
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Modeling Relational Data with Graph Convolutional Networks

Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; van den Berg, R.; Titov, I.; Welling, M.
DOI
10.1007/978-3-319-93417-4_38
Publication date
2018
Document Version
Submitted manuscript
Published in
The Semantic Web

Link to publication

Citation for published version (APA):
Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., & Welling, M. (2018).
Modeling Relational Data with Graph Convolutional Networks. In A. Gangemi, R. Navigli, M-E.
Vidal, P. Hitzler, R. Troncy, L. Hollink, A. Tordai, & M. Alam (Eds.), The Semantic Web: 15th
International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018 :
proceedings (pp. 593-607). (Lecture Notes in Computer Science; Vol. 10843). Springer.
https://doi.org/10.1007/978-3-319-93417-4_38

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Aug 2022

https://doi.org/10.1007/978-3-319-93417-4_38
https://dare.uva.nl/personal/pure/en/publications/modeling-relational-data-with-graph-convolutional-networks(e284086c-e005-4553-8d17-5b72cb273c51).html
https://doi.org/10.1007/978-3-319-93417-4_38

Modeling Relational Data with Graph Convolutional Networks
Michael Schlichtkrull∗

University of Amsterdam
m.s.schlichtkrull@uva.nl

Thomas N. Kipf∗
University of Amsterdam
t.n.kipf@uva.nl

Peter Bloem
VU Amsterdam

p.bloem@vu.nl

Rianne van den Berg
University of Amsterdam

r.vandenberg@uva.nl

Ivan Titov
University of Amsterdam

titov@uva.nl

Max Welling
University of Amsterdam, CIFAR†

m.welling@uva.nl

Abstract

Knowledge graphs enable a wide variety of applications, in-
cluding question answering and information retrieval. De-
spite the great effort invested in their creation and mainte-
nance, even the largest (e.g., Yago, DBPedia or Wikidata)
remain incomplete. We introduce Relational Graph Convo-
lutional Networks (R-GCNs) and apply them to two standard
knowledge base completion tasks: Link prediction (recovery
of missing facts, i.e. subject-predicate-object triples) and en-
tity classification (recovery of missing entity attributes). R-
GCNs are related to a recent class of neural networks operat-
ing on graphs, and are developed specifically to deal with the
highly multi-relational data characteristic of realistic knowl-
edge bases. We demonstrate the effectiveness of R-GCNs as
a stand-alone model for entity classification. We further show
that factorization models for link prediction such as DistMult
can be significantly improved by enriching them with an en-
coder model to accumulate evidence over multiple inference
steps in the relational graph, demonstrating a large improve-
ment of 29.8% on FB15k-237 over a decoder-only baseline.

1 Introduction
Knowledge bases organize and store factual knowledge, en-
abling a multitude of applications including question an-
swering (Yao and Van Durme 2014; Bao et al. 2014; Seyler,
Yahya, and Berberich 2015; Hixon, Clark, and Hajishirzi
2015; Bordes et al. 2015; Dong et al. 2015) and informa-
tion retrieval (Kotov and Zhai 2012; Dalton, Dietz, and Al-
lan 2014; Xiong and Callan 2015b; 2015a). Even the largest
knowledge bases (e.g. DBPedia, Wikidata or Yago), despite
enormous effort invested in their maintenance, are incom-
plete, and the lack of coverage harms downstream applica-
tions. Predicting missing information in knowledge bases is
the main focus of statistical relational learning (SRL).

Following previous work on SRL, we assume that knowl-
edge bases store collections of triples of the form (subject,
predicate, object). Consider, for example, the triple (Mikhail
Baryshnikov, educated at, Vaganova Academy), where we
will refer to Baryshnikov and Vaganova Academy as enti-
ties and to educated at as a relation. Additionally, we as-
sume that entities are labeled with types (e.g., Vaganova

∗Equal contribution.
†Canadian Institute for Advanced Research

Mikhail Baryshnikov Vaganova Academy

U.S.A.

Vilcek prize

awarded

educated_at
citizen_of

:country

:university

:award
:ballet_dancer

Figure 1: A knowledge base fragment: The nodes are en-
tities, the edges are relations labeled with their types, the
nodes are labeled with entity types (e.g., university). The
edge and the node label shown in red are the missing in-
formation to be inferred.

Academy is marked as a university). It is convenient to rep-
resent knowledge bases as directed labeled multigraphs with
entities corresponding to nodes and triples encoded by la-
beled edges (see Figure 1).

We consider two fundamental SRL tasks: link predic-
tion (recovery of missing triples) and entity classification
(assigning types or categorical properties to entities). In
both cases, many missing pieces of information can be ex-
pected to reside within the graph encoded through the neigh-
borhood structure – i.e. knowing that Mikhail Baryshnikov
was educated at the Vaganova Academy implies both that
Mikhail Baryshnikov should have the label person, and that
the triple (Mikhail Baryshnikov, lived in, Russia) must be-
long to the knowledge graph. Following this intuition, we
develop an encoder model for entities in the relational graph
and apply it to both tasks.

Our entity classification model, similarly to Kipf and
Welling (2017), uses softmax classifiers at each node in the
graph. The classifiers take node representations supplied by
a relational graph convolutional network (R-GCN) and pre-
dict the labels. The model, including R-GCN parameters, is
learned by optimizing the cross-entropy loss.

Our link prediction model can be regarded as an autoen-
coder consisting of (1) an encoder: an R-GCN producing
latent feature representations of entities, and (2) a decoder:
a tensor factorization model exploiting these representations

ar
X

iv
:1

70
3.

