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ABSTRACT

In this paper, we develop a three-dimensional multiple-relaxation-time lattice Boltzmann method (MRT-LBM) based on a set of non-
orthogonal basis vectors. Compared with the classical MRT-LBM based on a set of orthogonal basis vectors, the present non-orthogonal
MRT-LBM simplifies the transformation between the discrete velocity space and the moment space and exhibits better portability across dif-
ferent lattices. The proposed method is then extended to multiphase flows at large density ratio with tunable surface tension, and its numerical
stability and accuracy are well demonstrated by some benchmark cases. Using the proposed method, a practical case of a fuel droplet impact-
ing on a dry surface at high Reynolds and Weber numbers is simulated and the evolution of the spreading film diameter agrees well with
the experimental data. Furthermore, another realistic case of a droplet impacting on a super-hydrophobic wall with a cylindrical obstacle is
reproduced, which confirms the experimental finding of Liu et al. [“Symmetry breaking in drop bouncing on curved surfaces,” Nat. Commun.
6, 10034 (2015)] that the contact time is minimized when the cylinder radius is comparable with the droplet radius.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5087266

I. INTRODUCTION

Interfaces between different phases and/or components are
ubiquitous in multiphase flows and energy applications, such as rain
dynamics, plant spraying, water boiling, and gas turbine blade cool-
ing, to name but a few.1,2 A deeper understanding of the fundamen-
tal physics of such complex interfaces is of great importance in many
natural and industrial processes. The dynamics of the interfaces is
difficult to investigate because typical interfaces are extremely thin,
complex in shape, and deforming at short time scales. In addition,

the density ratio and Weber and Reynolds numbers involved in
many practical multiphase flows, such as binary droplet collisions
and melt-jet breakup, are usually very high, which further increases
the complexity of the phenomena involved. Therefore, development
of robust and accurate computational methods to capture the com-
plex interfacial phenomena is crucial in the study of multiphase
flows.

During the last three decades, the mesoscopic lattice Boltz-
mann method (LBM), based on the kinetic theory, has become
an increasingly important method for numerical simulations of
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multiphase flows, mainly on account of its meso-scale features, easy
implementation, and computational efficiency.3–19 Generally, the
existing multiphase LB models can be classified into four categories:
the color-gradient model,20,21 the pseudopotential model,3,22 the
free-energy model,23,24 and the mean-field model.25 Among them,
the pseudopotential model is considered in the present work due
to its simplicity and computational efficiency. In this model, the
interactions among populations of molecules are modeled by a
density-dependent pseudopotential. Through interactions among
the particles on the nearest-neighboring sites, phase separation
and breakup and/or merging of phase interfaces can be achieved
automatically. For further details about the multiphase LB mod-
els, interested readers are directed to some comprehensive review
papers.2,26,27

In the LBM framework, the fluid is usually represented by
populations of fictitious particles colliding locally and streaming
to adjacent nodes along the links of a regular lattice. The macro-
scopic variables are obtained through a set of rules based on the
calculated particle distribution functions (DFs). In particular, the
simplest scheme to execute the “colliding” (or collision) step is
to relax all the distribution functions (DFs) to their local equilib-
ria at an identical rate, known as the single-relaxation-time (SRT)
scheme.28 However, SRT-LBM usually suffers numerical instability
for flows with even moderate Reynolds number. Compared with
the SRT scheme, the multi-relaxation-time (MRT) scheme, origi-
nally formulated in Refs. 29 and 30 and later extended in Refs. 31
and 32, is able to enhance the stability by carefully separating the
time scales among the kinetic modes. To enhance numerical stabil-
ity of LBM, some modified approaches within the SRT framework
have also been proposed, such as the entropic LBM33,34 and regular-
ized LBM.35,36 In addition, the cascaded lattice Boltzmann method
(CLBM), which employs moments in a co-moving frame in con-
trast to the stationary moments in MRT, has also been shown to
improve numerical stability significantly compared with the classical
SRT-LBM.7,12,16,37–39

The present work focuses on the MRT-LBM, in which the col-
lision step is carried out in a (raw) moment space via a transforma-
tion matrix M, where different moments can be relaxed indepen-
dently. The post-collision moments are then transformed back via
M
−1, and the streaming step is implemented in the discrete veloc-

ity space as usual. Usually, the Gram-Schmidt procedure is adopted
to construct an orthogonal transformation matrix,15,31,32,40 which
means that the basis vectors for the moments are orthogonal to
one another. It is known that the widely used orthogonal MRT-
LBM is more complex and computationally expensive than SRT-
LBM, especially for three-dimensional problems. To the best of our
knowledge, orthogonality is not a necessary condition for stabil-
ity. As an early attempt, Lycett-Brown and Luo41 showed that an
MRT-LBM based on a non-orthogonal basis vector set enhances

the numerical stability compared with the SRT-LBM. The corre-
sponding non-orthogonal MRT-LBM has been extended to sim-
ulate incompressible thermal flows by Liu et al.42 In addition,
it was shown by Li et al.43 that a non-orthogonal MRT-LBM
can retain the numerical accuracy while simplifying the imple-
mentation of its orthogonal counterpart. In parallel, the CLBM,37

which can be viewed as a non-orthogonal MRT-LBM in the co-
moving frame, has been shown to possess very good numeri-
cal stability for high Rayleigh number thermal flows,39 as well
as high Reynolds and Weber number multiphase flows.7,12,16

Recently, an improved three-dimensional (3D) CLBM has been pro-
posed by Fei et al.,44 where an improved set of non-orthogonal
basis vectors were employed and a generalized multiple-relaxation-
time (GMRT) scheme39,45 was adopted to cast MRT-LBM and
CLBM into a unified framework. Within the GMRT framework,
the CLBM can reduce to a non-orthogonal MRT-LBM when the
shift matrix is a unit matrix, where the shift matrix is defined
to shift (raw) moments of the DFs to the corresponding central
moments.

In this work, we first give a theoretical analysis to con-
struct a generalized non-orthogonal MRT-LBM based on the basis
vector set proposed in Ref. 44. Coupled with the pseudopoten-
tial multiphase model, the proposed non-orthogonal MRT-LBM is
extended to simulate multiphase flows with a large density ratio
and tunable surface tension, which is then verified by some bench-
mark cases. Finally, we provide simulations of two practical and
challenging problems using our proposed non-orthogonal MRT-
LBM to highlight its capability of simulating realistic multiphase
flows.

II. NON-ORTHOGONAL MRT-LBM FOR MULTIPHASE
FLOWS

The theoretical derivation of the non-orthogonal MRT-LBM
is given in this section. First, the MRT framework is intro-
duced briefly. Then, the choice of the non-orthogonal basis vec-
tor set is presented. In the end, the pseudopotential model is
incorporated into the present method to simulate multiphase
flows.

