y2;. . .; YTÞ
0
of length T. Moreover, denote

the corresponding time index set T ¼ f1; 2; . . .; Tg and

D ¼ f1; 2; . . .;Dg.

4.1 Ignoring public holidays

In relatively many studies the public holiday effects are

simply ignored. So, we simply keep the model specifica-

tions (3) and (4) as they are. For the estimation, all avail-

able data is considered. Thus, we tend to get a high error on

days where there is a public holiday. However, if the

holiday is on a weekend, especially on a Sunday, the effect

is likely less relevant.

This approach has still many opponents even though the

modeler and forecaster are already aware of the problem.

Especially in studies where the focus in on other modeling

aspects this approach is still popular, [6, 9, 12–18].

For the estimation of this model we consider the stan-

dard regression framework. So for the model (1) and (2)

with the benchmark specifications (3) and (4) we have the

OLS estimator in the univariate case:

bb ¼ ðX 0
TXTÞX

�1
T YT ¼ argmin

b

kYT �XTbk
2
2 ð5Þ

and in the multivariate case:

bbh ¼ ðX 0
D;hXD;hÞX

�1
D;hYD;h

¼ argmin
b

kYD;h � XD;hbhk
2
2

ð6Þ

with XT and XD;h as regressor matrix the corresponding

model specification. We denote the models by U-bench and

M-bench for the univariate and multivariate specification.

In general for all model abbreviation we apply the U- in

front of a univariate model and M- in front of a multi-

variate model.

4.2 Removing public holidays

In some studies [19–23] unwanted holidays are removed

(or excluded) from the underlying data set, or they are

treated as missing data. In contrast to the ignoring the

public holidays approach we have the advantage of not

having the public holiday bias for the training or estima-

tion. However, due to the removing of the holidays, we

might ignore relevant information from our data, this could

help to improve the forecasts. However, this modeling

technique has the disadvantage—that it is not incorporating

the effects of public holidays at all. So if we want to

forecast these days, we have the problem that we can never

capture the public holiday effects. Additionally, the

removing of data, makes the estimation of autoregressive

effects complicated. Thus, it should not be suitable for

short-term forecasts where the autoregressive impact is

strong. However, to overcome this problem (at least par-

tially) [24] removed public holiday from the training set,

and replaced them by the average of the load in the cor-

responding periods of the two adjacent weeks for corre-

sponding lagged inputs.

Note that some of the listed studies which remove the

public holidays from their underlying data sets mention

explicitly that the forecasting methods is not tailored for

forecasting those days. However, some of them also list

results for the performance including those holidays.

In the empirical application, we consider the parameter

estimation as in (5) or (6). The only thing that change is the

supplied vector of observed data YT or YD;h and the cor-

responding regression matrix XT or XD;h. In the univariate

case, the reduced observation vector can be defined as

eYT ¼ ðYtÞt2Tnft2TjHðtÞ¼1g.
eYT gets slightly smaller as all

observation of the public holidays (H) will be removed.

For the univariate and multivariate specification, we denote

the corresponding model by remh.

We also consider the two special cases: first where we

only remove the fixed-date public holidays (F) from the

estimation procedure and a second where we remove all

weekday public holidays (W). The resulting models are

denoted by ‘remfh’ such as ‘remwh’.
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4.3 Public holidays as weekday dummy

Many electricity load forecasting methods treat use day-

type dummies to incorporate the specific holiday effects. Here

public holidays are usually treated as aweekdaydummy. If the

modeler or forecasting does not distinguish between different

impacts of Saturdays and Sundays and just considered

weekend dummies in model f or fh, then the public holidays

are often considered as a week-end as well, as in [25] or [26]

for selected holidays. However, in most cases, the public

holidays are usually treated as a Sunday [27–29] or sometimes

as a Saturday [30], depending on the motivation of the fore-

caster. In the rare case of [31] for load modeling in Iran [32],

the public holidays were considered as a Friday. Sometimes

this assigning to the week-day dummy is tailored for every

single public holiday, e.g. in [33], the majority of the public

holidays is treated as Saturday, but some as Sunday.

A clear plus of this modeling approach is that captures

automatically the different effects of fixed-date public

holidays and weekday public holidays. Another important

feature is that all public holidays get the same effect,

similarly as selected weekday effects.

In univariate modeling frameworks, those dummies are

not very popular as they somehow introduce structural

breaks at midnight. However, this problem can be removed

by introducing ’smooth’ dummies. In [11], a such sophis-

ticated univariate dummy based approach is used. A B-

spline basis function approach is used to guarantee a

smooth transition effect for the public holidays.

Here we implement only two strategies namely those

that treats every holiday as a Sunday, and the Saturday

option. The latter one seems to be the most plausible way

for the data sets of consideration, especially if you have in

mind that concerning many legal issues most countries of

the world treat public holidays as Sunday. So the consid-

ered countries in this study as well.

Formally, this approach changes the day-of-the-week

dummy DoWk (or analogously the hour-of-the-week

dummy HoWk) in the model specification. The regular

7-periodic pattern gets disturbed by the holidays. Let w be

the target weekday which replaces the public holidays (e.g.

w ¼ 6 for Saturday and w ¼ 7 for Sunday). Then, we

define formally day-of-the-week dummy with holiday

replacement as:

DoWHw;kðdÞ ¼

0
k 2 f1; 2; . . .; 7g n fwg

and HðdÞ ¼ 1

1 k ¼ w and HðdÞ ¼ 1

DoWkðdÞ otherwise

8
>>><
>>>:

ð7Þ

The resulting model specification for the multivariate

framework is:

fhðYd;hÞ ¼
XJ

j¼1

asinj;h sin
2pt

jA

� �
þ acosj;h cos

2pt

jA

� �

þ
X7

k¼1

bk;h � DoWHw;kðdÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
weeklyþ holiday effects

þ
Xph

k¼1

/k;hYd�k;h

ð8Þ

For the univariate model is constructed in a similar way

using HoWk instead of DoWk, so:

HoWHw;kðtÞ ¼

0
t 2 f1; 2; . . .; 168g n Dw

and HðtÞ ¼ 1

1 t 2 Dw and HðtÞ ¼ 1

HoWkðtÞ otherwise

8
>>><
>>>:

ð9Þ

with Dw ¼ f24ðw� 1Þ þ 1; . . .; 24wg We denote the

resulting models by ‘hSat’ (w ¼ 6) such as ‘hSun’ (w ¼ 7).

They are estimated using OLS.

4.4 Additional public holiday dummies

In some studies, the public/bank holidays are incorpo-

rated by introducing new public holiday dummies. These

dummies model the public holiday effect separately instead

of forcing it to follow the weekday effect as in previous

model class.

More precisely, these methodologies provide a list of

public holiday sets. For each set of the list, a public holiday

dummy is introduced. In the most simple case, the list

contains only a single set of all public holidays, so H.