06
10

3v
4

 [
st

at
.M

L
]

 2
6

O
ct

 2
01

7

to predict labeled edges. Though in principle the decoder can
rely on any type of factorization (or generally any scoring
function), we use one of the simplest and most effective fac-
torization methods: DistMult (Yang et al. 2014). We observe
that our method achieves competitive results on standard
benchmarks, outperforming, among other baselines, direct
optimization of the factorization (i.e. vanilla DistMult). This
improvement is especially large when we consider the more
challenging FB15k-237 dataset (Toutanova and Chen 2015).
This result demonstrates that explicit modeling of neighbor-
hoods in R-GCNs is beneficial for recovering missing facts
in knowledge bases.

Our main contributions are as follows. To the best of our
knowledge, we are the first to show that the GCN frame-
work can be applied to modeling relational data, specifically
to link prediction and entity classification tasks. Secondly,
we introduce techniques for parameter sharing and to en-
force sparsity constraints, and use them to apply R-GCNs
to multigraphs with large numbers of relations. Lastly, we
show that the performance of factorization models, at the
example of DistMult, can be significantly improved by en-
riching them with an encoder model that performs multiple
steps of information propagation in the relational graph.

2 Neural relational modeling
We introduce the following notation: we denote directed and
labeled multi-graphs as G = (V, E ,R) with nodes (entities)
vi ∈ V and labeled edges (relations) (vi, r, vj) ∈ E , where
r ∈ R is a relation type.1

2.1 Relational graph convolutional networks
Our model is primarily motivated as an extension of GCNs
that operate on local graph neighborhoods (Duvenaud et al.
2015; Kipf and Welling 2017) to large-scale relational data.
These and related methods such as graph neural networks
(Scarselli et al. 2009) can be understood as special cases of
a simple differentiable message-passing framework (Gilmer
et al. 2017):

h
(l+1)
i = σ

(∑
m∈Mi

gm(h
(l)
i , h

(l)
j)

)
, (1)

where h(l)i ∈ Rd(l)

is the hidden state of node vi in the
l-th layer of the neural network, with d(l) being the di-
mensionality of this layer’s representations. Incoming mes-
sages of the form gm(·, ·) are accumulated and passed
through an element-wise activation function σ(·), such as
the ReLU(·) = max(0, ·).2 Mi denotes the set of incoming
messages for node vi and is often chosen to be identical to
the set of incoming edges. gm(·, ·) is typically chosen to be
a (message-specific) neural network-like function or simply
a linear transformation gm(hi, hj) = Whj with a weight
matrix W such as in Kipf and Welling (2017).

1R contains relations both in canonical direction (e.g. born in)
and in inverse direction (e.g. born in inv).

2Note that this represents a simplification of the message pass-
ing neural network proposed in (Gilmer et al. 2017) that suffices to
include the aforementioned models as special cases.

This type of transformation has been shown to be very
effective at accumulating and encoding features from lo-
cal, structured neighborhoods, and has led to significant im-
provements in areas such as graph classification (Duvenaud
et al. 2015) and graph-based semi-supervised learning (Kipf
and Welling 2017).

Motivated by these architectures, we define the following
simple propagation model for calculating the forward-pass
update of an entity or node denoted by vi in a relational (di-
rected and labeled) multi-graph:

h
(l+1)
i = σ

∑
r∈R

∑
j∈N r

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i

 , (2)

where N r
i denotes the set of neighbor indices of node i un-

der relation r ∈ R. ci,r is a problem-specific normaliza-
tion constant that can either be learned or chosen in advance
(such as ci,r = |N r

i |).
Intuitively, (2) accumulates transformed feature vectors

of neighboring nodes through a normalized sum. Different
from regular GCNs, we introduce relation-specific transfor-
mations, i.e. depending on the type and direction of an edge.
To ensure that the representation of a node at layer l + 1
can also be informed by the corresponding representation at
layer l, we add a single self-connection of a special relation
type to each node in the data. Note that instead of simple lin-
ear message transformations, one could choose more flexi-
ble functions such as multi-layer neural networks (at the ex-
pense of computational efficiency). We leave this for future
work.

A neural network layer update consists of evaluating (2)
in parallel for every node in the graph. In practice, (2) can be
implemented efficiently using sparse matrix multiplications
to avoid explicit summation over neighborhoods. Multiple
layers can be stacked to allow for dependencies across sev-
eral relational steps. We refer to this graph encoder model
as a relational graph convolutional network (R-GCN). The
computation graph for a single node update in the R-GCN
model is depicted in Figure 2.

2.2 Regularization
A central issue with applying (2) to highly multi-relational
data is the rapid growth in number of parameters with the
number of relations in the graph. In practice this can easily
lead to overfitting on rare relations and to models of very
large size.

