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ABSTRACT

Reliability plays a vital role in the overall performance of cellular manufacturing systems 

(CMSs). Machine failures significantly impact the fulfillment of due dates and other performance 

criteria, despite the option of part rerouting to alternative workstations. These facts suggest a need 

for the consideration of machine reliability during the operation allocation process.

Attempting to improve a system’s reliability invariably results in higher costs. It follows that 

the ideal strategy for achieving optimum balance lies in an approach that integrates both cost and 

reliability information. A mixed integer multi-objective mathematical programming model that 

incorporates machine reliability and cost considerations is developed for the design of CMSs. The 

model selects processing route for each part type which maximizes the overall system reliability 

of machines along the route, while minimizing the overall costs. The proposed approach provides 

flexible routing, ensuring high CMS performance by minimizing the impact of machine failure 

through the provision of alternative process routes. To account for the constant and increasing 

failure pattern o f manufacturing machines, the CMS design model considers both the exponential 

and Weibull distribution approaches. A performance evaluation criterion in terms of system 

availability for the part-process plan assignment based on the exponential distribution is also 

developed. Applicability of the model is demonstrated by solving example problems by following 

the G-constraint approach.

Optimization techniques for solving such models for large practical-size problems require a 

substantial amount of time and memory space; therefore, a heuristic, based on the basic steps to 

simulated annealing and solution generation procedure of genetic algorithm is developed. The 

heuristic is evaluated by comparing the solutions generated by the heuristic with the LP relaxation 

solution for the large problems and optimal solution for the smaller-sized problems. The results 

reveal that the heuristic performs well in various problem instances for reliability and cost 

combinations. The sensitivity of the model outputs to key factors has also been investigated

A reliability-based, preventive maintenance (PM) planning model is also incorporated, 

allowing CMS to restrict deterioration of machines due to usage and age and improve system 

reliability. A procedure for the integration of PM planning into the CMS design model is included 

for overall reliability and cost improvement of the CMS. Example problems are solved to 

illustrate the model’s applicability.
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CHAPTER 1 

INTRODUCTION

1.1 Overview

The manufacturing environment and its production processes have changed substantially over 

the past two decades. Today’s markets are characterized by the consumers’ demand for an ever- 

increasing variety of products in smaller quantities. Rather than producing as much product as 

possible with limited options, market characteristics need just-in-time delivery, and customized, 

made-to-order products. To address this challenge effectively, manufacturers must be able to 

improve their efficiency, response time and quality quickly, and with a minimum investment of 

time and capital. Classical manufacturing systems—such as process layout and product layout— 

do not have the ability to respond quickly to these kinds of changes. As a result, manufacturing 

organizations with such systems are under considerable pressure to increase their responsiveness 

and flexibility, decrease set-up time and lower work-in-process inventory—all while maintaining 

an acceptable level of efficiency.

Group Technology (GT) has been recognized as an important, disciplined approach to low- 

volume/high-variety and mid-volume/mid-variety manufacturing. This includes 50 to 75 percent 

of manufactured parts— a number that is likely to increase (Zhao and Wu, 2000). GT is a 

manufacturing concept that seeks to identify and group similar parts, taking advantage of their 

similarities during the manufacturing and design process. GT implements the general philosophy 

that similar tasks should be performed in a similar manner (Askin and Estrada, 1999). Cellular 

Manufacturing is a practical application of Group Technology in which functionally dissimilar 

machines are grouped together to produce a family of parts.

Cellular manufacturing has recently been recognized as an important technological 

innovation for improving both productivity, and competitiveness. Dedicating a machine cell to 

the production of a part family allows much of the efficiency of mass production to be obtained in 

a less repetitive batch environment. Recent and past surveys (Askin and Estrada, 1999; 

Wemmerlov and Johnson, 1997; Wemmerlov and Hyer, 1989) indicate the following motivating 

factors for the implementation of a cellular manufacturing system (CMS):

1. Reduction o f cycle time;

2. Reduction of work-in-process inventory (WIP);

3. Reduction of material handling costs;

1
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4. Reduction of set-up time;

5. Reduction of indirect costs;

6. Reduction of scrap;

7. Improved product quality;

8. Improved shop floor control; and

9. Improved j ob satisfaction.

Although the benefits of CMSs are well documented, and many organizations have 

implemented them in order to benefit from these advantages, CMSs are not without drawbacks 

(Boughton and Arokiam, 2000; Agarwal and Sarkis, 1998; Suresh and Meredith, 1994; Morris 

and Tersine, 1990; Flynn and Jacobs, 1986). The following are the main problems drawn from 

these studies:

1. Cell formation reduces flexibility;

2. Cell formation reduces machine utilization by dedicating machines to cells;

3. Machine break-downs make it difficult for CMS users to meet the due-date;

4. Excessive inventories may result due to the dedication of machines to machine cells.

Some of the most influential factors in CMS performance include the structure of the

machine-part matrix, the stability of the manufacturing system’s product mix and the reliability of 

machines in manufacturing cells (Seifoddini and Djassemi, 2001). Reliability plays a vital role in 

the overall performance of CMSs. Traditionally, cell formation and work allocation are done with 

the consideration that all machines are 100% reliable. However, machines are definitively not 

100% reliable. Machine failures cause the greatest impact on the fulfillment of due dates and 

other performance criteria, even when rerouting parts to alternative workstations is an option.

Machines are a major component of CMSs, and it is often not possible to handle a machine 

failure as quickly as the requirements of the order demand. Delays due to machine breakdowns 

not only affect the production rate, they also lead to scheduling problems— decreasing the overall 

productivity of the manufacturing operation. This issue creates a very important need for the 

reliability consideration of machines in cell formation decisions and during the operation 

allocation process. With increasing system complexity, this requirement has become a critical 

issue in the production planning of CMSs.

In order to minimize such disturbances, cell formation and work allocation can be achieved 

by considering machine reliability. However, considering reliability and ignoring costs can result 

in an increase in cost for an operations sequence. It follows that an optimization approach that 

integrates both cost and reliability considerations may be taken to achieve the best possible 

situation.
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1.2 The Benefits of Cellular Manufacturing

Cellular Manufacturing is a discrete part-manufacturing system. Its main objective is to 

construct machine cells, identify part families and, ultimately, allocate part families to machine 

cells to overcome both the inherent inefficiencies of the job shop, and the inflexibilities of the 

flow shop.

The Job Shop is the oldest and most common type of manufacturing system. A typical job 

shop is characterized by its flexibility, variety of products, general-purpose machine tools, 

manual material handling system and functional layout. In general, job shops are designed to 

achieve maximum flexibility so that a wide variety of products can be manufactured in small lot 

sizes. Lots can be produced only once or at regular intervals, in order to satisfy the continuous 

demand for an item. The general practice in job shops is to produce in order to build the inventory 

for an item, then change to another item to fill other orders. Switching from one product to 

another involves changes in the set-ups of many machines. Machines are grouped functionally, 

according to the general manufacturing process types: lathes in one department, drill presses in 

another, and so forth. It is very common for most departments to have more than one copy of 

each machine. As such, part-processing operations in departments can be continued, despite 

breakdowns or other machine reliability-related issues. Products manufactured in job shops have 

different operations and operation sequences. When the processing of a part in a department has 

been completed, the part is usually moved a great distance for the next stage. Figure 1.1 illustrates 

a job shop. Sometimes the job may have to travel the entire distance of the facility to complete all 

the required processes. The following are the major advantages and limitations of job shops.

Table 1.1: Advantages and limitations of the job shop
Advantages Lim itations

1. Highly flexible in terms o f quantity variation (it can 

handle any lot size) and design variation.

2. Due to functional layouts, nearby machines can easily 

handle the breakdown o f one machine.

3. The potential to manufacture a wide variety o f parts.

1. Highly inefficient in controlling routing patterns.

2. High material handling time and cost.

3. Large in-process inventory.

4. Poor quality.

5. Cannot fulfill due date due to flow imbalance and 

other inefficiencies.

6. Large set-up times.

7. High product throughput time.
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Figure: 1.1: Job flow in a functional or process layout (job shop)

Flow Shops are highly efficient in terms of throughput times, the balanced flow of jobs, 

quality level, material handling time considerations, the elimination of in-process inventory, high 

utilization rate of the machinery and low production costs. A flow shop is organized according to 

the sequence of operations required for a product. Specialized machines dedicated to the 

manufacture of the product are used to achieve high production rates. Flow line machines are 

expensive, so to justify the investment cost, a large volume must be produced. A major limitation 

of the flow line is its inflexibility, a characteristic that makes it impossible to produce products 

for which it is not designed. Figure 1.2 illustrates a flow shop.
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Figure 1.2: Job flow in a line or product layout (Flow Shop)
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The inefficiencies existing in the job shop and the inflexibility of the flow shop—combined 

with external pressures such as technological advancements; economic uncertainties; and market 

pressures for quality, delivery, and customized products—are forcing discrete part manufacturers 

to reevaluate their manufacturing processes (Atmani et al., 1995). The present market calls for a 

manufacturing system that is both flexible and efficient enough to achieve the utilization level of 

mass production while retaining the flexibility of the job shop. This idea has given rise to the 

development of the flexible manufacturing system (FMS). The FMS is an automated system 

consisting o f numerically controlled machines capable of performing multiple functions and 

linked together by an automated material handling system—all controlled by a computer system 

(Groover, 2001). In terms of flexibility and capability, a flexible manufacturing system is the 

most efficient for fulfilling all the requirements of the market. However, it is veiy costly and 

requires a significant financial investment. As a result, it is difficult for small and medium-sized 

organizations to justify an FMS to handle their production quantity within their income level. 

With FMSs lying beyond the reach of small manufacturing companies, these businesses must 

look for other options, and one possible solution is the CMS.

Figure 1.3 shows the logical conversion of the job shop and flow shop to a CMS. This 

reorganization leads to significant advantages, such as a reduction in material handling, 

refixturing and operation costs, as well as an improvement in space utilization and better control 

of quality and performances. Irani et al. (1999) presents the advantages of the CMS in Table 1.2.

1.3 Design of Cellular Manufacturing Systems

The design of cellular manufacturing systems (CMS) is a complex, multi-criterion, multi-step 

process. This problem has been identified as NP-complete in the CMS literature. The design of 

CMSs has been defined as cell formation (CF), part-family/machine cell formation, and 

manufacturing cell design. Given a set of part types, machines, demand for part types, and 

processing requirements, the design of CMSs consists of the following major steps: 

part family formation depending on processing requirements 

grouping of machines into cells 

assigning part families to cells 

After completion of the design steps, a manufacturing cell configuration is created. At this stage, 

it is referred to as a cellular manufacturing system (CMS) which consists of a set of 

manufacturing cells with each cell made up of a group of machines and dedicated to producing a 

part family. The literature regarding CMSs follows different orders for implementing the above
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Table 1.2: Advantages of the cellular manufacturing systems (Irani et al. 1999)

Strategic Advantages:

-On time delivery

-Improved response

-Reduced inventory

-Improved quality

-Improved workflow

-Increased operational flexibility

-Improvements in company culture

-Accountability

-Better equipment utilization

-Job Satisfaction

-Improved information flow

Shop Floor Advantages:

-Speed and throughputs in parts manufacturing and assembly

-Reduced work-in-process and finished goods inventory levels

-Elimination o f  non-value added operations (storage, inspection, and handling)

-Increased capacity by reducing set-up times and encouraging group scheduling o f parts 

-Accurate machine and manpower requirement analysis

-Improved quality by reducing scrap and process variations due to better monitoring o f operations 

-An autonomous team o f workers who manage their own cells 

-Sensible cost centers around each cell’s activities and outputs

-Simplified production and assembly planning and control, scheduling, load balancing and capacity requirement analysis 

-Introduction o f just-in-time manufacturing and lean approach

-Provision o f  manufacturing capacity and schedule information promptly for sale and marketing personnel

steps. Ballakur and Steudel (1987) suggest three strategies based on the approaches used to form 

the part families and manufacturing cells. The following strategies can be used as a basis to 

classify CMS design methods:

1. The part family-grouping solution strategy where part families are formed first, and then 

machines are grouped into cells as per part family.

2. The machine-grouping solution strategy where manufacturing cells are created first 

depending on the similarity of part routings, and then parts are allocated to the cells.

3. The simultaneous machine part-grouping strategy where part family and machine cells 

are formed simultaneously.

