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We investigate the dynamics of localized solutions of the relativistic cold-fluid plasma model in the small but

finite amplitude limit, for slightly overcritical plasma density. Adopting a multiple scale analysis, we derive a

perturbed nonlinear Schrödinger equation that describes the evolution of the envelope of circularly polarized

electromagnetic field. Retaining terms up to fifth order in the small perturbation parameter, we derive a self-

consistent framework for the description of the plasma response in the presence of localized electromagnetic

field. The formalism is applied to standing electromagnetic soliton interactions and the results are validated by

simulations of the full cold-fluid model. To lowest order, a cubic nonlinear Schrödinger equation with a focusing

nonlinearity is recovered. Classical quasiparticle theory is used to obtain analytical estimates for the collision

time and minimum distance of approach between solitons. For larger soliton amplitudes the inclusion of the

fifth-order terms is essential for a qualitatively correct description of soliton interactions. The defocusing quintic

nonlinearity leads to inelastic soliton collisions, while bound states of solitons do not persist under perturbations

in the initial phase or amplitude.
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I. INTRODUCTION

The availability of short, intense laser pulses has opened

new regimes of laser-plasma interaction, rendering possible

the excitation and study of various localized structures in

the plasma. Amidst a plethora of excitations observed, a

particular role is played by electromagnetic solitons, i.e.,

self-trapped pulses characterized (and sustained) by a balance

of dispersion or diffraction and nonlinearity. In particular, we

shall be interested in so-called relativistic solitons, for which

the electromagnetic field amplitude is intense enough to set

plasma electrons in relativistic motion.

Relativistic solitons have been predicted by analytical

theory [1–5] and simulations [6–11], and their signatures have

been observed in experiments [12–18]. They can be thought

of as electromagnetic pulses trapped in a plasma density

cavitation with overdense boundaries. For one-dimensional

(1D) plasma geometry, a vast number of soliton families

have been identified and studied [5,19,20,20–22], while

higher-dimensional solitons have also been encountered in

simulations [9,23]. In overdense plasmas near the critical

density, solitons can be excited by a long intense pulse incident

on a plasma density gradient [2,11]. In underdense plasmas,

relativistic solitons have been observed behind the wake left

by an intense and short pulse [8–10,23]. In this case, soliton

creation is linked to the downshift of the laser pulse frequency

as it propagates through the plasma, which leads to an effective

reduction of the critical density and trapping of laser pulse

energy in the form of a soliton [23]. Therefore, from this point

on, we will use the term overdense plasma in association to
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the frequency ω of the soliton. The latter may be lower than

the frequency of the laser pulse that excited the soliton.

Simulations [7,11,23] and experiments [12,13] show that

multiple solitons may be excited by a single laser pulse,

and one may expect that these solitons can interact with

each other [23]. In a previous publication [24] we presented

numerical studies of interactions of standing electromagnetic

solitons of the form predicted in Ref. [5], within the relativistic

cold-fluid framework. For low soliton amplitudes, a phe-

nomenology similar to nonlinear Schrödinger (NLS) equation

soliton interaction [25] has been observed, e.g., involving

the formation of bound states, under certain circumstances.

However, soliton interaction for larger amplitudes departs from

NLS equation phenomenology.

The aim of the present work is to gain more insight in the

origin of the NLS equation behavior of small amplitude soliton

interaction in overdense plasmas but also to explore how

deviations from NLS equation behavior arise. Starting from

the one-dimensional relativistic cold-fluid model, we develop

a perturbative treatment based on multiple scale analysis [26–

28], in which the small parameter is the electromagnetic

field amplitude. Under the assumptions of immobile ions

and circular polarization we derive a perturbed NLS-type

equation (pNLS equation), which describes the evolution of the

electromagnetic field envelope. In our expansion, localization

of the soliton solution is introduced naturally as a result

of the assumption of a carrier frequency ω smaller but

similar to the plasma frequency, ω � ωpe =
√

N0e2/meǫ0,

where N0 is the plasma background density, me is the electron

rest mass, −e is the electron charge, and ǫ0 is the permittivity of

free space. The dominant nonlinear term is a “focusing” cubic

nonlinearity, while at higher order a “defocusing” quintic one

also appears. They both result from the perturbative expansion
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of the relativistic γ factor. Additional higher-order nonlinear

terms result from the ponderomotive coupling of the field to

the plasma. To lowest order our pNLS equation reduces to a

focusing NLS equation.
Our study of soliton interactions using the fluid and pNLS

equation models shows that soliton collisions are inelastic.
This is commonly regarded as a signature of nonintegrability
of the governing equations [29] and is in stark contrast with
the elastic collisions of solitons of the (integrable) cubic NLS
equation. We note that although a distinction between solitary
waves and solitons based on the nature of their interactions
can be made [30], here we adhere to the common practice in
laser-plasma interaction literature of referring to any solitary
wave solution as a soliton.

The NLS equation is ubiquitous in physics since it appears
generically as an envelope equation describing propagation
of weakly nonlinear waves in dispersive media [27,28]. It
has been widely used in describing phenomena such as
Benjamin-Feir-type modulational instabilities, solitons [27],
and more recently, rogue waves [31,32]. Interestingly, the
NLS equation can be derived by symmetry considerations
alone [28]. However, for specific applications the coefficients
of the various terms must be determined through a multiple-
scale analysis procedure. Then, the NLS equation is obtained
as a compatibility condition, imposed for secular term sup-
pression, in third order in the small expansion parameter. The
analogous first- and second-order compatibility conditions are
also physically meaningful, as they yield the linear dispersion
relation and the associated group velocity for the envelope.
Higher-order compatibility conditions contribute additional
nonlinear terms [33], which may lead to a nonintegrable
perturbed NLS equation. In plasma physics, use of the
cubic NLS equation has a long history, for example, to
describe modulated electrostatic wavepackets [34] and weakly
relativistic laser-plasma interactions [35–37]. For the case of
linear polarization, in the highly under-dense plasma limit
ωpe/ω ≪ 1, fifth-order terms in the multiple scale expansion
have been partially retained in Ref. [36]. The main contribution
of the present paper is the derivation of the fifth-order terms
for the overdense, near-critical case, with circular polarization.

This paper is structured as follows: Sec. II recalls the
relativistic cold-fluid model that will be the starting point for
this work. The multiple-scale expansion is described in Sec. III
leading to the derivation of the pNLS equation, which is our
main result. In Sec. IV we study in some detail the NLS equa-
tion limit of our expansion, comparing numerical results of
cold-fluid model simulations to classical predictions of quasi-
particle theory for soliton interaction. In Sec. V we compare
numerical simulations of soliton interaction in the three levels
of description: cold-fluid model, pNLS equation, and NLS
equation. In Sec. VI we discuss our findings and present our
conclusions. Appendix A describes the relation between fluid
and envelope initial conditions, while Appendix B provides
details on the numerical implementation of the fluid code.