A. MRT framework

In this section, the MRT-LBM framework is introduced based
on the standard D3Q27 discrete velocity model (DVM). However,
it should be noted that the procedures shown in this work are not
limited to the specified DVM and can be extended to other DVMs
readily. The lattice speed c = ∆x = ∆t = 1 and lattice sound speed
cs = 1/√3 are adopted, in which∆x and∆t are the lattice spacing and
time step, respectively. The discrete velocities ei = [∣eix⟩, ∣eiy⟩, ∣eiz⟩]
are defined as

∣eix⟩ = [0, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1]⊺,
∣eiy⟩ = [0, 0, 0, 1,−1, 0, 0, 1, 1,−1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1, 1,−1,−1, 1, 1,−1,−1]⊺,
∣eiz⟩ = [0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1, 1, 1,−1,−1,−1,−1]⊺,

(1)
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where i = 0, 1, . . ., 26, ∣⋅⟩ denotes a 27-dimensional column vector,
and the superscript ⊺ denotes the transposition.

To execute the collision step in the moment space, we first
define moments of the discrete distribution function (DFs) f i

kmnp = ⟨fi∣emixeniye piz⟩, (2)

where m, n, and p are integers. The equilibrium moments
k
eq
mnp are defined analogously by replacing f i with the dis-

crete equilibrium distribution functions (EDFs) f
eq
i . To con-

struct an MRT-LBM, an appropriate moment set vector m is
needed

m = [m0,m1, . . . ,m26]T, (3)

where the elements in m are combinations of kmnp. The trans-
formation from the discrete velocity space to the moment
space can be performed through a transformation matrix M

by m = Mf. The explicit expression for M depends on
the raw moment set in Eq. (3), which will be discussed in
Subsection II B.

A general collision step in MRT-LBM can be written as46

f
∗

i (x, t) = fi(x, t) −Λi,k[ fk − f eqk ]∣(x,t)
+
∆t

2
[Fi(x, t) + Fi(x + ei∆t, t + ∆t)], (4)

where x is the spatial position, t is time, Fi are the forcing terms in
the discrete velocity space, and Λi,k = (M−1SM)i,k is the collision
operator, in which S is a diagonal relaxation matrix. The EDFs f eqi
are often given by a low-Mach truncation form

f
eq
i = ρω(∣ei∣2)[1 + ei ⋅ u

c2s
+
uu : (eiei − c2s )

c4s
], (5)

where ρ is the fluid density, u = [ux, uy, uz] is the fluid velocity,
and the weights are ω(0) = 8/27, ω(1) = 2/27, ω(2) = 1/54, and
ω(3) = 1/216. According to the analysis by Guo et al.,47 the forcing

terms are defined as

Fi = ω(∣ei∣2)[ ei − u
c2s

+
(u ⋅ ei)ei

c4s
] ⋅ F, (6)

where F = [Fx, Fy, Fz] is the total force exerted on the fluid system.
To remove the implicit implementation, Eq. (4) can be modi-

fied as

fi(x + ei∆t, t + ∆t) = fi(x, t) −Λi,k[ fk − f eqk ] ∣(x,t)
+ (I − Λi,k

2
)Fi(x, t)∆t, (7)

where fi = fi −∆tFi/2 and I is the unit matrix. Multiplying Eq. (7) by
the transformation matrixM, the collision step in the moment space
can be rewritten as

m
∗

=m − S(m −meq) + (I − S

2
)∆tF̃, (8)

wherem =Mf,meq =Mf
eq, and F̃ =MF.

After the collision step, post-collision discrete DFs can be

reconstructed by f
∗

= M
−1
m
∗. In the streaming step, the post-

collision discrete DFs in space x stream to their neighbors (x + ei∆t)
along the characteristic lines as usual

fi(x + ei∆t, t + ∆t) = f ∗i (x, t). (9)

The hydrodynamic variables are updated by

ρ =∑
i

fi, ρu =∑
i

fiei +
∆tF

2
. (10)

B. Non-orthogonal basis vector set

In this work, we adopt a moment set m = [m0,m1, . . . ,m26]T
with the following 27 moment elements (in the ascending order of
m + n + p):

m = [k000, k100, k010, k001, k110, k101, k011, k200 + k020 + k002, k200 − k020, k200 − k002, k120,

k102, k210, k201, k012, k021, k111, k220, k202, k022, k211, k121, k112, k122, k212, k221, k222]T (11)

where the elements m0, m1–3, and m4–9 are related to the fluid den-
sity, momentum, and viscous stress tensor, respectively, while the
remaining elements are higher-order moments which do not affect
the consistency at the Navier-Stokes level. It should be pointed out
that the moments are chosen based on two criteria: (i) the basis
vectors for the moments are linearly independent (but not neces-
sarily orthogonal to one another) and (ii) the calculation of each
moment is as simple as possible. Generally, the high-order elements

are related to some kinetic moments, such as energy flux and square
of kinetic energy, but the relations are not defined exactly. The above
moment set in Eq. (11) was originally adopted in our cascaded LBM
to improve the implementation,44 where the mixed second-order
moments (k200 + k020 + k002, k200 − k020, k200 − k002) were implicit
and the relaxation matrix was slightly modified to simplify the map
between the (raw) moment space and central moment space. In the
present paper, the relaxation matrix S is a diagonal matrix

S = diag(s0, s1, s1, s1, sν , sν , sν , sb, sν , sν , s3, s3, s3, s3, s3, s3, s3b, s4, s4, s4, s4b, s4b, s4b, s5, s5, s5, s6), (12)
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where the elements are the relaxation rates for different moments. The kinematic and bulk viscosities are related to the relaxation rates for the
second-order moments by ν = (1/sν − 0.5)c2s∆t and ξ = 2/3(1/sb − 0.5)c2s∆t, respectively. Here, we use s0 = s1 = 1.0 and sb = s3b = 0.6, and the
others are set to be 1.2.

The transformation matrixM can be obtained explicitly according to Eqs. (2) and (11)

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0 1 −1 −1 1 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 1 −1 1 −1 −1 1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 1 1 −1 −1 −1 −1 1 1
0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
0 1 1 −1 −1 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0
0 1 1 0 0 −1 −1 1 1 1 1 0 0 0 0 −1 −1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 −1 1 1 −1
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

The equilibrium raw moment vectormeq
= [meq

0 ,m
eq
1 , . . . ,m

eq
26] finally reads

m
eq
= [ρ, ρux, ρuy, ρuz , ρuxuy, ρuxuz , ρuyuz , ρ(1 + u

2), ρ(u2x − u2y), ρ(u2x − u2z),
ρc2sux, ρc

2
sux, ρc

2
suy, ρc

2
suz , ρc

2
suy, ρc

2
suz , 0, ρc

2
s (c2s + u

2
x + u

2
y), ρc2s (c2s + u

2
x + u

2
z),

ρc2s (c2s + u
2
y + u

2
z), ρc2suyuz , ρc2suxuz , ρc2suxuy, ρc4sux, ρc4suy, ρc4suz , ρc4su2 + ρc6s ]T,

(14)

and the forcing term vector in the moment space F̃ = [F̃0, F̃1, . . . , F̃26],
F̃ = [0,Fx,Fy,Fz ,Fxuy + Fyux,Fxuz + Fzux,Fyuz + Fzuy, 2F ⋅ u, 2(Fxux − Fyuy), 2(Fxux − Fzuz),

Fxc
2
s ,Fxc

2
s ,Fyc

2
s ,Fzc

2
s ,Fyc

2
s ,Fzc

2
s , 0, 2c

2
s (Fxux + Fyuy), 2c2s (Fxux + Fzuz), 2c2s (Fyuy + Fzuz),

c
2
s (Fyuz + Fzuy), c2s (Fxuz + Fzux), c2s (Fxuy + Fyux), c4sFx, c4sFy, c4sFz , 2c4sF ⋅ u]T.

