
Modeling Radiometric Uncertainty for Vision
with Tone-Mapped Color Images

Ayan Chakrabarti, Ying Xiong, Baochen Sun, Trevor Darrell, Daniel Scharstein,Member, IEEE,

Todd Zickler, and Kate Saenko

Abstract—To produce images that are suitable for display, tone-mapping is widely used in digital cameras to map linear color

measurements into narrow gamuts with limited dynamic range. This introduces non-linear distortion that must be undone,

through a radiometric calibration process, before computer vision systems can analyze such photographs radiometrically. This

paper considers the inherent uncertainty of undoing the effects of tone-mapping. We observe that this uncertainty varies

substantially across color space, making some pixels more reliable than others. We introduce a model for this uncertainty and a

method for fitting it to a given camera or imaging pipeline. Once fit, the model provides for each pixel in a tone-mapped digital

photograph a probability distribution over linear scene colors that could have induced it. We demonstrate how these

distributions can be useful for visual inference by incorporating them into estimation algorithms for a representative set of

vision tasks.

Index Terms—Radiometric calibration, camera response functions, tone-mapping, statistical models, signal-dependent noise, HDR imaging,

image fusion, depth estimation, photometric stereo, image restoration, deblurring

Ç

1 INTRODUCTION

THE proliferation of digital cameras has created an
explosion of photographs being shared online. Most of

these photographs exist in narrow-gamut, low-dynamic
range formats—typically those defined in the sRGB or
Adobe RGB standards—because they are intended primar-
ily for display through devices with limited gamut and
dynamic range. While this workflow is efficient for stor-
age, transmission, and display-processing, it is unfortu-
nate for computer vision systems that seek to exploit
online photo collections to learn object appearance models
for recognition; reconstruct three-dimensional (3D) scene
models for virtual tourism; enhance images through pro-
cesses like denoising and deblurring; and so on. Indeed,
many of the computer vision algorithms required for these
tasks use radiometric reasoning and therefore assume that
image color values are directly proportional to spectral
scene radiance (called RAW color hereafter). But when a
consumer camera renders—or globally tone-maps—its
digital linear color measurements to an output-referred,

narrow-gamut color encoding (called JPEG color hereafter),
this proportionality is almost always destroyed.1

In computer vision, we try to undo the non-linear effects
of tone-mapping so that radiometric reasoning about
consumer photographs can be more effective. To this end,
there are many methods for fitting parametric forms to the
global tone-mapping operators applied by color cameras—
so-called “radiometric calibration” methods [1], [2], [3], [4],
[5], [6], [7]—and it is now possible to fit many global tone-
mapping operators with high precision and accuracy [6].
However, once these maps are estimated, standard practice
for undoing color distortion in observed non-linear JPEG
colors is to apply a simple inverse mapping in a one-to-one
manner [1], [2], [3], [4], [5], [6], [7]. This ignores the critical
fact that forward tone-mapping processes lead to loss of
information that is highly structured.

Tone-mapping is effective when it leads to narrow-
gamut images that are nonetheless visually-pleasing, and
this necessarily involves non-linear compression. Once the
compressed colors are quantized, the reverse mapping
becomes one-to-many as shown in Fig. 1, with each nonlin-
ear JPEG color being associated with a distribution of linear
RAW colors that can induce it. The amount of color com-
pression in the forward tone-map, as well as the (hue/light-
ness) directions in which it occurs, change considerably
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1. Some comments on terminology. We use colloquial phrases RAW
color and JPEG color respectively for linear, scene-referred color and
non-linear, output-referred color. The latter does not include lossy com-
pression, and should not be confused with JPEG compression. Also, we
use (global) tone-map for any spatially-uniform, non-linear map of each
pixel’s color, independent of the values of its surrounding pixels. It is
nearly synonymous with the common phrase “radiometric response
function” [1], but generalized to include cross-channel maps.
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across color space. As a result, the variances of reverse-
mapped RAW color distributions unavoidably span a sub-
stantial range, with some predicted linear RAW colors being
much more reliable than others.

How can we know which predicted RAW colors are
unreliable? Intuitively, the forward compression (and thus
the reverse uncertainty) should be greatest near the bound-
ary of the output gamut, and practitioners often leverage
this intuition by heuristically ignoring all JPEG pixels that
have values above or below certain thresholds in one or
more of their channels. However, as shown in Fig. 2, the
variances of inverse RAW distributions tend to change con-
tinuously across color space, and this makes the choice of
such thresholds arbitrary. Moreover, this heuristic approach

relies on discarding information that would otherwise be
useful, because even in high-variance regions, the RAW dis-
tributions tell us something about the true scene color. This
is especially true where the RAW distributions are strongly
oriented (Fig. 1 and bottom-left of Fig. 2): even though they
have high total variance, most of their uncertainty is con-
tained in one or two directions within RAW color space.

In this paper, we argue that vision systems can benefit
substantially by incorporating a model of radiometric
uncertainty when analyzing tone-mapped, JPEG-color
images. We introduce a probabilistic approach for visual
inference, where (a) the calibrated estimate of a camera’s
forward tone-map is used to derive a probability distribu-
tion, for each tone-mapped JPEG color, over the RAW linear
scene colors that could have induced it; and (b) the uncer-
tainty embedded in these distributions is propagated to
subsequent visual analyses. Using a variety of cameras and
new formulations of a representative set of classic inference
problems (multi-image fusion, photometric stereo, and
deblurring), we demonstrate that modeling radiometric
uncertainty is important for achieving optimal performance
in computer vision.

The paper is organized as follows. After related work in
Section 2, Section 3 reviews parametric forms for modeling
the global tone-maps of consumer digital cameras and
describes an algorithm for fittingmodel parameters to offline
training data. In Section 4, we demonstrate how any forward
tone-mapmodel can be used to derive per-pixel inverse color
distributions, that is, distributions for linear RAWcolors con-
ditioned on the JPEG color reported at each pixel. Section 5
shows how the uncertainty in these inverse distributions can
be propagated to subsequent visual processes, by introduc-
ing new formulations of a representative set of classical

Fig. 1. Clusters of RAW measurements that each map to a single JPEG
color value (indicated in parentheses) in a digital SLR camera (Canon
EOS 40D). Close-ups of the clusters emphasize the variations in cluster
size and orientation. When inverting the tone-mapping process, this
structured uncertainty cannot be avoided.