II. RELATIVISTIC COLD FLUID MODEL

Our starting point is the relativistic cold-fluid plasma-

Maxwell model (see, for example, Ref. [38] for the derivation

and history of the model) in one spatial dimension. We assume

a cold plasma of infinite extent with immobile ions that provide

a neutralizing background. Considering infinite plane waves,

propagating along the x direction and working in the Coulomb

gauge, the longitudinal and transverse component of Ampere’s

law are expressed as

∂2�

∂x∂t
+

N

γ
Px = 0, (1a)

and

∂2A⊥

∂x2
−

∂2A⊥

∂t2
=

N

γ
A⊥, (1b)

respectively. The fluid momentum equation is

∂Px

∂t
=

∂

∂x
(� − γ ) , (1c)

while Poisson equation yields

N = 1 +
∂2�

∂x2
. (1d)

Here,

γ =
√

1 + P 2
x + A2

⊥ (1e)

is the relativistic factor, while P(x,t) = p(x,t) − A(x,t) is the

generalized momentum of the electron fluid, p(x,t) is the

kinetic momentum normalized to mec, N is the fluid charge

density normalized to the plasma background density N0,

A⊥ = Ay ĵ + Azk̂ is the transverse vector potential, and � is

the scalar potential, both normalized to mec
2/e. Moreover,

time and length are, respectively, normalized to the inverse of

the plasma frequency ωpe and the corresponding skin depth

c/ωpe. In our one-dimensional modeling, we have taken the

longitudinal vector potential Ax = 0, while we have used the

conservation of transverse canonical momentum, assuming an

initially cold plasma, to write Eqs. (1b) and (1e).

III. MULTIPLE SCALE EXPANSION

Multiple scale analysis (see, e.g., Ref. [27]) seeks to

describe perturbatively a system of differential equations by

assuming it evolves in different, well-separated temporal and

spatial scales. Our treatment follows the standard procedure

of removal of secular terms by imposing suitable solvability

conditions at each order in perturbation analysis. However,

our treatment of the dispersion relation in Sec. III B is novel

and has been devised in order to relate the electromagnetic

field frequency to the small parameter of the expansion, while

introducing localization of solutions in an overdense plasma

in a natural way.

We proceed by introducing the scaled (or slow) variables

Tj = ǫj t and Xj = ǫjx, where ǫ is a small parameter and

j = 0,1,2, . . . . We assume that the fields within the plasma

are small, so that we may expand the fluid model variables as

Ay(x,t) =
∞

∑

j=1

ǫjaj (X0,X1, . . . ,T0,T1, . . .), (2a)

Az(x,t) =
∞

∑

j=1

ǫjbj (X0,X1, . . . ,T0,T1, . . .), (2b)
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�(x,t) =
∞

∑

j=1

ǫjφj (X1, . . . ,T1, . . .), (2c)

Px(x,t) =
∞

∑

j=1

ǫjpj (X1, . . . ,T1, . . .), (2d)

N (x,t) =
∞

∑

j=0

ǫjnj (X1, . . . ,T1, . . .), (2e)

and

γ =
∞

∑

j=0

ǫjγj = 1 +
1

2

(

p2
1 + a2

1 + b2
1

)

ǫ2 + . . . . (2f)

Moreover, we will need

δ ≡ 1/γ =
∞

∑

j=0

ǫjδj = 1 −
1

2

(

p2
1 + a2

1 + b2
1

)

ǫ2 + . . . . (2g)

In writing Eq. (2e) we took into account Eqs. (1d) and

(2c). We assumed that the longitudinal quantities �,Px, and N

do not depend on the fast time scale T0 associated with the

transverse electromagnetic field oscillations, and took into

account that for CP pulses there is no generation of harmonics

of the basic frequency ω [4,35]. These assumptions are

consistent with CP soliton solutions of Ref. [5], the interactions

of which we shall study here.

Defining ∂i ≡ ∂/∂Ti and ∇i ≡ ∂/∂Xi , we get

∂

∂t
= ∂0 + ǫ∂1 + ǫ2∂2 + . . . , (3a)

∂

∂x
= ∇0 + ǫ∇1 + ǫ2∇2 + . . . , (3b)

∂2

∂x∂t
= ∇0∂0 + ǫ(∇0∂1 + ∇1∂0) + . . . , (3c)

etc.

We proceed by substituting Eq. (2) and Eq. (3) into Eq. (1),

and collecting terms in different orders of ǫ.

A. Order ǫ
0

The only equation that contains terms of order ǫ0 is Eq. (1d),

which gives

n0(X0,X1, . . . ,T0,T1, . . .) = 1. (4)

B. Order ǫ
1: linear dispersion relation

Collecting terms of order ǫ, Eqs. (1a)–(1c) give p1 = n1 =
0, while φ1 remains unspecified. Taking into account Eq. (4),

we get for the y component of Eq. (1b),

∇2
0a1 − ∂2

0 a1 = a1. (5)

We are interested in plane wave solutions of this linear wave

equation, which have the form

a1(X0,X1, . . . ,T0,T1, . . .) = a(X1, . . . ,T1, . . .)e
i(kX0−ωT0)

+ c.c. , (6)

where + c.c. denotes the complex conjugate of the preceding

expression. Plugging Eq. (6) back into Eq. (5), we see that

these solutions satisfy the usual plasma dispersion relation

ω2 = 1 + k2. (7)

Here, we are interested in overdense plasmas, in which ω < 1

and thus

k2 = ω2 − 1 < 0, (8)

i.e., k is imaginary and the waves are localized. Moreover,

we are interested here in describing solutions close to small

amplitude solitons, which have ω ≃ 1. Therefore, |k| is small

and this fact in combination with the dispersion relation,

Eq. (7), suggests the following expansions,

ω =
∞

∑

j=0

ǫjωj , k =
∞

∑

j=1

ǫjkj . (9)

Substituting Eq. (9) into the dispersion relation Eq. (7), we

obtain

ω = 1 −
ǫ2

2
|k1|2 + . . . , (10)

where we used k1 = ±i|k1|. This implies that expressions such

as ǫ|k1| X0, ǫ2|k1|2T0, etc. appearing in the oscillating part of

Eq. (6), do in fact represent slow variations. Thus, we may

include them into the envelope, i.e., we may write Eq. (6) as

a1(X0,X1, . . . ,T0,T1, . . .) = a(X1, . . . ,T1, . . .)e
−iT0 + c.c.

(11)

Note that the dependence on X0 has naturally dropped.

C. Order ǫ
2

Collecting terms of order ǫ2 we get from Eqs. (1a) and (1d)

p2 = n2 = 0, while Eq. (1c) yields

∇1φ1 − 1
2
∇0

(

a2
1 + b2

1

)

= 0, (12)

respectively. For circular polarization (CP), we have a = −i b,

and therefore Eq. (2f) yields

γ2 = 1
2

(

a2
1 + b2

1

)

= 2 |a|2, (13)

independent of T0. Thus, Eq. (12) simplifies to

∇1φ1 = 0. (14)

Collecting terms of order ǫ2 we get for the y component of

Eq. (1b),

La2 = 2∂0∂1a1 = −2 i
∂a

∂T1

e−iT0 , (15)

where we introduced the operator

L ≡
(

∇2
0 − ∂2

0 − 1
)

. (16)

The term on the right-hand side is a resonant forcing term for

the linear operator L. Therefore, we impose the solvability

condition

∂a

∂T1

= 0. (17)

Then Eq. (15) becomes La2 = 0. It has plane wave solutions

that can be included in a1 in Eq. (11), so we may take a2 = 0.