To address this issue, we introduce two separate meth-
ods for regularizing the weights of R-GCN-layers: basis-
and block-diagonal-decomposition. With the basis decom-
position, each W (l)

r is defined as follows:

W (l)
r =

B∑
b=1

a
(l)
rb V

(l)
b , (3)

i.e. as a linear combination of basis transformations V (l)
b ∈

Rd(l+1)×d(l)

with coefficients a(l)rb such that only the coeffi-
cients depend on r. In the block-diagonal decomposition, we

rel_1 (in)

rel_1 (out)

rel_N (in)

rel_N (out)

… +

rel_1

rel_N

ReLU

self-loop self-loop

Figure 2: Diagram for computing the update of a single
graph node/entity (red) in the R-GCN model. Activations
(d-dimensional vectors) from neighboring nodes (dark blue)
are gathered and then transformed for each relation type
individually (for both in- and outgoing edges). The result-
ing representation (green) is accumulated in a (normalized)
sum and passed through an activation function (such as the
ReLU). This per-node update can be computed in parallel
with shared parameters across the whole graph.

let each W (l)
r be defined through the direct sum over a set of

low-dimensional matrices:

W (l)
r =

B⊕
b=1

Q
(l)
br . (4)

Thereby, W
(l)
r are block-diagonal matrices:

diag(Q
(l)
1r , . . . , Q

(l)
Br) with Q(l)

br ∈ R(d(l+1)/B)×(d(l)/B).
The basis function decomposition (3) can be seen as a

form of effective weight sharing between different relation
types, while the block decomposition (4) can be seen as a
sparsity constraint on the weight matrices for each relation
type. The block decomposition structure encodes an intu-
ition that latent features can be grouped into sets of variables
which are more tightly coupled within groups than across
groups. Both decompositions reduce the number of parame-
ters needed to learn for highly multi-relational data (such as
realistic knowledge bases). At the same time, we expect that
the basis parameterization can alleviate overfitting on rare
relations, as parameter updates are shared between both rare
and more frequent relations.

The overall R-GCN model then takes the following form:
We stack L layers as defined in (2) – the output of the previ-
ous layer being the input to the next layer. The input to the
first layer can be chosen as a unique one-hot vector for each
node in the graph if no other features are present. For the
block representation, we map this one-hot vector to a dense
representation through a single linear transformation. While

R-G
C

N

Input

N
ode loss

encoder

(a) Entity classification
R-G

C
N

Input

Edge loss

DistM
ult

encoder decoder

(b) Link prediction

Figure 3: (a) Depiction of an R-GCN model for entity clas-
sification with a per-node loss function. (b) Link predic-
tion model with an R-GCN encoder (interspersed with fully-
connected/dense layers) and a DistMult decoder that takes
pairs of hidden node representations and produces a score
for every (potential) edge in the graph. The loss is evaluated
per edge.

we only consider such a featureless approach in this work,
we note that it was shown in Kipf and Welling (2017) that
it is possible for this class of models to make use of pre-
defined feature vectors (e.g. a bag-of-words description of a
document associated with a specific node).

3 Entity classification
For (semi-)supervised classification of nodes (entities),
we simply stack R-GCN layers of the form (2), with a
softmax(·) activation (per node) on the output of the last
layer. We minimize the following cross-entropy loss on all
labeled nodes (while ignoring unlabeled nodes):

L = −
∑
i∈Y

K∑
k=1

tik lnh
(L)
ik , (5)

where Y is the set of node indices that have labels and h(L)
ik

is the k-th entry of the network output for the i-th labeled
node. tik denotes its respective ground truth label. In prac-
tice, we train the model using (full-batch) gradient descent
techniques. A schematic depiction of our entity classifica-
tion model is given in Figure 3a.

4 Link prediction
Link prediction deals with prediction of new facts (i.e.
triples (subject, relation, object)). Formally, the knowledge
base is represented by a directed, labeled graph G =
(V, E ,R). Rather than the full set of edges E , we are given
only an incomplete subset Ê . The task is to assign scores
f(s, r, o) to possible edges (s, r, o) in order to determine
how likely those edges are to belong to E .

In order to tackle this problem, we introduce a graph
auto-encoder model, comprised of an entity encoder and a
scoring function (decoder). The encoder maps each entity
vi ∈ V to a real-valued vector ei ∈ Rd. The decoder re-
constructs edges of the graph relying on the vertex repre-
sentations; in other words, it scores (subject, relation, ob-
ject)-triples through a function s : Rd × R × Rd → R.
Most existing approaches to link prediction (for example,
tensor and neural factorization methods (Socher et al. 2013;

Lin et al. 2015; Toutanova et al. 2016; Yang et al. 2014;
Trouillon et al. 2016)) can be interpreted under this frame-
work. The crucial distinguishing characteristic of our work
is the reliance on an encoder. Whereas most previous ap-
proaches use a single, real-valued vector ei for every vi ∈
V optimized directly in training, we compute representa-
tions through an R-GCN encoder with ei = h

(L)
i , simi-

lar to the graph auto-encoder model introduced in Kipf and
Welling (2016) for unlabeled undirected graphs. Our full
link prediction model is schematically depicted in Figure 3b.

In our experiments, we use the DistMult factoriza-
tion (Yang et al. 2014) as the scoring function, which is
known to perform well on standard link prediction bench-
marks when used on its own. In DistMult, every relation r
is associated with a diagonal matrix Rr ∈ Rd×d and a triple
(s, r, o) is scored as

f(s, r, o) = eTs Rreo . (6)
As in previous work on factorization (Yang et al. 2014;

Trouillon et al. 2016), we train the model with negative
sampling. For each observed example we sample ω nega-
tive ones. We sample by randomly corrupting either the sub-
ject or the object of each positive example. We optimize
for cross-entropy loss to push the model to score observable
triples higher than the negative ones:

L = − 1

(1 + ω)|Ê |

∑
(s,r,o,y)∈T

y log l
(
f(s, r, o)

)
+

(1− y) log
(
1− l

(
f(s, r, o)

))
,

(7)

where T is the total set of real and corrupted triples, l is the
logistic sigmoid function, and y is an indicator set to y = 1
for positive triples and y = 0 for negative ones.

5 Empirical evaluation
5.1 Entity classification experiments
Here, we consider the task of classifying entities in a knowl-
edge base. In order to infer, for example, the type of an entity
(e.g. person or company), a successful model needs to rea-
son about the relations with other entities that this entity is
involved in.