Fig. 2. Derendering uncertainty (for the Canon PowerShot S90). (Left) Total variance of the distributions of RAW values that are tone-mapped to a set
of rendered color values that lie along a line in JPEG space; along with ellipses depicting corresponding distributions along two dimensions in the
RAW sensor space. (Right) 3D volumes depicting the change in derendering variance across JPEG space.
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inference tasks: image fusion (e.g., [3]); three-dimensional
shape via Lambertian photometric stereo (e.g., [8]); and
removing camera shake via image deblurring (e.g., [9]).

2 RELATED WORK

The problem of radiometric calibration, where the goal is
inverting non-linear distortions of scene radiance that
occur during image capture and rendering, has received
considerable attention in computer vision. Until recently,
this calibration has been formulated only for grayscale
images, or for color images on a per-channel-basis by
assuming that the “radiometric response function” in each
channel acts independently [1], [2], [3], [4]. While early
variants of this approach parametrized these response
functions simply as an exponentiation (or “gamma
correction”) with the exponent as a single model parame-
ter, later work sought to improve modeling accuracy by
considering more general polynomial forms [4]. Since
these models have a relatively small number of parame-
ters, they have featured in several algorithms for “self-
calibration”—parameter estimation from images captured
in the wild, without calibration targets—through analysis
of edge profiles [10], [11], image statistics [12], [13], or
exposure stacks of images [1], [2], [3], [14], [15], [16].

However, per-channel models cannot accurately model
the color processing pipelines of most consumer cameras,
where the linear sensor measurements span a much wider
gamut than the target output format. To be able to generate
images that “look good” on limited-gamut displays, these
cameras compress out-of-gamut and high-luminance colors
in ways that are as pleasing as possible, for example by pre-
serving hue. This means that two scene colors with the
same raw sensor value in their red channels can have very
different red values in their mapped JPEG output if one
RAW color is significantly more saturated than the other.

Chakrabarti et al. [5] investigated the accuracy of more
general, cross-channel parametric forms for global tone-
mapping in a number of consumer cameras, includingmulti-
variate polynomials and combinations of cross-channel
linear transforms with per-channel polynomials. While they
found reasonable fits for most cameras, the residual errors
remained relatively high even though the calibration and
evaluation were both limited to images of a single relatively
narrow-gamut chart. Kim et al. [6] improved on this by
explicitly reasoning about the mapping of out-of-gamut col-
ors. Their model consists of a cascade of: a linear transform, a
per-channel polynomial, and a cross-channel correction for
out-of-gamut colors using radial basis functions (RBFs). The
forward tone-map model we use in this paper (Section 3) is
strongly motivated by this work, although we find a need to
augment the calibration training data so that it better covers
the full space of measurable RAWvalues.

All of these approaches are focussed on modeling the
distortion introduced by global tone-mapping. They do
not, however, consider the associated loss of information,
nor the structured uncertainty that exists when the distor-
tion is undone as a pre-process for radiometric reasoning
by vision systems. Indeed, while the benefit of undoing
radiometric distortion has been discussed in the context of
various vision applications (e.g., deblurring [11], [17], high-

dynamic range (HDR) imaging [18], video segmentation
[19]), previous methods have relied exclusively on deter-
ministic inverse tone-maps that ignore the structured
uncertainty evident in Figs. 1 and 2. The main goal of this
of this paper is to demonstrate that the benefits of undoing
radiometric distortion can be made significantly greater by
explicitly modeling the uncertainty inherent to inverse
tone-mapping, and by propagating this uncertainty to sub-
sequent visual inference algorithms.

A earlier version of this work [20] presented a direct
method to estimate inverse RAW distributions from calibra-
tion data. In contrast, we introduce a two-step approach,
where (a) calibrations images are used to fit the forward
deterministic tone-map for a given camera, and (b) the
model is inverted probabilistically. We find that this leads
to better calibration and better inverse distributions with
less calibration data.

Finally, we note that our proposed framework applies to
stationary, global tone-mapping processes, meaning those
that operate on each pixel independent of its neighboring
pixels, and are unchanging from scene to scene. This is
applicable to many existing consumer cameras locked into
fixed imaging modes (“portrait”, “landscape” etc.), but not
to local tone-mapping operators that are commonly used
for HDR tone-mapping.

3 CAMERA RENDERING MODEL

Before introducing our radiometric uncertainty model in
Sections 4 and 5, we review and refine here a model for the
forward tone-maps of consumer cameras, along with offline
calibration procedures. We use a similar approach to Kim
et al. [6], and employ a two-step model to account for a cam-
era’s processing pipeline—a linear transform and per-chan-
nel polynomial, followed by a corrective mapping step for
out-of-gamut and saturated colors. The end result is a deter-
ministic forward map J : x ! y from RAW tricolor sensor
measurements at a pixel x 2 ½0; 1�3 to corresponding rendered
JPEG color values y 2 f½0; 255� \ Zg3. Readers familiar with
[6] may prefer to skip directly to Section 4, where we present
how to invert themodeled tone-maps probabilistically.

3.1 Model

As shown in Fig. 3, we model the mapping J : x ! y as:

~y ¼
~y1
~y2
~y3

2
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y ¼ Q Bð~yÞ þ
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@
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where v1; v2; v3 2 R
3 define a linear color space transform,

Bð�Þ bounds its argument to the range ½0; 255�, and Qð�Þ
quantizes its arguments to 8-bit integers.

Equation (1) above corresponds to the commonly used
per-channel polynomial model (e.g., [4], [5]). Specifically,
fð�Þ is assumed to be a polynomial of degree d:

fðxÞ ¼
X

d

i¼0

aix
i; (3)
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where ai are model parameters. We use seventh-order poly-
nomials (i.e., d ¼ 7) in our implementation.