From Eq. (2f) we then find γ3 = 0.
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SIMINOS, SÁNCHEZ-ARRIAGA, SAXENA, AND KOURAKIS PHYSICAL REVIEW E 90, 063104 (2014)

D. Order ǫ
3: NLS equation limit

Collecting terms of order ǫ2 and using Eq. (14), we get

from Eqs. (1a)–(1c), p3 = n3 = 0, and

∇2φ1 + ∇1(φ2 − 2|a|2) = 0, (18)

respectively. Operating on Eq. (18) with ∇1 and using Eq. (14),

we obtain

∇2
1 (φ2 − 2|a|2) = 0, (19)

which, requiring that φ2 and a vanish as X1 → ∞, implies

∇1(φ2 − 2|a|2) = 0. (20)

Then in turn, Eq. (18) implies

∇2φ1 = 0. (21)

Collecting terms of order ǫ2 we get for the y component of

Eq. (1b),

La3 = −∇2
1a1 +

(

∂2
1 + 2∂0∂2

)

a1 − 2|a|2a1, (22)

= −
∂2a

∂X2
1

e−iT0 − 2 i
∂a

∂T2

e−iT0 − 2 |a|2a e−iT0 , (23)

where we also used Eq. (17). The terms in the right-hand side

are all resonant with the operator L, leading to the solvability

condition

i
∂a

∂T2

+
1

2

∂2a

∂X2
1

+ |a|2a = 0. (24)

This is a NLS equation. Imposing the solvability condition

Eq. (24), we get from Eq. (22), La3 = 0, or a3 = 0.

According to the standard multiple scale treatment of waves

in the fluid plasma description, the cubic NLS equation,

Eq. (24), is obtained at this order, and the iterative expansion

procedure stops here. An exception is Ref. [36], where the limit

of small density (ωpe ≪ ω) has been considered and a different

scaling of the slow variables has been derived, partially includ-

ing terms of fifth order in ǫ. The absence of harmonic terms

for circular polarization makes the ǫ expansion much simpler

in our case and allows us to keep all terms up to fifth order in

the following, deriving a single perturbed NLS equation.

E. Order ǫ
4

From Eq. (1a) we get, with the help of Eqs. (14) and (21),

∇1∂1φ2 + p4 = 0. (25)

Operating with ∂1 on Eq. (20) and using Eq. (17) we obtain

∇1∂1φ2 = 0, (26)

and therefore p4 = 0.

Equation (1d) gives

n4 = ∇2
1φ2. (27)

Noting that

γ4 = −2 |a|4, (28)

we get from Eq. (1c)

∇1φ3 + ∇3φ1 + ∇2(φ2 + 2|a|2) = 0. (29)

Collecting terms of order ǫ4 we get for the y component of

Eq. (1b),

La4 = 2∂0∂3a1 − 2∇1∇2a1 (30)

= −2 i∂3a e−iT0 − 2∇1∇2a e−iT0 . (31)

Requiring that resonant forcing terms vanish, we obtain the

solvability condition

i∂3a + ∇1∇2a = 0. (32)

Finally, Eq. (30) implies a4 may be included into a1 and we

write a4 = 0.

F. Order ǫ
5

Equation (1a) gives

p5 + ∇3∂1φ1 + ∇2∂1φ2 + ∇1∂2φ2 + ∇1∂1φ3 = 0, (33)

where we have used Eqs. (21) and (14). Applying ∇1 on

Eq. (29) and using Eqs. (14) and (20), we get

∇2
1φ3 = 0, (34)

which implies

∇1φ3 = 0. (35)

On the other hand, applying ∂1 on Eq. (29) and using Eqs. (17)

and (35), we get

∇3∂1φ1 + ∇2∂1φ2 = 0. (36)

Thus, we may use Eqs. (35)–(36) to get from Eq. (33)

p5 = −∇1∂2φ2 = −2∂2∇1|a|2, (37)

where, in the last step, we have used Eq. (20).

From the Poisson equation, Eq. (1d), we obtain

n5 = 2∇2∇1φ2 = 4∇2∇1|a|2. (38)

Equation (1c) gives

∇1(φ4 − γ4) + ∇2φ3 + ∇3(φ2 − γ2) + ∇4φ1 = 0. (39)

Operating on Eq. (39) with ∇1 and using Eqs. (20), (19), and

(35), we obtain

∇2
1 (φ4 − γ4) = 0. (40)

Noting that δ4 = 6 |a|4, the wave equation gives at order ǫ5

L a5 = −2∇1∇3a1 − ∇2
2a1 + 2∂0∂4a1 + ∂2

2 a1

+ 6|a|4a1 + n4a1. (41)

All terms on the right-hand side are resonant forcing terms,

and with the help of Eqs. (27) and (19), we are led to the

solvability condition

−2∇1∇3a − ∇2
2a − 2 i ∂4a+∂2

2 a + 6|a|4a+2a∇2
1 |a|2 = 0.

(42)

We note that we do not employ a parabolic approximation

but rather maintain the term involving second-time derivative.

Finally, Eq. (41) allows one to write a5 = 0.
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G. Collecting different orders: pNLS equation

The strategy we follow in order to write a perturbed NLS

equation, inspired by Ref. [33] (Chapter 3), is to multiply

the solvability conditions imposed at various orders with

appropriate constants, so as to form the expansions of the

differential operators Eq. (3). Specifically, we form the sum

2 i ǫ × (17) + 2 ǫ2 × (24) + 2 ǫ3 × (32) − ǫ4 × (42), (43)

which, using Eq. (3), reads

i
∂a

∂t
+

1

2

∂2a

∂x2
+ ǫ2|a|a−3 ǫ4|a|4a − ǫ2 ∂2|a|2

∂x2
a −

1

2

∂2a

∂t2
=0.

(44)

Rescaling,

X = ǫx, T = ǫ2t, (45)

we arrive at

i
∂a

∂T
+

1

2

∂2a

∂X2
+ |a|2a = ǫ2

(

3 |a|4a +
∂2|a|2

∂X2
a +

1

2

∂2a

∂T 2

)

,

(46)

which is our main result. Equation (46) has the form of a

singularly perturbed nonlinear Schrödinger equation, since the

highest-order time derivative appears in the perturbation term.

Note that, due to our treatment of the dispersion relation in

Sec. III B, Eq. (46) is written in the laboratory frame, without

the need of a coordinate transformation to a frame moving

with the group velocity vg = ω′(k), which is usually required

in the derivation of NLS-type equations. We therefore bypass

any problems related to the fact that ω′(k) as obtained from

Eq. (7) is imaginary.

Solution of Eq. (46) for a(X,T ) also determines the rest of

the variables in the perturbation expansion of the cold-fluid

model. Indeed, we get from Eqs. (2e), (4), (27), and (38), in a

similar manner as above,

N = 1 + 2 ǫ4 ∂2|a|2

∂X2
+ O(ǫ6), (47)

i.e., n5 may be included in the fourth order terms.

Similarly, Eq. (37) gives

P = −2 ǫ5 ∂2|a|2

∂T ∂X
+ O(ǫ6). (48)

Finally, noting that Eq. (14) yields

∇2
1φ1 = 0, (49)

and forming the sum

ǫ × (49) + ǫ2 × (19) + ǫ3 × (34) + ǫ4 × (40), (50)

we obtain

∂2

∂X2
(� − γ ) = O(ǫ5). (51)

Noting that �, γ , do not depend on X0, and taking into account

boundary conditions at x → ±∞, we obtain

� = γ − 1 + O(ǫ5) (52)

= 2|a|2 ǫ2 − 2|a|4 ǫ4 + O(ǫ5). (53)

Therefore, the solution of Eq. (46) for a(X,T ), also determines

N,P , and �.

The cubic |a|2a and quintic terms 3 ǫ2|a|4a come from the

expansion of the relativistic factor γ and therefore correspond

to relativistic corrections to the optical properties of the

plasma, i.e., they pertain to transverse dynamics. The cubic

term results in compression of the pulse, while the quintic

term has the opposite effect (due to the difference in sign).

The term a ∂XX|a|2 takes into account longitudinal effects,

namely the coupling of the electromagnetic field to the plasma

through charge separation caused by ponderomotive effects

[see Eq. (47)]. Moreover, Eq. (48) shows that the balance of

ponderomotive ∂Xγ and electrostatic force ∂Xφ implied by

Eq. (51), is violated at order ǫ5 [see also Eq. (1c)].

