Modeling regular polysemy: A study in the semantic classification of Catalan adjectives

Gemma Boleda

Universitat Pompeu Fabra

September 6, 2011

Outline

Introduction

- 2 Semantic classes and polysemy
- 3 Experiment 1: independent classes
- Experiment 2: multi-label classification
- 5 Discussion
- 6 Research agenda

Outline

Introduction

- 2 Semantic classes and polysemy
- 3 Experiment 1: independent classes
- Experiment 2: multi-label classification
- 5 Discussion
- 6 Research agenda

Automatic acquisition of semantic classes for adjectives [Boleda et al., 2007, Boleda et al., prep]

Given: classification, set of adjectives, corpus Task: infer the class for each adjective in the set

Automatic acquisition of semantic classes for adjectives [Boleda et al., 2007, Boleda et al., prep]

Given: classification, set of adjectives, corpus Task: infer the class for each adjective in the set

Challenges

Given: classification, set of adjectives, corpus Task: infer the class for each adjective in the set

no established semantic classification or dataset

- we have to build these as we go along
 - ightarrow exploratory nature of the experiments
- two classifications tested
 - experiments 1 and 2

Challenges

Given: classification, set of adjectives, corpus Task: infer the class for each adjective in the set

- no established semantic classification or dataset
- we have to build these as we go along
 - \rightarrow exploratory nature of the experiments
- two classifications tested
 - experiments 1 and 2

Challenges

Given: classification, set of adjectives, corpus Task: infer the class for each adjective in the set

- some adjectives are polysemous → have more than one sense → belong to more than one class
- we provide two alternative models
 - experiments 1 and 2

Challenges

- some adjectives are polysemous → have more than one sense → belong to more than one class
- we provide two alternative models
 - experiments 1 and 2

Challenges

- some adjectives are polysemous → have more than one sense → belong to more than one class
- we provide two alternative models
 - experiments 1 and 2

Semantic classes and polysemy Experiment 1: independent classes Experiment 2: multi-label classification Discussion Research agenda

Hypotheses and contribution

Lexical Acquisition

- there is a stable relationship between semantic properties and other linguistic properties
 - Distributional Hypothesis [Harris, 1968]
- Inguistic properties can be modeled using observable cues in corpora
- Solution observable cues can be used to induce semantic properties

Semantic classes and polysemy Experiment 1: independent classes Experiment 2: multi-label classification Discussion Research agenda

Hypotheses and contribution

This study

- it is possible to use observable cues to
 - induce semantic classes for adjectives
 - identify polysemous adjectives
- computational methodology can give feedback to theoretical questions

Semantic classes and polysemy Experiment 1: independent classes Experiment 2: multi-label classification Discussion Research agenda

Hypotheses and contribution

This study

it is possible to use observable cues to

- induce semantic classes for adjectives
 - most work on lexical acquisition on verbs (vs. adjectives)
 - and English (vs. Catalan)
- identify polysemous adjectives
- computational methodology can give feedback to theoretical questions

Semantic classes and polysemy Experiment 1: independent classes Experiment 2: multi-label classification Discussion Research agenda

Hypotheses and contribution

This study

it is possible to use observable cues to

- induce semantic classes for adjectives
- identify polysemous adjectives
 - polysemy largely ignored in related work on lexical acquisition
 - regular polysemy: studied on a theoretical level, not in empirical approaches to computational semantics
- computational methodology can give feedback to theoretical questions

Semantic classes and polysemy Experiment 1: independent classes Experiment 2: multi-label classification Discussion Research agenda

Hypotheses and contribution

This study

- it is possible to use observable cues to
 - induce semantic classes for adjectives
 - identify polysemous adjectives
- computational methodology can give feedback to theoretical questions

Semantic classes and polysemy Experiment 1: independent classes Experiment 2: multi-label classification Discussion Research agenda

Hypotheses and contribution

This study

- it is possible to use observable cues to
 - induce semantic classes for adjectives
 - identify polysemous adjectives
- computational methodology can give feedback to theoretical questions