Another approach would be to consider a list of two ele-

ments, the first of all fixed-date public holidays F and

second all weekday public holidays W. Following this we

would have two subgroups of public holidays which lead to

two new public holiday dummies. In this study, we con-

sider seven different groups, namely:

1) all public holiday with the list L ¼ ðHÞ and resulting

holiday dummy D1 ¼ H;

2) all fixed-date public holidays: L ¼ ðFÞ and resulting

holiday dummy D1 ¼ F;

3) all weekday public holidays: L ¼ ðWÞ and resulting

holiday dummy D1 ¼ W;

4) all fixed-date public holidays and all weekday public

holidays: L ¼ ðF;WÞ and resulting holiday dummies

D1 ¼ F and D2 ¼ W;

5) all fixed-date public holidays separately and all

weekday public holidays: L ¼ ððlÞl2F;WÞ with result-

ing holiday dummies Dk ¼ Fk with k 2 F and DFþ1 ¼

W with F as number of fixed-date public holidays;

6) all fixed-date public holidays and all weekday public

holidays separately: L ¼ ðF; ðlÞl2WÞ with resulting
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holiday dummies D1 ¼ F and D1þk ¼ Wk with

k 2 W;

7) all public holidays separately: L ¼ ððlÞl2F; ðlÞl2WÞ

with resulting holiday dummies Dk ¼ Fk with k 2 F

and DFþk ¼ Wk with k 2 W and F as number of fixed-

date public holidays;

The first three options lead to a single new public holiday

dummy. The fourth to two new public holiday dummies.

And the latter ones leads usually to more dummies

depending on the region to model. In 7), every single

public holiday receive its own dummy.

Of course, there are many more options of subgroup

creating. However they must be tailors for every country

and set of public holidays. For instance in [34], they cre-

ated three subgroups Monday holidays, Summer holidays

and Winter holidays. In [35], a similar holiday classifica-

tion was used forecasting electricity load. Such a classifi-

cation is usually based on expert knowledge of the

forecaster about the target region and energy time series.

In literature, the most common approach seems to add

holiday dummies seems to be the option 1). This is used by

e.g. [36–41]. Especially in artificial intelligent based

methods where a training set is provided to e.g. the neural

net or support vector machine algorithms often just add

such a holiday dummy. Also [42] indirectly use the 1)

method, even they are introducing a ‘working day’ dummy

which is zero on working days and non-zero on non-

working days. As they also incorporate Saturday and

Sunday dummies, this approach spans up the same model

space as the direct approach.

Having the list of public holidays L which define the

public holiday dummies, there are basically two options to

incorporate them into the model. It includes the additional

dummy and the replacing dummy approach. The latter one

is described in the next subsection.

The additional public holiday approach of the model

specification gets only extended by the additional dum-

mies. For instance, the multivariate model specification (3)

turns to:

fhðYd;hÞ ¼
XJ

j¼1

asinj;h sin
2pt

jA

� �
þ acosj;h cos

2pt

jA

� �

þ
X7

k¼1

bk;hDoWkðdÞ þ
Xph

k¼1

/k;hYd�k;h

þ
XL

l¼1

cl;hDlðdÞ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
holidayeffects

ð10Þ

where L is the length of the set of holidays list L and Dl

represents the l’s holiday dummy that corresponds to l’s

element of L. For instance, for 4) we have

PL
l¼1 cl;hDlðdÞ ¼ c1;hD1ðdÞ þ c2;hD2ðdÞ ¼ c1;hFðdÞþ

c2;hWðdÞ, so two additional holiday dummies are added.

For the univariate model, the holiday dummies are

added in the same way. We denote the additional models

with the corresponding options lists above by Adh �, Adfh

`, Adwh ´, Adfhwh ˆ, AdfHwh ˜, AdfhwH ¯ and and

AdH ˘. We estimate them using OLS.

In theory, the model approach of treating each holiday

separately using dummies (option 7)) has a nice feature that

the holiday impact can be modeled explicitly for all holi-

days. This is valid especially for regional holidays, or in

cases where it is relatively well known that the holiday

impact differs.

However, as pointed out in Sect. 2, only weekday public

holidays occur always on the same weekday. Here the

additional holiday dummies approach seems to be reason-

able as the impact to the holiday is more or less the same in

every year. However, for modeling fixed-date public holi-

days we might run into troubles with the additional

approach.

For a better understanding, we consider a simple

example. Assume that we observe a certain fixed-date

public holiday in a 3 year in-sample period on a Wednes-

day, Thursday and Friday. In the next year where we want

to forecast the load of this public holiday, it falls on a

Sunday. Thus, a simple additional dummy approach would

have noticed a clear reduction in the load for the three in-

sample years and puts a clear negative coefficient on this

public holiday dummy. If in the next year, the public

holiday falls on a Sunday then there will be a double

reducing impact, because the Sunday dummy and the

public holiday dummy are active. The replacing dummy

approach is able to overcome this problem.

4.5 Replacing public holiday dummies

The replacing public holiday approach can be seen as a

modification of the additional approach. Here, the holiday

dummies are added to the model as before. Additionaly, the

dummies for the weekly pattern (DoW or HoW) are adapted

so that the corresponding week-day effect is set to zero if

there is a holiday. The basic idea is to avoid double

reducing effects, if e.g. the public holiday falls on a

Sunday.

The replacing holiday dummy options is present in lit-

erature as well, so in [43]. Furthermore, specific non-linear

methods that utilize factor variable for day types fall into

this category as well, as they span up the same space of

possible solutions. (Note that this potentially holds for non-

linear methods of Sect. 4.4 as well, especially those which

enlarge the feature space to explicitly include interactions

like polynomial kernel regression based methods.)
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Reference [44] who won the electricity load and electricity

price forecasting track in the Global Energy Forecasting

Competition 2014 (see [3]) utilized such a day-type

methodology using a single holiday group (but also a

dummy for the day before and after the public holiday).

Reference [45] use such a way of modeling with two

groups of public holidays, but the grouping itself is not

reported. Also [46] used such a sophisticated day type

specification for the Kaggle Global Energy Forecasting

Competition 2012 for load forecasting. For the US data,

they considered four groups for Christmas and New Year’s

Day, for Christmas Eve, for Independence day and for

Thanksgiving. Also [47] use 4 groups of public holidays

(New Years Day, Christmas Day and Boxing Day, New

Years Eve, Remaining Public Holidays) for German

industrial load modeling and replace the corresponding

weekday dummy.

For the replacing method, the holiday dummies are

added as in (13) but additionally week-day dummy DoWk

is modified. In detail, the dummy is set to zero if any

holiday is active, so formally we have:

DoWReL;kðdÞ ¼
0 DlðdÞ ¼ 1 for any l 2 L

DoWkðdÞ otherwise

�

ð11Þ

This leads to the model specification:

fhðYd;hÞ ¼
XJ

j¼1

asinj;h sin
2pt

jA

� �
þ acosj;h cos

2pt

jA

� �

þ
X7

k¼1

bk;hDoWReL;kðdÞ þ
Xph

k¼1

/k;hYd�k;h

þ
XL

l¼1

cl;hDlðdÞ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
holidayeffects

ð12Þ

Similarly as before the univariate model version is con-

structed in the same way. We denote the replacing models

by Rph �, Rpfh `, Rpwh ´, Rpfhwh ˆ, RpfHwh ˜,

RpfhwH ¯ and and RpH ˘.