During the CMS design process, design objectives must be specified. The design objectives 

are typically to minimize the total sum of inter-cell material handling costs, equipment costs and 

operating costs. The following are the typical costs included in the CMS design objectives, as 

found in the literature:
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1. Equipment costs;

2. Inter-cell material handling costs;

3. Machine relocation costs;

4. Inventory costs;

5. Machine non-utilization costs;

6. Operations costs;

7. Refixturing costs ; and

8. Set-up costs.

These objectives may conflict with each other and, as such, trade-offs may be necessary 

during the design process. For example, equipment costs can be avoided or reduced by including 

inter-cell material handling costs. On the other hand, cells can be created without inter-cell moves 

by increasing the number of machines. In addition to trade-offs, a practical design problem may 

exist in the conversion of the existing workshop into a CMS—considering the available resources. 

For this type of problem, the equipment cost consideration may be replaced by relocation costs, 

etc. Common design objectives in the existing literature include minimizing inter-cell moves, 

distances, processing costs and exceptional parts (parts that need more than one cell for 

processing).

Over and above these objectives, CMS design approaches also consider a number of strategic 

issues such as routing flexibility, machine flexibility, and cell layout in order to improve the 

performance of the CMS in the context of present market changes. Since machine reliability is 

critical to the performance of any manufacturing system (Seifoddini and Djassemi, 2001), another 

important design objective could be to maximize the system reliability of the machines. There is, 

however, very little research available in the CMS literature on the issue of reliability.

Furthermore, all CMS design problems need to satisfy a number of constraints:

1. Machine capacity;

2. Cell size;

3. Operational goals;

4. Machine utilization;

5. Number of cells; and

6. Production volume.

Machine capacity is the basic requirement of CMS design that necessitates the machines’ 

adequate capacity to process all parts. Machine capacity is expressed in terms of the available 

time relevant to a machine during planning for a job order. Since machines are unreliable,

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



effective machine capacity should be estimated by taking into account the total capacity and 

availability.

Cell size is defined as the number of machines (usually the range) allowed in a cell. Cell size 

needs to be controlled for several reasons. Foremost, the space limitation to accommodate the 

machines must be considered. Moreover, the visible control limit of a cell—if it is run by the 

operators—and the feeding capacity of raw materials or tools at the point o f cell location must be 

taken into account.

Operational goals refer to the constraints developed in order to control the technological 

requirements. For example a machine can be in only one cell, a part can be processed by only one 

processing plan and a machine can perform more than one operation, etc.

Two types of machine utilization controls are usually used: the maximum utilization level— 

specified to ensure that the machine is not overloaded—and the minimum utilization level— 

specified to control the inclusion o f new machines.

The number of cells is generally defined in terms of range. This control is used to force the 

model so that it does not form one cell, or too many cells, for fulfilling other requirements. This 

decision is influenced by the total number of machines, working groups, supports and space 

availability.

Production volume is the control used to ensure the production of required volume and 

volume mixes.

Extensive research has been conducted during the last three decades regarding the 

development of effective CMS design approaches. Reviews on these approaches can be found in 

Wommerlov and Hyer (1986); Singh, (1993); Offodile et al (1994); Joines et al. (1996); Selim et 

al. (1998); Agarwal and Sarkis (1998); and Mansuri et al. (2000). According to these reviews, 

CMS design approaches can be classified into the following major types:

Part coding analysis;

Cluster analysis techniques;

Graph partitioning;

Mathematical programming; and

Artificial intelligence along with other advanced methods.

Part coding analysis employs a coding system to assign numerical weights to part 

characteristics using defined classification schemes to identify part families. This system is 

traditionally design-oriented or geometrical shape-based, which means that it is suitable to reduce 

component variety. The part coding system (Groover, 2001) incorporates production-based codes 

as supplemental codes, which can be used for production planning.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Cluster analysis techniques: array-based clustering is the most commonly used technique. 

In this system, the processing requirements of the parts on the machines are represented by a part 

machine incidence matrix. The incidence matrix has zero and one entries (a,y). A one entry in the 

row i and column j  ( av = 1) signifies that part j  has one or more operations on machine i, whereas 

a zero entry indicates that it does not. As per this technique, block diagonal clusters of a,y = 1 are 

created by appropriately rearranging rows and columns in the process of allocating machines to 

groups, and parts to families. Clustering techniques include the similarity coefficient algorithm by 

McAuley (1972), the rank order clustering algorithm by King (1980), and King and Nakoronchai 

(1982), the direct clustering algorithm by Chan and Milner (1982) and the cluster identification 

method by Kusiak and Chow (1987).

Graph partitioning techniques: graph partitioning considers machines and/or parts as the 

vertices, and the processing of parts as the arcs connecting these nodes. These models attempt to 

obtain disconnected sub-groups from machine-machine or machine-part graphs in order to 

identify manufacturing cells. Rajagopalan and Batra (1975) used Jaccard’s similarity coefficient 

and graph theory to form machine groups. Faber and Carter (1986) developed a graph theoretic 

algorithm for grouping machines and parts into manufacturing cells by converting the machine 

similarity matrix into a cluster network. Wu and Salvendy (1999) developed a network model by 

converting a machine-machine graph into cells by considering its operation sequence.

Mathematical programming techniques : these methods deal with practical issues such as 

machine utilization, machine capacity, the consideration of various costs and safety factors, the 

upper and lower bounds of machine cells, the size of each cell, intercellular material movement, 

etc. Mathematical programming techniques can be further classified into linear programming 

(LP), linear and quadratic programming (LQP), dynamic programming (DP), and goal 

programming (GP). Typical examples of mathematical programming techniques can be found in 

Wicks and Reasor (1999), Sofianopoulou (1999), Heragu and Chen (1998), Chen (1998), Askin 

et al. (1997), Atmani et al. (1995), Lashkari and Kasilingam (1990).

Each of the above approaches has its advantages and limitations. Cluster analysis and graph 

partitioning techniques for cell formation are easy to understand and implement, but they do not 

consider practical design issues such as machine capacity, product demand, etc. (Chen and 

Heragu, 1999). Mathematical programming approaches take into account most of the reality of 

the design requirements, but they have the drawback of requiring high computation times for 

large-sized problems. Obtaining optimal solutions by solving mathematical programming 

problems sometimes becomes infeasible due to the combinatorial complexity of the CMS design 

problem (Selim et al., 1998). To overcome this limitation, heuristic procedures are developed to
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provide reasonably good solutions within an acceptable amount of time, and with the use of 

reasonable computational resources.

Two types of heuristics are available in the literature. One type is the problem-specific 

heuristic, which cannot be applied to solving other design models. The second type is meta­

heuristics, which can generally be applied to solving most problems. These meta-heuristics 

include genetic algorithms, simulated annealing, tabu search, ant colony, etc. Examples of these 

heuristics being used advantageously can be found in studies by Venugopal and Narendran 

( 1992), Vakharia and Chang (1997), Asokan et al.(2001), Uddin and Shankar (2002).

1.4 Limitations of Existing CMS Design Models

In this section, three major limitations in the existing CMS design and planning processes are 

discussed. The first is the lack of machine reliability consideration in the design to improve and 

maintain the effective performance of the system. The second is the lack of routing flexibility 

consideration when solving machine breakdown problems. The third is the lack of effective 

maintenance consideration regarding the machines in the CMS planning.

Most of the existing CMS design research considers cost factors, strategic factors and various 

technological requirements for developing a design. Implementations of CMSs by modem 

manufacturing industries center on the desire to achieve higher machine utilization, fulfillment of 

due-dates, cost effectiveness, flexibility and other performance goals. Machine breakdowns have 

the greatest impact on overall CMS performance by affecting due dates, product costs and other 

manufacturing aspects. To reduce the probability of machine breakdowns and improve the overall 

performance of the system, machine reliability should be integrated as a major performance factor 

in the design of CMSs.

Modem manufacturing machines are capable of performing more than one type of operation. 

As such, routing flexibility is almost an inherent quality that presents alternative process plans to 

the system. Existing CMS design research incorporates routing flexibility to achieve better 

utilization of machines, reduction of costs and improved cell configuration. However, current 

CMS design approaches often fail to address the fact that routing flexibility may also be utilized 

for solving machine non-availability situations.

Machines constitute the lion’s share of a CMS’s capital investment. Any dynamic 

manufacturing organization should develop preventive maintenance planning to restrict the 

deterioration of machines and improve their reliability. In a CMS the requirement is more 

prominent, because most of the machine cells are dedicated to a part family and a cell may have 

only one machine of each type. In addition, a CMS is a multi-machine situation imitating a line
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production system in relation to part-processing steps. Unplanned breakdowns in a CMS will halt 

the entire system and degrade its overall performance. The incorporation of appropriate 

preventive maintenance measures in the planning of a CMS may be considered one of the most 

important requirements in the modem manufacturing sector.

1.5 Research Objectives

The basic objective o f this research is to incorporate machine reliability considerations into 

the planning framework of cellular manufacturing systems. The development of a CMS design 

that considers machine reliability in combination with cost and other factors will be able to fulfill 

industry expectations, as well as overcome limitations mentioned in recent research. As such, the 

CMS design model of this research considers system cost and system reliability simultaneously. 

Most of the reliability-related studies use exponential distribution for machine reliability analysis, 

because exponential distribution is mathematically tractable. Weibull distribution is a versatile 

approach that has also been used in the literature for analyzing the increasing, decreasing and 

constant failure rates o f machines and systems. In this research, we include both exponential and 

Weibull distribution models to analyze machine reliability for cellular manufacturing systems. 

The research also focuses on the development of a preventive maintenance model for CMSs. To 

summarize, the objectives of the research are as follows:

1. To provide reliability analysis of the CMS machines by using the exponential distribution 

approach and the Weibull distribution approach.

2. To consider alternative part processing plans in CMS design models with the goal of 

rerouting the parts in the case of machine failure.

3. To develop a multi-objective, mathematical model for reorganizing job shops and flow 

shops into cellular manufacturing systems while minimizing system costs and 

maximizing system reliability.

4. To develop a performance evaluation model for the cellular manufacturing system and 

incorporate the performance model into the multi-objective CMS design model.

5. To develop a preventive maintenance model to improve system reliability and 

maintenance-related costs.

6. To develop an optimal solution procedure using an available software package.

7. To develop a heuristic approach to reduce the computational times for large problems.
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1.6 Organization of the Dissertation

The remainder of the dissertation is organized as follows: Chapter 2 describes general 

reliability criteria in the design and analysis of CMSs, the development o f a reliability objective 

considering machine reliability to follow the exponential distribution and the Weibull distribution 

and a performance evaluation model for CMSs based on the exponential distribution. Chapter 3 

contains a review of the relevant literature on the design of cellular manufacturing systems—with 

and without consideration of reliability, the existing literature related to multi-equipment 

maintenance planning and the motivation and methodology of the proposed research. Chapter 4 is 

divided into four sections. The first section presents definitions, assumptions and a problem 

statement for the multi-objective CMS design model. The second section includes a multi­

objective CMS design model and performance evaluation criteria using machine reliability 

considerations based on the exponential distribution. The third section offers a multi-objective 

CMS design model using machine reliability considerations based on the Weibull distribution 

with numerical examples given in sections two and three to analyze the applicability of the model. 

The fourth section presents a large-sized example problem to further illustrate the applicability of 

the models. Chapter 5 develops a heuristic to solve the multi-objective CMS design models for 

large practical-size problems and illustrates the heuristic by solving examples. Chapter 6 includes 

a sensitivity analysis of the model solutions for possible changes in the key factors. Chapter 7 

develops a reliability-based preventive maintenance planning model for CMSs, integrates the 

preventive maintenance planning policies into the CMS design and illustrates the procedure with 

numerical examples. The final chapter discusses the results, conclusions and contributions— 

including suggestions for future research.
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CHAPTER 2 

RELIABILITY ANALYSIS IN THE 

DESIGN OF CMSs

2.1 CMS and Machine Reliability

While dedication of machines and part families to manufacturing cells does provide many 

advantages (see Table 1.2), it also decreases scheduling flexibility—especially in the case of 

machine breakdowns. This is because in functional layouts, the proximity of identical machines 

makes the rerouting of parts in the event of machine failure an easy exercise. The same task in 

cellular manufacturing leads to intercellular transportation, which goes against the very 

foundation of independent machine cells. Consequently, reliability changes have a more profound 

impact on cellular manufacturing systems than on job shop manufacturing systems (Seifoddini 

andDjassemi, 2001).

The reliability model for machines in a cellular manufacturing system is a series 

configuration. In the case of job shops, even though the system configuration is parallel, the 

machines are still visited in a serial fashion, and there are more process routes for processing of 

part types. Figures 2.1 and 2.2 show the general reliability structure for machines in CMSs and 

job shops, respectively:

Parts

 ̂ r
Finished part

Lathe Mill Grinder

BroachInspection

Figure 2.1: Series reliability configuration in CMSs
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Figure 2.2: Parallel reliability configuration in the job shop
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The two types of configurations for the same system reliability level illustrate that a CMS 

demands much higher reliability for individual machines (Ebeling, 1997).