- 2 Semantic classes and polysemy
 - 3 Experiment 1: independent classes
- Experiment 2: multi-label classification
- 5 Discussion
- 6 Research agenda

Semantic classification

 insights from descriptive grammar and formal semantics Qualitative adjectives denote attributes or properties of objects. Examples: ample, autònom 'wide', 'autonomous'

- semantic classes
- correlate with other linguistic properties

Semantic classification

 insights from descriptive grammar and formal semantics Qualitative adjectives denote attributes or properties of objects. Examples: ample, autònom 'wide', 'autonomous' Intensional adjectives denote second order properties. Examples: presumpte, antic 'alleged', 'former'

- semantic classes
- correlate with other linguistic properties

Semantic classification

 insights from descriptive grammar and formal semantics Qualitative adjectives denote attributes or properties of objects. Examples: ample, autònom 'wide', 'autonomous' Intensional adjectives denote second order properties. Examples: presumpte, antic 'alleged', 'former' Relational adjectives denote a relationship to an object. pulmonar, botànic Examples: 'pulmonary', 'botanical'

semantic classes

correlate with other linguistic properties

Semantic classification

 insights from descriptive grammar and formal semantics Qualitative adjectives denote attributes or properties of objects. Examples: ample, autònom 'wide', 'autonomous' Intensional adjectives denote second order properties. Examples: presumpte, antic 'alleged', 'former' Relational adjectives denote a relationship to an object. Examples: pulmonar, botànic 'pulmonary', 'botanical'

- semantic classes
- correlate with other linguistic properties

Example property: predicativity

qualitative (1) intensional (2) predicative non-predicative

(1) el carrer és ample the street is wide

- (2) #l' assassí és presumpte the murderer is alleged
- (3) ?la malaltia és pulmonar the disease is pulmonary

relational (3) marginally predicative

Polysemy

- Polysemy cutting across two classes: relational (4a) and qualitative (4b):
- (4) a. la recuperació econòmica the recovery economic
 'the economic recovery'
 - b. els pantalons econòmics the trousers economic 'the cheap trousers'

- 5) a. ?la recuperació és econòmica the recovery is economic 'the recovery is economic'
 - b. els pantalons són econòmics the trousers are economic
 'the trousers are cheap'

in each sense, the adjective's behaviour corresponds to that of the relevant class

Polysemy

- Polysemy cutting across two classes: relational (4a) and qualitative (4b):
- (4) a. la recuperació econòmica the recovery economic
 'the economic recovery'
 - b. els pantalons econòmics the trousers economic 'the cheap trousers'

- 5) a. ?la recuperació és econòmica the recovery is economic 'the recovery is economic'
 - b. els pantalons són econòmics the trousers are economic

the trousers are cheap'

in each sense, the adjective's behaviour corresponds to that of the relevant class

Polysemy

- Polysemy cutting across two classes: relational (4a) and qualitative (4b):
- (4) a. la recuperació econòmica the recovery economic
 'the economic recovery'
 - b. els pantalons econòmics the trousers economic 'the cheap trousers'

- (5) a. ?la recuperació és econòmica the recovery is economic
 'the recovery is economic'
 - b. els pantalons són econòmics the trousers are economic

'the trousers are cheap'

in each sense, the adjective's behaviour corresponds to that of the relevant class

Regular polysemy [Apresjan, 1974, Copestake and Briscoe, 1995]

- same type of polysemy for a range of adjectives
 - (6) a. reunió familiar / cara familiar meeting familiar / face familiar 'family meeting / familiar face'
 - b. problema amorós / noi amorós problem love_{SUFFIX} / boy love_{SUFFIX} 'love problem / lovely boy'

in general:

relation to $\textbf{object} \rightarrow \textbf{salient}$ property of the object

• we only consider class-related polysemy

Regular polysemy [Apresjan, 1974, Copestake and Briscoe, 1995]