Motivated by the observations in [6], this polynomial
model is augmented with an additive correction function
gð�Þ in (2) to account for deviations that result from camera
processing to improve the visual appearance of rendered
colors. We use support-vector regression (SVR) with a
Gaussian radial basis function kernel to model these devia-
tions, i.e., each gcð�Þ; c 2 f1; 2; 3g is of the form:

gcð~yÞ ¼
X

i

�c:i exp
�

� gck~y� yc:ik
2�; (4)

where �c:i; yc:i and gc are also model parameters.

3.2 Parameter Estimation

Next, we describe an algorithm to estimate the various
parameters of this model from a set of calibration images.
Using pairs of corresponding RAW-JPEG pixel values
ðxt; ytÞf gTt¼1 from the calibration set, we begin by estimating

the parameters of the standard map in (1) as:

fv̂cg; fâig ¼ argmin
fvcg;faig

X

t

wt

X

c

�

�f
�

vTc xt

�

� yt:c
�

�

2
; (5)

where fwtg are scalar weights. Like [5], we also restrict faig
such that fð�Þ is monotonically increasing.

The weights wt are chosen with two objectives: (a) to pro-
mote a better fit for non-saturated colors, since we expect
the corrective step in (2) to rectify rendering errors for satu-
rated colors, and (b) to compensate for non-uniformity in
the training set, i.e., more training samples in some regions
over others. Accordingly, we set these weights as:

wt ¼ SðytÞ
X

T

t0¼1

exp �
jxt � xt0 j

2

2s2
t

 !" #�1

; (6)

where SðyÞ is a scalar function that varies from 1 to 0:01with
increasing saturation in y, and the second term effectively re-
samples the training set uniformly over the RAW space. We
set st ¼ T�1=3 to correspond to the expected separation
between T uniformly sampled points in the ½0; 1�3 cube.

Once we have set the weights, we use an approach similar
to the one in [5] to minimize the cost in (5). We alternately
optimize over only the linear or polynomial parameters, fvcg
and faig respectively, while keeping the other constant. For
fixed fvcg, the optimal faig can be found by using a standard
quadratic program solver, since the cost in (5) is quadratic in
faig, and the monotonicity restriction translates to linear
inequality constraints. For fixed faig, we use gradient
descent to find the optimal linear parameters fvcg.

We begin the above alternating iterations by assuming
fðxÞ ¼ x and setting fvcg directly using least-squares on
training samples for which yt is small—this is based on the
assumption that fðxÞ is nearly linear for small values of x. We
then run the iterations till convergence, but since the cost in
(5) is not convex, there is no guarantee that the iterations
above will yield the global minimum. Therefore, we restart
the optimization multiple times with estimates of fvcg corre-
sponding to randomdeviations around the current optimum.

Finally, we compute the parameters of the gamut map-
ping functions fgcð�Þg by using support-vector regression
[21] to fit ~y ! y� Cð~yÞ½ �, where the training samples f~ytg
are computed from fxtg using (1) with the parameter values
estimated above, and the kernel bandwidth parameters fgcg
set using cross-validation.

3.3 Data Sets

Our database consists of images captured using a number of
popular consumer cameras (see Tables 1 and 2), using an X-
Rite 140-patch color checker chart as the calibration target
as in [5] and [6]. However, although the chart contains a rea-
sonably wide gamut of colors, these colors only span a part
of the space of possible RAW values that can be measured
by a camera sensor.

To be able to reliably fit the behavior of each camera’s tone-
mapping function in the full space ofmeasurable scene colors,

TABLE 1
RMSE for Estimated Rendering Functions in Gray Levels for RAW-Capable Cameras

Fig. 3. Rendering model. We model a camera’s processing pipeline
using a two step-approach: (1) a 3� 3 linear transform and independent
per-channel polynomial; followed by, (2) a correction to account for devi-
ations in the rendering of saturated and out-of-gamut colors.
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and to accurately evaluate the quality of these fits, we cap-
tured images of the chart under 16 different illuminants (we
used a standard Tungsten bulb pairedwith different commer-
cially available gel-based color filters) to obtain a significantly
wider gamut of colors.Moreover, for each illuminant, we cap-
tured images with different exposure values that range from
onewhere almost all patches are under-exposed to onewhere
all are over-exposed. We expect this collection of images to
represent an exhaustive set that includes the full gamut of
irradiances likely to be present in a scene.

Most of the cameras in our data set allow access to the
RAW sensor measurements, and therefore directly give us a
set of RAW-JPEG pairs for training and evaluation. For
JPEG-only cameras, we captured a corresponding set of
images using a RAW-capable camera. To use the RAW val-
ues from the second camera as a valid proxy, we had to
account for the fact that the exposure steps in the two cam-
eras were differently scaled (but available from the image
metadata), and for the possibility that the RAWproxy values
in some cases may be clipped while those recorded by the
JPEG camera’s sensors were not. Therefore, the exposure
stack for each patch under each illuminant from the RAW
camera was used to estimate the underlying scene color at a
canonical exposure value, and these were then mapped to
the exposure values from the JPEG camerawithout clipping.

For a variety of reasons, we expect the quality of fit to be
substantially lower when using a RAW proxy. Our model
does not account for the fact that there may be different
degrees of vignetting in the two cameras, and it implicitly
assumes that spectral sensitivity functions in the RAW and
JPEG cameras are linearly related (i.e., that there is a bijec-
tive mapping between linear color sensor measurements in
one camera and those in the other), which may not be these
case [22], [23]. Moreover, despite the fact that the white bal-
ance setting in each camera is kept constant—we usually
use “daylight” or “tungsten”—we observe that some cam-
eras exhibit variation in the white balance multipliers they
apply for different scenes (different illuminants and expo-
sures). For RAW-capable cameras, these multipliers are in
the metadata and can be accounted for when constructing
the calibration set. However, these values are not usually
available for JPEG-only cameras, and thus introduce more
noise in the calibration set.