Figure 2.1’s simple reliability configuration explains the reliability approach taken for 

processing a job in a CMS, but it does not explain the complexity of the reliability in real cellular 

manufacturing. This is because the CMS

1) can produce part types in flexible routing and plan different machine routes for 

different parts;

2) simultaneously produces more than one part in different process plans; and

3) can have more than one throughput rate during any time period for part types. 

This happens due to the way process plans are changed in an effort to handle 

disturbances within the planning period.

When these points are considered in detail, it becomes very clear that to get optimum 

performance from the CMS, machine reliability should be integrated into CMS design. This study 

considers all machines to be unreliable. The CMS design approach that utilizes routing flexibility 

provides the option to change the process plan assignment in the event of machine breakdowns. 

In addition, one can try to select the processing route for the part types that have the highest 

system reliability for the machines along the route. The combination of these two aspects allow 

the CMS to react to internal disturbances in an efficient way by keeping the probability of failure 

at the lowest possible level, and by changing the process plan assignment when machine 

breakdowns occur. Since reliability considerations alone may not develop an optimum cell 

configuration in terms o f cost, the cell formation decision should also include processing costs 

and resource utilization costs—combined with the other priorities of the user. Therefore, by 

integrating machine reliability with the existing design factors (cost, time, capacity, etc.), the 

designer can target an optimal process plan assignment with a more reliable set of machines and 

cost trade-offs to fulfill due date and other priorities of the business process. Implementing these 

approaches will improve most of the existing drawbacks of CMSs.

Achieving high reliability in CMSs is both complex, and difficult. Following the system 

reliability approach as described by Tillman et al. (1980), reliability can be improved by

1) reducing the complexity of the system;

2) increasing the reliability of the constituent components through product 

improvement programs;

3) using structural redundancy; and

4) planned maintenance and repair schedules.
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These system reliability approaches are not easily applied in CMSs. The steps of reducing system 

complexity and increasing the reliability of constituent components are most applicable to the 

design phase of the machines, and as such, are not relevant during the cell formation phase. 

Consideration of redundancy allocation to machines is also not a viable approach as machines are 

the most costly component in a manufacturing business. Planned maintenance and improvements 

to machine reliability by modification are part of the continual improvement process necessary to 

an ongoing manufacturing business. As such, the basic approach of the CMS is to plan for 

achieving optimum reliability and cost considering the reliability status of the existing machines 

during the development of the system design.

2.2 Machine Reliability Related Functions

2.2.1 The Reliability Function

The reliability function R (?) in the context of machines can be defined as the probability that 

the machine will perform its function over a given time period ?. The reliability function is given 

by:

R(f) = Pr{ t < T)  (2.1)

where T is the continuous random variable to be the time to failure of the machine, T>0, R (?) >0, 

R (0) =1, and l im ,^  R(t) = 0 .  For a given value o f ?, R (?) is the probability that the time to 

failure is greater than or equal to ?.

2.2.2 Failure Distribution Function

If we define:

F{t) = 1-  R(t)  = Pr {T < ?}  (2.2)

where F(0)=0 and l im ,^  F(t)  = 1, then F(t) is the probability that a machine failure occurs

before time ?, and F(t) is defined as the cumulative distribution function (CDF) of the failure 

times for machines. The p d f  (probability density function) for the failure distribution is defined 

by :

— (2„
at at

oo

where/(? ) 2d) and j f ( t ) d t  - 1
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2.2.3 Hazard Rate Function

The hazard rate or the instantaneous failure rate X(t) is defined as the failure per unit time 

(failure rate). The hazard rate function is represented by the following equation:

A(t) =  (2.4)
R(t)

A hazard rate function uniquely determines a reliability function by the following functional 

relationship, which is derived by using (2.3) in (2.4):

M t ) = m = z d m j _
* ( r )  dt Rd t

After integrating, the reliability function simplifies to the following equation:

R ( t )  = exp[ -  I" A ( t )d t ]   (2.5)JO

2.2.4 Reliability Function for Exponential Distribution

By assuming X (t) = X, t>0, X>0, the reliability function for the exponential distribution or 

constant failure rate model can be obtained from equation (2.5) in the following form:

R(t)  = e x p [- / l /] , t>0  (2.6)

2.2.5 Reliability Function for Weibull Distribution

The Weibull distribution may be used to model both increasing and decreasing failure rates, 

as well as constant failure rates. Machine reliability function in the Weibull distribution is 

represented by the following equation:

/?(/) = e x p [ - ( V ]   (2.7)
U

where t = time period under consideration,

0 is the characteristic life and 

P is the shape parameter.

P > is considered for increasing failure rate 

P<1 is considered for decreasing failure rate and

when p=l, exponential reliability function results with mean life 0 = 1/X.

2.2.6 The Bathtub Curve

The bathtub curve is the most basic model used in reliability engineering to model various 

failure rates during the lifetime of a product or machine. Machines or systems having this hazard- 

rate function experience three distinct periods as shown in Figure 2.3. They experience
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decreasing failure rates early in their life cycle (burn-in period), followed by a nearly constant 

failure rate (useful life) period, followed by an increasing failure rate during the wear-out period.

Burn-in period
Decreasing 
Failure rate

W ear-out period
Increasing 

Failure rate
Useful life 
(Nearly constant 
Failure rates)

Nci

Time

Figure 2.3: The bathtub curve (hazard rate function over machine life)

Machine reliability analysis for the burn-in and wear-out periods may be represented by using 

the Weibull distribution and that for the useful life period (tl to t2) by the exponential distribution. 

During the useful life period, failures are random, and this is the only region where exponential 

distribution is valid. The burn-in period is quite short and is spent as a test-run period with the 

goal of removing various defects developed during the manufacturing of the machines (poor 

quality control for components, poor workmanship, defective parts, cracks during assembly, etc.). 

The wear-out period for machines arises due to aging, friction, cyclical loading, and fatigue. The 

wear-out period’s effect on production machines can be reduced by preventive maintenance, 

modification, and parts replacement.

This dissertation addresses the reliability considerations of CMSs using two approaches:

1) exponential distribution; and

2) Weibull distribution.

2.3 Machine Reliability Analysis Based on Exponential Distribution:

2.3.1 Machine Availability

Practically all machines can be considered unreliable or reliable with a reliability mark. 

When a machine is up, it produces; when a machine is down, it waits for repair. The machine 

reliability mark/definition in a manufacturing situation is generally represented by its availability. 

Availability is the probability that a system or component is performing its required function at a 

given point in time or over a stated period of time when operated and maintained in a prescribed
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manner (Ebeling, 1997). Availability may be interpreted as the probability that the machine is 

operational at a given point in time or during a percentage of time over some interval in which the 

machine is operational. Availability measures consist of the following types, irrespective of the 

distributions:

1) Point Availability: The point availability or instantaneous availability A (t) at time t>0 is 

the probability that the machine/system is functioning properly at time t.

1 t r2) Average availability A ( T )  = —  A ( t ) d t   (2.8)

over time [0, T\. It can be generalized into interval availability between to t2.

Ah_u = - A — l ‘'A( t )d t   (2.9)
t 2 '

3) Steady state availability A = l im ^ ^  A(T) . We can define it as Inherent Availability :

Anh =  c A T )  = ------ ---------------  ---------- ( 2 . 10)
h M TBF + MTTR

where MTBF and MTTR are the mean time between failures, and the mean time between repairs.

Inherent availability is based solely on the failure distribution and repair time distribution of

machines.

In a manufacturing environment, machine states are dynamic, and the probability of a 

machine being in an operative or inoperative state changes with respect to time, depending on 

repair, maintenance, and modifications. Therefore, in a CMS design, machine availability must be 

taken into account to determine the effective machine capacity during the cell formation and 

operation allocation processes. The most common approach for machine reliability representation 

is the Markovian model (Sulliman, 2000; Savsar, 2000; Diallo, 2001; Seifoddini and Djassemi, 

2001). In this research, the appropriate model used to study the dynamic behavior of CMSs is a 

discrete state continuous time Markov process, assuming exponential distribution for machine 

failure and repair times and independence of the failure modes. The following is a brief 

description of the key concepts related to reliability/availability of machines in a CMS 

environment.

The simplest availability model with a repair rate r  and failure rate k for a single machine can 

be found by analyzing the transition diagram of the Markov process, as depicted in Figure 2.4:

2

1 2
r

Figure 2.4: Rate diagram for a single machine with repair (Ebeling, 1997)
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The following are the equations for the rate diagram:

^ l  = -AP](t) + rP2(t) 
at

p,(0 +  p2(0 =  i
(2 .11)

(2 .12)

Solving equations (2.11) and (2.12) yields

r + A r + A
- U + r ) l . (2.13)

State (1) in Figure 2.4 is the available state for the machine, and A (t) =Pj (t) is the point 

availability for this system. This provides the probability that the machine is in an operating state 

at time t. If machine j  is considered at time t, the point availability equation can be stated as per 

the following:

2.3.2 Machine Reliability Corresponding to a Process Plan

A number of research works on CMS design (Jeon et al., 1998; Seiffoddini and Djassemi, 

2001; Diallo et al., 2001) have considered alternative process plans to handle machine 

breakdowns. To achieve this objective effectively, the reliability of the different machine routes 

for each part type needs to be determined. Of the available machine routes, the one with 

maximum system reliability may be assigned to the part to reduce the probability of breakdowns 

during the processing period.

To examine the concept of machine reliability corresponding to a part type-process plan 

assignment, we consider a manufacturing cell consisting of 5 machines processing 4 part types, as 

represented in Table 2.1. Each part type may be processed using either o f the two process plans 

available, and each operation of a part type under a given process plan may be performed on one 

or more machines, giving rise to a number of machine routes (or processing routes). For example, 

part type 1 may be processed using any of the 8 processing routes as shown in Table 2.2, where 

each route is identified by a 4-digit number as (part type, process plan, and processing route #). 

Thus, processing route 1203 represents (part type 1, process plan 2, and processing route 03), 

and the system reliability corresponding to the machines along this route is:

(2.14)

The interval or mission availability for machine j  between times and t2 may be stated as follows
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R s (\203) = R4( T )R 3(T)R{(T)   (2.16)

Table 2.1: A typical routing table for a cell with 4 part types and 5 machines

P art types Process plans O perations
1 2 3

1
1 M3, M2 M4, M5

2 M2, M4 M3 M l, M4

2
1 M2 M4, M5 M3

2 M l, M3 M2 M5

3
1 M l, M4 M3, M2 M2

2 M4, M5 M2, M4 M l ,M3

4
1 M l, M3 M2, M4 M5

2 M4, M5 M l M4

Table 2.2: Processing routes for part type 1 in Table 2.1

Processing route num ber Machine Sequence in Processing route
1101 M3-M4
1102 M3-M5
1103 M2-M4
1104 M2-M5

1201 M2-M3-M1
1202 M2-M3-M4
1203* M4-M3-M1
1204 M4-M3-M4

where Rj(T) is the reliability of machine j  at time T. Assuming that machine failures are 

exponentially distributed, the machine reliability is:

R j (T) = E X P (-A j )T   (2.17)

where Xj is the failure rate of machine j ,  and the system reliability equation becomes:

i?s (1203) = E X P (-  £  XjT)   (2.18)
76(1,3,4}

which may be written as:

— !— =  X  VIn 7?, (1203) J

Since T, the planned time period, is common to all the machines under consideration, the above 

equation can be expressed as
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  -------- * -  = V  1 =  U R „  --------- (2.19)
In i? ,(1203) T jJ tx 4l '  12

LIR.12 is defined as the system failure rate corresponding to machines M l, M3, and M4 along the 

processing route for the part-process plan combination (12). Obviously, the minimization of LIRip 

values through the selection of machines and process plan assignments would lead to an optimum 

level of overall reliability for CMS.

2.4 Performance Evaluation of Cellular Manufacturing Systems

A major consideration in designing a manufacturing system is its performance (Zakarian and 

Kusiak, 1997). One factor that has a major influence on system performance is the unscheduled 

downtime of machines. Typically, failure of one machine in a CMS does not result in complete 

system failure, but it affects the system performance level significantly for the following reasons: 

All the parts that were planned to be processed on the failed machine need to be rerouted if 

alternative routes are available.

If alternative routes do not exist, the parts have to wait for the machine until it is repaired 

and the subsequent operations will have to be halted while the repair process is underway. 

Often, this causes a chain reaction, reducing the utilization of subsequent machines and 

causing due date delays.