(15)

It can be found that the transformation matrix M in Eq. (13)
is non-orthogonal. Through the Chapman-Enskog analysis (see
Appendix A), the proposed non-orthogonal MRT-LBM can recover
the Navier-Stokes equations in the low Mach number limit. When
all the relaxation parameters in the matrix S are set equal, the
present non-orthogonal MRT-LBM reduces to the SRT-LBM. Com-
pared with the orthogonal MRT-LBM used in Refs. 32 and 40,
the numbers of non-zeros in the present non-orthogonal M and
its inverse matrix M

−1 are much smaller (see in Table I), which

indicates that the implementation is simplified and the computa-
tional efficiency is enhanced. Quantitatively, the non-orthogonal
MRT-LBM requires approximately 25% and 15% less computational
time for the D3Q27 model and D3Q19 model,43,44 respectively.
Moreover, a non-orthogonal D3Q19 MRT-LBM can be extracted
from the D3Q27 model directly (see Appendix C, all the elements
in m, meq, S, F̃, M, and M

−1 for the D3Q19 model can be extracted
from the D3Q27 model directly), which means that the non-
orthogonal MRT-LBM exhibits very good portability across lattices.
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TABLE I. Non-zero numbers in M and M−1 for orthogonal and non-orthognal MRT
models.

Orthogonal32,40 Non-orthogonal

Models D3Q27 D3Q19 D3Q27 D3Q19

M 416 213 339 139
M

−1 416 213 226 101

The comparison between the non-orthogonal and orthogonal MRT-
LBMs on the D3Q19 lattice is also shown in Table I. Interested read-
ers are kindly directed to the supplementary material for the explicit
expressions ofM andM

−1.

C. Multiphase model

To extend the abovementioned non-orthogonal MRT-LBM to
multiphase flows, the pseudopotential model3,22 is considered in
the present work. It may be noted that the present non-orthogonal
MRT-LBM can be also coupled with other multiphase models in a
similar way. In the pseudopotential model, the interactions among
molecule clusters are modeled by a pseudo-interaction force among
fictitious particles

Fint = −Gψ(x)∑
i

w(∣ei∣2)ψ(x + ei∆t)ei, (16)

where G is the interaction strength, ψ is a density-dependent pseu-
dopotential, and the normalized weights are w(∣ei∣2) = ω(∣ei∣2)/c2s .
According to the Chapman-Enskog analysis, the bulk pressure
reads

p = ρc2s +
Gc2

2
ψ2. (17)

In order to incorporate different equations of state consistently
and achieve large density ratio, the square-root-form pseudopoten-

tial4 ψ =
√
2(pEOS − ρc2s )/Gc2 is used in this work, where pEOS is

given by the adopted equation of state. Furthermore, some terms in
F̃ need to be slightly modified for the sake of thermodynamic consis-
tency and tunable surface tension,6,48,49 and the details are provided
in Appendix B.

III. NUMERICAL VERIFICATION

A. Realization of large density ratio

First, we consider the verification of the liquid and vapor coex-
istence densities at large density ratios. To achieve large density
ratios, different equations of state can be incorporated into the pseu-
dopotential model, such as the Carnahan-Starling (C-S) equation,
Peng-Robinson (P-R) equation, and the piecewise linear equation of
state.48,50–52 In this paper, we use the piecewise linear equation of
state, which is given by52

p(ρ) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρθv , ρ ≤ ρ1
ρ1θv + (ρ− ρ1)θm, ρ1 ≤ ρ ≤ ρ2
ρ1θv + (ρ2 − ρ1)θm + (ρ− ρ2)θl, ρ > ρ2 , (18)

where θv = (∂p/∂ρ)v > 0, θl = (∂p/∂ρ)l > 0, and θm = (∂p/∂ρ)m
< 0 are the slopes of p(ρ) in the vapor-phase region, the liquid-phase

region, and the mechanically unstable region, respectively. In addi-
tion,

√
θv and

√
θl can be regarded as the sound speed in the vapor

and liquid phases, respectively. The unknown ρ1 and ρ2, defining
the spinodal points, are obtained by solving the following two equa-
tions, which are related to the mechanical and chemical equilibrium
conditions:

∫
ρl

ρ
v

(ρ1 − ρv)θv + (ρ2 − ρ1)θm + (ρl − ρ2)θl = 0,
∫

ρl

ρ
v

1

ρ
dp = log(ρ1/ρv)θv + log(ρ2/ρ1)θm + log(ρl/ρ2)θl = 0,

(19)

where ρv and ρl are vapor and liquid coexistence densities, respec-
tively. It is known that the equilibrium coexistence densities are
completely determined by the mechanical stability condition for flat
interfaces. However, for circular interfaces (e.g., droplets, bubbles),
Laplace’s law also affects the coexistence densities. Due to the rela-
tively large surface tension in the pseudopotential model (compared
with the case in nature), the coexistence densities, especially the
vapor phase density ρv , usually change with the radius of curvature,
and this density deviation is more significant for the large density
ratio problems. For example, the vapor-density deviation can be as
large as 60% for a system with ρl/ρv = 100.53 Li and Luo proposed
that the density deviation can be much reduced by setting the vapor-
phase sound speed

√
θv to be the same order of magnitude as cs.

53

In addition, the interface thickness can be widened (sharpened) by
decreasing (increasing) ∣θm∣. In this work, we consider the large den-
sity ratio problem with ρv = 0.001 and ρl = 1. The parameters θv , θl,
and θm are given as

θv = c
2
s /2, θl = c2s , θm = −c2s /40. (20)

According to Eq. (19), the variables ρ1 and ρ2 are given as ρ1
= 0.001325 and ρ2 = 0.9758. The parameter σ in Eq. (B1) is set to
0.1 to achieve thermodynamic consistency.

In the simulation, the square-root-form pseudopotential is used
and the interaction strength parameter is fixed asG=−1. The density
profiles along two planar interfaces in the x direction by the D3Q27
and D3Q19 non-orthogonal MRT-LBMs are shown in Fig. 1. It is
seen that the numerical coexistence densities are in very good agree-
ment with the equilibrium vapor and liquid densities (ρv = 0.001
and ρl = 1.0). A spherical droplet of radius R0 = 50 (a representa-
tive radius in the following applications) is then initially located at
the center of a 200 × 200 × 200 cubic box to verify the thermody-
namic consistency. The steady density profiles along the center line
(y = 100, z = 100) are also shown in Fig. 1 for comparison. The liq-
uid density at R0 = 50 is basically the same as the value at the planar
interface, while the small discrepancies in the vapor phase are within
6%. Generally, the density ratio in our simulation is larger than 940.
In addition, the interface width, W, can be measured by fitting the
following curve to the density profile:

ρ(x) = (ρl + ρv)
2

+
(ρl − ρv)

2
tanh[2(x − 50)

W
], x <= 100. (21)

The above equation can be rewritten asW = (ρl − ρv)/(∂ρ/∂x)|x=50.
54

Using the numerical differentiation, the interface widths for density
profiles in Fig. 1 are obtained as 5 ≤W ≤ 6.
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FIG. 1. Comparison of the density profiles (ρv = 0.001 and ρl = 1.0) at the pla-
nar interfaces and circular interfaces (R0 = 50) by the non-orthogonal D3Q27 and
D3Q19 MRT-LBMs. For the planar interfaces, the two methods reproduce very
accurate coexistence densities. For the circular interfaces, the small discrepan-
cies in the vapor phase are within 6%. The interface widths obtained by Eq. (21)
are 5 ≤W ≤ 6.