In the replacing approach double counting fixed-date

public holiday on a Sunday is avoided, as the Sunday

dummy is replaced by zero and only the public holiday

dummy is active. Still the replacing approach has the dis-

advantage that there is no active weekday dummy. The

impact is completely estimated by very few public holidays

in the data set which might lead to very volatile estimates

and higher forecasting errors.

4.6 Hybrid dummy approach: additional weekday

public holidays dummies and replacing fixed-

date holidays

We have seen the additional public holiday approach

where public holidays are added and the replacing one

where public holidays are added but the corresponding

weekday dummies is replaced by 0. The replacing method

was mainly introduced by the problem that additional

approach double counts fixed-date public holiday on

weekends (esp. Sunday). However, this is only an issue for

fixed-date public holidays but not for weekday holidays. So

there is also the option of considering the replacing

approach for the weekday public holidays, but keeping the

(simple) additional holiday approach.

Therefore denote L the list of public holiday sets that

follow the additional approach and R the list of public

holidays which will be treated using the replacing method.

As we have in L only weekday public holidays and in R

only fixed date public holidays we receive in total four

possible combinations:

a) L ¼ ðWÞ and R ¼ ðFÞ

b) L ¼ ððlÞl2WÞ and R ¼ ðFÞ

c) L ¼ ðWÞ and R ¼ ððlÞl2FÞ

d) L ¼ ððlÞl2WÞ and R ¼ ððlÞl2FÞ

In the multivariate case, the resulting model is then

fhðYd;hÞ ¼
XJ

j¼1

asinj;h sin
2pt

jA

� �
þ acosj;h cos

2pt

jA

� �

þ
X7

k¼1

bk;hDoWReR;kðdÞ þ
Xph

k¼1

/k;hYd�k;h

þ
XL

l¼1

cl;hD
L
l ðdÞ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
weekdayholidays

þ
XR

r¼1

dr;hD
R
r ðdÞ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
fixed�dateholidays

ð13Þ

with DL
l as weekday dummies for L and DR

l as weekday

dummies for R. Here L and R are the elements in L and R.

The replacing day-of-the-week dummy DoWReR;k is

defined as in (11) using R as holiday list, instead of L. We

denote the four model options by AdwhRpfh �a ,

AdwHRpfh �b , AdwhRpfH �c and AdwHRpfH �d . Again,

the corresponding univariate framework is constructed in

the same way. All models are estimated using OLS.

However, note that out of the four options �a –�d for

weekday holiday list L and fixed-date list R two models

coincide with previous ones due to singularities. The

options �b and �d where the additional list of week-day

public holidays L contains all public holidays separately

match the replacing model versions where each weekday

public holiday is modeled with its own dummy. So

RpfhwH is equivalent to AdwHRpfh and repH is
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equivalent to AdwHRpfH. Thus, we are dropping the latter

one (AdwHRpfh and AdwHRpfH) from the analysis. The

same holds for the univariate framework.

Finally, theoretically we could also create the other

mixtures (e.g. weekday public holiday as replacing and

fixed-date public holidays as additional dummy approach),

but due to the motivation the crucial problem are the fixed-

date public holidays. Furthermore, the resulting models

does not lead to further information concerning the mod-

eling of public holidays.

4.7 Hybrid approach: weekday public holidays

as dummies and fixed-date holidays as weekdays

As mentioned in the model description in the previous

Sect. 4.4, the additional holiday dummy approach might be

inappropriate for the fixed-date public holidays. However,

this issue might be solved by combining the holiday as

weekday approach (Sect. 4.3) with the additional holiday

dummy methods (Sect. 4.4). So it is able to construct a

model that joins the properties of both public holiday

modeling approaches efficiently.

The key idea is to use additional public holidays dum-

mies for weekday public holidays where they work well,

but to consider the holiday as weekday approach for the

fixed-date holidays.

For the additional modeling approach, we define the

multivariate model by:

fhðYd;hÞ ¼
XJ

j¼1

asinj;h sin
2pt

jA

� �
þ acosj;h cos

2pt

jA

� �

þ
Xph

k¼1

/k;hYd�k;h þ
X7

k¼1

bk;h � DoWFw;kðdÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
weeklyþ fixed�date holidays

þ
XL

l¼1

cl;hDlðdÞ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
weekday holiday effects

ð14Þ

where L is the holiday list which contain only weekday

holidays and:

DoWFw;kðdÞ ¼

0
k 2 f1; 2; . . .; 7g n fwg

and FðdÞ ¼ 1

1 k ¼ w and FðdÞ ¼ 1

DoWkðdÞ otherwise

8
>>><
>>>:

ð15Þ

Here for public holiday list L, we have two reasonable

options as only contain weekday public holidays:

1) L ¼ ðWÞ where all weekday public holidays with a

single parameter and dummy W;

2) L ¼ ððlÞl2WÞ where all weekday public holidays with

a separate parameter and dummies Wk for all k 2 W.

For the replacing weekday of the fixed-date public holidays

in (15) we consider again the plausible options w ¼ 6

(Saturday) and w ¼ 7 (Sunday). Even though the hybrid

model is motivated by the disadvantages of the additional

holiday dummy approach we can use it with the replacing

method as well. In this case, the DoWFw;kðdÞ gets adopted

to:

DoWFw;ReL;kðdÞ

¼

0
½k2f1;2; . . .;7gnfwg and FðdÞ¼ 1�

or ½DlðdÞ¼ 1 for any l2L�

1 k¼w and FðdÞ¼ 1

DoWkðdÞ otherwise

8
>>><
>>>:

ð16Þ

For the univariate model, the construction of the hybrid

model follows the same steps. We denote the additional

hybrid model as in (14) by HyAd6wh for option 1) and

w ¼ 6 and HyAd6wH for option 2) and w ¼ 6. For the

replacing approach we denote it by HyRp6wh for option 1)

and w ¼ 6 and HyRp6wH for option 2) and w ¼ 6. If we

use w ¼ 7 instead of w ¼ 6 we change the 6 in the name to

7, so e.g. HyAd6wh to HyAd7wh. As before the models are

estimated using OLS.

Finally, we want to mention that the hybrid model has

the disadvantage that fixed-date public holidays are always

treated as a specific weekday, e.g. Sunday. So holidays

with minor effect or regional public holidays can not be

well modeled.

4.8 Public holidays with separate additional

dummies and weekday holiday impact

adjustment

Another approach to overcome the problem of the

additive holiday dummy approach of Sect. 4.4 is based on

an impact adjustment for weekday holidays. Here, an

impact profile shall measure the additional impact of the

weekday public holiday at a certain week-day. In the

simplified framework we would expect an fixed-date public

holiday to have a 100% reducing effect if it falls on a

standard working day e.g. Wednesday towards the Sunday

behavior. But if weekday public holiday fall on a falls on

Saturday, we expect a smaller reducing effect; so that the

Saturday turns more or less to a Sunday. On a Sunday we

expect essentially no effect at all. This effect can also be

observed in Fig. 1.