Because of the complexity of CMSs, the designer and user might be interested to know and 

verify the performance o f the system to initiate preventive and/or improvement steps. The 

Markov approach is used extensively for performance evaluation modeling of manufacturing 

systems because of its simplicity and efficiency (Liu andYuan, 2001; Zakarian and Kusiak, 1997; 

Ram and Vishwanadham, 1994; Albino et al., 1990). This dissertation employs the Markov 

modeling approach for the evaluation of system availability as the performance index of the CMS.

2.4.1 The System Availability Model

The following assumptions will be included for the development o f the system availability 

model:

1. Each machine has independent repair and failure modes.

2. Time to failure and time to repair follow exponential distributions.

3. For each machine, there is a maintenance history file in which MTBF, and 

MTTR and other failure and repair related information is available.
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The system availability corresponding to a part type-process plan combination is the steady 

state probability of the machines required for that combination to be in operating condition. These 

steady state probabilities will be computed using a Markovian approach explained below.

In a cellular manufacturing system with m machines, the state of a machine j  may be 

represented by the set 5, = {0,1}, j  =l,2,...,m, where 1 indicates that the machine is “up”, and 0 

indicates that the machine is "down. ” Therefore, the CMS states may be defined by the set:

W = {wi, w2, .. ., wN},  (2.20)

where each element wk= {Si, S2,... 5m}, k=l,2,...,N, and N=2m.

In our example of the cell with five machines there would be N= 2s = 32 states. As time goes

on, the state of the cell changes, depending on whether a machine fails, or a repaired machine

returns to work. We may represent such state changes using transition probabilities, Pw w , of

going from state wk to state w/. Assuming that the transition probabilities are stationary, and that 

the individual machine states are independent, we can compute all the Pw w terms, then describe

the transition probability matrix TM. Suppose states 1 and 5 are defined by : 

wi = {1,1,1,1,1} andwj = {1,1,0,1,1}

Thus, a transition from w, to w5 implies that machine 3 has failed, and the corresponding 

transition probability is:

P  = P u'“ x P u u. x P ui  x P u’u, x P u'“H’jH's *  y=l y=2 7= 3  7 = 4  j = 5

where P J^  is the probability that machine 3 makes a transition from "up" to “down” in a short 

time period, At. and in general P  is defined aswkw,

^ = n ^ (o -— (2.2D
j=1

where wh wi are the states k  and / of the cell. Sjfk) and S/1) are the states of machine j  at cell 

states k and /. State of the machine can be up (u=l) or down (d=0) at cell states; therefore, as 

explained previously, S/k) and S/l) ={0,1}. We may represent the transition probability matrix 

TM in terms of P^ w in the following way. It is an N x N matrix, where N  indicates the number

of cell states. As discussed for a 5-machine cell, the number of states is (25) =32 and they are 

given as 11111, 11110, 11101, 11100 ...00001, 00000. Following the Markov chain model, the 

manufacturing system makes a transition from one state to another according to the transition 

probabilities during its manufacturing lifetime. These transition probabilities can be estimated 

from the maintenance file data of each individual machine.
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Wi W2 WN
Wj pw,w, Pw ,> v 2

P
w i w jv

w2 P
W 2W | pW2W2 pw2w„

WN p
W „ W | PwNw2 p

w N w n

TM =

Let the steady state probability vector

where ,7iŵ .... are steady state probabilities for the cell states wl,w2. 

of Markov chain analysis:

V = Vx TM
which results in the following equations:

tc. +.......P n
IV, *  W .W , W | w2 w , WxiW, WN

7 1 71 + ^>W2W27!'-Ml^ ....... ^  77

 (2 .22)

.From the approach

 (2.23)

n v/N ^  ^ w ,  +  P Wik n 7 1 w +  n v>n

while the normalizing equation is

n  +71 +7Z  71 =  1w. w7 W-, WN

(2.24)

(2.25)

• (2.26)

From these systems of equations 7tVi, k =1, 2 ... .N  values can be calculated.

Now system availability (SA) for a part type i for the selected process plan p  can be given:

SAip is the summation of steady state probabilities of the cell states where the relevant machines 

needed for performing the required operations on part type i, as per selected process plan p, are in 

the up condition.

In our example above, according to the selected processing route, part type 1 under process 

plan 2 needs machines 1, 3 and 4 to perform the required operations, and the relevant cell states 

are: 11111, 11110, 10111, and 10110, and the system availability corresponding to this part type- 

process plan combination, therefore, is:
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£ 4 (1 2 )- ^ ( l i m  ) +  ^ ( i i n o  ) +  ^ ( i o n i  ) +  ^ (10110 )•

System availability evaluates the percentage of time the relevant machines required for part types 

under a selected process plan are in up condition.

2.5 Machine Reliability Analysis Based on Weibull Distribution

2.5.1 Machine Availability

Definitions in relation to point availability, interval availability, average availability and 

inherent availability as described under section 2.3.1 are the same for all types of reliability 

distributions. The CMS design model based on Weibull distribution estimates effective machine 

capacity by considering inherent availability as the relevant availability model.

2.5.2 Machine Reliability Corresponding to a Process Plan

Exponential distribution has been demonstrated to provide good approximations of machine 

failure distribution when the failure rate is constant, and, as such, is widely used in the literature 

(Yazhou et al. 1995; Hariga, 1996; Savsar, 2000; Diallo et al.2001; etc.). However, the Weibull 

distribution approach is considerably more versatile than the exponential distribution, and can be 

expected to fit many different failure patterns (Ireson et al., 1995). It has the advantage in 

reliability analysis of being able to adjust distribution parameters in order to address increasing, 

decreasing, and constant failure distributions. Abernathy (1996) mentions examples of machine 

tools and other engineering problems solved with Weibull analysis. Dai et al. (2003) conclude 

that the data on the distribution of time between failures for machine centers follow the Weibull 

distribution. Motivated by these discussions and conclusions, this research has developed a 

machine reliability analysis along the part processing route with the Weibull distribution 

approach.

The typical routing table (Table 2.1 in section 2.3.2) provides an example of number machine 

routes available for a part type. Taking a similar approach to section 2.3.2, system reliability for 

the machines along the part processing route 1203 (Table 2.2) is reproduced below:

R s (1203) =  R 4 ( m ^ R ,  (T)   (2.26)

The Weibull reliability function for machine j  is defined:

i ? , ( r )  = e x p [-(  ]  (2.27)
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where T= time period for the part time under consideration,

6j is the characteristic life for the machine j  and 

Pj is the shape factor for the machine,

Pj > 1 is used to consider increasing failure rate and

pj <1 is used to consider decreasing failure rate analysis

when Pj=l, exponential reliability function results with mean life 9j = 1/L

Shape factor value can be evaluated by studying and analyzing the failure data for the type of 

machine/components under consideration. In this research, the Weibull distribution is used to 

analyze an increasing machine failure rate.

The MTBF and MTTR data can be obtained from the maintenance files of manufacturing 

organizations. We assumed that MTBF for all the machines under consideration are known. As 

per the Weibull failure model:

MTTF can be considered equal to MTBF for a repairable system when complete samples 

(failures) are analyzed for the estimation of MTTF (Abernathy, 1996). For this study, we also 

assume that MTTF equals to MTBF.

System reliability equation (2.26) for the part processing route 1203 can be represented 

by the following equation by considering the Weibull reliability function for machine j:

R s (1203) = e x p H ^ ) *  ] x e x p [ - (^ - )A ] x e x p [ - ( ~ ) A ] 
U\ v3

(2.29)

The equation can be simplified as:

i?s (1203) = e x p [ - { ( ^ ) ^  + A a }]
u3 v 4

(2.30)

The equation can be further simplified as per following:

(2.31)

Expressing 9 in terms of MTBF and /?:

MTBFj
(2.32)

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the equation takes the form:

/

-  (2.33)
MTBFj

LIR12 is the inverse of system reliability for machines M l, M3 and M4 along the part processing 

route for part typel and process plan 2, in the natural logarithmic scale. It may also be explained 

as the cumulative number of failures for the machines along the part processing route during the 

time t. Minimization of LIRip will increase the system reliability of the machines along the part 

processing routes for the combination (ip).

It may be noted that LIRip is the measure of system reliability for the machines along the part 

processing route, both in the exponential distribution and in the Weibull distribution based 

approaches as presented respectively in section 2.3.2 and in this section. The measure (system 

reliability) is computed as the system failure rate in section 2.3.2 when machines are assumed to 

follow constant failure rates, and it is evaluated in terms of the inverse of system reliability in this 

section expecting machines to follow the increasing failure rates in the Weibull distribution based 

approach.
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CHAPTER 3 

LITERATURE SURVEY

3.1 Scope

In an effort to remain within the scope of this dissertation, the literature review in this chapter 

focuses on the effects of machine reliability on existing design approaches and recently 

developed methodologies of cellular manufacturing systems. Having discussed the impact of 

reliability and design methodologies on the performance of cellular manufacturing systems in 

many relevant ways, we must now provide a comprehensive review of these effects. The relevant 

aspects of the advanced techniques and solution procedures are highlighted in this chapter in 

order to focus on their usefulness in resolving the complexity of mathematical programming 

models. This study focuses solely on the review of mathematical programming techniques 

because a CMS design approach utilizing this technique provides a basis for considering most 

practical manufacturing issues. We do not cover layout, scheduling, flow balancing, product 

quality, maintenance management systems, or labor-related aspects. The purpose of this review is 

to provide the necessary background for the model developed in this dissertation.

The survey of literature is divided into two main sections, each of which has a major impact 

on defining and solving the problem. The first section deals with cell formation and work 

allocation, while the second section includes literature on reliability consideration. Significant 

research studies will be reviewed by highlighting the following salient features (see tables 3.1 and 

3.2):

Factors considered by the research 

Modeling descriptions 

Objectives of the study 

Major findings

Relevance of the research to this study

In addition to the main sections listed above, a small sub-section covers significant literature 

that addresses multi-component/multi-unit maintenance planning. The review of these studies 

focuses on preventive maintenance and maintenance planning-related aspects of manufacturing 

environments similar to CMSs.
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3.2 Cell Formation and Operation Allocation

Cell formation is one of the basic problems in the design of cellular manufacturing systems 

(Heragu and Chen, 1998). Diallo et al. (2001) consider cell formation to be both an important 

issue, and a complex optimization problem. It is also believed to be the central issue in group 

technology (GT) applications (Spiliopoulos and Sofianopoulou, 1998). This research aims to 

develop a mathematical programming technique for CMS design, as well as a procedure for 

solving large problems using a simulated annealing-based algorithm. Therefore, following the 

scope and area of interest for this study, this review will be limited to the recent literature on 

CMS design by mathematical programming techniques and advanced techniques such as Genetic 

Algorithm, simulated annealing, tabu search, neural networks, and fuzzy logic.

3.2.1 Cell Formation by Mathematical Programming Techniques

These methods deal with practical issues such as machine utilization and capacity, cost 

considerations, safety factors, upper and lower bounds for the number of machine cells, cell size, 

intercellular material movement, simultaneous cell formation, and work allocation. Most of the 

works use zero-one or mixed integer programming to solve the cell formation problem.

A two phase approach to design manufacturing cells was developed by Albadawi et al. (2005). 

The first phase determined machine cells by applying the factor analysis technique to the 

similarity coefficient matrix. In the second phase, an integer programming model was used to 

assign the parts to cells with the objective of minimizing exceptional elements. The factor 

analysis technique is a multi-variate analysis tool used to translate the relationships between a 

large number o f variables into a smaller set of independent variables. This study applied this tool 

to reduce the initial part-machine matrix to the machine cells matrix. The analysis was started 

with the development of a Jaccard similarity coefficient matrix, followed by an eigen value 

matrix and an eigen vector matrix of the similarity coefficients. The cell relationship of the 

machines was computed depending on the criteria (defined as Kaiser’s criteria) of the highest 

eigen value and the corresponding value of the eigen vector. Finally, the approach used an 

algorithm to determine the optimal positioning of the machines in the cells. Factor analysis can be 

done using an SPSS statistical software package. Using this approach, the authors solved six test 

problems and claimed that the approach was capable of generating good solutions.

An iterative heuristic procedure was developed by Malakooti et al. (2004) to solve the cell 

formation problem by breaking down their proposed nonlinear integer programming model into 

three steps. Their study solved the process planning, production planning and cell formation 

problems simultaneously with the objective of minimizing inter-cell traffic. The first step found
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the best process and production plan considering a given cell configuration, while the second step 

found cell configuration with the process and production plans selected in the first step. In the 

final step, capacity constraint and inter-cell traffic were addressed using the results of the first two 

steps.