IV. NLS EQUATION LIMIT

Neglecting terms of order ǫ2, Eq. (46) reduces to a NLS

equation [39],

i
∂a

∂T
+

1

2

∂2a

∂X2
+ |a|2a = 0, (54)

which has both moving and standing envelope soliton so-

lutions, which we now briefly study in order to establish

connection with cold-fluid model solitons.

A. Moving soliton solutions

Moving soliton solutions of Eq. (54) have the form [27]

a(X,T ) = α0 sech [α0(X − ue T )] ei ue (X−up T ), (55)

where ue is the envelope (or group) velocity, up is the phase

velocity, and the amplitude a0 is given by

α0 =
√

u2
e − 2 ue up. (56)

Note that ue and up refer to the scaled variables X and T .

We can go back to the original variables by using Eq. (A1) of

Appendix A, which gives

Ay = F0(x,t) cos[ueǫx − (1 + ueupǫ2)t], (57)

where F0(x,t) = 2 α ǫ sech [α0ǫ (x − ǫuet)]. A similar expres-

sion can be written for Az, while Eqs. (47), (48), and (52)

provide expressions for the remaining fluid variables. We see

that the phase and group velocity read

vph =
1 + ueupǫ2

ueǫ
, (58)

and

vg = ǫue, (59)

respectively. Therefore, in terms of the cold-fluid model,

moving soliton solutions Eq. (55) represent slowly propagating

solitons.

We show an example of propagating NLS equation solitons

Eq. (55) with ue = 0.9, up = 0.1, and ǫ = 0.141 in Fig. 1.

Although this is only an approximate soliton solution of the

pNLS equation and cold-fluid model, we observe propagation

at the predicted group velocity ǫue, while the solution ap-

proximately maintains its shape. An exact propagating soliton

solution would have to be determined by methods similar to

those used, for example, in Refs. [4,21]. This is, however,
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FIG. 1. (Color online) Simulation of a propagating soliton with ue = 0.9, up = 0.1, and ǫ = 0.141, using (a) the fluid model Eq. (1),

(b) pNLS Eq. (46), and (c) NLS Eq. (24).

outside the scope of this work, which emphasizes standing

soliton interactions.

B. Standing soliton solutions

Standing soliton solutions of Eq. (54) have the form

a(X,T ) = φ(X)e−iλT , (60)

where the frequency λ is to be determined. A well-known

soliton family of Eq. (54) has the form (see, e.g., Ref. [27])

φ(X,T ) = α sech[α(X − X0)], (61)

where the amplitude α is constant. Substituting Eqs. (60) and

(61) into Eq. (54), we obtain

λ = − 1
2
α2. (62)

Using Eq. (A1) of Appendix A, one may go back to the

original cold-fluid model variables,

Ay(x,t) = C0(x) cos(t − ǫ2α2 t/2), (63a)

Az(x,t) = C0(x) sin(t − ǫ2α2 t/2), (63b)

where C0(x) = 2ǫα sech[ǫα(x − x0)]. Note that the term

−ǫ2α2 t/2 corresponds to the term −ǫ2|k1|2 t/2 in Eq. (10),

which has been included into the envelope. This correction to

ω, therefore, corresponds to slow oscillations of the soliton

envelope, and we may identify α = |k1|.
A connection to exact cold-fluid mode solitons of Esirkepov

et al. [5], which have

Ay = R(x) cos(ωt), Az = R(x) sin(ωt), (64)

where

R(x) =
2
√

1 − ω2 cosh[
√

1 − ω2(x − x0)]

cosh2[
√

1 − ω2(x − x0)] + ω2 − 1
, (65)

can now be established. Taking into account that Eq. (10)

yields

ω2 = 1 − ǫ2 |k1|2, (66)

Ay from Eq. (64) becomes, in leading order in ǫ,

Ay = 2ǫ|k1|sech [ǫ|k1|(x − x0)] cos(t − ǫ2 |k1|2 t/2). (67)

Comparison of Eq. (63a) with Eq. (67), once again shows

that we may identify α = |k1|. The value of |k1| still remains

unspecified, apart from the requirement that |k1| ∼ O(1),

which follows from Eq. (9). For the study of a single soliton,

or interacting solitons of the same amplitude, we may, without

loss of generality, set |k1| = 1, i.e., work with α = 1 in

Eq. (63). Then, the small parameter ǫ in the expansion is

related to ω through

ǫ =
√

1 − ω2. (68)

However, the indeterminancy of k1 in Eq. (67) allows us to

model interactions of solitons with different frequencies (and

therefore amplitudes) using a single small parameter ǫ; see

Sec. V.

C. Quasiparticle approach to soliton interactions

Soliton interactions of NLS Eq. (54) have been studied

through different methods and are well understood, particu-

larly when the separation of the two solitons is large; see,

for example, Ref. [25]. In that case, one may consider the

solitons as “quasiparticles,” i.e., independent entities that exert

a force to one another and to a good approximation maintain

their shape during their interaction [25,40,41] (adiabatic

approximation). One then may approximate the evolution of

the solitons with a set of few coupled ordinary differential

equations for the evolution of the soliton parameters.

A particularly useful perspective is that of Gordon [41],

who shows that within this framework the dynamics of two

solitons may be described by the system of ODEs,

D̈ = −8 e−D cos(�), (69a)

�̈ = 8 e−D sin(�), (69b)

where D(T ) and �(T ) are the soliton peak-to-peak distance

and relative phase, respectively, 1 ± �̇/2 are their amplitudes,

and a dot indicates derivative with respect to T . Therefore, the

solitons exert to each other an effective force with magnitude

that decreases exponentially with distance D and a sign that

depends on their relative phase �.

For the particular case of solitons of equal initial amplitude,

�̇0 = 0, and zero initial phase difference, we see from Eq. (69)

that the force is attractive, while the relative phase remains

zero, leading to the formation of an oscillatory bound state.

A detailed calculation [25,41] shows that the peak-to-peak
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separation varies as

D(T ) = D0 + 2 ln | cos(2 e−D0/2 T )|, (70)

where D0 ≫ 1 is the initial distance. Equation (70) implies

that the time after which the solitons collide for the first time

is [25,41]

Tcoll =
1

2
eD0/2 cos−1(e−D0/2) ≃

π

4
eD0/2. (71)

We note that in scaled variables collision time Tcoll is,

according to Eq. (71), independent of ω. However, when we go

back to units of ω−1
pe and c/ωpe for time and space, respectively,

through Eqs. (45) and (68), we obtain

tcoll =
π

4(1 − ω2)
e

√
(1−ω2) d0/2, (72)

where tcoll = Tcoll/ǫ
2 and d0 = D0/ǫ. For large enough d0, tcoll

decreases for increasing ω. Analytical predictions of Eq. (72)

are compared with numerical simulations in Sec. V.

For solitons of equal initial amplitude, �̇0 = 0, and initial

relative phase �0, the separation versus time reads [25]

D(T ) = D0 + ln

∣

∣

∣

∣

cosh(−κ1 T ) + cos(κ2 T )

2

∣

∣

∣

∣

, (73)

where

κ1 = 4 e−D0/2 sin (�0/2) , κ2 = 4 e−D0/2 cos (�0/2) .