B. Evolution of spurious velocities

Spurious currents are usually viewed as an important cause
of instability in the pseudopotential model. Here the average
spurious velocity magnitude in the gas phase uv

41 is consid-
ered to compare the numerical performances of the proposed
non-orthogonal MRT-LBMs with the classical SRT-LBM. The
SRT-LBM is obtained by setting all the relaxation parameters
equal to one another. The spurious velocity is measured based
on the static droplet case in Sec. III A at different viscosities. It
may be noted that the dynamic viscosity ratio is µl/µv = (ρl/ρv)
≈ 1000 in this simulation due to the unity kinematic viscosity,
while different dynamic viscosity ratios can be used in the following
applications.

From Table II, it is seen that the present non-orthogonal
MRT-LBM models help to reduce the spurious currents compared
with SRT-LBM, and the D3Q27 model outperforms the D3Q19
model at low viscosities. In addition, we also provide the evolu-
tion of spurious kinetic energy for the case ν = 0.02 in Fig. 2. Here
the spurious kinetic energy is calculated based on the global inte-
gral of the spurious velocities. The SRT-LBM case diverges after
1000 steps, while the present models allow us to achieve conver-
gent results. Clearly, the proposed non-orthogonal MRT-LBM has
superior numerical stability over the SRT-LBM.

TABLE II. Average spurious velocity magnitude in the gas phase uv produced by
different methods.

Methods ν = 0.075 ν = 0.05 ν = 0.02 ν = 0.01

D3Q27 MRT 0.00116 0.00293 0.0172 0.0245
D3Q19 MRT 0.00085 0.00333 0.0180 0.0295
D3Q27 SRT 0.0150 0.06542 NaN NaN

FIG. 2. Evolution of spurious kinetic energy Ek for a static droplet with
ν = 0.02.

C. Realization of tunable surface tension

The adjustment of the surface tension is first verified by sim-
ulating droplets with a series of radii, R0 = [28, 33, 38, 43, 48], in
a 180 × 180 × 180 cubic box. According to Laplace’s law, the pres-
sure difference across a spherical interface is related to the droplet
radius R0 and the surface tension γ via ∆p = pint − pout = 2γ/R0. The
obtained surface tensions at different k are shown in Fig. 3(a). As
is shown, there is a good linear scaling between the surface tension
and (1 − κ), which confirms the theoretical analysis that surface ten-
sion can be reduced linearly with increasing parameter k in Eq. (B2).
In addition, the numerical pressure differences at κ = 0, 0.4, 0.6,
and 0.8 by the D3Q19 non-orthogonal MRT model are given in
Fig. 3(b). It can be seen that the numerical results agree well with
the linear fit denoted by the solid lines. In the following simulations,
we only adopt the D3Q19 model due to its smaller computational
load.

In addition to the static case, we consider the decay of cap-
illary waves between two fluids with equal viscosities (ν = 0.01),
which is a classical test for the accuracy of numerical models for
surface-tension-driven interfacial dynamics.22,49 The computational
domain is a cuboid of length L, height H, and depth D. For con-
venience, we use D = 5 and impose a periodic condition in the
z direction. As suggested in Refs. 22 and 49, the aspect ratio H/L
should be large enough and is chosen as 5 with L = 160. The peri-
odic and nonslip boundary conditions are adopted in the x and y
directions, respectively. Initially, an interfacial disturbance is given
in the middle of the cuboid of the form y(x) = h0 cos(kx), where
k = 2π/L is the wave number and h0 = 20 is the wave amplitude.
For the given surface tension, the dispersion relation of the capillary
wave is Ref. 22,Θ2 = γk3/(ρl + ρv). Figure 3(c) shows the evolution of
the interface at x = L/2 for three cases by the present non-orthogonal
MRT-LBM. We can clearly see that the dynamic decay of capil-
lary waves can be well captured using the proposed method, and
the oscillating period increases with the decrease of surface tension
(increase of k). To be quantitative, we compare the measured oscil-
lating period T∗ with the theoretical value T = 2π/Θ. Generally, the
present results are in very good agreement with the analytical results,
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FIG. 3. Verification of the surface tension adjustment method in Eq. (B2). (a) and (b) are based on the static droplet case: (a) surface tensions achieved at different k and (b)
numerical pressure difference as a function of 2/R0 at different k by the D3Q19 non-orthogonal MRT model. (c) Dynamic decay of capillary waves: for k = [0, 0.4, 0.8], the
analytical oscillation periods based on the surface tension by the static cases are T = [7959, 10 504, 19 056], while the measured periods are T

∗ = [8025, 10 400, 18 500],
respectively.

with relative errors of 0.8%, 1.0%, and 2.9% for k = 0, k = 0.4, and
k = 0.8, respectively.

D. Validation of spatial accuracy

To test the spatial accuracy of the proposed non-orthogonal
MRT-LBM for multiphase flows, we conduct simulations of a static
droplet with different mesh sizes, Nx × Ny × Nz = 100 × 100
× 100, 200 × 200 × 200, 300 × 300 × 300, and 400 × 400 × 400. The
droplet radius is R = Nx/4, and the periodic boundary conditions
are imposed in all three directions. As suggested in Ref. 50, we use
the finest mesh as the standard case and calculate the relative error
for the results on other meshes by E(Nx) = ∣ρ(Nx) − ρ(400)∣, where
ρ(Nx) represents the convergent value of liquid/gas density on the
mesh Nx × Ny × Nz . The changes in the relative error with the mesh
size for different values of k are shown in Fig. 4, where the top black
line stands for the exact second-order accuracy. It is demonstrated

FIG. 4. Changes in the relative error E of steady densities with the mesh size Nx .
The black solid line represents exact second-order accuracy. Three cases with
different surface tensions (k) are considered.

that the present model has approximately second-order accuracy in
space.

E. Implementation of wettability conditions

Next, we consider the implementation of the wettability. For
the pseudopotential model, various schemes to implement the con-
tact angle between the fluid and solid phases have been pro-
posed in the literature.55,56 In this work, we adopt a modified
pseudopotential-based contact angle scheme,56 in which a fluid-solid
interaction is defined as

Fads(x) = −Gadsψ(x)∑
i

w(∣ei∣2)ψ(x)s(x + ei∆t)ei, (22)

where Gads is the fluid-solid interaction strength to adjust the con-
tact angle and s(x) is an indicator function, which is equal to 1 or
0 for a solid or a fluid phase, respectively. For such a treatment,
Gabs < 0, Gabs = 0, and Gabs > 0 recover the hydrophilic, neutral,
and hydrophobic walls, respectively. However, there is still no ana-
lytical relation between the specified contact angle and the value of
Gads. Usually, Gads is set to match the prescribed one. In the present
work, the intrinsic contact angles are implemented without consid-
ering contact angle hysteresis. For cases where the three-phase con-
tact line motion is a dominant factor,57,58 alternative contact angle
schemes, such as the geometric formulation,59,60 should be adopted
to include the contact angle hysteresis.