One of the major motivations for manufacturing cell design is the reduction of workload 

content. Workload content includes set-up times and processing costs for a part type. Kizil and 

Ozbayrak (2004) developed an algorithm to evaluate the trade-off between process plan selection 

and material handling cost for solving the cell formation problem. The study proposed an MIP 

model to select the process plan with the objective of minimizing workload content. The 

algorithm first solved the MIP model for part routing selection. This solution gave a lower bound 

value on the total machine requirements by type, as well as the part machine processing matrix 

used in cell formation. Cell formation was then planned using the ROC (rank order clustering) 

algorithm, and the inter-cell material movement cost for each randomly selected part, evaluated 

for all the possible alternative routes. The route with the minimum workload content subject to 

the capacity limitations and upper bound of set-up time for the machines was selected. If the route 

exceeded the machine capacity and set-up time limitations, the next route with higher workload 

content was checked. Following these steps, the inter-cell movement cost for the entire set of 

parts was evaluated by selecting the process plan with the minimum workload content. The 

approach ensured that the minimum workload content was achieved, without optimizing the inter­

cell material movement simultaneously.

Won and Lee (2004) proposed modified ̂ -median formulations for solving GT-cell formation 

problems efficiently. The GT cell is an independent cell dedicated to a part or part family. This 

approach was developed in an attempt to reduce the computational complexity of the classical p- 

median approach developed by Kusiak (1987). Thep-median formulation set out to maximize the 

sum of similarity coefficients defined between the pairs of parts. The study included two 

modifications to reduce the limitations of the classical model. The first modification is the 

imposing of lower and upper limits on the number of machines in a cell, and the inclusion of a 

formula (defined as Kemn’s formula) to evaluate which similarity coefficient to use in objective 

function. In addition to these two new steps, the first modification also introduced a candidate set 

of median machines and a procedure for generating a candidate set of median machines. The 

second modification was to remove all the machines which fall outside of the candidate set of 

machines in order to further improve the algorithm in terms of reducing computation time. By 

solving many problems with the modified formulation, the study concluded that the modified 

formulation can be easily applied to solve large size cell formation problems.
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A step-by-step procedure defined as incremental cell formation was developed by Mahesh 

and Srinivasan (2002) to solve the 0-1 integer programming model proposed by the study. In their 

step-by-step approach, the first cell was formed from the high volume parts and the best machines 

capable of performing the tasks on the parts with the objective of achieving the minimum cycle 

time. The next cell was formed using the same approach, choosing the parts with the second 

highest volume, and so on, until all the part types were dealt with. Both a branch and bound 

approach, and a heuristic-based multi-stage programming approach were used to solve the 

problem.

Arzi et al. (2001) proposed a method to design CMS in “lumpy” or variable demand 

conditions. The study developed an MIP bi-objective model which took into account demand 

variability, as well as correlation among the parts. The first objective optimized grouping 

efficiency - defined as the ratio of the total number of unused part-machine combinations and the 

total number of these combinations over all the groups when inter-cell movement was not 

allowed. The second objective minimized the overall cost of the machine by considering the 

variable demand conditions of the environment. There are four traditional methods for solving the 

problems incurred by lumpiness: fixed additional capacity, extra inventories, order rejection, and 

temporary capacity usage. To determine the system capacity, the study considered the variability 

of the demands, and the correlation of the demand of the part types assigned to the cells and 

trade-off decisions in relation to keeping the extra inventory. The study also assumed that the 

required planned capacity of the machines was normally distributed.

A holonistic approach was proposed by Akturk and Turkan (2000) to solve the part family 

and machine cell formation problem. The paper proposed a MIP model to develop the CMS 

design with the overall objective of maximizing profit by taking into account raw material costs, 

inter-cell material handling costs, variable production costs, and machine investment costs. The 

research used the holonistic approach to develop independent cells that used machine duplication 

in the initial steps of their solution algorithm. A holon cell can be defined as a cell which can earn 

profit to become economically self-sufficient. The study, however, ultimately considered cell 

development to be using the inter-cell movement of parts to minimize the machine investment 

costs. The proposed model also considered the machine layout problem within the cell to reduce 

the cost of intra-cell material movement. It is apparent that simultaneous consideration of inter­

cell movement from the first step could generate a mixed solution by reducing machine 

investment costs or developing a holon cell solution - depending on the profit objective. The step- 

by-step approach proposed by the study may be considered effective for small size problems
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where the inter-cell movement decisions were introduced depending on the profits and machine 

investment costs of the holon cell or independent cell.

Flexibility in relation to CMS can be defined as a system’s ability to adjust its resources to 

account for any changes in relevant factors such as product, process, loads, and machine failures. 

Vakharia et al. (1999) studied flexibility considerations in cell design. This study defined various 

general flexibility types and developed formulations for flexibility measures relevant to CMS. 

The research proposed a flexible cell design model similar to that of Askin et al. (1997).

Wicks and Reasor (1999) proposed a multi-period, non-linear MIP model to design the CMS. 

The model minimized inter-cell material handling costs, machine duplication costs, and machine 

relocation costs. The authors considered the effect of the redesign of cells and the relocation of 

machines on the efficient handling of product demand. A genetic algorithm was used to solve the 

part family and machine cell formation (PF/MC) problems.

In an ideal CMS, the operations o f parts are completed within a single cell. Parts that are 

processed by more than one cell are exceptional parts, and machines that are required by more 

than one part family are called bottleneck machines. Together, they are called exceptional 

elements (EEs). Berardi et al. (1999) have reviewed the literature on exceptional elements and 

investigated the mathematical programming model developed by Shafer et al. (1992). This model 

considered three cost categories when designing CMSs: sub-contracting costs, machine 

duplication costs, and intercellular part transfer costs. Berardi et al. (1999) proposed the inclusion 

of intra-cellular part movement costs and machine relocation costs in addition to the above three 

costs considered by Shafer et al. (1992).

Heragu and Chen (1998) developed a MIP model for cellular manufacturing system design. 

The objective function of the model minimized intercellular material movement and resource 

under-utilization costs to develop the cell formation. Benders’ decomposition approach was used 

to solve the model.

To design a sustainable cellular manufacturing system by accommodating the dynamic 

manufacturing environment in terms o f part mix and product mix change, Chen (1998) proposed 

an integer programming model with the objective of minimizing material handling costs, machine 

costs and related reconfiguration costs in a planning horizon of multiple periods. To solve the 

problem efficiently, the study broke the problem down into two parts. The first part of the 

problem was solved without reconfiguration costs and the constraints related to them. A dynamic 

programming solution approach was followed for generating cell configuration by considering 

machine costs, material handling costs, and relevant constraints for the planned time periods. 

Then the system reconfiguration costs were calculated depending on the solutions already
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obtained from the first part over the time periods. In the final stage, the best, most feasible cell 

configuration was selected - considering the overall costs and constraints involved. The procedure 

was illustrated by solving both a small and a large size problem.

Askin et al. (1997) developed an interactive flexible cell formation method to handle dynamic 

and random variations in part demand. The study had four phases. In the first phase, a linear 0-1 

mathematical model solved the problem of operation assignment to the machines. The second 

phase then assigned each part-operation to specific machines of each type, so that similarity 

between the part operations was maximized. Graph partitioning and similarity coefficient 

measures were used to solve the problem at this stage. In the third phase, a machine clustering 

technique was used to identify candidate manufacturing cells. The fourth and final pahse 

improved routing flexibility and volume flexibility by rearranging and changing the assignments 

of the previous phases.

Heady (1997) proposed a 0-1 integer programming model to develop minimum cost machine 

cells by optimizing the cost savings obtained by inter-cell movement of parts, in place of 

outsourcing or sub-contracting. The study dealt with exceptional parts and compared the cost 

savings obtained by inter-cell movement to cost savings produced by outsourcing.

Lee and Chen (1997) developed a multi-criterion CMS design model. Their study employed a 

weighting approach that combined two criteria such as minimizing the intercellular movement of 

parts and maximizing workload balance among duplicated machines. This solution method 

followed a three-phase approach that determined machine cells and part families, as well as 

allowing for machine duplication where necessary. In the first phase, an estimation procedure 

balanced the work-load for the duplicated machines. In the second phase, machine cells and part 

families were constructed using a heuristic algorithm. During the third and final phase, an 

additional heuristic procedure was employed to improve the solution quality of the cell formation 

results.

The transformation of functional layouts to cellular layouts reduces routing flexibility by 

dedicating machines to cells. However, the advantages obtained by the reduction of set-up times, 

material handling times and other planning-related aspects have been found to outperform the 

functional layouts within the limited routing flexibility of CMS. Shafer and Chames (1997) 

investigated the effects of transforming functional layouts to cellular layouts by using queuing 

network models where individual cells and functional layouts were represented by MIMJ\ and 

MJMJk (k = the number of servers), respectively. Their analysis illustrated that although the 

dedication of machines to cells resulted in reduced routing flexibility in CMS, there were four 

characteristics o f CMS which offset this loss, allowing CMS to outperform job shop. The
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characteristics studied were operation overlapping, set-up time reduction, simultaneous setting of 

equipment, and reduction in move times. By using computer simulation models in stochastic 

environments, the authors concluded that these benefits have the potential to offset the loss of 

routing flexibility reduction of CMSs due to a conversion from a functional layout.

Atmani et al. (1995) used a 0-1 integer programming model for the simultaneous solution of 

the cell formation and operation allocation problem in CMSs. The objective of the model was to 

simultaneously form machine groups and allocate part types to regrouped machines in such a way 

that the total sum of operation, refixturing and transportation costs were minimized.

To conclude on the subject of cell formation by mathematical programming techniques: 

Mathematical programming techniques consider real world factors related to cell formation. A 

large number of research papers have been published on the design of CMSs during the last three 

decades. Table 3.1 highlights and summarizes the most significant studies. Most of the research 

considers machines to be 100% reliable, which is unrealistic. Although some of the studies (e.g., 

Atmani et al, 1995, Askin et al, 1997, etc.) used multiple routes for the processing o f parts, this 

routing flexibility was not considered to tackle machine reliability related issues.

3.2.2 Recent Approaches to CMS Design

Although small and medium-sized cell formation problems may be solved optimally, most 

real world cell formation problems are either not optimally solvable by the existing algorithms, or 

they involve very high computational times and memory requirements. To overcome this 

limitation, Yasuda et al. (2005) adopted Genetic Algorithm (GA) to solve their multi-objective 

cell formation problem. The authors followed Falkenauer’s (Falkenauer, 1998) Grouping Genetic 

Algorithm (GGA) to encode their problem and apply GA. The GGA uses a special technique of 

adopting the structure of the grouping problem (combinations of part, machine and cell) as genes 

of the chromosomes. This structure is different from the classic GA based techniques where a 

chromosome has a separate part string and machine string. The GGA technique does not require 

input for pre-defined number of cells; it has the advantage o f the solution algorithm’s ability to 

generate the required number of cells. The study compared their solution quality with similar 

problem instances in the literature ( e.,g., Venugopal and Narendran, 1992) and concluded their 

algorithm to be effective in solving large cell formation problems.

Solaimanpur et al. (2004) developed a multi-objective model and proposed a genetic 

algorithm-based approach for solving the cell formation problem. The objectives of the model 

included minimizing processing costs, processing time, and machine investment costs, and 

maximizing part similarity for the formulation. To evaluate the fitness function of GA, the study
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converted the multi-objective model into a single objective model with weight factors. The 

solution approach explored different directions of the solution space by changing the weight 

factor values.

Peker and Kara (2004) used a neural network method to solve the cell formation problem. 

This method can be applied in the case of both binary (where the cell entry represents the 

operational relationship between part and machine in the matrix) and non-binary (where the cell 

entry represents machine capacity, processing times, etc.) incidence matrices in the cell formation 

process. Their paper attempted to validate this method by solving many cell formation examples 

from the literature.

A mixed integer, non-linear model with the objective of minimizing material handling costs, 

machine tool costs and cell set-up costs was proposed by Cao and Chen (2004) for designing 

CMSs. The model assumed a single processing plan for each part type, and did not consider part 

processing costs. To accommodate the production times within the limited capacity of the 

machine, multiple copies of each machine type were allowed in a cell. The study converted the 

model to a penalty function formulation and then solved it with a heuristic algorithm using a tabu 

search approach. By comparing the solution obtained from the heuristic (tabu search) and optimal 

solution procedure (LINDO), the authors claimed their heuristic algorithm to be efficient in 

generating near optimal solutions within an acceptable time limit.

Spiliopoulos and Sofianopoulou (2003) developed a three-stage procedure for CMS design. 

In the first stage, part families were formed according to the design similarity of the parts. In the 

second stage, a 0-1 integer programming model with the objective o f minimizing inter-cell traffic 

was used for solving the cell formation problem based on the part family formed in the first stage. 