- same type of polysemy for a range of adjectives
 - (6) a. reunió familiar / cara familiar meeting familiar / face familiar 'family meeting / familiar face'
 - b. problema amorós / noi amorós problem love_{SUFFIX} / boy love_{SUFFIX} 'love problem / lovely boy'

in general:

relation to $\textbf{object} \rightarrow \textbf{salient property of the object}$

we only consider class-related polysemy

Outline

- 2 Semantic classes and polysemy
- 3 Experiment 1: independent classes
- Experiment 2: multi-label classification
- 5 Discussion
- 6 Research agenda

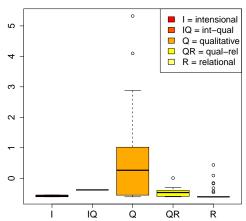
Experiment 1: Motivation

- classification based on linguistic literature
- does it account for the semantics of a broad range of adjectives?
- polysemous adjectives should exhibit a different profile than monosemous adjectives
- is this behaviour distinct enough to identify polysemous classes?

Experiment 1: Motivation

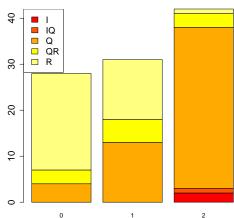
- classification based on linguistic literature
- does it account for the semantics of a broad range of adjectives?
- polysemous adjectives should exhibit a different profile than monosemous adjectives
- is this behaviour distinct enough to identify polysemous classes?

Material and method (I)


• CTILC corpus (Institut d'Estudis Catalans):

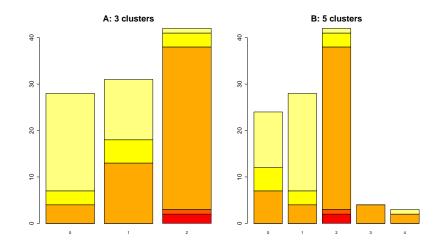
- 14.5 million words, written, formal texts
- manually lemmatised and POS-tagged
- automatically shallow-parsed (noise)
- adjective database [Sanromà and Boleda, 2010]:
 - almost 2,300 lemmata from CTILC corpus
 - morphological information manually coded

Material and method (II)

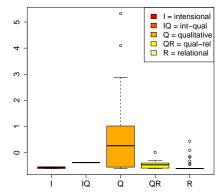

- Gold Standard: 101 lemmata, random choice except for intensional class
 - 4 judges, κ 0.54-0.64
 - for each adjective, choose semantic class
 - target classes:
 - basic classes: qualitative (Q), relational (R)
 - polysemous "class": qualitative-relational (QR)
- technique: clustering, k-means
 - 3,521 objects (freq > 10)
- features:
 - theoretically motivated: predicativity, ... (6)
 - POS: POS unigrams; 2 words left and right of target (36)

Feature example: value distribution across classes

Predicativity

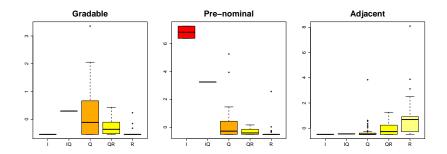

Results

Theoretical features, 3 clusters



Results

Discussion: polysemy


approach to polysemy is clearly wrong

Predicativity

Discussion: polysemy

approach to polysemy is clearly wrong

Discussion: polysemy

- polysemous adjectives do not have a homogeneous, differentiated profile
- most adjectives are used predominantly in one of their senses, corresponding to one of the classes
 - irònic ('ironic'): qualitative-relational.
 - mainly used as qualitative in the corpus
 - systematically assigned to the qualitative cluster
 - militar ('military'): qualitative-relational.
 - mainly used as relational in the corpus
 - systematically assigned to the relational cluster

Discussion: classification

- "mixed" cluster: group of problematic adjectives identified in error analysis:
 - indicador, parlant, protector, salvador, ... 'indicating', 'speaking', 'protecting', 'saviour', ...
- these adjectives do not fit into the classification
- \rightarrow create new class

Outline

- Semantic classes and polysemy
- 3 Experiment 1: independent classes
- Experiment 2: multi-label classification
- 5 Discussion
- 6 Research agenda