3.4 Evaluation

For each camera, we estimated the parameters of our ren-
dering model using different subsets of the collected RAW-
JPEG pairs, and measured the quality of this calibration in
terms of root mean-squared error (RMSE) values (between
the predicted and true JPEG values, in terms of gray levels
for an 8-bit image) on the entire data set. These RMSE val-
ues for the RAW-capable camera are reported in Table 1.

The first of these subsets is simply constructed with 8,000
random RAW-JPEG pairs sampled uniformly across all
pairs, and as expected, this yields the best results. Since cap-
turing such a large data set to calibrate any given camera
may be practically burdensome, we also consider subsets
derived from a limited number of illuminants, and with a
limited number of exposures per-illuminant. The exposures
are equally spaced from the lowest to the highest, and the
subset of illuminants are chosen so as to maximize the
diversity of included chromaticities—specifically, we order
the illuminants such that for each n, the convex hull of the
RAW R-G chromaticities of patches from the first n illumi-
nants has the largest possible area. This order is determined
using one of the cameras (the Panasonic DMC LX3), and
used to construct subsets for all cameras.

We find that different cameras show different degrees of
sensitivity to diversity in exposures and illuminants, but
using four illuminants with eight exposures represents a rea-
sonable acquisition burden while also providing enough
diversity for reliable calibration in all cameras. On the other
hand, images of the chart under only a single illuminant, even
with a large number of exposures, do not provide a diverse
enough sampling of the RAW sensor space to yield good esti-
mates of the rendering function across the entire data set.

Table 2 shows RMSE values obtained from calibrating
JPEG-only cameras, and as expected, these values are sub-
stantially (approx. 3 to 4 times) higher than those for RAW-
capable cameras. Note that for this case, we only show
results for the uniformly sampled training set, since we find
parameter estimation to be unstable when using more lim-
ited subsets. This implies that calibrating JPEG-only cam-
eras with a RAW proxy is likely to require the acquisition of
larger sets of images, and perhaps more sophisticated fitting
algorithms that explicitly infer and account for vignetting
effects, scene-dependent variations in white balance, etc.

Fig. 4 illustrates the deviations due to the gamut cor-
rection step in our model, using the estimated rendering

TABLE 2
RMSE in Gray Levels for JPEG-Only Cameras

Fig. 4. Estimated gamut correction function for Canon PowerShot S90.
For different slices of the RAW cube, we show the magnitude of the shift
in each rendered JPEG channel (scaled by a factor of 8) due to gamut
correction.
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function for one of the calibrated cameras. We see that
while this function is relatively smooth, its variations
clearly can not be decomposed as per-channel functions.
This confirms the observations in [6] on the necessity of
including a cross-channel correction function.

4 PROBABILISTIC INVERSE

The previous section dealt with computing an accurate esti-
mate of tone-mapping function applied by a camera. How-
ever, the main motivation for calibrating a camera is to be
able to invert this tone-map and use available JPEG values
back to derive radiometrically meaningful RAW measure-
ments that are useful for computer vision applications. But it
is easy to see that this inverse is not uniquely defined, since
multiple sensor measurements can be mapped to the same
JPEG output as a result of the quantization that follows the
compressivemap in (2), with higher intensities and saturated
colors experiencing greater compression, and thereforemore
uncertainty in their recovery from reported JPEG values.

Therefore, instead of using a deterministic inverse func-
tion, we define the inverse probabilistically as a distribution
pðxjyÞ of possible RAW measurements x that could have
been tone-mapped to a given JPEG output y. While formu-
lating this distribution, we also account for errors in the
estimate J of the rendering function, treating them as
Gaussian noise with variance s2

f , where sf is set to twice
the in-training RMSE. Specifically, we define pðxjyÞ as:

pðxjyÞ ¼
1

Z
pðxÞexp �

y� JðxÞk k2

2s2
f

 !

; (7)

where Z is the normalization factor

Z ¼

Z

pðx0Þexp �
y� Jðx0Þk k2

2s2
f

 !

dx0; (8)

and pðxÞ is a prior on sensor-measurements. This prior can
range from per-pixel distributions that assert, for example,
that broadband reflectances are more likely than saturated
colors; to higher-order scene-level models that reason about
the number of distinct chromaticities and materials in a
scene—we expect that the choice of pðxÞwill be different for
different applications and environments. In this paper, we
simply choose a uniform prior over all possible sensor meas-
urements whose chromaticities lie in the convex hull of the
training data.

Note that these distributions are computed assuming
that the white balance multipliers are known (and incorpo-
rated in J). For some cameras, even with a fixed white-
balance setting, the actual white-balance multipliers might
vary from scene to scene. In these cases, the variable x in the
distribution above will be a linear transform2—which is
fixed for all pixels in a given image—away from a scene-
independent RAW measurement. This may be sufficient for
applications that only reason about colors in a single image,
or in multiple images of the same scene where the white

balance multipliers can reasonably be expected to remain
fixed, but other applications will need to address this ambi-
guity when using these inverse distributions.

While the expression in (7) is the exact form of the inverse
distribution—corresponding to a uniform distribution over
all RAW values x predicted by the camera model to map to a
given JPEG value y, with added slack for calibration error—
it has no convenient closed form. Practitioners will therefore
need to compute them explicitly over a grid of possible val-
ues of x for each JPEG value y, or approximate them with a
convenient parametric form for use in vision applications.
We employ multi-variate Gaussian distributions to approxi-
mate the exact form in (7), as an example to demonstrate the
benefits of using a probabilistic inverse in the remainder of
this paper, but this is only one possible choice and the opti-
mal representation for these distributions will likely depend
on the target application and platform.

Formally, we approximate pðxjyÞ as

~pðxjyÞ ¼ N ðxjmðyÞ;SðyÞÞ;

mðyÞ ¼

Z

xpðxjyÞ dx;

SðyÞ ¼

Z

x� mðyÞð Þ x� mðyÞð ÞTpðxjyÞ dx:

(9)

Note that here m, in addition to being the mean of the
approximate Gaussian distribution, is also the single best
estimate of x given y (in the minimum least-squares error
sense) from the exact distribution in (7). And since (7) is
derived using a camera model similar to that of [6], m can be
interpreted as the deterministic RAW estimate that would
be yielded by the algorithm in [6].