Thus, the solitons eventually drift apart since, as we see from

Eq. (69), the force is not attractive for all T . For large T , after

the solitons drift apart, the soliton amplitudes differ by

|�a| = |a1 − a2| = |4 e−D0/2 cos (�0/2) |. (74)

The minimum peak-to-peak distance is

Dmin = D0 + ln

{

1

2

[

cosh

(

−π tan
�0

2

)

− 1

]}

(75)

reached at time

Tmin =
π

4 cos(�0/2)
eD0/2 (76)

or, in units of ω−1
pe ,

tmin =
π e

√
(1−ω2) d0/2

4(1 − ω2) cos(�0/2)
. (77)

From Eq. (75) one finds [25] that the collision is inhibited for

initial phase �0 > �c, where

tan
�c

2
=

1

π
cosh−1(1 + 2 e−D0 ). (78)

In the case of solitons with different initial amplitudes,

�̇0 = 0, and no initial relative phase, �0 = 0, one finds that

the solitons form an oscillatory bound state, with their distance

oscillating periodically between a minimum and a maximum

distance. Qualitative results can also be obtained for this case

and may be found in Ref. [25].

V. NUMERICAL SIMULATIONS

This section compares numerical simulations of soliton

interactions of the three different levels of description: the

cold-fluid model Eq. (1), the pNLS equation Eq. (46), and

the NLS equation (24). Where appropriate, comparisons of

the simulation results and the quasiparticle predictions of

Sec. IV C are also presented.

We investigate the interactions of standing solitons first

found by Esirkepov et al. [5]. Labeling each soliton by an

index (j ), we have for the cold-fluid model variables

A(j )
y (x,t) =

2
√

1 − ω2
j cosh2(ζj )

cosh2(ζj ) + ω2
j − 1

cos(ωj t + θj ),

A(j )
z (x,t) =

2
√

1 − ω2
j cosh2(ζj )

cosh2(ζj ) + ω2
j − 1

sin(ωj t + θj ), (79a)

E(j )
x (x,t) =

4
(

1 − ω2
j

)3/2
cosh(ζj ) sinh(ζj )

(

cosh2(ζj ) + ω2
j − 1

)2
,

E(j )
y (x,t) = ωj A(j )

z , E(j )
z = −ωj A(j )

y , (79b)

N (j )(x,t) = 1 +
(

1 − ω2
j

)2

×
cosh(4ζj ) − 2 (2 ω2

j − 1) cosh(2 ζj ) − 3
(

cosh2(ζj ) − 1 + ω2
j

)3
,

Px = 0, (79c)

where ζj =
√

1 − ω2
j (x − xj ) and θj is an initial phase. The

soliton amplitude is R
(j )

0 ≡ |A⊥(xj )| = 2
√

1 − ω2/ω2. It takes

its maximum value R0,max =
√

3 for ωmin =
√

2/3, where the

branch of Esirkepov solitons terminates because the minimum

local density vanishes.

In the following, we study interactions of pairs of solitons

with frequencies ω1, ω2 and initial phase difference �0 = θ2 −
θ1, i.e., with initial conditions given by Ay(x,0) = A(1)

y (x,0) +
A(2)

y (x,0), etc. For the density we take care that the boundary

condition N (x,0) → 1 as x → ±∞ is satisfied by using the

initial condition N (x,0) = N (1)(x,0) + N (2)(x,0) − 1.

For the simulations using pNLS Eq. (46), we introduce a

parameter k
(j )

1 for each soliton. We then set |k(1)
1 | = 1, which

fixes ǫ =
√

1 − ω2
1 through Eq. (66), and introduce the soliton

amplitude as αj =
√

1 − ω2
j/ǫ, effectively using the freedom

to choose k
(j )

1 = αj . Then, according to Eqs. (A3) and (A5)

of Appendix A, initial conditions for the soliton centered at

xj = Xj/ǫ are given as

a(j )(X,0) =
αj cosh2[αj (X − Xj )]

cosh2[αj (X − Xj )] + ω2
j − 1

e−iθj , (80a)

∂a(j )

∂T

∣

∣

∣

∣

T =0

=
i α2

j

2
a(j )(X,0). (80b)

Finally, for the simulations with the NLS equation Eq. (54),

we expand Eq. (80a) to lowest order in ǫ, to obtain the NLS

equation soliton

a(j )(X,0) = αj sech[αj (X − Xj )] e−iθj . (81)
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FIG. 2. (Color online) Estimate of the relative error introduced

by neglecting higher-order terms in pNLS Eq. (46). We plot

max [a(x,T ) − a(x,0)] /a(0,0) for solutions of Eq. (46) up to T/ǫ2 =
2 × 104, with initial condition Eq. (80) with x1 = 0. Dots correspond

to ω = (0.999, 0.99, 0.98, 0.97, 0.96, 0.95). The solid line is the best

fit to the data, showing that rel. error ∼ ǫ4.3.

All simulations are carried out with the package XMDS2 [42],

using the pseudospectral method with Fourier space evaluation

of partial derivatives and a fourth-order adaptive Runge-Kutta-

Fehlberg scheme (known as ARK45) for time-stepping. More

details on the implementation are provided in Appendix B. We

validated our fluid code by verifying that a single soliton with

ω1 = 0.98, i.e., of the largest amplitude R
(j )

0 = 0.414 studied

here, follows Eq. (79) up to t = 2 × 104.

Initial conditions, Eq. (80), do not correspond to an

exact soliton solution of the pNLS equation. However, by

integrating such initial conditions up to t = T/ǫ2 = 2 × 104,

we show in Fig. 2 that the relative error introduced by the

choice of initial conditions remains small for the maximum

amplitude considered in the following numerical examples

(corresponding to ω � 0.98).

A. Small-amplitude limit

For small-amplitude solitons we find excellent agreement

between cubic NLS equation, pNLS equation, and cold-fluid

model predictions.

1. Solitary waves of equal amplitude and no phase difference

A typical case in which we have formation of a bound

state of solitons is shown in Fig. 3. In these simulations, both

solitons have frequencies ω1 = ω2 = 0.999, R
(1)
0 = R

(2)
0 ≃

0.0896 (corresponding to ǫ ≃ 0.0447, k
(1)
1 = k

(2)
1 = 1), initial

distance is d0 = 100, and there is no initial phase difference.

The behavior of the exact cold-fluid model solutions is

captured correctly by both the NLS and pNLS equation

models. Therefore, at very small amplitudes, the behavior may

be completely understood in terms of the NLS equation. The

major role in soliton attraction and in bound-state formation is

thus played by the leading term of the relativistic nonlinearity,

i.e., by the cubic term in the NLS equation.

The predictions of quasiparticle theory of Sec. IV C for the

collision time tcoll or the period of oscillations tp = 2 tcoll are in

excellent agreement with fluid model simulations; see Fig. 4.

2. Solitary waves of equal amplitude and finite phase difference

Next, we study the case of two solitons of equal frequency

ω1 = ω2 = 0.999 and amplitude R
(1)
0 = R

(2)
0 ≃ 0.0896 (cor-

responding to ǫ ≃ 0.0447, k
(1)
1 = k

(2)
1 = 1) and a finite initial

phase difference �0 = 0.1π ; see Fig. 5. Also in this case,

we find excellent quantitative agreement between cold-fluid

model, NLS equation, and pNLS equation simulations. The

solitons attract but do not collide, in agreement with quasi-

particle theory, which predicts that collisions are inhibited for

�0 > �c = 0.136. The solitons reach a minimum distance

dmin ≃ 57 at time tmin ≃ 3485 and subsequently drift apart.

Quasiparticle theory underestimates the minimum distance

dmin = 38.2, while the time of minimum approach tmin =
3720 is in good agreement with simulations. According to

quasiparticle theory, Eq. (74), the solitons differ in amplitude

by |�A| = 2 ǫ |�a| = 0.037. This is in excellent agreement

with the NLS simulation, for which the soliton amplitudes

differ at t = 105 by |�A| = 0.036.