Datasets We evaluate our model on four datasets3 in Re-
source Description Framework (RDF) format (Ristoski, de
Vries, and Paulheim 2016): AIFB, MUTAG, BGS, and AM.
Relations in these datasets need not necessarily encode di-
rected subject-object relations, but are also used to encode
the presence, or absence, of a specific feature for a given
entity. In each dataset, the targets to be classified are prop-
erties of a group of entities represented as nodes. The exact
statistics of the datasets can be found in Table 1. For a more
detailed description of the datasets the reader is referred to
Ristoski, de Vries, and Paulheim (2016). We remove rela-
tions that were used to create entity labels: employs and affil-
iation for AIFB, isMutagenic for MUTAG, hasLithogenesis
for BGS, and objectCategory and material for AM.

3http://dws.informatik.uni-mannheim.de/en/research/a-
collection-of-benchmark-datasets-for-ml

Dataset AIFB MUTAG BGS AM

Entities 8,285 23,644 333,845 1,666,764
Relations 45 23 103 133
Edges 29,043 74,227 916,199 5,988,321
Labeled 176 340 146 1,000
Classes 4 2 2 11

Table 1: Number of entities, relations, edges and classes
along with the number of labeled entities for each of the
datasets. Labeled denotes the subset of entities that have la-
bels and that are to be classified.

Baselines As a baseline for our experiments, we com-
pare against recent state-of-the-art classification results
from RDF2Vec embeddings (Ristoski and Paulheim 2016),
Weisfeiler-Lehman kernels (WL) (Shervashidze et al. 2011;
de Vries and de Rooij 2015), and hand-designed feature ex-
tractors (Feat) (Paulheim and Fümkranz 2012). Feat assem-
bles a feature vector from the in- and out-degree (per re-
lation) of every labeled entity. RDF2Vec extracts walks on
labeled graphs which are then processed using the Skipgram
(Mikolov et al. 2013) model to generate entity embeddings,
used for subsequent classification. See Ristoski and Paul-
heim (2016) for an in-depth description and discussion of
these baseline approaches. All entity classification experi-
ments were run on CPU nodes with 64GB of memory.

Results All results in Table 2 are reported on the
train/test benchmark splits from Ristoski, de Vries, and
Paulheim (2016). We further set aside 20% of the training set
as a validation set for hyperparameter tuning. For R-GCN,
we report performance of a 2-layer model with 16 hidden
units (10 for AM), basis function decomposition (Eq. 3), and
trained with Adam (Kingma and Ba 2014) for 50 epochs us-
ing a learning rate of 0.01. The normalization constant is
chosen as ci,r = |N r

i |. Further details on (baseline) models
and hyperparameter choices are provided in the supplemen-
tary material.

Model AIFB MUTAG BGS AM

Feat 55.55 77.94 72.41 66.66
WL 80.55 80.88 86.20 87.37
RDF2Vec 88.88 67.20 87.24 88.33
R-GCN 95.83 73.23 83.10 89.29

Table 2: Entity classification results in accuracy (averaged
over 10 runs) for a feature-based baseline (see main text
for details), WL (Shervashidze et al. 2011; de Vries and
de Rooij 2015), RDF2Vec (Ristoski and Paulheim 2016),
and R-GCN (this work). Test performance is reported on the
train/test set splits provided by Ristoski, de Vries, and Paul-
heim (2016).

Our model achieves state-of-the-art results on AIFB and
AM. To explain the gap in performance on MUTAG and
BGS it is important to understand the nature of these

datasets. MUTAG is a dataset of molecular graphs, which
was later converted to RDF format, where relations either
indicate atomic bonds or merely the presence of a certain
feature. BGS is a dataset of rock types with hierarchical fea-
ture descriptions which was similarly converted to RDF for-
mat, where relations encode the presence of a certain feature
or feature hierarchy. Labeled entities in MUTAG and BGS
are only connected via high-degree hub nodes that encode a
certain feature.

We conjecture that the fixed choice of normalization con-
stant for the aggregation of messages from neighboring
nodes is partly to blame for this behavior, which can be par-
ticularly problematic for nodes of high degree. A potential
way to overcome this limitation is to introduce an atten-
tion mechanism, i.e. to replace the normalization constant
1/ci,r with data-dependent attention weights aij,r, where∑

j,r aij,r = 1. We expect this to be a promising avenue
for future research.

5.2 Link prediction experiments
As shown in the previous section, R-GCNs serve as an ef-
fective encoder for relational data. We now combine our en-
coder model with a scoring function (which we will refer to
as a decoder, see Figure 3b) to score candidate triples for
link prediction in knowledge bases.

Datasets Link prediction algorithms are commonly evalu-
ated on FB15k, a subset of the relational database Freebase,
and WN18, a subset of WordNet containing lexical relations
between words. In Toutanova and Chen (2015), a serious
flaw was observed in both datasets: The presence of inverse
triplet pairs t = (e1, r, e2) and t′ = (e2, r

−1, e1) with t
in the training set and t′ in the test set. This reduces a large
part of the prediction task to memorization of affected triplet
pairs. A simple baseline LinkFeat employing a linear classi-
fier on top of sparse feature vectors of observed training re-
lations was shown to outperform existing systems by a large
margin. To address this issue, Toutanova and Chen proposed
a reduced dataset FB15k-237 with all such inverse triplet
pairs removed. We therefore choose FB15k-237 as our pri-
mary evaluation dataset. Since FB15k and WN18 are still
widely used, we also include results on these datasets using
the splits introduced by Bordes et al. (2013).