The integrations in (9) are performed numerically, and
by storing pre-computed values of J on a densely-sampled
grid to speed up distance computations. A MATLAB imple-
mentation is available on our project page [24], which takes
roughly 15ms to compute the mean and co-variance above
for a single JPEG observation on a modern machine.

Tables 3 and 4 report the mean empirical log-likelihoods,
i.e., the mean value of log ~pðxjyÞ across all RAW-JPEG pairs
ðx; yÞ in the validation set, for our set of calibrated cameras.
For the RAW-capable cameras, we report these numbers for
inverse distributions computed using estimates of the ren-
dering function J from different calibration sets as in
Table 1. As expected, better estimates of J usually lead to
better estimates of ~p with higher log-likelihoods, and we
find that our choice of calibrating using eight exposures and
four illuminants for RAW cameras yields scores that are
close to those achieved by random samples across the entire
validation set.

Moreover, to demonstrate the benefits of using a probabi-
listic inverse, we also report log-likelihood scores from a
deterministic inverse that outputs single prediction (m from
(9)) for the RAW value for a given JPEG. Note that strictly
speaking, the log-likelihood in this case would be �1 unless
m is exactly equal to x. The scores reported in Tables 3 and 4
are therefore computed by using a Gaussian distribution with
variance equal to the mean prediction error (which is the
choice that yields the maximum mean log-likelihood). We
find that these scores are much lower than those from the full
model, demonstrating the benefits of a probabilistic approach.

2. Note that white-balance correction is typically a linear diagonal
transform in the camera’s sensor space. For cameras that are not RAW-
capable and have been calibrated with a RAW proxy, this will be a gen-
eral linear transform in the proxy’s sensor space.
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Finally, we show visualizations of the inverse distribu-
tions for four of the remaining RAW-capable cameras in our
database in Fig. 5. These plots represent the distributions
~pðxjyÞ using ellipsoids to represent mean and covariance,
and can be interpreted as RAW values that are likely to be
mapped to the same JPEG color by the camera. We see that
these distributions are qualitatively different for different
cameras, since different manufacturers typically employ
their own strategies for compressing wide gamut sensor
measurements to narrow gamut images that are visually
pleasing. Moreover, the sizes and orientations of the covari-
ance matrices can also vary significantly for different JPEG
values y obtained from the same camera.

5 VISUAL INFERENCE WITH UNCERTAINTY

The probabilistic derendering model (9) provides an oppor-
tunity for vision systems to exploit the structured uncer-
tainty that is unavoidable when inverting global tone-
mapping processes. To demonstrate how vision systems
can benefit from modeling this uncertainty, we introduce
inference algorithms that incorporate it for a broad, repre-
sentative set of visual tasks: image fusion, photometric ste-
reo, and deblurring.

5.1 Image Fusion

We begin with the task of combining multiple color obser-
vations of the same scene to infer accurate estimates of
scene color. This task is essential to high dynamic-range
imaging from exposure-stacks of JPEG images in the spirit
of Debevec and Malik [2]; and variations of it appear when
stitching images together for harmonized, wide-view pan-
oramas or other composites, and when inferring object
color (intrinsic images and color constancy) or surface
BRDFs from Internet images.

Formally, we consider the problem of estimating the lin-
ear color x of a scene point from multiple JPEG observations
fyig captured at known exposures faig. Each observation yi
is assumed to be the rendered version of sensor value aix,
and we assume the camera has been pre-calibrated as
described previously. The naive extension of RAW HDR
reconstruction is to use a deterministic approach to derender

each JPEG value yi, and then compute scene color x using
least-squares. This strategy considers every derendered
JPEG value to be equally reliable and is implicit, for exam-
ple, in traditional HDR algorithms based on self-calibration
from non-linear images [1], [2], [3], [14], [15], [16]. When the
imaging system is pre-calibrated, the deterministic approach
corresponds to ignoring variance information and comput-
ing a simple, exposure-corrected linear combination of the
derendered means:

x ¼ arg min
x

X

i

kmi � aixk
2 ¼

P

i aimi
P

i a
2
i

; (10)

where mi ¼ mðyiÞ.
In contrast to the deterministic approach, we propose

using the probabilistic inverse from Section 4 to weigh the
contribution of each JPEG observation based on its reliabil-
ity, thereby improving estimation. Estimation is also
improved by the fact that inverse distributions from differ-
ent exposures of the same scene color often carry comple-
mentary information, in the form of differently-oriented
covariance matrices. Specifically, each observation provides
us with a Gaussian distribution pðxjyi;aiÞ ¼ N ðxjmi;SiÞ,

Si ¼
SðyiÞ þ s2

zI3�3

a2
i

; (11)

where s2
z corresponds to the expected variance of photo-

sensor noise, which is assumed to be constant and small rel-
ative to most Si. The most-likely estimate of x from all
observations is then given by

x ¼ arg max
x

Y

i

Nðxjmi;SiÞ

¼
X

i

S
�1
i

 !�1
X

i

S
�1
i mi

 !

:

(12)

An important effect that we need to account for in this
probabilistic approach is clipping in the photo-sensor. To
handle this, we insert a check on the derendered distribu-
tions ðmðyiÞ;SðyiÞÞ, and when the estimated mean in any
channel is close to 1, we update the corresponding elements
of Si to reflect a very high variance for that channel. The
same strategy is also adopted for the baseline deterministic
approach (10).