Now the idea is to compute an impact profile to measure

this load (or consumption/demand/price) reduction.

Therefore we consider the weekly load profile Pw;h as a
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basis. Thus, Pw;h is simply the mean load at weekday w and

hour h. So it represents 7� 24 values. In Fig. 2, we see

such a typical profile Pw;h for German load data. Given this

profile we can define the impact profile. It is constructed

using two reference days, a zero impact day w0 and a full

impact day w1. Then we can define the impact function

Iw;h:

Iw;h ¼
Pw;h � Pw0;h

Pw1;h � Pw0;h
ð17Þ

In this study we consider only zero impact weekday as

Sunday (w0 ¼ 7) and the full impact weekday as Wed-

nesday (w1 ¼ 3). Figure 2 visualizes the impact profile Iw;h

for German load data. We see clearly that the impact for

the Sunday is set to zero and for Wednesday it is one. For

the working days Tuesday and Thursdays the impact is

close to 1 as well. For the Monday and Friday we observe

the reducing effect from the transition from and towards

the weekend. And for Saturday we observe a relatively

small effect of roughly about 0.3 during the main hours.

Given the impact function we can set-up the corre-

sponding model.

fhðYd;hÞ ¼
XJ

j¼1

asinj;h sin
2pt

jA

� �
þ acosj;h cos

2pt

jA

� �

þ
X7

k¼1

bk;h � DoWkðdÞ þ
Xph

k¼1

/k;hYd�k;h

þ
XL

l¼1

cl;hDlðdÞ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
weekday holidays

þ
X

k2F

dk;h Iw;hðdÞFkðdÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fixed�date holidays

ð18Þ

where L is a list containing fixed-date public holiday. For

the holiday list L we can consider the same two possibil-

ities 1) L ¼ ðWÞ and 2) L ¼ ððlÞl2WÞ as in the previous

subsection. We see that the impact profile Iw;h is included

via simple multiplication with the corresponding fixed-date

holiday dummies Fk. Note that for the fixed-date public

holidays it only makes sense to consider. This approach

was used by [8] in the GEFCOM2014 probabilistic load

forecasting framework. In [48] this methodology is applied

to mid- and long-term energy system modeling. The model

framework can be improved by considering the impact

coefficients tailored for the corresponding holidays, or

broader classes e.g. summer and winter holidays. We

denote the model using option 1) with ‘impwh’, the option

2) with ‘impwH’. Similarly the univariate versions can be

derived.

Finally, we want to mention that there are some other

forecasting methods that deal with public holiday which do

not fit in the classes introduced before. Most notable these

are fuzzy linear regression approaches [10, 49, 50], such as

factor variable approches as used in [51, 52].

5 Empirical study

5.1 Forecasting study and evaluation design

We test the several listed methodologies. Note that we

could also perform a probabilistic forecasting study, but

even the simple point forecasting study illustrates the

results sufficiently well. We evaluate the forecasting per-

formance for the electricity load data of Germany which

was also used in Fig. 1 for illustration purpose. In total, we

consider 8 years of load data, from January 2009 to

December 2016. As in [5], we consider 3 years of in-

sample training, in detail 3� 365 days.

The evaluation framework is motivated by this one of

[20] where the performance also evaluated once for all out-

of-sample days and once without the holidays. As basic

evaluation method, we consider the mean absolute error

(MAE) which is optimal if the point forecast corresponds

to the median. We also evaluate the performance con-

cerning the root mean square error (RMSE) which is

optimal if the point forecast shall match the mean. As the

models are designed on forecasting the mean, the evalua-

tion focus should be on the RMSE. Note that we are not

considering the mean absolute percentage error (MAPE)

even though it is still popular in energy forecasting, espe-

cially in engineering literature. The reason is that the

MAPE is not a suitable forecasting evaluation measure,

especially with respect to significance evaluation [53].

For the MAE and RMSE, we consider several options to

evaluate the performance differently. First we are evalu-

ating the performance across the full out-of sample period,

afterwards we are looking at the public holidays itself.

Formally, we consider the definitions of the MAE and

RMSE are:

MAEO ¼
X

d2O

X24

h¼1

Yd;h � bYd;h

���
��� ð19Þ

RMSEO ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

d2O

X24

h¼1

Yd;h � bYd;h

���
���
2

vuut ð20Þ

where O is an selected out-of-sample day subset. To define

these out-of-sample day subsets O, let Oos be the set of all

out-of-sample days; here 5 years from January 2012 to

December 2016. Then, we consider in total five options for

the subset O:
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1) all days:

Oall ¼ Oos

2) all non-holidays days:

OnH ¼ fd 2 OosjHðdÞ ¼ 0g

3) all public holidays:

OH ¼ fd 2 OosjHðdÞ ¼ 1g

4) all fixed-date public holidays:

OF ¼ fd 2 OosjFðdÞ ¼ 1g

5) all weekday public holidays:

OW ¼ fd 2 OosjWðdÞ ¼ 1g

The options Oall and OnH evaluate the overall performance

on all days, mainly focusing on the overall performance.

The difference between the corresponding measures e.g.

MAEOall
and MAEOnH

allows us to assess the impact of the

holidays to the overall performance.

The remaining three subsets OH, OF and OW are useful

to compare the forecasting accuracy of the modeling pro-

cedures on the public holidays itself. Moreover, they allow

us to draw different conclusions for the holiday type.

The scores defined by (19) and (20) allow the compar-

ison of prediction methods. However, just reporting the

out-of-sample MAE or RMSE does not directly allow

significance statements. Here, we are a multivariate Die-

bold–Mariano (DM) test as introduced in [6] for electricity

price forecasting and extended by [54].

Therefore, denote by beY ;d ¼ ðbed;1; . . .;bed;24Þ0 vectors of

out-of-sample errors bed;h ¼ Yd;h � bYd;h for given out-of-

sample day d. Now, we are considering the forecasting

error for two models say A and B with the forecast errors

beA;d and beB;d of day d. Then we define the multivariate loss

differential series:

DA;B;d ¼ kbeA;dkp � kbeB;dkp ð21Þ

with k � kp-norm, i.e., kbeA;dkp ¼ ð
P24

h¼1 jbeA;d;hj
pÞ1=p. For the

DM-test, we are considering the options p ¼ 1 and p ¼ 2.

The former one corresponds to the MAE, the latter one to

the RMSE. When applying the DM-test we are always

testing the best model A (under a certain score) against

another model B. For each pair (A, B), we carry out the

DM-test with the null hypothesis H0 : EðDA;B;dÞ� 0, i.e.,

the testing if the forecasts of B is outperformed by A. As in

the standard DM-test, we assume that the series of the loss

differences DA;B;d is covariance stationary. This yield

asymptotically normally distributed test statistics.

Finally, remember that we are considering the multi-

variate and univariate modeling framework. Both modeling

frameworks describe the same effects and are comparable,

still they are not identical. So we can only judge properly

within this corresponding modeling class as both bench-

mark model are not designed to be optimal.

5.2 Results for forecasting accuracy

In Table 2 the results of the multivariate and univariate

forecast for the German electricity loads are presented.