Dataset WN18 FB15K FB15k-237

Entities 40,943 14,951 14,541
Relations 18 1,345 237
Train edges 141,442 483,142 272,115
Val. edges 5,000 50,000 17,535
Test edges 5,000 59,071 20,466

Table 3: Number of entities and relation types along with the
number of edges per split for the three datasets.

Baselines A common baseline for both experiments is di-
rect optimization of DistMult (Yang et al. 2014). This fac-
torization strategy is known to perform well on standard

500 1,000 1,500 2,000 2,500
0

0.5

1

Average degree

M
R

R

R-GCN
DistMult

Figure 4: Mean reciprocal rank (MRR) for R-GCN and Dist-
Mult on the FB15k validation data as a function of the node
degree (average of subject and object).

datasets, and furthermore corresponds to a version of our
model with fixed entity embeddings in place of the R-GCN
encoder as described in Section 4. As a second baseline, we
add the simple neighbor-based LinkFeat algorithm proposed
in Toutanova and Chen (2015).

We further compare to ComplEx (Trouillon et al. 2016)
and HolE (Nickel, Rosasco, and Poggio 2015), two state-of-
the-art link prediction models for FB15k and WN18. Com-
plEx facilitates modeling of asymmetric relations by gen-
eralizing DistMult to the complex domain, while HolE re-
places the vector-matrix product with circular correlation.
Finally, we include comparisons with two classic algorithms
– CP (Hitchcock 1927) and TransE (Bordes et al. 2013).

Results We provide results using two commonly used
evaluation metrics: mean reciprocal rank (MRR) and Hits at
n (H@n). Following Bordes et al. (2013), both metrics can
be computed in a raw and a filtered setting. We report both
filtered and raw MRR (with filtered MRR typically consid-
ered more reliable), and filtered Hits at 1, 3, and 10.

We evaluate hyperparameter choices on the respective
validation splits. We found a normalization constant defined
as ci,r = ci =

∑
r |N r

i | — in other words, applied across
relation types – to work best. For FB15k and WN18, we re-
port results using basis decomposition (Eq. 3) with two basis
functions, and a single encoding layer with 200-dimensional
embeddings. For FB15k-237, we found block decomposi-
tion (Eq. 4) to perform best, using two layers with block
dimension 5× 5 and 500-dimensional embeddings. We reg-
ularize the encoder through edge dropout applied before nor-
malization, with dropout rate 0.2 for self-loops and 0.4 for
other edges. Using edge droupout makes our training ob-
jective similar to that of denoising autoencoders (Vincent et
al. 2008). We apply l2 regularization to the decoder with a
penalty of 0.01.

We use the Adam optimizer (Kingma and Ba 2014) with
a learning rate of 0.01. For the baseline and the other
factorizations, we found the parameters from Trouillon et
al. (2016) – apart from the dimensionality on FB15k-237 –
to work best, though to make the systems comparable we
maintain the same number of negative samples (i.e. ω = 1).
We use full-batch optimization for both the baselines and
our model.

On FB15k, local context in the form of inverse relations

FB15k WN18

MRR Hits @ MRR Hits @

Model Raw Filtered 1 3 10 Raw Filtered 1 3 10

LinkFeat 0.779 0.804 0.938 0.939

DistMult 0.248 0.634 0.522 0.718 0.814 0.526 0.813 0.701 0.921 0.943
R-GCN 0.251 0.651 0.541 0.736 0.825 0.553 0.814 0.686 0.928 0.955
R-GCN+ 0.262 0.696 0.601 0.760 0.842 0.561 0.819 0.697 0.929 0.964
CP* 0.152 0.326 0.219 0.376 0.532 0.075 0.058 0.049 0.080 0.125
TransE* 0.221 0.380 0.231 0.472 0.641 0.335 0.454 0.089 0.823 0.934
HolE** 0.232 0.524 0.402 0.613 0.739 0.616 0.938 0.930 0.945 0.949
ComplEx* 0.242 0.692 0.599 0.759 0.840 0.587 0.941 0.936 0.945 0.947

Table 4: Results on the the Freebase and WordNet datasets. Results marked (*) taken from Trouillon et al. (2016). Results marks
(**) taken from Nickel, Rosasco, and Poggio (2015). R-GCN+ denotes an ensemble between R-GCN and DistMult – see main
text for details.

is expected to dominate the performance of the factoriza-
tions, contrasting with the design of the R-GCN model. To
better understand the difference, we plot in Figure 4 the
FB15k performance of the best R-GCN model and the base-
line (DistMult) as functions of degree of nodes correspond-
ing to entities in the considered triple (namely, the average
of degrees for the subject and object entities). It can be seen
that our model performs better for nodes with high degree
where contextual information is abundant. The observation
that the two models are complementary suggests combining
the strengths of both into a single model, which we refer to
as R-GCN+. On FB15k and WN18 where local and long-
distance information can both provide strong solutions, we
expect R-GCN+ to outperform each individual model. On
FB15k-237 where local information is less salient, we do not
expect the combination model to outperform a pure R-GCN
model significantly. To test this, we evaluate an ensemble
(R-GCN+) with a trained R-GCN model and a separately
trained DistMult factorization model: f(s, r, t)R-GCN+ =
αf(s, r, t)R-GCN + (1− α)f(s, r, t)DistMult, with α = 0.4 se-
lected on FB15k development data.

In Table 4, we evaluate the R-GCN model and the combi-
nation model (R-GCN+) on FB15k and WN18.