Modified classification

Qualitative adjectives Relational adjectives

Event-related adjectives denote a relationship to an event. Examples: protector, variable 'protecting', 'variable'

- relationship with morphology qualitative event relational non-derived deverbal denominal
- supported by Ontological Semantics [Raskin and Nirenburg, 1998]

Modified classification

- Qualitative adjectives Relational adjectives Event-related adjectives denote a relationship to an event. Examples: protector, variable 'protecting', 'variable'
 - relationship with morphology qualitative event relational non-derived deverbal denominal
 - supported by Ontological Semantics [Raskin and Nirenburg, 1998]

Modified classification

Qualitative adjectives

Relational adjectives

Event-related adjectives denote a relationship to an event. Examples: protector, variable 'protecting', 'variable'

- relationship with morphology qualitative event relational non-derived deverbal denominal
- supported by Ontological Semantics [Raskin and Nirenburg, 1998]

Experiment 2: Motivation

Experiment 1 shows that

- polysemous adjectives *do* exhibit a different profile from monosemous adjectives
- ... but it is *not* distinct enough to identify polysemous classes
- polysemy = membership in more than one class
- \rightarrow multi-label classification
 - a lemma can belong to more than one target class
 - look for properties of each of the classes

Material: Gold Standard

- same corpus and database as in Experiment 1
- Gold Standard: 210 lemmata
- stratified sampling approach
 - frequency, morphology
- large-scale manual annotation experiment
 - task: choose one or more pseudo-dictionary definitions
 - administered via Web
 - 322 naive subjects
 - does not yield reliable classification (κ 0.31-0.45)
- Gold Standard classification: committee of 3 experts
 - agreement subjects-experts: p_o 0.68, κ 0.55

Method

- classifiers: Decision Trees (flat), ensemble classifiers
- features:

Туре	Explanation	# F.
morph	morphological properties	2
	ex.: <i>suffix</i>	
func	syntactic function	4
	ex.: predicate in copular sentence	
uni	uni-gram distribution	24
	ex.: -1noun	
bi	bi-gram distribution	50
	ex.: -1noun+1adj	
theor	distributional cues of theoretical properties	18
	ex.: gradable	

Table: Experiment 2: features.

Procedure

Standard procedure for multi-label classification

- 1. binary decision
- 2. merge classifications
- econòmic:

qualitativerelationaleventmergedyesyesnoqualitative-relational (QR)

 rationale: if an adjective is polysemous, it will exhibit properties of each class it belongs to

Evaluation

- 10 run, 10-fold cross-validation
- baseline: most frequent class

Procedure

Standard procedure for multi-label classification

- 1. binary decision
- 2. merge classifications
- econòmic:

qualitativerelationaleventmergedyesyesnoqualitative-relational (QR)

 rationale: if an adjective is polysemous, it will exhibit properties of each class it belongs to

Evaluation

- 10 run, 10-fold cross-validation
- baseline: most frequent class

Procedure

Standard procedure for multi-label classification

- 1. binary decision
- 2. merge classifications
- econòmic:

qualitativerelationaleventmergedyesyesnoqualitative-relational (QR)

 rationale: if an adjective is polysemous, it will exhibit properties of each class it belongs to

Evaluation

- 10 run, 10-fold cross-validation
- baseline: most frequent class

Results

Classifier	Accuracy
baseline	51.0±0.0
best flat	62.5±2.5
Att. Bagg. _{FS,bin} ,i=100	69.1 ±1.0
Human agreement	68

Table: Experiment 2: summary of results.