3. Solitary waves of unequal amplitude and no phase difference

For solitons of unequal frequences ω1 = 0.999 and ω2 =
0.998, and therefore also unequal amplitudes R

(1)
0 ≃ 0.0896,

R
(2)
0 ≃ 0.127 (corresponding to ǫ ≃ 0.0447, k

(1)
1 = 1, k

(2)
1 ≃

1.4139), with no initial phase difference, as shown in Fig. 6,
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FIG. 3. (Color online) Comparison of simulations of two-soliton interaction with frequencies ω1 = ω2 = 0.999, R
(1)
0 = R

(2)
0 ≃ 0.0896

(corresponding to ǫ ≃ 0.0447, k
(1)
1 = k

(2)
1 = 1) and initial distance d0 = 100 using (a) the fluid model Eq. (1), (b) pNLS Eq. (46), and (c) NLS

Eq. (24).
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FIG. 4. (Color online) Comparison of results of quasiparticle

theory for ω = 0.999 (red, dashed line) and ω = 0.99 (blue, solid line)

with numerical results from simulations of the fluid model (circles and

cross signs, respectively) for the first collision time tcoll for solitons

of equal amplitude and no initial phase difference, as a function of

initial separation d0.

the solitons interact and form a periodic bound state. However,

their separation remains finite. Again, there is excellent agree-

ment between all three levels of description. This behavior can

be also understood in terms of quasiparticle theory of NLS

equation; see Ref. [25].

B. Larger amplitudes

For solitons of moderately large amplitude, but still in

the perturbative regime ǫ ≪ 1, cold-fluid model simulations

deviate from cubic NLS equation predictions and the fifth-

order terms need to be taken into account.

1. Solitary waves of equal amplitude and no phase difference

Figure 7 shows the interaction of two solitons of equal

amplitude with ω1 = ω2 = 0.99 (R0,1 = R0,2 ≃ 0.2879, ǫ ≃
0.1411, k

(1)
1 = k

(2)
1 = 1), separated by d0 = 60, and no initial

phase difference. The solitons collide approximately at tcoll ≃
2800, in good agreement with quasiparticle theory prediction

tcoll ≃ 2717, and they form a bound state. However, contrary

to the prediction of the cubic NLS equation model, collisions

are inelastic and part of the soliton field decays away each time

the solitons collide; see Fig. 8. The bound state is reminiscent

of a system of damped oscillators: after each encounter, the

solitons decrease in amplitude and come closer together. In

turn, this implies that the period of bound-state oscillations

becomes shorter, as predicted by Eq. (72).

This behavior is also captured qualitatively by the pNLS

equation; see Fig. 7(b). However, the pNLS equation overes-

timates the loss of soliton field at collisions and, correspond-

ingly, the period of oscillations decreases with a faster rate

than in the fluid model simulations. These deviations may be

attributed to the breakdown, at the moment of collision, of the

assumptions of small-field magnitude and slow spatiotemporal

evolution. In particular, close to the collision, the spatial scale

for variations in the envelope is a few c/ωpe, indicating that

we should expect quantitative discrepancies between the fluid

and pNLS equation simulations.

The cubic NLS equation approximation on the other hand,

presents qualitative difference in this case. Since cubic NLS

equation is an integrable model, all soliton collisions are

elastic, leading to an exactly periodic bound state of solitons.

Therefore, the inclusion of the fifth-order terms in our analysis

is necessary for a qualitatively correct description of soliton

interactions.

The collision time on the other hand, as predicted by

quasiparticle theory of NLS equation, agrees very well with

fluid simulation results even in this larger amplitude case;

see Fig. 4. The reason for this is that attraction of solitons

is determined by their overlap. For large initial separation

of the solitons, this overlap occurs at small amplitudes.

Moreover, in the limit x → ±∞ the exact soliton envelope

Eq. (80a) takes the form of the NLS equation soliton Eq. (80b).

Therefore, NLS equation approximation is a valid one in order

to determine the initial attraction phase of two well-separated

solitons, even for larger amplitudes.

2. Solitary waves of equal amplitude and finite phase difference

As an example, we show the interaction of two solitons with

ω1 = ω2 = 0.99 (R0,1 = R0,2 ≃ 0.2879, ǫ ≃ 0.1411, k
(1)
1 =

k
(2)
1 = 1) with initial distance d0 = 60 and phase difference

�0 = 0.1 π , in Fig. 9. The fluid simulations show that the

solitons initially approach and then separate, moving in
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FIG. 5. (Color online) Comparison of simulations of two-soliton interaction with frequency ω1 = ω2 = 0.999, amplitude R
(1)
0 = R

(2)
0 ≃

0.0896 (corresponding to ǫ ≃ 0.0447, k
(1)
1 = k

(2)
1 = 1), initial distance d0 = 100, and phase difference �0 = 0.1π , using (a) the fluid model

Eq. (1), (b) pNLS Eq. (46), and (c) NLS Eq. (24).
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FIG. 6. (Color online) Comparison of simulations of two-soliton interaction with ω1 = 0.999, R
(1)
0 ≃ 0.0896 and ω2 = 0.998, R

(2)
0 ≃ 0.127

(corresponding to ǫ ≃ 0.0447, k
(1)
1 = 1, k

(2)
1 ≃ 1.4139) and initial distance d0 = 100 using (a) the fluid model Eq. (1), (b) pNLS Eq. (46), and

(c) NLS Eq. (24).

opposite directions with velocities vL = −0.002 and vR =
0.0021 for the left and right moving soliton, respectively.

The pNLS equation simulations agree with the fluid model

predictions quantitatively, faithfully capturing the velocities

of the outgoing solitons to be vL = −0.0024 and vR =
0.0025. On the other hand, NLS equation simulations exhibit

oscillations in soliton position before the latter drift apart,

a feature not present in the fluid simulations. Furthermore,

the velocities of the outgoing solitons in the NLS equation

simulations are vL = −0.0005 and vR = 0.0007, rather small

compared to the fluid simulations.

Quasiparticle predictions for the distance of minimum

approach dmin and corresponding time tmin are compared with

the results of the numerical simulations in Table I, showing

excellent agreement.

We also present the interaction of two solitons with ω1 =
ω2 = 0.99 (R0,1 = R0,2 ≃ 0.2879, ǫ ≃ 0.1411, k

(1)
1 = k

(2)
1 =

1), initial distance d0 = 60, and very small phase difference

�0 = 10−6 in Fig. 10. In this case, �0 < �c, and indeed

the two solitons do collide. However, after a subsequent

recollision, they diverge and move away from each other.

The pNLS equation simulations capture this feature, even

though the velocities of the escaping solitons are much larger

than in the fluid simulations. However, in the NLS equation

simulations we see that the solitons keep recolliding for many

iterations. Quasiparticle theory predicts that even for small

initial phase difference the solitons will eventually drift apart;

however, from Eq. (73) we find that the time scale required for

this to happen for such a small initial phase difference is of

the order of 109, well beyond the maximum integration time

t = 2 × 105 for which we could simulate the system.

The cold-fluid model conserves the normalized energy,

E = El + Ep + Ee, where

El =
1

2

∫

[

(

∂Ay

∂t

)2

+
(

∂Ay

∂x

)2
]

dx, (82)

Ep =
1

2

∫ (

∂φ

∂x

)2

dx, (83)

Ee =
∫

(γ − 1) n dx, (84)

are electromagnetic, electrostatic, and kinetic energy contri-

butions, respectively. In soliton collisions with a finite phase

difference, energy can be transferred between the two solitons.