On the FB15k and WN18 datasets, R-GCN and R-GCN+
both outperform the DistMult baseline, but like all other
systems underperform on these two datasets compared to
the LinkFeat algorithm. The strong result from this baseline
highlights the contribution of inverse relation pairs to high-
performance solutions on these datasets. Interestingly, R-
GCN+ yields better performance than ComplEx for FB15k,
even though the R-GCN decoder (DistMult) does not explic-
itly model asymmetry in relations, as opposed to ComplEx.

This suggests that combining the R-GCN encoder with
the ComplEx scoring function (decoder) may be a promising
direction for future work. The choice of scoring function is
orthogonal to the choice of encoder; in principle, any scoring
function or factorization model could be incorporated as a
decoder in our auto-encoder framework.

In Table 5, we show results for FB15k-237 where (as

MRR Hits @

Model Raw Filtered 1 3 10

LinkFeat 0.063 0.079

DistMult 0.100 0.191 0.106 0.207 0.376
R-GCN 0.158 0.248 0.153 0.258 0.414
R-GCN+ 0.156 0.249 0.151 0.264 0.417
CP 0.080 0.182 0.101 0.197 0.357
TransE 0.144 0.233 0.147 0.263 0.398
HolE 0.124 0.222 0.133 0.253 0.391
ComplEx 0.109 0.201 0.112 0.213 0.388

Table 5: Results on FB15k-237, a reduced version of FB15k
with problematic inverse relation pairs removed. CP, TransE,
and ComplEx were evaluated using the code published for
Trouillon et al. (2016), while HolE was evaluated using the
code published for Nickel, Rosasco, and Poggio (2015).

previously discussed) inverse relation pairs have been re-
moved and the LinkFeat baseline fails to generalize4. Here,
our R-GCN model outperforms the DistMult baseline by
a large margin of 29.8%, highlighting the importance of a
separate encoder model. As expected from our earlier anal-
ysis, R-GCN and R-GCN+ show similar performance on
this dataset. The R-GCN model further compares favorably
against other factorization methods, despite relying on a
DistMult decoder which shows comparatively weak perfor-
mance when used without an encoder.

4Our numbers are not directly comparable to those reported in
Toutanova and Chen (2015), as they use pruning both for training
and testing (see their sections 3.3.1 and 4.2). Since their pruning
schema is not fully specified (e.g., values of the relation-specific
parameter t are not given) and the code is not available, it is not
possible to replicate their set-up.

6 Related Work
6.1 Relational modeling
Our encoder-decoder approach to link prediction relies on
DistMult (Yang et al. 2014) in the decoder, a special and
simpler case of the RESCAL factorization (Nickel, Tresp,
and Kriegel 2011), more effective than the original RESCAL
in the context of multi-relational knowledge bases. Numer-
ous alternative factorizations have been proposed and stud-
ied in the context of SRL, including both (bi-)linear and non-
linear ones (e.g., (Bordes et al. 2013; Socher et al. 2013;
Chang et al. 2014; Nickel, Rosasco, and Poggio 2015;
Trouillon et al. 2016)). Many of these approaches can be
regarded as modifications or special cases of classic tensor
decomposition methods such as CP or Tucker; for a com-
prehensive overview of tensor decomposition literature we
refer the reader to Kolda and Bader (2009).

Incorporation of paths between entities in knowledge
bases has recently received considerable attention. We can
roughly classify previous work into (1) methods creating
auxiliary triples, which are then added to the learning objec-
tive of a factorization model (Guu, Miller, and Liang 2015;
Garcia-Duran, Bordes, and Usunier 2015); (2) approaches
using paths (or walks) as features when predicting edges
(Lin et al. 2015); or (3) doing both at the same time (Nee-
lakantan, Roth, and McCallum 2015; Toutanova et al. 2016).
The first direction is largely orthogonal to ours, as we would
also expect improvements from adding similar terms to our
loss (in other words, extending our decoder). The second
research line is more comparable; R-GCNs provide a com-
putationally cheaper alternative to these path-based models.
Direct comparison is somewhat complicated as path-based
methods used different datasets (e.g., sub-sampled sets of
walks from a knowledge base).

6.2 Neural networks on graphs
Our R-GCN encoder model is closely related to a number
of works in the area of neural networks on graphs. It is pri-
marily motivated as an adaption of previous work on GCNs
(Bruna et al. 2014; Duvenaud et al. 2015; Defferrard, Bres-
son, and Vandergheynst 2016; Kipf and Welling 2017) for
large-scale and highly multi-relational data, characteristic of
realistic knowledge bases.

Early work in this area includes the graph neural network
by Scarselli et al. (2009). A number of extensions to the orig-
inal graph neural network have been proposed, most notably
(Li et al. 2016) and (Pham et al. 2017), both of which utilize
gating mechanisms to facilitate optimization.

R-GCNs can further be seen as a sub-class of message
passing neural networks (Gilmer et al. 2017), which encom-
pass a number of previous neural models for graphs, includ-
ing GCNs, under a differentiable message passing interpre-
tation.

7 Conclusions
We have introduced relational graph convolutional networks
(R-GCNs) and demonstrated their effectiveness in the con-
text of two standard statistical relation modeling problems:

link prediction and entity classification. For the entity clas-
sification problem, we have demonstrated that the R-GCN
model can act as a competitive, end-to-end trainable graph-
based encoder. For link prediction, the R-GCN model with
DistMult factorization as the decoding component outper-
formed direct optimization of the factorization model, and
achieved competitive results on standard link prediction
benchmarks. Enriching the factorization model with an R-
GCN encoder proved especially valuable for the challenging
FB15k-237 dataset, yielding a 29.8% improvement over the
decoder-only baseline.