Error analysis

		Best classifier												
			Q		Е		R	(QR	(ЗE	ER	7	otal
	Q		90		4		2		3		8	0		107
	Е		10	1	7		0		1		6	3		37
Experts	R		4		0	2	20		4		0	2		30
•	QR		5		0		4		13		0	1		23
	QE		1	-	1		0		0		5	0		7
	ER		0		0		2		1		0	3		6
	Total	1	10	2	2	2	28		22		19	9		210

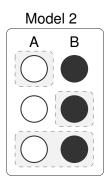
overgenerated polysemous adjectives: 26

• undergenerated polysemous adjectives: 13

Outline

Introduction

- 2 Semantic classes and polysemy
- 3 Experiment 1: independent classes
- Experiment 2: multi-label classification
- 5 Discussion
- 6 Research agenda


Discussion: Two models for regular polysemy

Monosemous_A

Monosemous_B

Polysemous_{AB}

Conclusion

This study

- it is possible to use observable cues to
 - induce semantic classes for adjectives
 - identify polysemous adjectives
- computational methodology can give feedback to theoretical questions

Conclusion

This study

it is possible to use observable cues to

- induce semantic classes for adjectives
 - relationship between observable cues and semantic properties
 - explored morphology-semantics and syntax-semantics interfaces
 - roadblock: human agreement \rightarrow need to improve theory
- identify polysemous adjectives
- computational methodology can give feedback to theoretical questions

Conclusion

This study

it is possible to use observable cues to

- induce semantic classes for adjectives
- identify polysemous adjectives
 - polysemous adjectives exhibit "hybrid" behaviour
 - tested two models of regular polysemy
 - need to model *both* similarities and differences with respect to basic classes
- computational methodology can give feedback to theoretical questions

Conclusion

This study

it is possible to use observable cues to

- induce semantic classes for adjectives
- identify polysemous adjectives
- computational methodology can give feedback to theoretical questions
 - random sampling: emergence of "nonprototypically nonprototypical" adjectives
 - Gold Standards: medium-sized datasets
 - feature representation: empirical properties
 - Machine Learning: evaluation of different models

Conclusion

This study

- it is possible to use observable cues to
 - induce semantic classes for adjectives
 - identify polysemous adjectives
- computational methodology can give feedback to theoretical questions

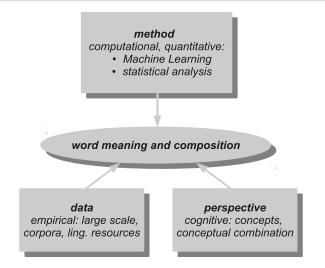
Outline

- Semantic classes and polysemy
- 3 Experiment 1: independent classes
- Experiment 2: multi-label classification
- 5 Discussion

Overall research question

How do languages encode meaning?

Overall research question

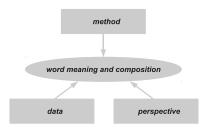

How do words and word combinations encode meaning?

Overall research question

How do words and word combinations encode meaning? \rightarrow empirical computational lexical semantics

Research agenda

Approach: computational lexical semantics



Current research

Goal

computationally model the interpretation processes that take place in semantic composition

\rightarrow distributional/vector-space models

Question 1

- While words may have different meanings, when used in a given context not all of them are relevant.
- Question 1: How does combining two words affect the interpretation of each word?
 - colour adjectives: red dress vs. red wine.
 - $\rightarrow\,$ the modifier is altered depending on the head noun.

• can distributional models account for the different meanings of the modifiers depending on the head noun?

Question 1

- While words may have different meanings, when used in a given context not all of them are relevant.
- Question 1: How does combining two words affect the interpretation of each word?
 - colour adjectives: red dress vs. red wine.
 - $\rightarrow\,$ the modifier is altered depending on the head noun.

 can distributional models account for the different meanings of the modifiers depending on the head noun?

Question 2

- Often, the interpretation of a complex expression is richer than what can be inferred from the meaning of its parts alone.
- Question 2: How does combining two words yield the interpretation of a complex expression?
 - noun-noun compounds: dog magazine [Murphy, 2002]
 - → magazine ABOUT dogs and more!
 - can distributional models account for the relation between a head and its modifier?

Question 2

- Often, the interpretation of a complex expression is richer than what can be inferred from the meaning of its parts alone.
- Question 2: How does combining two words yield the interpretation of a complex expression?
 - noun-noun compounds: dog magazine [Murphy, 2002]
 - → magazine ABOUT dogs and more!
 - can distributional models account for the relation between a head and its modifier?