As a benchmark case, we choose Gabs = 0.23, and the measured
contact angle is around 157○, which is a representative value for
super-hydrophobic surfaces. To verify the implementation, a droplet
impact on a solid wall is simulated. In this problem, the droplet
first spreads to reach a maximal spreading diameter, then retracts to
reduce its interfacial energy, and finally rebounds from the solid sur-
face due to the relatively small energy loss by dissipation and friction.
According to the universal scaling summarized by Richard et al.,1

the contact time tc, a time period fromwhen the droplet first touches
the surface to that when it bounces off the surface, is proportional to
the inertia-capillarity time

τ =
√
ρlR0

3/γ, (23)
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FIG. 5. (a) Time evolution of the dimensionless film radius
for a water droplet impacting on the superhydrophobic
surface at We = 27. Line: present simulation; symbols:
experiment in Ref. 61. Inset: typical snapshots during the
impacting process. (b) Contact time τc as a function of
the inertia-capillarity time τ for a droplet impacting on the
superhydrophobic surface.

where the scale factor t∗ = tc/τ ≈ 2.2 ± 0.3 is independent of the
impact velocity U and holds in a range of the Weber number,
We = ρLR0U

2/γ.
We consider a series of cases with the droplet radius 30 ≤ R0

≤ 50 and surface tension 0.00395 ≤ γ ≤ 0.01034 (0 ≤ κ ≤ 0.6). The
resulting range of the inertia-capillarity time is 1616 ≤ τ ≤ 5625.
The simulations are run in a domain of dimensions around 6R0. In
Fig. 5(a), we show the time evolution of the spreading film radius
R for a representative case with We = 27, where we can see that the
present simulation is in good agreement with the experimental result
reported in Ref. 61. The contact time as a function of the inertia-
capillarity time is shown in Fig. 5(b). Within the considered range
of parameters, a very good scaling τc/τ = 2.26 is achieved, which val-
idates our implementation of wettability conditions, as well as the
adjustment of surface tension.

IV. NUMERICAL APPLICATIONS IN REALISTIC
MULTIPHASE FLOWS

A. Fuel droplet impact on a solid surface

A fuel droplet impact on a solid surface occurs in fuel spray
in engines, spray cooling, and inking jet printing.62 As discussed
in the literature, the impact outcome depends on the properties
of both the fuel droplet and the surface.62 Here we consider the
ethanol droplet and diesel fuel droplet impact on a hydrophilic
surface. The simulation configuration is that a droplet with radius
R0 and velocity U impacts on the solid wall vertically (in the −z
direction). The simulation results by the present non-orthogonal
MRT-LBM are compared with the experimental data provided in
Ref. 63 and a recent smoothed particle hydrodynamics (SPH) simu-
lation.64 In the present work, the effect of temperature, such as the
phase change process during the drop impact on heated surfaces,65

is not considered. For methods of incorporating thermal effects
into multiphase LBM, the interested readers are kindly directed
to Ref. 2.

The physical properties of ethanol and diesel have been pro-
vided in Ref. 63. Due to the large density ratio between both the two
fuel droplets and the ambient gas, the density ratio is fixed to be the
same with the previous setting. The experimental dynamic viscos-
ity ratio µl/µv can be achieved by tuning the vapor-liquid kinematic
viscosity ratio ν l/νv through a variable relaxation time, i.e.,

ν = νv + (ν l − νv) ρ− ρv
ρl − ρv

. (24)

Remarkably, the impact Reynolds number Re = ρlR0U/µl andWeber
number We = ρlU

2R0/γ in the present method can be tuned inde-
pendently via the adjustments of the surface tension and the vis-
cosity to match the experimental conditions. It may be noted that
the Reynolds and Weber numbers are defined based on the droplet
radius R0 throughout this paper, while the droplet diameter D = 2R0

has also been commonly adopted in the literature. The fluid-solid
interaction strength is set to Gads = −0.1 to match the wettability
condition.64

The first simulation is an impact case by the ethanol drop. In the
experiment, the droplet radius and impact velocity are RE = 1.2 mm
and UE = 3.1 m/s. According to the physical properties,64 the cor-
responding Reynolds and Weber numbers are around Re = 2500
and We = 410, respectively. In the simulation, we choose R0 = 70,
U = 0.125, and ν l = 0.0035. The simulation is run in a domain around
9R × 9R × 3.5R, where the periodic boundary conditions are used

FIG. 6. Snapshots of an ethanol drop impinging on a drying surface (RE = 1.2 mm,
UE = 3.1 m/s): (a) the present non-orthogonal MRT-LBM simulation and (b) SPH
simulation in Ref. 64.
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FIG. 7. The spreading diameters as a function of time by

the present simulation, experimental measurement,63 and

SPH simulation:64 (a) ethanol drop impact (RE = 1.2 mm
and UE = 3.1) and (b) diesel drop impact (RE = 1.3 mm and
UE = 3.1).

in the x and y directions and the non-slip boundary conditions on
the top and bottom walls. Figure 6 shows the predicted evolution of
the droplet impacting process. Specifically, the liquid droplet spreads
out onto the solid wall and gradually forms a thin liquid film without
splashing, which is consistent with the experimental observation.63

For comparison, the SPH simulation result in Ref. 64 is also shown
in Fig. 6. As expected, the present film is smoother than the SPH
simulation. It should be noted that the rough boundaries in the film
by SPH simulation are not the secondary droplets due to splashing,
as mentioned in Ref. 64.

The diameter of the spreading film Df is then measured. To
compare with the experimental data, we can convert the lattice time
and spreading film diameter to the experimental units using the
dimensionless time and length scales, t∗ = tU/R0 and δ∗ = Df /R0.
The predicted spreading diameter, as a function of time, compared
with the experimental measurement and SPH simulation, is shown
in Fig. 7. In addition, another impact case for the diesel droplet
(RE = 1.3 mm and UE = 3.1) is also shown in Fig. 7. Due to the
smaller Reynolds and Weber numbers (Re = 930 and We = 350),
R0 = 50 is used to simulate the diesel droplet impingement and a
video for this case is provided in the supplementary material movie
1. Figure 7 shows that the present simulation results are generally
in good agreement with the previous data.63,64 More specifically, the
spreading diameters by the present method are smaller than the SPH
results in the later stages and seem to be more consistent with the
experimental results.

In addition, we find that for the cases considered here with
large Reynolds and Weber numbers, the SRT scheme always leads
to divergence shortly after the droplet lands on the wall, which
further confirms the improved numerical stability of the proposed
non-orthogonal MRT scheme.

B. Droplet impact on a super-hydrophobic wall
with a cylindrical obstacle

Reducing the contact time for a droplet impact on a super-
hydrophobic solid surface plays an important role in a broad
range of realistic applications, such as self-cleaning, anti-icing,
and dropwise condensation.66–68 Recently, several methods have
been demonstrated to reduce the contact time.66,67,69 In this
paper, we consider the approach by installing a cylinder on a
super-hydrophobic solid surface, while the cylinder has the same
wettability with the solid surface. As analyzed by Liu et al.,66 when

a droplet lands, more momentum is transferred into the azimuthal
direction of the cylinder rather than the axial direction. As a result,
the droplet remains extended in the azimuthal direction when it
begins to retract along the axial direction. It is the dynamically
asymmetric momentum and mass distribution that reduces the total
contact time during the impact process.