There are several ways in which our work could be ex-
tended. For example, the graph autoencoder model could be
considered in combination with other factorization models,
such as ComplEx (Trouillon et al. 2016), which can be better
suited for modeling asymmetric relations. It is also straight-
forward to integrate entity features in R-GCNs, which would
be beneficial both for link prediction and entity classification
problems. To address the scalability of our method, it would
be worthwhile to explore subsampling techniques, such as
in Hamilton, Ying, and Leskovec (2017). Lastly, it would
be promising to replace the current form of summation over
neighboring nodes and relation types with a data-dependent
attention mechanism. Beyond modeling knowledge bases,
R-GCNs can be generalized to other applications where re-
lation factorization models have been shown effective (e.g.
relation extraction).

Acknowledgements
We would like to thank Diego Marcheggiani, Ethan Fetaya,
and Christos Louizos for helpful discussions and comments.
This project is supported by the European Research Council
(ERC StG BroadSem 678254), the SAP Innovation Center
Network and the Dutch National Science Foundation (NWO
VIDI 639.022.518).

References
Bao, J.; Duan, N.; Zhou, M.; and Zhao, T. 2014. Knowledge-
based question answering as machine translation. In ACL.
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. In NIPS.
Bordes, A.; Usunier, N.; Chopra, S.; and Weston, J. 2015.
Large-scale simple question answering with memory net-
works. arXiv preprint arXiv:1506.02075.
Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2014.
Spectral networks and locally connected networks on
graphs. In ICLR.
Chang, K.-W.; tau Yih, W.; Yang, B.; and Meek, C. 2014.
Typed Tensor Decomposition of Knowledge Bases for Rela-
tion Extraction. In EMNLP.
Dalton, J.; Dietz, L.; and Allan, J. 2014. Entity query feature
expansion using knowledge base links. In Proceedings of
the 37th international ACM SIGIR conference on Research
& development in information retrieval, 365–374.
de Vries, G. K. D., and de Rooij, S. 2015. Substructure
counting graph kernels for machine learning from rdf data.

Web Semantics: Science, Services and Agents on the World
Wide Web 35:71–84.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In NIPS.
Dong, L.; Wei, F.; Zhou, M.; and Xu, K. 2015. Question an-
swering over freebase with multi-column convolutional neu-
ral networks. In ACL.
Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.; Bombarell,
R.; Hirzel, T.; Aspuru-Guzik, A.; and Adams, R. P. 2015.
Convolutional networks on graphs for learning molecular
fingerprints. In NIPS.
Garcia-Duran, A.; Bordes, A.; and Usunier, N. 2015. Com-
posing relationships with translations. Technical Report,
CNRS, Heudiasyc.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. arXiv preprint arXiv:1704.01212.
Guu, K.; Miller, J.; and Liang, P. 2015. Travers-
ing knowledge graphs in vector space. arXiv preprint
arXiv:1506.01094.
Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017. Induc-
tive representation learning on large graphs. arXiv preprint
arXiv:1706.02216.
Hitchcock, F. L. 1927. The expression of a tensor or a
polyadic as a sum of products. Studies in Applied Mathe-
matics 6(1-4):164–189.
Hixon, B.; Clark, P.; and Hajishirzi, H. 2015. Learning
knowledge graphs for question answering through conver-
sational dialog. In Proceedings of NAACL HLT, 851–861.
Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Kipf, T. N., and Welling, M. 2016. Variational graph auto-
encoders. arXiv preprint arXiv:1611.07308.
Kipf, T. N., and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In ICLR.
Kolda, T. G., and Bader, B. W. 2009. Tensor decompositions
and applications. SIAM review 51(3):455–500.
Kotov, A., and Zhai, C. 2012. Tapping into knowledge
base for concept feedback: leveraging conceptnet to improve
search results for difficult queries. In WSDM.
Li, Y.; Tarlow, D.; Brockschmidt, M.; and Zemel, R. 2016.
Gated graph sequence neural networks. In ICLR.
Lin, Y.; Liu, Z.; Luan, H.; Sun, M.; Rao, S.; and Liu, S.
2015. Modeling relation paths for representation learning of
knowledge bases. arXiv preprint arXiv:1506.00379.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In NIPS.
Neelakantan, A.; Roth, B.; and McCallum, A. 2015. Com-
positional vector space models for knowledge base comple-
tion. arXiv preprint arXiv:1504.06662.
Nickel, M.; Rosasco, L.; and Poggio, T. 2015. Holo-
graphic embeddings of knowledge graphs. arXiv preprint
arXiv:1510.04935.