To experimentally compare reconstruction quality of the
deterministic and probabilistic approaches, we use all RAW-
JPEG color-pairs from the database of colors captured with
the Panasonic DMC LX-3, corresponding to all color-pairs
except those from the four training illuminants. We consider

TABLE 4
Mean Empirical Log-Likelihoods for JPEG-Only Cameras

TABLE 3
Mean Empirical Log-Likelihoods under Inverse Models for RAW-Capable Cameras
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the color checker under a particular illuminant to be the tar-
get HDR scene, and we consider the differently-exposed
JPEG images under that illuminant to be the input images of
this scene. The task is to estimate for each target scene (each
illuminant) the true linear patch color from only two differ-
ently-exposed JPEG images. The true linear patch color for
each illuminant is computed using RAW data from all expo-
sures, and performance is measured using relative RMSE:

Errorðx; xtrueÞ ¼
kx� xtruek

kxtruek
: (13)

Fig. 6 shows a histogram of the reduction in RMSE values
when using the probabilistic approach. This is the
histogram of differences between evaluating (13) with
probabilistic and deterministic estimates x across 1;680
distinct linear scene colors in the data set and all possible

Fig. 6. HDR results on the Panasonic DMC LX3. (Left) Histogram of improvement in errors over the deterministic baseline for all scene colors using
every possible exposure pair. (Right) Mean errors across all colors for each approach when using different exposure pairs.

Fig. 5. Probabilistic inverse. For different cameras, we show ellipsoids in RAW space that denote the mean and covariance of pðxjyÞ for different
JPEG values y—indicated by the color of the ellipsoid. These values y are uniformly sampled in JPEG space, and we note that the corresponding dis-
tributions can vary significantly across cameras.
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un-ordered pairs of 22 exposures3 as input, excluding the
trivial pairs for which a1 ¼ a2 (a total of 388080 test cases).
In a vast majority of cases, incorporating derendering uncer-
tainty leads to better performance.

We also show in the right of the figure, for both the deter-
ministic and probabilistic approaches, two-dimensional vis-
ualizations of the error for each exposure-pair. Each point
in these visualizations corresponds to a pair of input expo-
sure values ða1;a2Þ, and the pseudo-color depicts the mean
RMSE across all 1;680 linear scene colors in the test data set.
(Diagonal entries correspond to estimates from a single
exposure, and are thus identical for the probabilistic and
deterministic approaches). We see that the probabilistic
approach yields acceptable estimates with low errors for a
larger set of exposure-pairs. Moreover, in many cases it
leads to lower error than those from either exposure taken
individually, demonstrating that the probabilistic modeling
is not simply selecting the better exposure, but in fact com-
bining complementary information from both observations.

5.2 Photometric Stereo

Another important class of vision algorithms include those
that deal with recovering scene depth and geometry. These
algorithms are especially dependent on having access to
radiometrically accurate information and have therefore been
applied traditionally to RAW data, but the ability to reliably
use tone-mapped JPEG images, say from the Internet, is use-
ful for applications likeweather recovery [25], geometric cam-
era calibration [26], and 3D reconstruction via photometric
stereo [27]. As an example, we consider the problem of recov-
ering shape using photometric stereo from JPEG images.

Photometric stereo is a technique for estimating the sur-
face normals of a Lambertian object by observing that object
under different lighting conditions and a fixed viewpoint [8].
Formally, given images under N different directional light-
ing conditions, with li 2 R

3 being the direction and strength
of the ith source, let Ii 2 R denote the linear intensity
recorded in a single channel at a particular pixel under the
ith light direction. If n 2 S

2 and r 2 R
þ are the normal direc-

tion and albedo of the surface patch at the back-projection of
this pixel, then the Lambertian reflectance model provides
the relation rhli; ni ¼ Ii. The goal of photometric stereo is to
infer thematerial r and shape n given the set fli; Iig.

Defining a pseudo-normal b , rn, the relation between
the observed intensity and the scene parameters becomes

lTi b ¼ Ii: (14)

Given three or more fli; Iig-pairs, the pseudo-normal b is
estimated simply using least-squares as:

b ¼ ðLTLÞ�1LT I; (15)

where L 2 RN�3 and I 2 RN are formed by stacking the
light directions lTi and measurements Ii respectively. The
normal n can then simply be recovered as n ¼ b=kbk.

When dealing with a linear color image, Barsky and
Petrou [28] suggest constructing the observations Ii as a lin-
ear combination Ii ¼ cTxi of the different channels of the
color vectors xi. The coefficients c 2 R3 are chosen to maxi-
mize the magnitude of the intensity vector I, and therefore
the stability of the final normal estimate m, as

c ¼ arg max
c

X

i

I2i ¼ argmax
c

X

i

kcTxik
2;

¼ arg max
c

cT
X

i

xix
T
i

 !

c; s:t: kck2 ¼ 1:

(16)

The optimal c is then simply the eigenvector associated
with the largest eigenvalue of the matrix ð

P

i xix
T
i Þ. Intui-

tively, this corresponds to the normalized color of the
material at that pixel location.

In order to use photometric stereo to recover scene depth
from JPEG images, we need to first obtain estimates of the
linear scene color measurements xi from the available JPEG
values yi. Rather than apply the above algorithm as-is to
deterministic inverse-mapped estimates of xi, we propose a
new algorithm that uses the distributions pðxijyiÞ ¼
N ðxijmi;SiÞ derived in Section 4.

First, we modify the approach in [28] to estimate the coef-
ficient vector c by maximizing the signal-to-noise ratio
(SNR), rather than simply the magnitude, of I:

c ¼ argmax
c

P

i E½I
2
i �

P

i VarðIiÞ
¼ argmax

c

P

i E½ðc
TxiÞ

2�
P

i Var½c
Txi�

¼ argmax
c

cT
P

i mim
T
i þ Si

� �

c

cT
P

i Si

� �

c
s.t. kck2 ¼ 1:

(17)

It is easy to show that the optimal value of c for this case is
given by the eigenvector associated with the largest eigen-
value of the matrix ð

P

i SiÞ
�1 P

i mim
T
i

� �

. This choice of c
essentially minimizes the relative uncertainty in the set of
observations Ii ¼ cTxi, which are now described by univari-
ate Gaussian distributions:

Ii � N
�

mi; s
2
i

�

¼ N
�

cTmi; c
T
Sic
�

: (18)

From this it follows (e.g., [29]) that the maximum likeli-
hood estimate of the pseudo-normal b is obtained through
weighted least-squares, with weights given by the recipro-
cal of the variance, i.e.,

b ¼ ðLTWLÞ�1LTWm; (19)

wherem 2 R
N is constructed by stacking the meansmi, and

W ¼ diagfs�2
i gNi¼1.