Modeling regular polysemy: A study in the semantic classification of Catalan adjectives

Gemma Boleda

Universitat Pompeu Fabra

September 6, 2011

Apresjan, I. D. (1974). Regular polysemy. *Linguistics*, 142:5–32.

Boleda, G., Schulte im Walde, S., and Badia, T. (2007).

Modelling adjective polysemy as multi-label classification.

In Proceedings of the Joint Meeting of the Conference on Empirical Methods in Natural Language Processing and the Conference on Computational Natural Language Learning (EMNLP-CoNLL 2007).

Boleda, G., Schulte im Walde, S., and Badia, T. (prep.).

Modeling regular polysemy: A study in the semantic classification of catalan adjectives.

Copestake, A. and Briscoe, T. (1995).

Semi-productive polysemy and sense extension. *Journal of Semantics*, 12:15–67.

Harris, Z. (1968).

Mathematical Structures of Language. John Wiley & Sons, New York.

Murphy, G. L. (2002).

The Big Book of Concepts. MIT Press, Cambridge, MA.

Raskin, V. and Nirenburg, S. (1998).

An applied ontological semantic microtheory of adjective meaning for natural language processing. Machine Translation, 13(2-3):135–227.

The database of catalan adjectives.

In Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC10),, Valletta, Malta. European Language Resources Association (ELRA).

Material for Experiment 2: Gold Standard

class	#adjs.	Examples
qualitative	107	ample 'wide'
event	37	revelador 'revealing'
relational	30	pulmonar, 'pulmonary'
qual-ev	7	cridaner 'vociferous/loud-coloured'
qual-rel	23	amorós 'affectionate/related to love'
ev-rel	6	docent 'teaching/related to teachers
		or the teaching task'

Results for Experiment 2: linguistically principled EC

	A: Pe	er-class accu	B: Overall accuracy			
	Qualit.	Event	Full	Partial		
best flat (all)	75.5 ±9.0	86.5 ±6.4	$86.0{\pm}6.5$	$62.5{\pm}2.5$	87.6 ±2.5	
3 best feat. sets	72.9±1.4	88.2 ±1.3	$85.4{\pm}0.6$	61.8±1.7	86.7±0.8	
4 best feat. sets	74.6±2.0	86.5 ±1.5	88.1±1.2	63.0±2.4	87.4±1.8	
5 best feat. sets	75.2±2.7	86.4±1.4	90.8 ±1.2	64.8 *±2.6	89.5 *±1.5	
7 best feat. sets	75.3±2.3	82.7±1.8	90.8 ±1.1	64.0 ±1.5	85.9±1.3	
all 9 feat. sets	75.4 ±1.7	80.9±2.1	90.1±1.2	62.4±2.2	84.4±1.3	

Results for Experiment 2: other ensemble classifiers

	A: Pe	er-class accu	B: Overall accuracy			
	Qualit.	Event	Relat.	Full	Partial	
best flat (all)	75.5±9.0	86.5 ±6.4	$86.0{\pm}6.5$	62.5±2.5	87.6±2.5	
best ling. EC (*)	75.2±2.7	86.4 ±1.4	90.8 ±1.2	64.8*±2.6	89.5 *±1.5	
adaboost	82.0 *±8.6	85.6±7.1	88.0±6.7	66.0*±1.9	89.9 *±1.3	
A. B. _{FS.bin} ,i=3	76.0±9.4	84.0±7.0	88.3±7.2	64.0±2.5	86.7±2.0	
A. B. _{FS,bin} ,i=4	75.9±9.2	84.7±7.3	89.1±6.9	64.5±1.5	86.6±1.1	
A. B. _{FS,bin} ,i=5	77.0±8.7	85.8±7.1	$89.0{\pm}6.5$	66.3*±1.1	87.0±1.5	
A. B. _{FS.bin} ,i=100	81.0 ±8.8	86.1±6.9	90.1 *±5.3	69.1 ***±1.0	89.0±1.0	
Human agreement	-	-	-	68	85	

Variation in object-object modification

- (7) a. world war
 - b. John's book
 - c. agreement by France
 - d. psychological evidence