Nickel, M.; Tresp, V.; and Kriegel, H.-P. 2011. A three-
way model for collective learning on multi-relational data.
In ICML.
Paulheim, H., and Fümkranz, J. 2012. Unsupervised gen-
eration of data mining features from linked open data. In
Proceedings of the 2nd international conference on web in-
telligence, mining and semantics, 31.
Pham, T.; Tran, T.; Phung, D.; and Venkatesh, S. 2017. Col-
umn networks for collective classification. In AAAI.
Ristoski, P., and Paulheim, H. 2016. Rdf2vec: Rdf graph
embeddings for data mining. In International Semantic Web
Conference, 498–514. Springer.
Ristoski, P.; de Vries, G. K. D.; and Paulheim, H. 2016. A
collection of benchmark datasets for systematic evaluations
of machine learning on the semantic web. In International
Semantic Web Conference, 186–194. Springer.
Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2009. The graph neural network model.
IEEE Transactions on Neural Networks 20(1):61–80.
Seyler, D.; Yahya, M.; and Berberich, K. 2015. Generating
quiz questions from knowledge graphs. In Proceedings of
the 24th International Conference on World Wide Web.
Shervashidze, N.; Schweitzer, P.; Leeuwen, E. J. v.;
Mehlhorn, K.; and Borgwardt, K. M. 2011. Weisfeiler-
lehman graph kernels. Journal of Machine Learning Re-
search 12(Sep):2539–2561.
Socher, R.; Chen, D.; Manning, C. D.; and Ng, A. 2013.
Reasoning with neural tensor networks for knowledge base
completion. In NIPS.
Toutanova, K., and Chen, D. 2015. Observed versus latent
features for knowledge base and text inference. In Proceed-
ings of the 3rd Workshop on Continuous Vector Space Mod-
els and their Compositionality, 57–66.
Toutanova, K.; Lin, V.; Yih, W.-t.; Poon, H.; and Quirk, C.
2016. Compositional learning of embeddings for relation
paths in knowledge base and text. In ACL.
Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, E.; and
Bouchard, G. 2016. Complex embeddings for simple link
prediction. In ICML.
Vincent, P.; Larochelle, H.; Bengio, Y.; and Manzagol, P.-
A. 2008. Extracting and composing robust features with
denoising autoencoders. In ICML.
Xiong, C., and Callan, J. 2015a. Esdrank: Connecting query
and documents through external semi-structured data. In
CIKM.
Xiong, C., and Callan, J. 2015b. Query expansion with free-
base. In Proceedings of the 2015 International Conference
on The Theory of Information Retrieval, 111–120.
Yang, B.; Yih, W.-t.; He, X.; Gao, J.; and Deng, L. 2014.
Embedding entities and relations for learning and inference
in knowledge bases. arXiv preprint arXiv:1412.6575.
Yao, X., and Van Durme, B. 2014. Information extraction
over structured data: Question answering with freebase. In
ACL.

Further experimental details on entity classification

For the entity classification benchmarks described in our paper, the evaluation process differs subtly between publications. To
eliminate these differences, we repeated the baselines in a uniform manner, using the canonical test/train split from (Ristoski,
de Vries, and Paulheim 2016). We performed hyperparameter optimization on only the training set, running a single evaluation
on the test set after hyperparameters were chosen for each baseline. This explains why the numbers we report differ slightly
from those in the original publications (where cross-validation accuracy was reported).

For WL, we use the tree variant of the Weisfeiler-Lehman subtree kernel from the Mustard library.5 For RDF2Vec, we use
an implementation provided by the authors of (Ristoski and Paulheim 2016) which builds on Mustard. In both cases, we extract
explicit feature vectors for the instance nodes, which are classified by a linear SVM.

For the MUTAG task, our preprocessing differs from that used in (de Vries and de Rooij 2015; Ristoski and Paulheim 2016)
where for a given target relation (s, r, o) all triples connecting s to o are removed. Since o is a boolean value in the MUTAG
data, one can infer the label after processing from other boolean relations that are still present. This issue is now mentioned in
the Mustard documentation. In our preprocessing, we remove only the specific triples encoding the target relation.

Hyperparameters for baselines are chosen according to the best model performance in (Ristoski and Paulheim 2016),
i.e. WL: 2 (tree depth), 3 (number of iterations); RDF2Vec: 2 (WL tree depth), 4 (WL iterations), 500 (embedding size), 5
(window size), 10 (SkipGram iterations), 25 (number of negative samples). We optimize the SVM regularization constant
C ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000} based on performance on a 80/20 train/validation split (of the original training set).

For R-GCN, we choose an l2 penalty on first layer weights Cl2 ∈ {0, 5 · 10−4} and the number of basis functions B ∈
{0, 10, 20, 30, 40} based on validation set performance, where B = 0 refers to using no basis function decomposition. Using
the block decomposition did not improve results. Otherwise, hyperparameters are chosen as follows: 50 (number of epochs), 16
(number of hidden units), and ci,r = |N r

i | (normalization constant). We do not use dropout. For AM, we use a reduced number
of 10 hidden units for R-GCN to reduce the memory footprint.

Results with standard error (omitted in main paper due to spatial constraints) are summarized in Table 7. All entity classifi-
cation experiments were run on CPU nodes with 64GB of memory.

R-GCN setting AIFB MUTAG BGS AM

l2 penalty 0 5 · 10−4 5 · 10−4 5 · 10−4
basis functions 0 30 40 40
hidden units 16 16 16 10

Table 6: Best hyperparameter choices based on validation set performance for 2-layer R-GCN model.

Model AIFB MUTAG BGS AM

Feat 55.55± 0.00 77.94± 0.00 72.41± 0.00 66.66± 0.00
WL 80.55± 0.00 80.88± 0.00 86.20± 0.00 87.37± 0.00
RDF2Vec 88.88± 0.00 67.20± 1.24 87.24± 0.89 88.33± 0.61
R-GCN (Ours) 95.83± 0.62 73.23± 0.48 83.10± 0.80 89.29± 0.35

Table 7: Entity classification results in accuracy (average and standard error over 10 runs) for a feature-based baseline (see
main text for details), WL (Shervashidze et al. 2011; de Vries and de Rooij 2015), RDF2Vec (Ristoski and Paulheim 2016),
and R-GCN (this work). Test performance is reported on the train/test set splits provided by (Ristoski, de Vries, and Paulheim
2016).

5https://github.com/Data2Semantics/mustard