There we see the MAE and RMSE values of all models for

the considered forecasting horizon of 1 day. (Note that the

authors also considered higher forecasting horizons of 7

days and 30 days in detail. Due to space limitations the

results are not shown here, but the interested reader may

request the results from the authors. However, the results

are in general in line with the 1 day ahead forecasts.)

Below the the MAE and RMSE values, we report the

test statistic of the Diebold–Mariano test with respect to the

best model in the corresponding category. The best model

is highlighted by bold font and all models that are not

significantly worse (significance level a ¼ 1%) within each

column are underlined. Moreover, the cells of Table 2 are

colored with respect to the test statistic of the corre-

sponding DM-test using a red ! yellow ! color scheme.

Here green represents the best model.

First we are evaluating the overall performance of the

forecasting methodology. So we are considering the option

1) and 2) with the evaluation for all out-of-sample days and

all non-holidays in the out-of-sample period.

First of all, we observe that for the multivariate bench-

mark model (see Table 2) the 1-day ahead MAE on all out-

of-sample days (Oall) is about 1.48 GW and for all out-of-

sample days without the public holidays (OnH) it is only

about 1.31 GW. Thus the removing of only 9 public holi-

days (9=356 � 2:5% of the data) reduces the out-of-sample

MAE by more than 10%. Thus, the impact on the fore-

casting performance of a public holiday is about four times

as high as a normal day. For the RMSE and other fore-

casting horizons, similar relationships hold. Also, the uni-

variate models have the same pattern regarding the

performance of the benchmark model. However, in abso-

lute terms, the univariate models have better forecasting

accuracy with respect to short term horizons.

If we compare the benchmark model of Table 2 with the

simple approach where the public holidays were removed

from the data set (rmh, remfh and remwh), then we notice

that the forecasting performance is effected as well.

Especially the model where all holidays got removed

(remh) shows a clear improvement in the forecasting

accuracy in terms of MAE, but it stayed at a similar level

for the RMSE. In multiple cases, the remH approach leads

to the best overall forecasting accuracy for the multivariate

and univariate framework.
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However, especially for multivariate short-term fore-

casts multiple models which incorporate public holiday

effect have better forecasting results. Here, three model

forecasts are not significantly worse from the best model

forecast of M-RpH for both MAE and RMSE. These are

M-AdwhRpfH, M-impwh and M-impwH. The former one

seems to be better for all out-of-sample days and the latter

one for all non-holidays. The replacing public holiday

Table 2 Out-of-sample forecasting results for MAEO and RMSEO for O 2 fOall;OnH;OH;OF;OWg in GW for a forecasting horizon of 1 day

with corresponding DM-test statistic (given below in squared brackets)

Models Multivariate modeling frameworks (M-) Univariate modeling frameworks (U-)
all without hld holidays fixed-date weekday all without hld holidays fixed-date weekday

MAE
[stat]

RMSE
[stat]

MAE
[stat]

RMSE
[stat]

MAE
[stat]

RMSE
[stat]

MAE
[stat]

RMSE
[stat]

MAE
[stat]

RMSE
[stat]

MAE
[stat]

RMSE
[stat]

MAE
[stat]

RMSE
[stat]

MAE
[stat]

RMSE
[stat]

MAE
[stat]

RMSE
[stat]

MAE
[stat]

RMSE
[stat]

benchmark 1.48
[7.59]

2.68
[6.50]

1.31
[6.15]

2.13
[3.64]

8.59
[10.17]

10.68
[9.36]

8.39
[7.29]

10.46
[6.21]

8.82
[7.05]

10.94
[6.98]

1.29
[9.21]

2.46
[4.18]

1.12
[11.08]

1.90
[4.30]

8.13
[11.27]

10.24
[9.74]

8.01
[8.63]

10.02
[6.75]

8.28
[7.40]

10.49
[6.94]

remh 1.44
[6.09]

2.69
[6.02]

1.25
[2.14]

2.06
[2.22]

9.29
[10.92]

11.43
[10.29]

9.14
[8.12]

11.22
[7.21]

9.45
[7.33]

11.68
[7.22]

1.22
[0.00]

2.45
[3.86]

1.04
[0.00]

1.82
[0.00]

8.54
[11.71]

10.70
[10.31]

8.38
[9.03]

10.41
[7.37]

8.73
[7.65]

11.03
[7.15]

remfh 1.49
[7.69]

2.69
[6.41]

1.31
[5.62]

2.10
[3.19]

8.93
[10.76]

11.03
[10.18]

8.97
[8.14]

11.05
[7.21]

8.88
[7.04]

11.02
[7.02]

1.28
[10.60]

2.46
[4.17]

1.11
[11.54]

1.87
[4.15]

8.41
[11.69]

10.53
[10.46]

8.48
[9.24]

10.50
[7.68]

8.33
[7.39]

10.56
[6.96]

remwh 1.43
[5.91]

2.68
[6.07]

1.25
[2.26]

2.08
[2.64]

8.93
[10.32]

11.07
[9.44]

8.54
[7.30]

10.61
[6.20]

9.37
[7.35]

11.57
[7.20]

1.23
[2.19]

2.44
[3.89]

1.06
[3.66]

1.86
[2.46]

8.30
[11.30]

10.45
[9.64]

7.96
[8.49]

9.98
[6.54]

8.68
[7.66]

10.97
[7.12]

hSat 1.27
[5.64]

1.97
[4.26]

1.23
[2.59]

1.93
[2.49]

2.51
[4.18]

3.05
[4.01]

2.53
[1.97]

3.15
[2.32]

2.50
[5.12]

2.92
[4.48]

1.38
[4.91]

2.05
[6.50]

1.35
[15.99]

2.01
[2.76]

2.58
[5.03]

3.27
[4.36]

2.77
[3.28]

3.52
[3.09]

2.36
[4.48]

2.97
[3.61]

hSun 1.27
[6.70]

1.95
[3.20]

1.24
[3.21]

1.93
[1.78]

2.38
[3.76]

2.80
[3.18]

2.44
[1.86]

2.92
[1.83]

2.30
[4.34]

2.66
[3.69]

1.36
[4.20]

2.02
[4.72]

1.33
[15.40]

2.00
[2.51]

2.29
[3.64]

2.83
[2.89]

2.39
[2.23]

2.96
[1.85]

2.17
[3.35]

2.68
[2.69]

Adh 1.29
[5.48]

2.02
[3.30]

1.24
[3.33]

1.93
[2.57]

3.11
[4.15]

4.27
[3.07]

4.04
[3.64]

5.33
[2.90]

2.05
[2.86]

2.56
[2.38]

1.36
[4.07]

2.05
[3.04]

1.33
[14.99]

1.99
[2.43]

2.66
[3.55]

3.83
[2.69]

3.58
[3.53]

4.84
[2.74]

1.61
[1.54]

2.15
[0.87]

Adfh 1.45
[7.76]

2.47
[5.70]

1.32
[6.48]

2.11
[3.39]

6.59
[7.12]

8.62
[6.31]

4.63
[4.75]

5.86
[3.89]