We show this in Fig. 11, where we plot as a function of time the

total energy Etot in the computational domain and the energy

EL (ER) in the left (right) half of the domain, for the cold-fluid

model simulation of Fig. 10(a). We find that after the solitons

separate, energy has been transferred to the soliton in the right

half of the domain, while its amplitude has increased.

The results of Fig. 10 indicate that for larger ampli-

tudes, cold-fluid-model-bound states do not persist under
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FIG. 7. (Color online) Comparison of simulations of soliton interaction with frequencies ω1 = ω2 = 0.99, amplitude R
(1)
0 = R

(2)
0 ≃ 0.2879

(ǫ ≃ 0.1411, k
(1)
1 = k

(2)
1 = 1), and initial distance d0 = 60, using (a) the fluid model Eq. (1), (b) pNLS Eq. (46), and (c) NLS Eq. (24).
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FIG. 8. (Color online) Two snapshots from cold-fluid model sim-

ulations of soliton interaction with frequencies ω1 = ω2 = 0.99,

amplitude R
(1)
0 = R

(2)
0 ≃ 0.2879 (ǫ ≃ 0.1411, k

(1)
1 = k

(2)
1 = 1), and

initial distance d0 = 60 [see also Fig. 7(a)]. Dashed (blue) line

corresponds to t = 0; solid (green) line corresponds to t ≃ 10745, i.e.,

at maximum separation after the third collision. The inset corresponds

to the area in the gray box.

perturbations involving phase difference of the two solitons,

leading to qualitative difference from the NLS equation model

dynamics. Figure 12 illustrates that the number of recollisions

between solitons decreases as �0 increases. Such dynamics

has been associated with chaotic scattering of solitons in

the context of a perturbed NLS equation [43]. However,

determining parameters for which chaotic scattering occurs

in our problem is beyond the scope of this work. Figure 12

suggests that truncation error in simulations can lead to the

breaking of a bound state, even when there is no initial

phase difference, as we have observed in Ref. [24]. Therefore,

we have taken care that simulations presented here are well

resolved by checking that varying the spatial resolution does

not affect the results.

3. Solitary waves of unequal amplitude and no phase difference

The case of solitons of frequencies ω1 = 0.99, ω2 = 0.98,

amplitudes R
(1)
0 ≃ 0.2879, R

(2)
0 ≃ 0.4144 (corresponding to

ǫ ≃ 0.1411, k
(1)
1 = 1, k

(2)
1 ≃ 1.4107), initial distance d0 = 30,

and relative phase �0 = 0, is shown in Fig. 13. In this case,

the solitons after some oscillations quickly diverge from each

TABLE I. Comparison of analytical prediction based on quasi-

particle theory and results of numerical simulations of the different

models studied here, for the distance of minimum approach dmin (in

units of c/ωpe) and corresponding time tmin (in units of ω−1
pe ), for

two solitons of frequency ω1 = ω2 = 0.99, amplitude R
(1)
0 = R

(2)
0 ≃

0.2879 (ǫ ≃ 0.1411, k
(1)
1 = k

(2)
1 = 1), initial distance d0 = 60, and

initial phase difference �0 = 0.1π (see Fig. 9).

dmin tmin

Quasiparticle (analytical) 40.5 2751.4

Fluid simulation 39.8 2703.0

pNLS equation simulation 39.7 2682.2

NLS equation simulation 40.0 2688.4

other. Simulations using the pNLS equation faithfully capture

this behavior. On the contrary, NLS equation simulations show

the formation of a bound state of oscillating solitons. We

can therefore conclude that once again we have qualitative

differences between cold-fluid model and NLS equation

soliton interactions, with bound states appearing unstable

within the former model.

C. Cubic-quintic NLS equation approximation

Finally, we show that the qualitatively new features present

in the larger amplitude simulations, may be captured by

keeping only the quintic nonlinearity in Eq. (46), i.e., by the

cubic-quintic NLS equation:

i
∂a

∂T
+

1

2

∂2a

∂X2
+ |a|2a − 3 ǫ2 |a|4a = 0. (85)

We present three different examples of soliton interaction

dynamics under Eq. (85) in Fig. 14. In all cases, there

is agreement at a qualitative level with cold-fluid model

simulations of Eq. (85) of Sec. V B. This suggests that the

“defocusing” quintic term induces the qualitative changes in

soliton interactions. However, obtaining better quantitative

agreement requires keeping all terms in Eq. (46), as in Sec. V B.

VI. DISCUSSION AND CONCLUSIONS

We studied weakly relativistic bright solitons and their

interactions using a perturbative, multiple scale analysis and
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FIG. 9. (Color online) Comparison of simulations of two-soliton interaction with frequency ω1 = ω2 = 0.99 (amplitude R
(1)
0 = R

(2)
0 ≃

0.2879, ǫ ≃ 0.1411, k
(1)
1 = k

(2)
1 = 1), initial distance d0 = 60, and phase difference �0 = 0.1π , using (a) the fluid model Eq. (1), (b) pNLS

Eq. (46), and (c) NLS Eq. (24).
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FIG. 10. (Color online) Comparison of simulations of two-soliton interaction with frequency ω1 = ω2 = 0.99, amplitude R
(1)
0 = R

(2)
0 ≃

0.2879 (ǫ ≃ 0.1411, k
(1)
1 = k

(2)
1 = 1), initial distance d0 = 60, and phase difference �0 = 10−6, using (a) the fluid model Eq. (1), (b) pNLS

Eq. (46), and (c) NLS Eq. (24).

direct numerical simulations. We derived an equation for the

evolution of the field envelope valid for small amplitudes,

keeping terms up to order five in the small parameter.

Localization of the soliton solutions appears naturally in our

scheme through the requirement ω � ωpe, obtained through

the linear dispersion relation. The lowest-order nonlinear effect

is due to the relativistic nonlinearity, leading to a classical

cubic NLS equation. The cubic nonlinearity balances pulse

dispersion, leading to the formation of solitons. However,

higher-order terms, most importantly the quintic term resulting

from the expansion of the relativistic nonlinearity, become

essential at larger amplitudes. In particular, the response of

the plasma to the ponderomotive force and the formation of a

density cavitation, which confines the soliton, is only captured

by keeping fifth-order terms in the small parameter, leading

to the pNLS Eq. (46). At even higher amplitudes, soliton

width becomes comparable to the wavelength of the carrier

electromagnetic wave and the perturbative description breaks

down.

We have demonstrated the utility of the NLS and pNLS

equations derived here by applying them to the problem

of standing solitary wave interaction. We have found that

the lowest-order NLS equation approximation works very

0 2000 4000 6000 8000 10000 12000 14000 16000

t [units of ω−1
pe

]

0.8

1.0

1.2
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1.6

1.8

2.0

2.2

2.4

E

FIG. 11. (Color online) Total energy Etot in the computational

domain (red, dot-dashed line) and energy EL (blue, solid line) and

ER (green, dashed line) in the left and right half of the domain,

respectively, corresponding to cold-fluid model simulation described

in the legend of Fig. 10(a).

well for lower amplitudes but gives qualitatively different

results at higher amplitudes. For well-separated solitons, the

quasiparticle approach provides analytical estimates for the

first collision time and minimum distance of approach of

two solitons. We have found that these estimates are in

very good agreement with fluid simulations, even for larger

amplitudes. The reason for this is that the overlapping part of

well-separated relativistic solitons can be well approximated

by the tails of NLS equation solitons. The effect of higher-order

terms that leads, e.g., to inelastic collisions, only becomes

significant after the solitons have approached each other.