The outcome obtained from the second stage was investigated in the third stage to eliminate 

intercellular traffic and make decisions regarding machine duplication, part sub-contracting, and 

change of part routing. A tabu search algorithm was used to solve the model at the second stage 

with the goal of developing manufacturing cells. The research claimed their tabu search algorithm 

to be effective in generating quality solutions within the reasonable time requirements for large­

sized problems.

A mathematical programming model with the multiple objectives of minimizing inter-cell 

and intra-cell part movement costs, total cell load variations and exceptional elements was 

proposed by Zhao and Wu (2000). Their study used the Genetic Algorithm approach to solve the 

model. In addition to the multiple objectives, the problem also considered multiple routing in 

their cell formation process. The authors recommended the solution approach as suitable for 

solving the machine component grouping problem in complicated working environments.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Plaquin and Pierreval (2000) developed a cell design methodology with an evolutionary 

algorithm. The algorithm addressed workshop specific constraints in addition to the general 

technological and capacity-related constraints. The workshop specific constraint considered by 

the study was to design cells around certain machine aggregates where certain specific machines 

were needed to stay together. The approach was tested on two problems, and the authors claimed 

to obtain the optimal solution. The population generation procedure, crossover, mutation and 

other steps of the proposed evolutionary algorithm were found to be similar to Genetic Algorithm.

Moon and Gen (1999) proposed a 0-1 integer programming model to develop independent 

cells. The objective function of the model minimized machine duplication costs and processing 

costs with the consideration of other manufacturing constraints and parameters such as machine 

capacity, alternative process plans, production volume, number of cells, and cell size. The study 

solved the cell formation problem using a Genetic Algorithm.

Tsai et al. (1997) proposed an MIP model to form manufacturing cells. Their study dealt with 

the exceptional elements of the cell formation problem while minimizing machine duplication 

costs, sub-contracting costs, and intercellular parts movement costs. Fuzzy membership functions 

and operators were used to solve the problem after converting the original model to a fuzzy MIP 

problem. The application of neural networks to the cell formation problem was also proposed by 

Rao and Gu (1993), and Kaparthi and Suresh (1991).

3.2.3 Cell Formation by Simulated Annealing Algorithm

A MIP model which included alternate routings, machine replication and operation sequence 

was proposed by Jayaswal and Adil (2004) to design CMSs. Their model used both machine 

replication and alternate routings to minimize inter-cell moves. An algorithm consisting of 

simulated annealing and a local search method was developed to solve the model for large-sized 

problems. The solution quality of the algorithm was found to be impressive when compared with 

the optimal solutions computed for small size problems. The algorithm was also found to be 

efficient in terms of its computational time for large-sized problems. The initial solution and 

neighborhood solution o f the algorithm were generated by randomly selecting operation 

allocation variable values, and then changing the operation assignment of parts between machines 

and/or cells.

Asokan et al. (2001) used Simulated Annealing (SA) and Genetic Algorithms for solving cell 

formation problems. Their study was based on two mathematical models from the literature. The 

first model minimized inter-cell and intra-cell moves as proposed by Logendran (1990), while 

the second model minimized cell load variation (the difference between the workload variation
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among the machines and the average load on the cell) as proposed by Venugopal and Narendran 

(1992). Asokan et al. (2001) then combined the two models to solve the cell formation problem 

through SA and GA. The study used a random perturbation scheme for solving the problem with 

SA. The scheme consisted of developing a seed sequence of machines. If there were five 

machines, the sequence array would have five positions. Perturbation is achieved by changing 

the sequence o f machines. Since each position of the sequence represents a cell number, when 

the sequence of machine is changed, the allocation of machines to cells also changes. The cost of 

solutions for these schemes was optimized using heuristics to achieve an acceptable CMS design 

The study compared the performance of SA and GA for machine cell grouping problems. By 

numerical example, it was concluded that SA performed better when trying to achieve these 

objectives.

The combination of a heuristic method with a local search method (e.g., Jayaswal and Adil, 

2001) or the pairing of other methods like the branch and bound methods, are applied by the 

solution procedures to improve the solution quality and reduce the computation time. Caux et al. 

(2000) used a combination of SA and branch and bound methods to solve their non-linear integer 

programming model for cell formation with alternative process plans and machine capacity 

constraints. The model considered the problem of minimizing inter-cell traffic by selecting 

alternative routing. A combined iterative approach was followed in the solution procedure by 

simultaneously solving two sub-problems. The SA algorithm generateed the machine cells 

respecting the maximum number of cells allowed in a cell, while the branch and bound method 

optimally assigned one routing to each part - respecting machine capacity and keeping inter-cell 

moves to a minimum considering the feasible partitions found in the SA. The study concluded 

that the solution methodology should be useful in the case of large-sized, un-constrained 

problems only.

Abdelmola and Taboun (1999) used an SA algorithm to solve the cell formation problem. 

The study proposed a non linear 0-1 integer programming model to optimize total productivity. 

Total productivity was defined as the ratio of intercellular material handling costs and the total 

sales amount (revenue) of the parts. The paper reported good performance of the heuristic by 

comparing the solution quality obtained by the heuristic for a 10-machine-10-part problem with 

the optimal solution generated by LINGO.

A Simulated Annealing algorithm was used by Zolfagari and Liang (1998) to solve their cell 

formation problem based on the grouping efficiency measure involving processing times, 

machine capacity limitation and machine duplication. The grouping measure proposed in the 

study was an extension of the grouping efficiency introduced by Chandrasekhran and
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Rajagopalan (1986). The study developed an SA algorithm to solve the grouping problem of 

machines. The SA algorithm was applied to the seed solution generated by the neural network. 

The neighborhood solution for the algorithm was generated by randomly reassigning machines 

from one cell to another. The part assignment for each neighborhood solution was done to match 

the parts with the newly generated machine cells. The performance o f the algorithm was 

compared with the results reported in the literature on the 16 machine type and 43 part type 

example studied by Burbidge (1975). The performance was found to be impressive in terms of 

computation time and solution quality.

Su and Hsu (1998) considered a three-objective cell formation model. The three objectives 

were: minimizing the total cost of inter-cell transportation, intra-cell transportation and machine 

investment; minimizing intra-cell machine load unbalance; and minimizing inter-cell machine 

load unbalance. The study unified these objectives by weighting them, and solved the model by 

means of simulated annealing algorithm. The study used a genetic algorithm as the generation 

mechanism of simulated annealing to reduce computational times.

Sofianopoulou (1997) used a simulated annealing approach for solving the proposed linear 

integer programming cell formation model. The objective of this mathematical model was to 

minimize the number of intercellular moves. The study considered the perturbation scheme for 

generating neighboring solutions by changing the cell membership o f a randomly selected 

machine and, thus, reassigning the said machine to the same cell with another randomly selected 

machine. Performance of the heuristic has been compared with the optimal solution for the model. 

The results indicated that this algorithm was a good performer in terms of the solution quality and 

computational effort.

To generate solutions to CMS design problems with reduced computational complexity, and 

to investigate the performance of the heuristics, Vakharia and Chang (1997) solved their cell 

formation model by simulated annealing (SA) and tabu search. The research developed a MIP 

model with the objective of minimizing the procurement cost of machines (number of machines 

needed) and inter-cell material handling costs. The authors solved their model with eight 

randomly generated data sets and one published data set to evaluate the performance of these 

heuristics. Numerical results indicated that the SA algorithm performed better than tabu search, 

and provided close to optimal or optimal solutions for the tested problems.

Venugopal and Narendran (1992) developed a SA algorithm to solve the machine component 

grouping problem. Their study proposed a mathematical model with the objective of minimizing 

cell load variation among machines. When compared with that of K-means algorithm, the SA 

algorithm was found to yield better results.
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To conclude on the subject of cell formation by recent approaches including simulated 

annealing: The primary reason for using a simulated annealing algorithm in CMS design is to 

obtain acceptable solutions within a reasonable amount o f time. Although the goal of all studies is 

to achieve optimal solutions, sometimes this is computationally prohibitive. According to the 

reviewed research, the solutions obtained by simulated annealing algorithms are promising. 

Among the three meta-heuristics investigated, simulated annealing has the advantage of being 

easy to implement, while still providing good solutions. The comparative study between GA and 

SA by Asokan et al. (2001), and the comparison of solution quality between tabu search and SA 

by Vakharia andand Chang (1997) in the design of CMSs show that simulated annealing performs 

better than the other two searches. These findings have motivated us to select the SA algorithm 

solution approach for the design of our CMS.

3.3 Reliability Considerations in the CMS Design

This section reviews the literature on reliability considerations in the design and operation of 

cellular, flexible, and automated manufacturing systems (AMS).

3.3.1 Performance Evaluation Studies in Cellular and Flexible Manufacturing

Seifoddini and Djassemi (2001) evaluated the effect of reliability considerations on the 

performance of job shops and cellular manufacturing systems. Their study considered mean flow 

time and work-in-process inventory as measures of performance. A simulation model was 

developed for estimating the system performance under varying reliability levels. Fixed reliability 

levels of 100%, 90%, 80% and 70% were assigned to both job shop and cellular manufacturing 

systems to compare their performances. The results indicated that, although both systems 

deteriorate as the machine reliability drops from the 100% to the 70% level, the CMS was more 

severely affected than the job shop. Considering the fact that CMSs follow a series reliability 

structure, and job shop follows a series-parallel (mixed), it was obvious that the authors of this 

study got only the expected outcomes.

Rupe and Kuo (2001) developed a Markov chain model for the flexible manufacturing system 

(FMS) states in terms of the number of unavailable machines, available inventory and the repair 

process. The objective of the study is to determine the performance of the FMS in terms of the 

availability of a number of machines. The analytical approach constructed useful models of the 

FMS failure and repair under general FMS architecture so that the model could be applied to a 

wide variety of FMS configurations. From their results the study concluded that the 

performability measure correctly reflected the system effectiveness at achieving a defined goal.
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Table 3.1 Summary of significant literatures on cell formation where machine reliability is not considered
Reference Factors 

considered ** Modeling descriptions Solution
Techniques Demand Process Plan 

type
Other significant 

factors
1. Abdelmola 

and Taboun 

(1999)

M, n, NMC, ICM

A non-Linear IP model to maximize productivity. 

Productivity defined as the ratio o f total sales turnover 

and inter-cell and intra-cell part movement cost.

A simulated 

annealing (SA) 

algorithm is used.

Fixed

demand.
Multiple routes.

Sales price o f product is 

used.

2. Akturk and 

Turkan (2000)

M , n, PCM , U, 

SM, NMC, K, 

ICM , CM

MIP model to maximize profit.
A local search 

heuristic.

Fixed

demand.
Multiple routes.

Holonic approach. 

Profit for each cell 

and within cell machine 

layout considered.

3. Askin et al. 

(1997)

M , n, PCM , U, 

SM, NMC, K, 

ICM , CM

Integer programming (IP) model for operations 

assignment by minimizing operation cost and 

procurement cost.

Graph partitioning and part similarity coefficient for 

assigning part operation to machines.

- Clustering techniques to form cells.

An algorithm is 

proposed to 

systematically 

carry out the steps.

Dynamic 

random 

variation of 

demands.

Multiple routes.

Flexible cell in terms of 

routing flexibility 

Demand flexibility and 

availability o f  machines.

4. Askin et al. 

(1998)

M , n, PCM , U, 

SM, NM C, K, 

ICM , CM

IP model for operations assignment by minimizing 

operations and procurement cost.

Graph partitioning and part similarity coefficient for 

assigning operations to machines. 

Clustering techniques to form cells 

defined and formulated flexibility terms.

An algorithm is 

proposed to 

systematically 

carry out the steps.

Dynamic 

random 

variation of 

demands.

Multiple routes.

Flexible cell in terms of 

routing flexibility 

demand flexibility and 

availability o f machines.

5. Asokan et al. 

(2001)

M ,n, K,NM C, 

CM

Three mathematical models : Model 1 (LP) minimizes 

inter-cell and intra-cell moves. Model 2 (0 -1  IP) 

minimizes total within cell load variation. Model 3 

combination o f  1 and 2.

SA and Genetic 

Algorithm (GA) 

are used.

Fixed

demand.

Multiple

routings.

SA performed better than 

GA.

M Number of machines
ICM Inter-cell part movement 

CM Capacity of machines

** Symbols used in Factors considered column
n Number of part types K

NMC Number of machines in a cell 
U Machine utilization

Number of cells desired 
PCM Procurement cost of machines 

SM Set-up time or cost
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Table 3.1: cont’d
Reference Factors

considered** Modeling descriptions Solution Techniques Demand Process Plan 
type

Other significant 
factors

6. Baykasoglu et 

al. (2001)

M, n, K, NMC, 

U

Non-linear IP and multiple objective model to 

minimize cell load imbalance and part 

dissimilarity based on the processing sequence 

and extra capacity requirements.