8.84
[7.05]

10.97
[7.01]

1.53
[12.97]

2.45
[5.82]

1.42
[24.34]

2.14
[8.55]

5.90
[6.99]

8.05
[6.07]

3.99
[4.36]

5.30
[3.61]

8.08
[7.04]

10.35
[6.78]

Adwh 1.31
[3.90]

2.28
[4.13]

1.21
[0.00]

1.95
[1.79]

5.23
[5.22]

7.86
[4.70]

8.55
[7.32]

10.61
[6.21]

1.40
[1.89]

1.83
[2.75]

1.44
[7.57]

2.34
[4.37]

1.35
[15.33]

1.99
[2.52]

5.43
[5.77]

8.16
[5.34]

9.01
[9.92]

11.03
[8.25]

1.32
[1.41]

1.85
[0.45]

Adfhwh 1.27
[4.37]

2.02
[3.21]

1.23
[2.00]

1.92
[1.75]

3.10
[3.96]

4.47
[3.41]

4.61
[4.56]

5.87
[3.81]

1.37
[1.59]

1.79
[2.68]

1.35
[3.97]

2.06
[3.08]

1.32
[14.11]

1.98
[2.25]

2.80
[3.97]

4.10
[3.29]

4.10
[4.69]

5.33
[3.71]

1.31
[1.20]

1.84
[0.36]

AdfHwh 1.26
[2.98]

2.04
[2.75]

1.22
[0.28]

1.92
[0.45]

3.15
[3.39]

4.87
[2.98]

4.69
[3.71]

6.44
[3.23]

1.39
[1.78]

1.81
[2.98]

1.35
[3.91]

2.08
[2.80]

1.31
[13.80]

1.97
[2.15]

3.02
[3.72]

4.73
[3.18]

4.50
[4.27]

6.23
[3.54]

1.31
[1.28]

1.85
[0.40]

AdfhwH 1.27
[4.31]

2.02
[3.17]

1.23
[2.03]

1.92
[1.88]

3.06
[3.81]

4.44
[3.35]

4.62
[4.57]

5.88
[3.82]

1.27
[1.25]

1.64
[1.57]

1.35
[3.93]

2.06
[3.08]

1.32
[14.10]

1.98
[2.25]

2.78
[3.91]

4.10
[3.29]

4.10
[4.69]

5.33
[3.71]

1.27
[2.29]

1.84
[2.45]

AdH 1.26
[2.92]

2.04
[2.72]

1.22
[0.32]

1.92
[0.56]

3.10
[3.26]

4.85
[2.93]

4.69
[3.72]

6.44
[3.23]

1.28
[1.85]

1.66
[2.34]

1.35
[3.87]

2.08
[2.79]

1.31
[13.79]

1.97
[2.15]

3.00
[3.67]

4.73
[3.18]

4.50
[4.27]

6.23
[3.54]

1.27
[2.22]

1.84
[2.51]

Rph 1.26
[6.00]

1.95
[2.84]

1.24
[2.74]

1.92
[1.57]

2.28
[3.40]

2.74
[2.78]

2.36
[1.71]

2.86
[1.57]

2.18
[3.88]

2.61
[3.23]

1.35
[3.77]

2.01
[4.32]

1.33
[15.98]

2.00
[2.60]

1.96
[2.92]

2.44
[1.89]

1.99
[1.58]

2.42
[0.75]

1.92
[2.90]

2.46
[2.32]

Rpfh 1.41
[7.00]

2.40
[5.06]

1.32
[6.17]

2.10
[3.28]

5.43
[5.00]

7.80
[4.75]

2.47
[2.08]

2.97
[1.94]

8.85
[7.01]

10.99
[7.01]

1.50
[10.69]

2.40
[5.21]

1.42
[24.28]

2.14
[8.51]

4.75
[4.78]

7.27
[4.54]

1.84
[1.07]

2.28
[0.27]

8.09
[7.03]

10.37
[6.78]

Rpwh 1.34
[5.16]

2.31
[4.41]

1.23
[3.63]

1.95
[2.03]

6.00
[6.83]

8.24
[5.25]

8.74
[7.48]

10.81
[6.44]

2.85
[5.00]

3.37
[4.18]

1.46
[8.89]

2.36
[4.59]

1.36
[16.81]

2.01
[2.78]

5.80
[6.62]

8.28
[5.54]

9.06
[9.95]

11.08
[8.27]

2.05
[3.46]

2.53
[2.82]

Rpfhwh 1.26
[6.44]

1.95
[3.13]

1.24
[2.87]

1.93
[1.69]

2.37
[3.91]

2.84
[3.11]

2.45
[2.15]

2.96
[1.92]

2.27
[4.12]

2.70
[3.25]

1.35
[3.80]

2.01
[5.09]

1.33
[15.58]

2.00
[2.56]

2.01
[3.27]

2.46
[2.19]

1.98
[1.63]

2.41
[0.80]

2.04
[3.43]

2.51
[2.80]

RpfHwh 1.25
[4.94]

1.94
[2.48]

1.23
[1.96]

1.92
[1.31]

2.11
[3.05]

2.60
[2.50]

1.92
[0.00]

2.44
[0.00]

2.33
[4.30]

2.77
[3.34]

1.34
[3.43]

2.00
[4.75]

1.32
[15.31]

1.99
[2.46]

1.81
[2.89]

2.37
[2.43]

1.59
[0.00]

2.21
[0.00]

2.07
[3.51]

2.54
[2.87]

RpfhwH 1.24
[4.23]

1.94
[2.08]

1.23
[1.63]

1.92
[1.68]

1.94
[2.00]

2.49
[1.75]

2.54
[2.47]

3.05
[2.29]

1.25
[0.49]

1.62
[1.69]

1.33
[3.01]

1.99
[2.40]

1.32
[14.11]

1.98
[2.29]

1.65
[1.59]

2.17
[0.76]

2.00
[1.70]

2.43
[0.87]

1.25
[2.24]

1.83
[2.18]

RpH 1.23
[0.00]

1.92
[0.00]

1.22
[0.31]

1.92
[0.67]

1.66
[0.00]

2.16
[0.00]

2.00
[1.40]

2.53
[1.30]

1.26
[1.74]

1.63
[2.60]

1.32
[2.65]

1.98
[0.00]

1.31
[13.81]

1.98
[2.20]

1.44
[0.00]

2.05
[0.00]

1.60
[1.19]

2.23
[1.18]

1.26
[2.15]

1.83
[2.28]

AdwhRpfh 1.24
[4.29]

1.94
[2.26]

1.23
[1.61]

1.92
[1.58]

1.99
[2.31]

2.54
[2.05]

2.54
[2.48]

3.05
[2.30]

1.36
[1.39]

1.77
[2.35]

1.33
[3.05]

1.99
[2.29]

1.32
[14.12]

1.98
[2.29]

1.67
[1.71]

2.17
[0.74]

2.00
[1.70]

2.43
[0.86]

1.30
[1.11]

1.83
[0.28]

AdwhRpfH 1.23
[0.86]

1.92
[1.28]

1.22
[0.29]