We evaluate our algorithm on JPEG images of a figurine
captured using the Canon EOS 40D from a fixed viewpoint
under directional lighting from 10 different known direc-
tions. At each pixel, we discard the brightest and darkest
measurements to avoid possible specular highlights and
shadows, and use the rest to estimate the surface normal. The
camera takes RAW images simultaneously, which are used
to recover surface normals that we treat as ground truth.

Fig. 7 shows the angular error map for normal estimates
using the proposed method, as well as the deterministic
baseline. We also show the corresponding depth maps
obtained from the normal estimates using [30]. The

3. These correspond to the different exposure time stops available
on the camera: ½5e� 4; 6:25e� 4; 1e� 3; 1:25e� 3; 2e� 3; 2:5e� 3;
3:13e� 3; 5e� 3; 6:25e� 3; 1e� 2; 1:26e� 2; 1:67e� 2; 2e� 2; 2:5e� 2;
3:33e� 2; 4e� 2; 5e� 2; 6:67e� 2; 1e� 1; 2e� 1; 4e� 1; 1� in relative
time units.
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proposed probabilistic approach produces smaller normal
estimate errors and fewer reconstruction artifacts than the
deterministic algorithm—quantitatively, the mean angular
error is 4:34 degree for the probabilistic approach, and
6:46 degree for the deterministic baseline. We also ran the
reconstruction algorithm on inverse estimates computed by
simple gamma-correction on the JPEG values (a gamma
parameter of 2.2 is assumed). These estimates had a much
higher mean error 14:65 degree.

5.3 Deconvolution

Deblurring is a common image restoration application
and has been an active area of research in computer
vision [31], [32], [33], [34], [35]. Traditional deblurring
algorithms are designed to work on linear RAW images
as input, but in most practical settings, only camera ren-
dered JPEG images are available. The standard practice in
such cases has been to apply an inverse tone-map assum-
ing a simple gamma correction of 2:2, but as has been
recently demonstrated [36], this approach is inadequate
and will often yield poor quality images with visible arti-
facts due to the fact that deblurring algorithms rely
heavily on linearity of the input image values.

While Kim et al. [36] show that more accurate inverse
maps can improve deblurring performance, their maps are
still deterministic. In this section, we explore the benefits of
using a probabilistic inverse, and introduce a modified
deblurring algorithm that accounts for varying degrees of
uncertainty in estimates of RAW values from pixel to pixel.

Formally, given a blurry JPEG image yðnÞ, we assume
that the corresponding blurry RAW image xðnÞ is related to
a latent sharp RAW image zðnÞ of the scene as

xðnÞ ¼ ðk � zÞðnÞ þ �ðnÞ; (20)

where k is the blur kernel and �ðnÞ is additive white Gaussian
noise. The operator � denotes convolution of the 3-channel

image z with a single-channel kernel k, implemented as the
convolution of the kernel with each image channel sepa-
rately. Although (20) assumes convolution with a spatially-
uniform blur kernel, the approach in this section can be easily
generalized to account for non-uniform blur (e.g., as in [35]).

Deblurring an image involves estimating the blur kernel
kðnÞ acting on the image, and then inverting this blur to
recover the sharp image zðnÞ. In this section, we will con-
centrate on this second step, i.e., deconvolution, assuming
that the kernel k has already been estimated—say by apply-
ing the deterministic inverse and using a standard kernel
estimation algorithm such as [31].4

We begin with a modern linear-image deconvolution
algorithm [9] and adapt it to exploit the inverse probability
distributions from Section 4. Given an observed linear
blurred image x and known kernel k, Krishnan and Fergus
[9] provide a fast algorithm to estimate the latent sharp
image zðnÞ by minimizing the cost function

CðzÞ ¼
�

2

X

n

kðk � zÞðnÞ � xðnÞk2 þ
X

n;i

kðri � zÞðnÞk
g ; (21)

where frig are gradient filters (horizontal and vertical finite
difference filters in both [9] and our implementation), and
the exponent g is 	 1. The first term measures the agree-
ment of z with the linear observation while the second term
imposes a sparse prior on gradients in a sharp image. The
scalar weight � controls the relative contribution of the two.

Given the tone-mapped version yðnÞ of the blurry linear
image xðnÞ, the deterministic approach would be to simply
replace xðnÞwith its expected value mðyðnÞÞ in the cost func-
tion above. However, to account for the structured uncer-
tainty in our estimate of xðnÞ and the fact that some values

Fig. 7. Photometric stereo results using the Canon EOS 40D. (Left) Histogram of the improvement in angular error of normal estimate. (Right) One of
the JPEG images used during estimation, and angular error (in degrees) for the normals estimated using the deterministic and probabilistic
approaches, along with the corresponding depth maps.

4. Empirically, we find that using a deterministic inverse suffices for
the kernel estimation step, as it involves pooling information from the
entire image to estimate a relatively small number of parameters.
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of yðnÞ are more reliable than others, we modify the cost
function to incorporate both the derendered means m and
co-variances S:

~CðzÞ ¼
�

2

X

n

ðk � zÞðnÞ � mn½ �T S�1
n ðk � zÞðnÞ � mn½ �T

þ
X

n;i

kðri � zÞðnÞk
g ;

(22)

where mn ¼ mðyðnÞÞ, Sn ¼ SðyðnÞÞ þ s2
zI3�3, and s2

z is the
expected variance of photo-sensor noise.