Once the solitons are sufficiently close to each other, the

higher-order terms become important and lead to qualitatively

different results than in the NLS equation. For example, since

the NLS equation is a completely integrable equation, its

soliton collisions are elastic. However, in our fluid simula-

tions we have clear signatures of inelastic soliton collisions

accompanied by emission of radiation. These features are

captured qualitatively by keeping the higher-order terms

in the pNLS equation. We can attribute the emission of

radiation in collisions to the role of the “defocusing” fifth-order

nonlinearity. In cases in which the total amplitude of the

field remains in the perturbative regime, good quantitative

agreement is obtained between the cold-fluid and pNLS

equation simulations. Our study suggests that the collision

time for well-separated solitons can become larger than the

typical response time of the ions (mi/me)1/2 2π /ωpe, where

mi is the ion mass [8], and ion dynamics would have to be

taken into account in future studies.

As we have seen in Fig. 11, one feature of soliton collisions

is the transfer of energy from one soliton to the other during

the interaction. Moreover, it can be seen in Fig. 10 that the

wave on the right-hand side has a larger amplitude after the

collision. This is interesting in connection to wave-breaking of

solitons, which occurs above a certain amplitude threshold and

has been proposed in the past as a means to accelerate particles

[5,19]. Our simulations indicate that soliton interaction is

a good candidate to trigger wave-breaking, through which

electromagnetic energy of the wave could be transferred to

the particles.

The introduction of NLS equation as the lowest-order

approximation to the problem of relativistic solitary interac-

tion allowed the application of quasiparticle theory of NLS
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FIG. 12. (Color online) Cold fluid model simulations of two-soliton interaction with frequency ω1 = ω2 = 0.99, amplitude R
(1)
0 = R

(2)
0 ≃

0.2879 (ǫ ≃ 0.1411, k
(1)
1 = k

(2)
1 = 1), initial distance d0 = 60, and phase difference using (a) �0 = 10−9, (b) �0 = 10−7, (c) �0 = 10−5.

equation solitons in order to obtain analytical estimates

for collision time and minimum distance of approach. The

development of the pNLS equation framework, on the other

hand, suggests the possibility to use further mathematical

tools such as the inverse scattering transform (IST) [25]. For

instance, in the context of Alfvén waves, IST applied to the

derivative-NLS equation was used to explain the collapse of

the bright Alfvén soliton and the formation of robust magnetic

holes [44,45]. The model derived here suggests that the IST

of the NLS equation could be used in a similar manner to

analyze simulations and get insight on the interaction and

disappearance of solitons in laser-plasma interaction.

In summary, a perturbed NLS equation describing elec-

tromagnetic envelope evolution for weakly relativistic pulses

in plasmas has been derived. Auxiliary equations describe

the plasma density, momentum, and electrostatic potential in

terms of the electromagnetic field. The pNLS model agrees

very well with fluid model simulations of soliton interactions.

Our simulations suggest that in the small but finite amplitude

regime the defocusing quintic nonlinearity becomes important

and soliton collisions are inelastic.
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APPENDIX A: RELATION OF FLUID MODEL AND

ENVELOPE INITIAL CONDITIONS

Here, we specify how initial conditions of the cold-fluid

model are related to initial conditions of the pNLS equation.

Letting a = ar + i ai , we note that Eqs. (2a), (2b), and (11),

with the help of a = −i b, give

Ay(x,t) = 2 ǫ [ar (X,T ) cos t + ai(X,T ) sin t] , (A1a)

Az(x,t) = 2 ǫ [−ai(X,T ) cos t + ar (X,T ) sin t] , (A1b)

or

ar (X,T ) =
1

2 ǫ
(Ay cos t + Az sin t), (A2a)

ai(X,T ) =
1

2 ǫ
(−Az cos t + Ay sin t). (A2b)

Setting T = t = 0, we get

ar (X,0) =
1

2 ǫ
Ay(x,0), (A3a)

ai(X,0) = −
1

2 ǫ
Az(x,0). (A3b)
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FIG. 13. (Color online) Comparison of simulations of two-soliton interaction with frequencies ω1 = 0.99, ω2 = 0.98, amplitudes R
(1)
0 ≃

0.2879, R
(2)
0 ≃ 0.4144 (corresponding to ǫ ≃ 0.1411, k

(1)
1 = 1, k

(2)
1 ≃ 1.4107), initial distance d0 = 30, and relative phase �0 = 0 using (a) the

fluid model Eq. (1), (b) pNLS Eq. (46), and (c) NLS Eq. (24).
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FIG. 14. (Color online) Solitary wave interaction using the cubic-quintic NLS equation approximation Eq. (85) for two solitons with (a)

frequencies ω1 = ω2 = 0.99, amplitudes R
(1)
0 = R

(2)
0 ≃ 0.288, and initial distance d0 = 60, as described in the legend of Fig. 7, (b) frequencies

ω1 = ω2 = 0.99, amplitudes R
(1)
0 = R

(2)
0 ≃ 0.288, initial distance d0 = 60, and phase difference �0 = 10−6, as described in the legend of

Fig. 9, and (c) frequencies ω1 = 0.99, ω2 = 0.98 (R
(1)
0 ≃ 0.288 and R

(2)
0 ≃ 0.414), and initial distance d0 = 30, as described in the legend of

Fig. 13.

Using Eq. (10) in Eq. (A2), we arrive at

ar =
1

2 ǫ

[

Ay cos ω t cos

(

|k1|2

2
T

)

− Ay sin ω t sin

(

|k1|2

2
T

)

+ Az sin ωt cos

(

|k1|2T
2

)

+ Az cos ωt sin

(

|k1|2

2
T

)]

,

(A4a)

ai =
1

2 ǫ

[

− Az cos ω t cos

(

|k1|2

2
T

)

+ Az sin ω t sin

(

|k1|2

2
T

)

+ Ay sin ωt cos

(

|k1|2T
2

)

+ Ay cos ωt sin

(

|k1|2

2
T

)]

. (A4b)

Taking the derivative of Eq. (A4) with respect to T and setting

t = T = 0, we get

∂ar

∂T

∣

∣

∣

∣

T =0

=
Az(x,0)

4ǫ
|k1|2, (A5a)

∂ai

∂T

∣

∣

∣

∣

T =0

=
Ay(x,0)

4ǫ
|k1|2. (A5b)

APPENDIX B: NUMERICAL SOLUTION

OF FLUID EQUATIONS

For the numerical solution of the fluid system we chose to

use spectral (Fourier) discretization of the field and plasma

quantities, while time stepping is handled by an adaptive

fourth-order Runge-Kutta scheme. This necessitates the in-

troduction of the components of the electric field, in order to

arrive at partial differential equations involving only first-time

derivatives. Specifically, we write the longitudinal component

of Ampere’s law as

∂Ex

∂t
=

N

γ
Px, (B1)

while the wave equation is split into

∂E⊥

∂t
= −

∂2A⊥

∂x2
+

N

γ
A⊥, (B2)

and

∂A⊥

∂t
= −E⊥. (B3)

The momentum equation yields simply

∂Px

∂t
= −Ex −

∂γ

∂x
. (B4)

Instead of solving Poisson Eq. (1d), we introduce the continu-

ity equation in order to determine the rate of change of density,

∂N

∂t
= −

∂

∂x

(

N Px

γ

)

. (B5)

Finally, using Eq. (1e) we derive an equation for the rate of

change of γ ,

∂γ

∂t
= −

1

γ

[

Px

(

Ex +
∂γ

∂x

)

+ Ay Ey + Az Ez

]

. (B6)
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