1.92
[0.45]

1.71
[1.29]

2.22
[2.19]

2.00
[1.43]

2.53
[1.34]

1.37
[1.55]

1.79
[2.65]

1.32
[2.69]

1.98
[0.15]

1.31
[13.82]

1.98
[2.19]

1.46
[0.73]

2.06
[0.05]

1.60
[1.26]

2.23
[1.22]

1.30
[1.18]

1.84
[0.31]

HyAd6wh 1.24
[3.25]

1.95
[3.12]

1.22
[1.30]

1.93
[1.83]

2.09
[2.41]

2.76
[2.69]

2.72
[2.49]

3.39
[2.93]

1.36
[1.39]

1.77
[2.47]

1.35
[3.72]

2.02
[3.82]

1.33
[14.57]

1.99
[2.39]

2.12
[3.19]

2.91
[2.91]

2.84
[3.48]

3.59
[3.28]

1.30
[1.15]

1.84
[0.31]

HyAd6wH 1.24
[3.13]

1.95
[2.99]

1.22
[1.32]

1.93
[1.88]

2.03
[2.14]

2.71
[2.44]

2.72
[2.48]

3.39
[2.93]

1.25
[0.07]

1.62
[0.95]

1.35
[3.68]

2.02
[3.85]

1.33
[14.57]

1.99
[2.39]

2.10
[3.09]

2.90
[2.93]

2.83
[3.48]

3.59
[3.28]

1.26
[2.20]

1.83
[2.19]

HyRp6wh 1.27
[5.67]

1.97
[4.15]

1.23
[2.58]

1.93
[2.32]

2.53
[4.18]

3.11
[4.03]

2.67
[2.34]

3.36
[2.84]

2.37
[4.36]

2.80
[3.44]

1.37
[4.54]

2.04
[5.48]

1.34
[16.05]

2.00
[2.65]

2.47
[4.56]

3.15
[3.85]

2.85
[3.47]

3.61
[3.28]

2.03
[3.43]

2.51
[2.79]

HyRp6wH 1.24
[3.13]

1.95
[2.99]

1.22
[1.32]

1.93
[1.88]

2.03
[2.14]

2.71
[2.44]

2.72
[2.48]

3.39
[2.93]

1.25
[0.07]

1.62
[0.95]

1.35
[3.68]

2.02
[3.85]

1.33
[14.57]

1.99
[2.39]

2.10
[3.09]

2.90
[2.93]

2.83
[3.48]

3.59
[3.28]

1.26
[2.20]

1.83
[2.19]

HyAd7wh 1.25
[4.71]

1.94
[2.53]

1.23
[2.08]

1.92
[2.06]

2.01
[2.22]

2.54
[2.08]

2.58
[2.26]

3.05
[2.30]

1.36
[1.45]

1.77
[2.29]

1.33
[3.32]

2.00
[2.30]

1.32
[14.28]

1.98
[2.28]

1.89
[2.18]

2.52
[1.75]

2.43
[2.30]

3.00
[1.94]

1.27
[0.73]

1.80
[0.07]

HyAd7wH 1.25
[4.62]

1.94
[2.34]

1.23
[2.09]

1.92
[2.10]

1.96
[1.91]

2.49
[1.77]

2.58
[2.26]

3.05
[2.29]

1.25
[0.00]

1.61
[0.00]

1.33
[3.28]

2.00
[2.31]

1.32
[14.27]

1.98
[2.28]

1.87
[2.09]

2.51
[1.77]

2.43
[2.30]

3.00
[1.93]

1.23
[0.00]

1.80
[0.00]

HyRp7wh 1.27
[6.73]

1.95
[3.32]

1.24
[3.22]

1.93
[1.91]

2.39
[3.82]

2.84
[3.23]

2.49
[2.03]

2.97
[2.03]

2.27
[4.11]

2.69
[3.23]

1.35
[4.12]

2.02
[4.52]

1.33
[15.78]

2.00
[2.55]

2.24
[3.54]

2.78
[2.79]

2.42
[2.27]

3.00
[1.92]

2.03
[3.30]

2.52
[2.72]

HyRp7wH 1.25
[4.62]

1.94
[2.34]

1.23
[2.09]

1.92
[2.10]

1.96
[1.91]

2.49
[1.77]

2.58
[2.26]

3.05
[2.29]

1.25
[0.00]

1.61
[0.00]

1.33
[3.28]

2.00
[2.31]

1.32
[14.27]

1.98
[2.28]

1.87
[2.09]

2.51
[1.77]

2.43
[2.30]

3.00
[1.93]

1.23
[0.00]

1.80
[0.00]

impwh 1.26
[1.93]

2.40
[1.58]

1.22
[0.43]

1.92
[0.00]

2.96
[1.95]

9.50
[1.61]

4.36
[2.01]

12.89
[1.64]

1.36
[1.43]

1.78
[2.46]

1.46
[7.39]

2.20
[6.98]

1.41
[17.65]

2.08
[3.67]

3.37
[5.41]

5.07
[4.87]

5.16
[8.22]

6.71
[6.78]

1.31
[1.17]

1.85
[0.35]

impwH 1.26
[1.87]

2.40
[1.57]

1.22
[0.45]

1.92
[0.53]

2.92
[1.87]

9.51
[1.60]

4.36
[2.00]

12.91
[1.63]

1.26
[1.46]

1.63
[2.53]

1.46
[7.36]

2.20
[6.99]

1.41
[17.69]

2.08
[3.68]

3.35
[5.35]

5.07
[4.87]

5.16
[8.23]

6.71
[6.78]

1.28
[1.96]

1.83
[1.41]

Note: The scores are highlighted by a red–yellow–green color scheme where green indicates high forecasting accuracy. The best model is bold.

Models that are not significantly worse than the best are underlined (significance with respect to the DM-test and significance level a ¼ 1%)
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method M-repH has an 1-day ahead MAE on all out-of-

sample days of only 1.23 GW which is about 17% smaller

than the MAE of the benchmark model. Also on all non-

holidays the forecasting accuracy increased by about 9%

for all non-holidays. In terms of RMSE, the improvements

are similar. This illustrates well, that the proper inclusion

of public holidays improves the forecasting accuracy even

for the non-holidays substantially.

For univariate frameworks, the picture is not that clear

and looks quite diffuse. Here U-RpH reduces only the

RMSE compared to the U-remh model which is best in

terms of 1-day ahead MAE. Still, the mentioned RMSE

improvement of U-RpH is 19%. Additionally, the DM-test

with respct to the k � k2-norm shows that only the forecasts

of the MAE-optimal U-remh are significantly worse than

U-RpH.

Now, we want to evaluate the forecasting performance

of the considered models on the public holidays. In

Table 2, we observe that for the benchmark model the error

is much larger as for the non-holidays. For example the

1-day ahead MAE of the multivariate benchmark model

(M-benchmark) is on all holidays 8.59 GW and on all non-

holidays 1.31 GW, so the absolute error is 656% larger on

holidays than on non-holidays. Interestingly, this error

impact is of the same magnitude for the fixed-date public

holidays and the weekday public holidays. These obser-

vations holds similarly for all forecasting horizons and

error measures.