SA algorithm used.
Fixed

demand.

Multiple routes.

Resource element 

approach considered in 

processing parts and 

capacity deviation o f  cells.

7. Berardi et al. 

(1999)

M,n,CM , K, 

NMC, U, 

PCM , ICM

Reviewed models dealing with exceptional 

elements (EEs). Investigated Model of Shafer 

et al (1992). An IP model which minimizes 

machine duplication, inter-cell movement, and 

subcontracting cost.

Solved by LINDO and 

OSL without relaxation o f 

integer restrictions.

Fixed

demand. Multiple routes.

Exceptional elements, 

subcontracting cost, 

machine duplication co s t, 

bottleneck machine.

8. Cao and Chen 

(2004)

M,n,CM, 

NMC, U, 

PCM.

Non-linear MIP model to minimize material 

handling, machine tool set-up and operational 

cost. Number of cells not fixed. Capacity for 

each operation is in terms of number of 

machines.

A heuristic algorithm and 

tabu search used to solve 

the problem.

Fixed

demand.

Single process 

plan for each 

part.

Model converted to a 

penalty formulation and 

solved with tabu search 

procedure.

9. Caux et al. 

(2000)

M,n,CM , K, 

NMC, ICM

0-1 integer non-linear model. Objective 

function minimizes inter-cell traffic.

Combination o f SA and 

branch and bound methods 

used.

Fixed

demand.

Multiple 

process plan.

10. Dahel and 

Smith (1993)

M,n,CM , K, 

ICM , SM
0-1 IP , multi-objective model.

Lexicographic approach 

and non-dominated 

solutions are generated by 

LINDO systems.

Fixed

demand.

Multiple 

process plan.

Number o f machine types 

in each cell is maximized 

to get operational 

flexibility.

11. Heady (1997)

M, CM , K, 

NMC, ICM , 

SM

0-1 IP model, minimizes opportunity cost for 

parts considering savings obtained by inter- 

cell part movement compared to outsourcing.

Lindo software used to 

solve the model.

Fixed

demand.
Multiple routes.

Bottleneck machine and 

exceptional operations.

** Symbols used in Factors considered column
M Number of machines n Number of part types K Number of cells desired

ICM Inter-cell part movement NMC Number of machines in a cell PCM Procurement cost of machines
CM Capacity of machines U Machine utilization SM Set-up time or cost
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Table 3.1: cont’d
Reference Factors

considered** Modeling descriptions Solution Techniques Demand Process 
Plan type Other significant factors

12. Heragu and 

Chen (1998)

M ,n,CM , K, 

NM C, U, ICM

MIP model to minimize inter-cell 

movement and resource under-utilization.
Benders decomposition.

Fixed

demand.

Multiple

routes.

13. Jayaswal and 

Adil (2004)

M, n, CM , K, 

ICM , PCM , 

NMC

A non-linear IP model to minimize 

operational cost, inter-cell moves cost, and 

machine investment.

SA algorithm and local 

search.

Fixed

demand.

Multiple

routes.

Machine replication and alternate 

routings used to minimize inter-cell 

moves.

14. Logendran and 

Ramkrishnan 

(1997)

M ,n,CM , SM

Various cost 

factors

MIP model to maximize cost savings by 

machine duplication and part 

subcontracting.

A heuristic algorithm with 

tabu search is used.

Fixed

demand.

Alternative 

process 

plan within 

the cell.

Duplication of bottleneck machine 

and subcontracting o f  exceptional 

parts.

15. Mahesh and 

Srinivasan (2002)

M ,n, CM ,K

No inter-cell 

movement

Non-linear 0-1 IP model to minimize cycle 

time of a part.

Branch and bound method 

and also a heuristic based 

multistage programming 

approach.

Fixed

demand.

Multiple

routes.
Precedence o f  operations, cycle 

time, equivalent part approach.

16. Malakooti et 

al. (2004)

M, n, 

CM ,K,NM C,I 

CM , U

IP model for selection part and operation 

plans and iterative approach for cell 

formation.

A problem specific heuristic 

used.

Fixed

demand.

Multiple

routes.

17. Moon and Gen 

(1999)

M, n,CM , K, 

NMC, U, 

PCM ,

0-1 IP model to minimize sum o f machining 

and machine duplication costs.
GA used to solve the model.

Fixed

demand.

Alternative 

process 

plan within 

the cell.

Both machine duplication and 

independent cell approach when 

only one machine o f each type 

exists in a cell.

18. Peker and 

Kara (2004)

M ,n,K,CM , K, 

ICM ,NM C, U,

Binary and non-binary part machine 

incidence matrix developed.

Fuzzy neural network 

solution approach used.

Fixed

demand.

Single

route.

Solve both binary (0-1) and non­

binary part-machine incidence 

matrix.

** Symbols used in Factors considered column
M Number of machines n Number of part types K  Number of cells desired

ICM  Inter-cell part movement NMC Number of machines in a cell PCM Procurement cost of machines
CM Capacity of machines U Machine utilization SM Set-up time or cost

42



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 3.1: cont’d

Reference
Factors

considered**
M odeling descriptions Solution Techniques Demand

Process Plan 

type
O ther significant factors

19. Shafer and 

Chames (1997)

W IP, num ber 

of

departm ents, 

M, lot sizes, K

Queuing network and simulation models used to 

analyze the models.

Analyzed with computer 

simulation.
Fixed demand.

Single process 

plan.

Operations overlapping, set 

up reduction, reduction in 

move times, simultaneous set 

up offsets loss in routing 

flexibility.

20. Solaimanpur 

et al. (2004)

M ,n, K,CM , U, 

PCM

Multi-objective IP model, minimize similarity between 

the parts, minimize processing cost, minimize 

processing time, minimize investment cost.

GA used. Weights to 

make single objective.
Fixed demand.

Multiple 

process plan.
Independent cells, 

efficient frontier.

21.Sofianopoulou

(1999)

M ,n, K, NMC, 

U, ICM , PCM

Two non-linear IP model, 1) machine allocation to 

cells, and 2) part to machines. Model 1 minimizes 

inter-cell traffic and Model 2 maximizes part 

allocation to cells by the most advantageous process 

plan selected by the model 1

SA algorithm Fixed demand.

Multiple 

process plan.
Replicate machines are 

considered.

22. Tsai et al. 

(1997)

M ,n,CM , K, 

NM C, U, ICM , 

PCM

MIP model to minimize cost machine procurement, 

inter-cell material movement, and subcontracting.

Model converted to fuzzy 

MIP to achieve improved 

computational 

performance.

Fixed demand. Multiple routes.

Fuzzy operators and 

membership function 

included.

23. Wicks and 

Reasor(1999)

M ,n, K, NMC, 

U, ICM , PCM ,

MIP model. Considers multi-period forecast demands 

to minimize inter-cell movement, duplication o f  parts, 

and relocation cost o f the machines.

GA used to solve the 

model.
Fixed demand.

Multiple 

process plan.

Considered trade-off between 

inter-cell movement and 

machine relocation cost.

24. Vakharia and 

Chang (1997)

M , n, K, ICM , 

NM C,CM , U, 

PCM

0-1 IP model, objective o f minimizing inter-cell moves 

and procurement cost o f machines.

Tabu search and SA 

algorithm
Fixed demand.

Multiple 

process plan.

SA performed better than 

tabu search.

** Symbols used in Factors considered column
M Number of machines n Number of part types K Number of cells desired

ICM Inter-cell part movement NMC Number of machines in a cell PCM Procurement cost of machines
CM Capacity of machines U Machine utilization SM Set-up time or cost
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Table 3.1: cont’d

Reference Factors
considered** Modeling descriptions Solution

Techniques Demand Process Plan 
type

Other significant factors

25. Venugopal and 

Narendran (1992)

M, n, K,NMC, 

CM

0-1 IP model, objective o f  minimizing, cell load 

variation.
SA used.

Fixed

demand.

Fixed process 

plan.

26. Xambre and 

Vilarinho (2003)

M,n, K, ICM , 

NM C, CM
MIP model to minimize inter-cellular flow.

SA algorithm 

used.

Fixed

demand.
Multiple routes.

Functionally similar multiple 

machines used.

27. Zhao and Wu 

(2000)

M, n, K, NMC, 

ICM , PCM ,

Multi-objective model to minimize inter-cell and 

intra-cell movement cost, cell load variation and 

exceptional elements.

GA used.
Fixed

demand.

Multiple 

process plan.

28. Zolfaghari 

and Liang (1998)

M, n, K, NMC, 

ICM , U

Generalized grouping efficiency measures for cell 

formation used as a model.
SA used.

Fixed

demand.

Fixed process 

plan.
Machine duplication used.

** Symbols used in Factors considered column
M Number of machines n Number of part types K Number of cells desired

ICM Inter-cell part movement NMC Number of machines in a cell PCM Procurement cost of machines
CM Capacity of machines U Machine utilization SM Set-up time or cost
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Through the proposed measure the analyst would be able to compare various FMS designs. The 

study is a typical reliability related study in FMS, and does not have much relevance to our 

objective.

There are a considerable number of performance evaluation studies which focus on the 

comparison of job shop and CMS in terms of reliability measures, or some output measures. 

Logendran and Talkington (1997) compared cellular and functional layouts (CL and FL) 

considering machine breakdowns and batch sizes as the two important factors which could 

influence the performance of the system. To analyze the impact of machine break-downs, repair 

policies based on breakdown and preventive maintenance were included in the study. Two 

performance measures - namely mean work-in-process-inventory and mean throughput times - 

were used in the comparison. A SLAM-II-based simulation was conducted to evaluate and 

compare the performances. The study results indicated that, in the absence of any preventive 

maintenance or of any machine reliability considerations, the functional layout out-performs the 

CMS.

Zakarian and Kusiak (1997) proposed an analytical approach for the availability evaluation of 

a cellular manufacturing system. The study broke down the manufacturing system into machining 

and material handling sub-systems, and a Markovian approach was applied to find the system 

availability of the machines and the material handling systems in the cells. The overall 

manufacturing system availability was evaluated by considering the probabilities of subsets of 

machines in working condition in each cell. A manufacturing system was considered acceptable 

when it fulfilled the production capacity requirement for the part to be manufactured. This is 

analogous to the requirement of a processing route for a part type to fulfill all the necessary 

operations to complete its processing.

The dependability of a manufacturing system is the measure of the system’s availability. 

Simeu-Abazi et al. (1997) developed an analytical model to evaluate the dependability of a 

manufacturing system. The study took a decomposition approach for dividing manufacturing 

systems into elementary machine cells. Each machine represented a decomposed system. Each 

elementary cell is modeled as a combination of the Markov process and Stochastic Petri Nets 

(SPN). The whole system was then recomposed to determine the availability of individual 

machines as members of a manufacturing system set. The method was found suitable for very 

small production systems with a series-flow type of machine-product combination.

The Markovian approach of analyzing manufacturing system states is one of the established 

procedures for estimating performance o f the automated manufacturing systems (AMSs).
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Viswanadham and Ram (1994) developed a Markovian approach-based model for the transient 

analysis of manufacturing systems in the presence of failures and repairs. Their study 

decomposed the system into structure state processes, and a performance model to analyze both 

the processing and movement of materials. Structure state process was defined as the modes of 

operation during the time interval of interest, when a machine in operating condition failed, and 

again when a failed machine was repaired and returned to operation. The study used a time-based 

decomposition where structure state process occurred at a much slower scale than the part 

processing and movement. Considering two automatic machine centres and one AGV, the study 

evaluated the performance of a flexible manufacturing cell, in terms of availability, throughput, 

and lead times.

Ram and Viswanadham (1994) presented a framework for performance evaluations of 

automated manufacturing systems (AMSs) subject to failure and repair. The framework assessed 

the system productivity in the face of internal disturbances arising from equipment failure. The 

study developed a formula to measure the performance of AMS based on the assumption that the 

system was fault tolerant. A fault tolerant system can perform its function at a decreased 

performance level after facing a minor breakdown. That means it can tolerate fault up to a certain 

limit and perform at a lower production rate or performance level. A Markovian procedure was 

followed to formulate throughput and lead time related performance, and to assess these measures 

through a structure state process. The research developed a numerical approach to the 

computation o f the distribution of mean lead time through the use of a generalized stochastic Petri 

net (GSPN) reward model.