In the simulation, the droplet radius is fixed at R0 = 50,
and a series of cases with the cylinder radii 10 ≤ R ≤ 120 are
considered. The simulations are carried out in a box around
6R0 × 6R0 × 5R0, with periodic boundaries along x and y directions,
and non-slip boundary conditions on the top and bottom, as well
as the cylinder surface. The liquid viscosity is set to ν l = 0.0075 and
Oh = (ρlν l)/√ρlγR0 < 0.015 for two Weber numbers, We = 10 and
20. The gravity is neglected since all the simulations are below the
inertial capillary length scale. The fluid-solid interaction parameter
Gads = 0.23 is used to implement a static contact angle θ ≈ 157○. A
reference case without the cylinder is simulated first and the dimen-
sionless contact time is t/τ ≈ 2.35, which is in good agreement with
the universal scaling.1

Figure 8 shows snapshots for three representative cases, R < R0,
R = R0, and R > R0 at We = 10. For the case R/R0 = 0.4, the droplet
spreads onto the plat surface soon after the impact due to the small
cylinder radius. Thus, only a small part of the droplet is on the

FIG. 8. Snapshots for a droplet impact on a super-hydrophobic surface with
a cylindrical obstacle by the present simulation: (a) R/R0 = 0.4, rebounce at
t
∗
≈ 1.79; (b) R/R0 = 1.0, rebounce at t

∗
≈ 1.67; and (c) R/R0 = 2.3, rebounce at

t
∗
≈ 1.81.
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FIG. 9. Experiment measurements for a droplet hitting a cylinder:66,68 (a) R/R0

= 0.4 and (b) R/R0 = 2.3.

cylinder ridge and this small central part retracts quickly while the
main part is still spreading. This results in a central pinch-off, split-
ting the droplet into two parts on each side of the cylinder and a
small satellite. The small satellite is unsteady and lifts off immedi-
ately and the two parts finally rebound at t/τ = 1.79. The impact
process is in very good agreement with the experiment phenomena
shown in Fig. 9, and a video for this case is provided in the supple-
mentary material movie 2. For the medium cylinder at R/R0 = 1.0,
a smaller part of the droplet spreads onto the plat surface and the
droplet cannot be split into two parts despite the significant defor-
mation. Shortly after the completion of axial retraction, the droplet
bounces. For the large cylinder radius at R/R0 = 2.3, the droplet film
changes to be approximately elliptical in the early stage due to the
momentum imbalance. More specifically, more momentum is trans-
ferred in the azimuthal direction than the axial direction, as analyzed
by Liu et al.66 Then, the drop retracts first in the axial direction while
keeping extending around the cylinder. Once the axial retraction is
complete, the droplet bounces. The dynamic process is consistent
with the experiment phenomena shown in Fig. 9. It should be noted
that the difference between the last snapshots in Figs. 8(a) and 9(a)
is because the two snapshots are taken at different instants in the
evolution.

FIG. 10. Variation of the dimensionless contact time t
∗ = tc /τ as a function of the

dimensionless cylinder radius R
∗ = R/R0.

FIG. 11. Evolution of dimensionless volume for the liquid phase in the three cases
in Fig. 8.

Figure 10 presents the variation of the dimensionless contact
time t∗ = tc/τ as a function of the dimensionless cylinder radius R∗

= R/R0 at We = 10 and 20. Generally, it can be seen that the con-
tact time is minimized at R∗ ≈ 1. Moreover, the figure is asymmetric,
where the contact time decreases quickly from R∗ = 0 to R∗ ≈ 1 while
it increases slowly at R∗ > 1. The trend predicted by the present sim-
ulation agrees well with previous studies.66,68 In addition, it may be
noted that the contact time for droplet hitting small wires (R∗ < 0.1)
may be reduced by quite different physical mechanisms and this
range is not covered in Fig. 10. For example, Gauthier et al.69

showed that the contact time for a droplet impact on a small wire
scales inversely as the square root of the number of lobes produced.

Finally, the conservation of volume or mass in our simula-
tions is considered, which is an important factor affecting the accu-
racy of simulations involving breakup and/or merging of the phase
interfaces.70 In Fig. 11, we show the evolution of dimensionless vol-
ume for the liquid phase in the three cases considered in Fig. 8.
It is seen that the three cases show similar tendency: the volume
increases slightly in the early stage and then decreases gradually to a
steady value and the fluctuation is approximately within±1%. This is
within the error margin of estimating the volume of complex shapes.
In our simulations, we also find that the small secondary droplet pro-
duced in Fig. 8(a) is going to be smaller and smaller and disappears
in the end, which is similar to the interface diffusion phenomenon
mentioned in Ref. 71 and leads to slight loss of liquid volume. Gen-
erally, it is demonstrated that the present model performs well in
terms of global volume conservation.

V. CONCLUSIONS

Through theoretical analysis, a generalized non-orthogonal
multiple-relaxation-time lattice Boltzmann method (MRT-LBM)
based on an improved moment set44 is developed and proved
to reproduce the macroscopic Navier-Stokes equations in the low
Mach number limit. Compared with the classical MRT-LBM, the
numbers of non-zeros in the present transformation matrix M and
its inverse matrix M

−1 are much reduced, leading to a simplified
implementation and an enhanced computational efficiency in the
present method. Moreover, a non-orthogonal MRT-LBM based on
a sub-lattice (e.g., D3Q19) can be extracted from the method on
the full-lattice (D3Q27) directly, which indicates that the proposed
non-orthogonal MRT-LBM exhibits good portability across lattices.
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The proposed method is further extended to simulate multi-
phase flows with large density ratio and tunable surface tension and
validated through benchmark cases. It is finally applied to two prac-
tical problems, a fuel droplet impacting on a dry surface at high
Reynolds and Weber numbers and a droplet impacting on a super-
hydrophobic wall with a cylindrical obstacle, achieving satisfactory
agreement with recent experimental and numerical data.

SUPPLEMENTARY MATERIAL

See supplementary material for the explicit expressions of M
andM

−1 and supplementary movies.
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APPENDIX A: CHAPMAN-ENSKOG ANALYSIS

Using Eq. (4) and the relation fi= fi+ ∆tFi/2, a second-order
Taylor series expansion of Eq. (9) at (x, t) yields

∆t(∂t + ei ⋅ ∇)fi + ∆t2

2
(∂t + ei ⋅ ∇)2fi +O(∆t3)

= −Λi,k( fk − f eqk ) + ∆tFi +
∆t2

2
(∂t + ei ⋅ ∇)Fi. (A1)

Multiplying Eq. (A1) by the transformation matrix M leads to the
following equation:

(I∂t +D)m +
∆t

2
(I∂t +D)2m +O(∆t2)

= −
S

∆t
(m −meq) + F̃ +

∆t

2
(I∂t +D)F̃, (A2)

where D = Cx∂x + Cy∂y + Cz∂z , in which Ca = MEaM
−1 with

Ea = diag[e0,a, e1,a, . . ., e26,a] for a = x, y, z. By introducing the
following Chapman-Enskog expansions,

∂t = ε∂t1 + ε
2
∂t2+ . . . ,D = εD1,

m =m
eq + εm(1) + ε2m(2) + . . . , F̃ = εF̃

(1)
.