The algorithm in [9] minimizes the original cost
function (21) using an optimization strategy known as
half-quadratic splitting. It introduces a new set of auxiliary
variables wiðnÞ corresponding to the gradients of the latent
image zðnÞ, and carries out the following minimizations
successively:

z ¼ arg min
z

�

2

X

n

kðk � zÞðnÞ � xðnÞk2

þ
b

2

X

n;i

ðri � zÞðnÞ � wiðnÞk k2;
(23)

wiðnÞ ¼ arg min
w

b

2

X

n;i

ðri � zÞðnÞ � wk k2þkwkg ; (24)

where b is a scalar parameter that is increased across itera-
tions. To minimize our modified cost function in (22), we
need only change (23) to

z ¼ arg min
z

�

2

X

n

ðk � zÞðnÞ � mn½ �T S�1
n ðk � zÞðnÞ � mn½ �

þ
b

2

X

n;i

ðri � zÞðnÞ � wiðnÞk k2:
(25)

A complication arises from this change: while the original
expression (23) can be computed in closed-form in the Four-
ier domain, the same is not true for the modified version
(25) because the first term has spatially-varying weights.
Thus, to compute (25) efficiently, we use a second level of
iterations based on variable-splitting to compute (25) in
every outer iteration of the original algorithm.

Specifically, we introduce a new cost-function with new
auxiliary variables uðnÞ:

z ¼ arg min
z

min
u

;
�

2

X

n

uðnÞ � mn½ �TS�1
n uðnÞ � mn½ �

þ
a

2
kðk � zÞðnÞ � uðnÞk2

þ
b

2

X

n;i

ðri � zÞðnÞ � wiðnÞk k2;

(26)

where a is a scalar variable whose value is increased across
iterations. Note that for a ! 1, the expressions in (25) and
(26) are equivalent. The minimization algorithm proceeds
as follows: we begin by setting uðnÞ ¼ mn and then consider
increasing values of a equally spaced in the log domain (in
our implementation, we consider eight values that go from
4� times the minimum to the maximum of all diagonal
entries of all S�1

n ). For each value of a, we perform the fol-
lowing updates to z and uðnÞ in sequence:

z ¼ arg min
z

a

2
kðk � zÞðnÞ � uðnÞk2

þ
b

2

X

n;i

ðri � zÞðnÞ � wiðnÞk k2;
(27)

uðnÞ ¼ arg min
u

�

2

X

n

u� mn½ �TS�1
n u� mn½ �

þ
a

2
kðk � zÞðnÞ � uk2:

(28)

Note that (27) has the same form as the original (23) and can
be computed in closed-form in the Fourier domain. The
updates to uðnÞ in (28) can also be computed in closed-form
independently for each pixel location n.

We evaluate the proposed algorithm using three RAW
images from a public database [37], [38] and eight (spa-
tially-uniform) camera-shake blur kernels from the database
in [34]. We generate a set of 24 blurred JPEG observations by
convolving each RAW image with each blur kernel, adding
Gaussian noise, and then applying the estimated forward
map of the Canon EOS-40D camera.5 We compare deconvo-
lution performance of the proposed approach to a determin-
istic baseline consisting of the algorithm in [9] applied to the
derendered means mðnÞ. The error is measured in terms of
PSNR values between the true and estimated JPEG versions
of the latent sharp image. Since these errors depend on the
choice of regularization parameter � (which in practice is
often set by hand), we perform a grid search to choose �
separately for each of the deterministic and probabilistic
approaches and for every observed image, selecting the
value each time that gives the lowest RMSE using the
known ground-truth sharp image. This measures the best
performance possible with each approach. We set the expo-
nent value g to 2=3 as suggested in [9].

Fig. 8 shows a histogram of the improvement in PSNR
across the different images when using the probabilistic
approach over the deterministic one. The probabilistic
approach leads to higher PSNR values for all images, with a
median improvement of 1.24 dB. Fig. 8 also includes an
example of deconvolution results from the two approaches,
and we see that in comparison to the probabilistic approach,
the deterministic algorithm yields over-smoothed results in
some regions while producing ringing artifacts in others.
This is because the single scalar weight � is unable to adapt
to the varying levels of “noise” or radiometric uncertainty
in the derendered estimates. The ringing artifacts in the
deterministic algorithm output correspond to regions of
high uncertainty, where the probabilistic approach correctly
employs a lower weight (i.e., S�1

n ) for the first term of (22)
and smooths out the artifacts by relying more on the prior
(i.e., the second term). At the same time, it yields sharper
estimates in regions with more reliable observations by
using a higher weight for the fidelity term, thus reducing
the effect of the smoothness prior.

5. Note that for generating the synthetically blurred and ground-
truth sharp images, we use the forward map as estimated using the uni-
formly sampled 8k training set, which as seen in Table 1 nearly per-
fectly predicts the camera map. During deconvolution, we use inverse
and forward maps estimated using only the smaller “eight exposures,
four illuminants” set.
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6 CONCLUSION

Traditionally, computer vision algorithms that require accu-
rate linear measurements of spectral radiance have been lim-
ited to RAW input, and therefore to training and testing on
small, specialized data sets. In this work, we present a frame-
work that enables these methods to be extended to operate,
as effectively as possible, on tone-mapped input instead.
Our framework is based on incorporating a precise model of
the uncertainty associated with global tone-mapping pro-
cesses, and it makes it possible for computer vision systems
to take better advantage of the vast number of tone-mapped
images produced by consumer cameras and shared online.

To a vision engineer, our model of tone-mapping uncer-
tainty is simply a form of signal-dependent Gaussian noise,
and this makes it conceptually appealing for inclusion in
subsequent visual processing. To prove this point, we
introduced new, probabilistic adaptations of three classical
inference tasks: image fusion, photometric stereo and
deblurring. In all of these cases, an explicit characterization
of the ambiguity due to tone-mapping allows the computer
vision algorithm to surpass the performance possible with a
purely deterministic approach.

In future work, the use of inverse RAW distributions
should be incorporated in other vision algorithms, such as
depth from stereo, structure from motion, and object recog-
nition. This may require exploring approximations for the
inverse distribution different from the Gaussian approxima-
tion in (9). While some applications might require more
complex parametric forms, others may benefit from simpler
weighting schemes that are derived based on the analysis in
Section 4.

Also, it will be beneficial to find ways of improving cali-
bration for JPEG-only cameras. Our hope is that eventually
our framework will enable a common repository of tone-
map models (or probabilistic inverse models) for each imag-
ing mode of each camera, making the totality of Internet
photos more usable by modern computer vision algorithms.
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