Furthermore, we notice that the removing the holidays

in the data set (remh, remfh and remwh) reduces consis-

tently the forecasting accuracy compared to benchmark. In

contrast, all considered public holiday methods improved

the forecasting accuracy substantially. Now, we discuss the

results of all model classes in more detail. However, before

we start with the individual models we observe that the

univariate and multivariate models in Table 2 shows sim-

ilar overall pictures.

The public holiday as weekday models hSat and hSun

improve the forecasting accuracy clearly with respect to the

benchmark model. So we have e.g. a 1-day ahead MAEs of

2.51 GW and 2.38 GW with respect to all holidays for the

multivariate models whereas the benchmark has a MAE of

8.59 GW. Thus, the improvement is 71 and 72%. It seems

that fixed-date and weekday public holidays can be mod-

eled both similarly well. Still, it seems that for the multi-

variate models the fixed-date public holidays can be

described slightly better, and for the univariate ones, the

weekday public holidays. Moreover, we notice that in most

cases hSat and hSun are significantly worse than the best

approach.

The additional public holiday methods (Adh, Adfh, . . .

AdH) also improve the forecasting accuracy. Here the

performance depends crucially on the selected sets of

holiday dummies. We see that the multivariate and uni-

variate models with a single fixed-date public holiday

dummy Adfh performs better than the benchmark for the

fixed-date public holidays, but similar for the weekday

public holidays. Similarly, the model with a weekday

public holiday dummy Adwh improves the forecasting

accuracy for these holidays. In contrast, the simple Adh

model improve the forecasting accuracy for all holidays as

expected. If we compare Adh (one additional dummy) with
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AdH (additional dummy for each public holiday) we notice

that it seems that many additional public holiday dummies

does not improve the forecasting performance. For the

univariate framework U-Adh yield quite clearly outper-

forms U-AdH on the fixed-date public holidays but vice

versa on the weekday holidays.

However, wee see that the public holiday forecasting

accuracy for the additional public holiday methods is worse

than performance of the hSat and hSat methods, for both

the univariate and multivariate models. Still, if we have a

closer look at the results, we notice that the forecasting

performance of most additional public holiday approaches

are very competitive for the weekday public holidays but

show a lack of accuracy for the fixed-date public holidays.

The reason for this is explained in detail in the previous

section. Even the simple Adh model performs well for the

weekday public holidays.

For the replacing dummy methods, the results differ to

the additional public holiday dummy models. In general,

the replacing models RpXXX tend to perform better than

there additional dummy counterparts AdXXX. We observe,

that the replacing method RpH (each holiday with a

replacing dummy) yields high forecasting accuracy for the

multivariate and univariate approaches. We have an 1-step

ahead MAE for all holidays of 1.66 GW for M-RpH and

only 1.44 GW for U-RpH. Thus, with an MAE improve-

ment compared to the benchmark of 81 and 82% the error

level at the holidays is only about 36 and 10% higher than

the error level of non-holidays as reported in Table 2. The

high forecasting accuracy seems to be preserved with

increasing forecasting horizon.

The next class of models is the hybrid class containing

additional weekday holiday dummies but replacing fixed-

date holiday dummies. The representatives AdwhRpfh and

AdwhRpfH show similar performance to the replacing

methods. So it seems that replacing approach substantially

improves the forecasting accuracy compared to the pure

additional holiday dummy methodology. Still, the hybrid

approach is not able to outperform the pure replacing

holiday dummy method.

Furthermore, we have the hybrid approaches

(HyAd6wh, HyAd6wH, . . ., HyRp7wH) which consider

the fixed-date public holidays as Saturday or Sunday and

the weekday public holidays as holiday dummy. Overall

they show a good forecasting performance. We observe

that the forecasting accuracy for the fixed-date public

holidays is of the same magnitude as the corresponding

holiday as weekday methods (hSat and hSun). So the

improvement of the forecasting accuracy is mainly from

the weekday public holiday. For weekday public holidays,

the hybrid model show excellent performance with a sim-

ilar error level as the best replacing holiday dummy

methods.

Finally, we have the impact adjusted additional public

holiday dummy methods (impwh, impwH). Here, we

observe that the forecasting accuracy of the multivariate

methods is relatively poor in the short runs. But here we

want to mention that it keeps almost the same error level

for longer forecasting horizons where the forecasting

accuracy is not significantly worse than the best model. For

the univariate framework, we observe that the approach is

well working for the weekday public holidays, but strug-

gles with the fixed-date public holidays. The reason is

likely the non-trivial interactions between the autoregres-

sive coefficients with the changing impact functions.

As mentioned, there are only a very few limited studies

that compare different public holiday modeling methods. In

a small daily load forecasting study, reference [5] compare

four different methods to deal with public holidays were

evaluated in a neural net framework. First, an additional

holiday dummy (A1), second the holidays were treated as a

Sunday (A2), third an additional factor variable is intro-

duced (similarly as in [52]) was used to code the day before

the holiday, the holiday itself, and the day after the holiday

(A3) and fourth a methodology (A2) and (A3) combined.

Reference [5] concludes that the method A3 performs best.

However, their out-of sample period was only 2 month.

Further no significant statements are made. Still, A3 can be

regarded as an additional dummy approach that addition-

ally takes bridging effects into account. However, in our

analysis, the additional holiday dummy approach is out-

performed by the holiday as Sunday model and even more

significantly by the replacing public holiday model.

6 Summary and conclusion

We discuss the impact of public holidays modeling

approaches used for electricity load forecasting. Therefore,

we elaborate on the challenging properties of public holi-

days, especially of those which can be classified as fixed-

date public holidays or weekday public holidays.

Several approaches were established. Among them are

e.g. removing public holidays from the data set, treating

public holidays as Sunday dummy or introducing separate

holiday dummies. These approaches were compared with

respect to a suitable benchmark model. The benchmark

model includes daily, weekly and annual seasonalities such

as autoregressive effects. All considered 31 forecasting

methods were tested in a univariate and multivariate

modeling frameworks [6]. The former one treats the data as

a high-frequent (e.g. every hour) time series whereas in the

latter every load period (e.g. every hours) is modeled and

forecasted separately. We evaluate all forecasting models

and different forecasting horizons using the MAE and
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RMSE performance measures such as the Diebold–Mari-

ano test.

The empirical results show that the incorporation of

holiday effects can rise the forecasting accuracy substan-

tially. On public holidays, the improvement can exceed

80%, but, remarkably, also during non-holiday periods the

forecast accuracy increases by about 10% only due to

properly covered holiday effects. The most promising

methodology to deal with public holidays is the replacing

public holiday dummy approach (model repH of Sect. 4.5).

This approach works especially well in multivariate mod-

eling settings. In the replacing public holiday dummy

approach, we add public holiday dummies to the model but

set the weekday dummies at the holidays to zero.

More sophisticated studies could be carried out in future

as well. This can be done by altering the in-sample period

length, including more data sets and implementing more

advanced modeling approaches, among which are e.g.

forecasting of bridging effects.
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