(A3)

Equation (A2) can be rewritten in the consecutive orders of the
expansion parameter ε as follows:

O(ε) : (I∂t1 +D1)meq
= −

S

∆t
m
(1) + F̃

(1)
, (A4a)

O(ε2) : ∂t2meq + (I∂t1 +D1)m(1) + ∆t

2
(I∂t1 +D1)2meq

= −
S

∆t
m
(2) +

∆t

2
(I∂t1 +D1)F̃(1). (A4b)

Using the first-order O(ε) equation, the second-order O(ε2) can be
simplified as

O(ε2) : ∂t2meq + (I∂t1 +D1)(I − S

2
)m(1) = − S

∆t
m
(2). (A5)

According to Eq. (A4a) and the definition in Eq. (14), we can obtain
continuity and momentum equations at O(ε) level

∂t1ρ+ ∂x1(ρux) + ∂y1(ρuy) + ∂z1(ρuz) = 0,
∂t1(ρux) + ∂x1(ρc2s + ρu2x) + ∂y1(ρuxuy) + ∂z1(ρuxuz) = F(1)x ,

∂t1(ρuy) + ∂x1(ρuxuy) + ∂y1(ρc2s + ρu2y) + ∂z1(ρuyuz) = F(1)y ,

∂t1(ρuz) + ∂x1(ρuxuz) + ∂y1(ρuyuz) + ∂z1(ρc2s + ρu2z) = F(1)z .

(A6)

Analogously, the continuity and x-direction momentum equations
at O(ε2) level can be obtained from Eq. (A5)

∂t2ρ = 0, (A7a)

∂t2(ρux) + 1

3
∂x1[(1 − sb

2
)m(1)7 + (1 − sν

2
)m(1)8 + (1 − sν

2
)m(1)9 ]

+∂y1[(1 − sν

2
)m(1)4 ] + ∂z1[(1 − sν

2
)m(1)5 ] = 0, (A7b)

where the unknown first-order non-equilibrium moments can be
obtained according to Eq. (A4a)

∂t1m
eq
4 + ∂x1m

eq
12 + ∂y1m

eq
10 + ∂z1m

eq
16 = −sνm

(1)
4 /∆t + F̃

(1)
4 ,

∂t1m
eq
5 + ∂x1m

eq
13 + ∂y1m

eq
16 + ∂z1m

eq
11 = −sνm

(1)
5 /∆t + F̃

(1)
5 ,

∂t1m
eq
7 + ∂x1(meq

1 +m
eq
10 +m

eq
11) + ∂y1(meq

2 +m
eq
12 +m

eq
14) + ∂z1(meq

3 +m
eq
13+m

eq
15) = −sbm(1)7 /∆t + F̃

(1)
7 ,

∂t1m
eq
8 + ∂x1(meq

1 −m
eq
10) + ∂y1(−meq

2 +m
eq
12) + ∂z1(meq

13 −m
eq
15) = −sνm(1)8 /∆t + F̃

(1)
8 ,

∂t1m
eq
9 + ∂x1(meq

1 −m
eq
11) + ∂y1(meq

12 −m
eq
14) + ∂z1(−meq

3 +m
eq
13) = −sνm(1)9 /∆t + F̃

(1)
9 .

(A8)
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Here, the following relations can be obtained according to Eq. (A6):

∂t1(ρuαuβ) = uα∂t1(ρuβ) + uβ∂t1(ρuα) − uαuβ∂t1(ρ)
≈ −uα∂β1(ρc2s ) − uβ∂a1(ρc2s ) + uαF

(1)
β + uβF

(1)
α . (A9)

Substituting the above relations into Eq. (A8), the first-order non-
equilibrium moments in Eq. (A7b) can be written explicitly

m
(1)
4 = −

∆t
sν
ρc2s (∂x1uy + ∂y1ux), m(1)5 = −

∆t
sν
ρc2s (∂x1uz + ∂z1ux),

m
(1)
7 = −

2∆t
sb
ρc2s (∂x1ux + ∂y1uy + ∂z1uz),

m
(1)
8 = −

2∆t
sν
ρc2s (∂x1ux − ∂y1uy),m(1)9 = −

2∆t
sν
ρc2s (∂x1ux − ∂z1uz).

(A10)

Thus, Eq. (A7b) can be rewritten as

∂t2(ρux) = ∂x1[ρνb(∇1 ⋅ u) + 2

3
ρν(2∂x1ux − ∂y1uy − ∂z1uz)]

+∂y1[ρν(∂y1ux + ∂x1uy)] + ∂z1[ρν(∂z1ux + ∂x1uz)],
(A11)

where the kinematic viscosity and bulk viscosity are given by

ν = c2s ( 1
sν
−
1

2
)∆t, νb = 2

3
c
2
s ( 1
sb
−
1

2
)∆t. (A12)

Similarly, the momentum equations in y and z directions at O(ε2)
level are given as

∂t2(ρuy) = ∂x1[ρν(∂y1ux + ∂x1uy)] + ∂y1[ρνb(∇1 ⋅ u)
+
2

3
ρν(2∂y1uy −∂x1ux −∂z1uz)]+∂z1[ρν(∂z1uy +∂y1uz)]

∂t2(ρuz) = ∂x1[ρν(∂z1ux + ∂x1uz)] + ∂y1[ρν(∂z1uy + ∂y1uz)]
+ ∂z1[ρνb(∇1 ⋅ u) + 2

3
ρν(2∂z1uz − ∂x1ux − ∂y1uy)].

(A13)

Combining theO(ε) level andO(ε2) level equations using the expan-
sion relations in Eq. (A3), we can obtain

∂tρ+∇ ⋅ (ρu) = 0,
∂t(ρu) +∇ ⋅ (ρuu) = −∇(ρc2s ) +∇ ⋅ [ρν(∇u + (∇u)T)

−
2

3
ρν(∇ ⋅ u)I] +∇[ρνb(∇ ⋅ u)] + F.

(A14)

From the above Chapman-Enskog analysis, we can see that the
Navier-Stokes equations can be correctly recovered from the present
non-orthogonal MRT-LB model in the low Mach number limit.

APPENDIX B: PSEUDOPOTENTIAL MULTIPHASE
MODEL WITH HIGH DENSITY RATIO AND TUNABLE
SURFACE TENSION

When the square-root-form pseudopotential is used, the
mechanical stability condition cannot be accurately satisfied in the
pseudopotential model. To solve this problem, Li et al. proposed a
modified forcing scheme to adjust the mechanical stability condi-
tion.6,48 In addition, the original Shan-Chen pseudopotential model
also suffers from the problem that the surface tension cannot be

tuned independently of the density ratio. Li et al. developed another
method to tune the surface tension in the 2D MRT LBM by incor-
porating a source term into the LB equation.49 Due to the sim-
plicity and efficiency, the abovementioned methods6,48,49 have been
adopted by different researchers.50,51,72 Inspired by Li et al.,6,48,49

to achieve large density ratio and tunable surface tension in the
present non-orthogonal MRT-LBM, several elements in F̃ can be
modified as

F̃
′

4 = F̃4 −
Qxy(s−1ν − 0.5)∆t , F̃

′

5 = F̃5 −
Qxz(s−1ν − 0.5)∆t ,

F̃
′

6 = F̃6 −
Qyz(s−1ν − 0.5)∆t ,

F̃
′

7 = F̃7 +
6σ ∣Fint∣2

ψ2(s−1e − 0.5)∆t +
4(Qxx +Qyy +Qzz)
5(s−1e − 0.5)∆t ,

F̃
′

8 = F̃8 −
(Qxx −Qyy)(s−1ν − 0.5)∆t , F̃

′

9 = F̃9 −
(Qxx −Qzz)(s−1ν − 0.5)∆t ,

(B1)

where the parameter σ , usually within 0.0625 ≤ σ ≤ 0.125, is
employed to adjust the mechanical stability condition and its exact
value can be determined by fitting the liquid-gas coexistence densi-
ties. The variable Qαβ is obtained via49

Qαβ = κ
G

2
ψ(x)∑

i

w(∣ei∣2)[ψ(x + ei∆t) − ψ(x)]eiαeiβ , (B2)

where the parameter κ is used to tune the surface tension. Con-
sistent with Eq. (16), only the nearest or single-range neighbor-
ing nodes are needed in the calculation of Qαβ ; thus, no addi-
tional computational complexity is introduced even at the boundary
nodes.

In the Chapman analysis, the above modifications do not
affect the equations at O(ε) level. For the equations at O(ε2) level,
it can be seen that Eq. (A10) is changed due to the modifica-
tions of in the forcing terms. As a result, Eq. (A11) is changed
correspondingly

∂t2(ρux) = ∂x1
⎡⎢⎢⎢⎢⎢⎣
ρνb(∇1 ⋅ u) + 2

3
ρν(2∂x1ux − ∂y1uy − ∂z1uz)

−

2σ ∣F(1)int ∣2
ψ2

+ (2
5
Qxx1 −

3

5
Qyy1 −

3

5
Qzz1)

⎤⎥⎥⎥⎥⎥⎦
+∂y1[ρν(∂y1ux + ∂x1uy) +Qxy1]
+∂z1[ρν(∂z1ux + ∂x1uz) +Qxz1]. (B3)

The Taylor expansions of the interaction force Fint and the term Q

yield6,49,50

Fint = −Gc
2[ψ∇ψ +

1

6
c
2ψ∇(∇2ψ) + . . .],

Q =
1

12
κGc4[ψ∇2ψI + 2ψ∇∇ψ + . . .]. (B4)

Substituting Eq. (B4) into Eq. (B3) and combining the correspond-
ingly modified equations in y and z directions, the macroscopic
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momentum equation in Eq. (B3) is rewritten as

∂t(ρu)+∇⋅ (ρuu) = −∇(ρc2s )+∇⋅ [ρν(∇u+ (∇u)T)− 2

3
ρν(∇ ⋅ u)I]

+∇[ρνb(∇ ⋅ u)] + F − 2G2
c
4σ∇ ⋅ (∣∇ψ∣2I)

−∇ ⋅ [κGc4
6
(ψ∇2ψI − ψ∇∇ψ)]. (B5)

Following the standard approach by Shan,73 it can be shown that the
surface tension coefficient finally reads49,50

γ = ∫
∞

−∞

(p0 − pT)dx = −Gc4(1 − κ)
6 ∫

ρl

ρg
ψ′2( dρ

dx
)dρ, (B6)

where the integral extends across a planar interface normal to the
x direction, p0 is the normal pressure tensor, pT is the transversal
pressure tensor, and ψ′ = dψ/dρ. From the above, it is shown that
the surface tension γ is proportional to (1 − κ) and can be tuned
independently of the density ratio.

APPENDIX C: D3Q19 NON-ORTHOGONAL MRT-LBM

For the D3Q19 lattice, the discrete velocities ej = [∣ejx⟩, ∣ejy⟩,∣ejz⟩] (j = 0, 1, . . ., 18) are the first 19 elements in the D3Q27 lattice

∣ejx⟩ = [0, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1, 0, 0, 0, 0]T,∣ejx⟩ = [0, 0, 0, 1,−1, 0, 0, 1, 1,−1,−1, 0, 0, 0, 0, 1,−1, 1,−1]T,∣ejz⟩ = [0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 1, 1,−1,−1, 1, 1,−1,−1]T. (C1)

The raw moment setm = [m0,m1, . . . ,m18]T can be extracted from
Eq. (11)

m = [k000, k100, k010, k001, k110, k101, k011, k200 + k020 + k002, k200 − k020,
k200 − k002, k120, k102, k210, k201, k012, k021, k220, k202, k022]T,

(C2)
so do the relaxation matrix

S = diag(s0, s1, s1, s1, sν , sν , sν , sb, sν , sν , s3, s3, s3, s3, s3, s3, s4, s4, s4).
(C3)

The transformation matrix here is a 19 × 19 matrix and is extracted
directly from the corresponding rows and columns in Eq. (13)

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1

0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1

0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

0 1 1 −1 −1 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1

0 1 1 0 0 −1 −1 1 1 1 1 0 0 0 0 −1 −1 −1 −1

0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1

0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (C4)

Its inverseM−1 can be easily obtained by using software such as MATLAB. It is also shown thatM−1 for the D3Q19 model can be extracted
from the corresponding rows and columns for the D3Q27 counterpart (see the supplementary material). In the same way, equilibrium raw
moments and the forcing terms are given, respectively,

m
eq
= [ρ, ρux, ρuy, ρuz , ρuxuy, ρuxuz , ρuyuz , ρ(1 + u

2), ρ(u2x − u2y), ρ(u2x − u2z), ρc2sux, ρc2sux,
ρc2suy, ρc

2
suz , ρc

2
suy, ρc

2
suz , ρc

2
s (c2s + u2x + u2y), ρc2s (c2s + u2x + u2z), ρc2s (c2s + u2y + u2z)]T, (C5)

F̃ = [0,Fx,Fy,Fz ,Fxuy + Fyux,Fxuz + Fzux,Fyuz + Fzuy, 2F ⋅ u, 2(Fxux − Fyuy), 2(Fxux − Fzuz),
Fxc

2
s ,Fxc

2
s ,Fyc

2
s ,Fzc

2
s ,Fyc

2
s ,Fzc

2
s , 2c

2
s (Fxux + Fyuy), 2c2s (Fxux + Fzuz), 2c2s (Fyuy + Fzuz)]T. (C6)
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Through the Chapman-Enskog analysis, it can be seen that
the Navier-Stokes equations can be correctly recovered from the
D3Q19 non-orthogonal MRT-LB model in the low Mach number
limit. When coupled with the pseudopotential multiphase model,
the modification method in Eq. (B1) is also applicable. It can be fur-
ther shown that the D2Q9 non-orthogonal MRT-LBM in Ref. 41
can be extracted from the present D3Q27 model easily. From the
above, we can see that the non-orthogonal MRT-LBM has very good
portability across lattices (a model in a sub-lattice can be extracted
from the model in the full-lattice directly), while the conventional
orthogonal MRT-LBM does not have this feature, to the best of our
knowledge.
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