Ram and Viswanadham (1992) proposed a performance evaluation technique for cellular 

flexible manufacturing systems (CFMS) using a decomposition approach. CFMSs were defined 

as the CMSs developed by configuring FMSs applying the GT concept. The study divided the 

parts to be manufactured into two types. One type, defined as local parts (the majority portions of 

the parts to be manufactured), needs machining only in a single cell. The remaining parts are 

defined as rare parts, and need inter-cell movement and machining in more than one cell. The 

Markov chain was used to evaluate the states and to obtain steady state average values of 

performance measures in terms of throughput, utilization, queue length, and waiting time.

In addition to the Markovian approach-based analytical model, there are performance 

evaluation studies which used simulation models. Nagarajah et al. (1992) investigated the effect 

of machine reliability and transporter speed on the performance o f FMCs (Flexible manufacturing 

cells). The study used simulation to determine the performance of FMC in terms of the total 

number of parts produced and the average flow time by assigning various fixed reliability levels
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to machines. Two configurations, namely the cell layout and aggregated cell or process layout, 

were compared in terms of average throughput times when they were producing a mix of 5 part 

types. The study showed that using machine duplication to counter the effects of reduction in 

machine reliability could be counter productive when available equipment had been consistently 

displaying high reliability.

Albino et al. (1990) proposed an integrated performance reliability model to evaluate 

different measures for a flexible automated production system (FAPS). FAPSs are fault tolerant, 

and can react to a detected failure by reconfiguring to a state with a decreased level of 

performance, resulting in a gracefully degrading system. The model consisted o f a Markovian 

model to determine the probability of each state in a specific FAPS state space, and a general 

analytical model that evaluated the performance relating to the state space. A homogeneous, 

continuous time discrete state Markovian model was used to evaluate the steady state 

probabilities of the major components of the FAPS.

3.3.2 Reliability Related Studies in FMSs and AMSs

The provision of buffer capacity is an established procedure in the discrete part 

manufacturing industry to solve the machine reliability problem. Kalir and Arzi (1998) developed 

an MIP formulation to determine the profit maximizing configuration of work stations along a 

flexible production line, with unreliable machines for finite and infinite buffers. They first 

developed a formulation for general problems that may occur in a finite buffer case. The study 

then included buffers with infinite capacities when buffer costs were considered negligible 

compared to the workstation’s operational costs. An optimal solution algorithm was developed to 

solve cases of infinite buffer capacity. The study also developed a heuristic to solve large-scale 

problems arising in cases of infinite buffer capacity. The authors concluded that without this 

heuristic approach, the proposed optimal solution algorithm might not be suitable to handle large- 

scale problems.

Classical queuing theory was used by Lin et al. (1994) to study the characteristics of the 

fractional utilization of the FMS. A mathematical program was constructed to determine both the 

optimal number of floats for an important module of FMS (defined as key FMC) and the optimal 

capacity of the repair station. A float was defined as both the failed units undergoing repair, and 

the units that were on standby status. The paper used an M/M/1 /F  queue for the repair system, and 

a closed queuing structure model where a certain number of independent and identical machines 

or processors were required to be in operation. F  was the total number of float modules, of which 

one was engaged in operation, and (F-l) modules were standbys or in the repair shop. A
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maintenance float policy was used in both manufacturing and service sectors to keep the 

operating equipment at a high level of availability. With a maintenance float policy, several units 

of the key module were kept in the production line with one unit in operation while the remaining 

units were kept on standby.

Yuanidis et al. (1993) proposed a model for assessing the reliability of the FMS. Their model 

established a functional relationship between operational parameters and system responses. 

Operation times, MTBF, MTTR, etc., were considered as the input parameters. System responses 

included the number of parts produced in a given interval, and other output variables. An 

algorithm called GMDH (Group Method of Data Handling) was used to determine system 

responses against the input data. This model can be used to assess the reliability of FMS in the 

design and development process.

Wang and Wan (1993) developed a dynamic reliability model using a fuzzy logic approach 

for FMS. Their study considered the initial reliability of the machines, maintenance policies, and 

system failure mode analysis in the dynamic reliability model. Using the fuzzy logic approach, 

the model defined many types of failure modes, the initial system reliability, the production 

environment, the equipment’s inherent quality, training of the manpower, and system degradation 

to establish reliability parameters.

Miriyala and Vishwanadam (1989) analyzed the reliability of FMS considering part reliability 

and machine reliability using process spanning graphs (PSG). Given an FMS configuration, the 

part reliability of a given part type is the steady state probability of producing that part by using at 

least one of the machine routes, and is equal to the probability that at least one PSG for the part 

type is in operation. A PSG represents a particular route taken by a work piece of some part type 

in the FMS. Markov chain modeling was used to evaluate the dynamic reliability and availability 

of the system.

Chaharbagi and Davies (1986) developed an approach for assessing the reliability of FMS. 

Their study proposed a simulation model to analyze alternative system design approaches. 

Manufacturing capability, production efficiency, and demanded production lead time success 

ratio were defined for the assessment of system performance measures. A simulation study-based 

technique was viewed to be appropriate for reliability analysis of FMSs because it can include 

machine flexibility, and job flexibility - which cannot be included in analytical techniques.

3.3.3 Reliability Studies Relevant to CMSs

The Markovian approach was used by Liu and Yuan (2001) to consider a finite inter-station 

buffer, uncertain service times, and random breakdowns of the assembly equipment to construct
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and derive formulas for throughput, loss of probability of types of work pieces, and mean flow 

times. Loss of probability o f types of work pieces was the ratio of difference between parts flow  

and throughput to parts flow, where throughput was assumed to be less than parts flow. The 

study then developed an optimization model by including these parameters to maximize the 

system throughput of unreliable assembly lines, while maintaining the required customer service 

level. Two types of work pieces (Type 1 and Type 2) were considered in an assembly line 

consisting of two parallel work centers to conduct the numerical experiments and to analyze the 

system behavior. While Type 1 work pieces had infinite buffer capacity in front of work center 1, 

Type 2 work pieces had finite buffer capacity in front of work center 2. The study found that in 

the steady state, the loss of probability of Type 2 work pieces was independent of their relevant 

buffer sizes. Other conclusions of the study were dependent on the numerical values of flow rate, 

service level, etc.

Savsar (2000) developed a mathematical model to compare the performance of a reliable and 

an unreliable flexible manufacturing cell (FMC). The study assumed operation times, loading/ 

unloading times, and material handling times to be random in the stochastic analysis of system 

performance. Formulas for system performance (in terms of utilization rates of machines, robots, 

and pallet handling systems) were derived using the Markov process by considering the state 

probability definition and transition rate diagram of unreliable FMC operations. This study 

established that there was a significant difference in utilization between the reliable and 

unreliable cells in relation to machine, robot, and pallet handling systems. The utilization of the 

components is higher in reliable cells than in unreliable ones.

Gupta and Kavusturucu (1998) proposed a method to analyze finite buffer CMSs with 

unreliable machines. An open stochastic queuing network was used to model the system. 

Throughput calculation of the network was done using decomposition, isolation, and expansion 

methods. An expansion node was created as an extra node in front of each buffer of the machine 

to act as an apparent holding node for jobs which could not enter destination node because the 

buffer was full. The blocked job stayed in the expansion node until a space became available at 

the full buffer. The method broke the network down into a set of M/MZ1(BD)/Kj nodes. K, 

represented the job holding capacity of node i. M/M/1 (BD)/Ki represented an MZM/l/Ki node 

when the machine was unreliable (i.e. subject to breakdown).

3.3.4 Reliability Studies in CMS

A cellular line production system design model considering machines to be unreliable was 

developed by Kuroda and Tomita (2005). A cellular line was defined as a line of flow shops when
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the flow shops were performing a sequence of intended operations and acting as a cell unit. Each 

cell unit of the line was composed of dissimilar facilities to perform similar operations of the 

process sequence. The proposed model followed a two step process. In the first step, dissimilar 

machines or facilities were grouped considering similarity of operations to be performed. To 

balance the part flow in the group/cell, the model considered the number of operation sequences 

assigned to each facility and the required number of machines in each stage of the operations 

sequence. In the balancing process, machine un-reliability - determined by considering the 

expected value of overloads at each stage - was incorporated. The expected value of overload was 

estimated with overloads required at a stage due to failure of a facility and probability of failure 

of the relevant facility. To estimate the probability of failure, the authors proposed a steady state 

probability based on machine availability. The exponential distribution was used for time to 

failure and time to repair of the machines. The objective of the study was to minimize the number 

of facilities needed for the stages. In the second step, each group of facilities were arranged to 

constmct a balanced, one-way flow. A genetic algorithm-based procedure was used to solve an 

example problem. By including stochastic factors related to machine failure and repair, the 

authors claimed the approach to be robust.

Diallo et al. (2001) proposed an approach to design manufacturing cells which can change 

process plans to handle machine breakdowns. The study carried out reliability analysis of the 

individual machines and manufacturing system states in the presence of unreliable machines. 

Exponential distribution approach was used for the reliability analysis o f the machines and 

manufacturing systems. The model allocates demand of part types to each of the available process 

plans. While the model selected the best process plans to satisfy the demand for parts, the cell 

configuration addressed the problem of manufacturing the parts in alternative process plans when 

the best plan was not available.

Jeon et al. (1998a) proposed a CMS design model to consider alternative routes during 

machine failure. The study considered a predefined number o f breakdowns for each of the 

machines, and developed the model to reduce waiting costs, early/late finish penalty costs, and 

the sum of inventory holding costs by selecting alternative routes to handle the breakdowns. The 

study did not include a reliability analysis of the machines. Alternative routes have been 

considered by several studies to improve resource utilization, reduce costs by selecting the best 

process plan, and get minimum interaction between cells by choosing the best cell configuration. 

Among these we can mention Rajamani et al. (1996) and Chen (1998). These studies, however, 

did not consider alternative routes to solve the machine breakdown problems. All the traditional 

CMS design models, including these studies, considered machines to be reliable resources. For
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maintaining expected overall performance of the CMS, alternative routes should be considered in 

the design phase to plan to reroute the parts in case of machine failure (Jeon et al., 1998).

Li and Shaw (1998) developed a simulation model to study dynamic job shop rescheduling 

where work stations were not always available due to breakdown or preventive maintenance. By 

considering job priority, machine states, and consequent bottlenecks of part routes, this study 

attempted to determine the complete picture of the anticipated waiting time for rescheduling the 

works. This study is indirectly a reliability consideration in terms of the expected outcomes of 

waiting times.

To conclude: most of the reliability consideration-based studies on CMS deal primarily with 

performance evaluation issues. A considerable number of these studies (Seifoddini and Djassemi, 

2001; Logendran and Talkington, 1997, etc.) emphasize the importance of machine reliability on 

the expected output of the CMS. This emphasis is one of the motivating factors for considering 

reliability in the design of a CMS in this work. However, Jeon et al. (1998) and Diallo et al. 

(2001) are the only two studies to consider machine reliability in their analysis and development 

of the CMS. Jeon et al. (1998) considered alternative routes to develop cell configurations to 

handle the problem of a predefined number of machine breakdowns. Their model aimed to 

minimize waiting costs, late and early finish costs and machine investment costs to solve the 

machine breakdown problem. Diallo et al. (2001) considered all their machines to be unreliable 

and consequently attempted to develop a cell configuration with alternative process plans to solve 

machine breakdown problems. These studies, however, do not include the proactive approach of 

considering both system costs and reliability to optimize costs and have the lowest failure 

probability during processing, while maintaining alternative routes for rerouting the parts in case 

of machine failure. Table 3.2 summarizes the major factors and objectives included in reliability 

related studies reviewed here.

3.4 Preventive Maintenance Studies in CMSs

This review focuses on the significant maintenance studies which are relevant to the 

maintenance planning of multi-machine systems similar to CMSs. Rao and Bhadhury (2000) 

presented a case study on the preventive maintenance of a multi-equipment, 210-MW thermal 

power station fueled by six independent and identical coal pulverizers. Failure characteristics of 

the pulverizer sub-systems were developed from the analysis of the data collected between two 

system overhauls. Based on this data, the decision concerning which components needed PM and 

which could be replaced after a predetermined age was made. For the increasing failure rate 

components the Weibull distribution was used. The small components of pulverizers were
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Table 3.2: Summary of significant reliability related studies on CMS and FMS

Study F actors considered M odeling
descriptions

O bjectives M ajo r findings Relevance

CMS RELIA BILITY  RELATED STUDY (Direct and Indirect)

1. Diallo et al. 

(2001)

Steady state probability for system states, 

multiple process plans to handle 

breakdowns.

Markov 

optimization model for 

intercellular interaction 

and process plan.

Cell formation in presence of 

unreliable machines 

and optimization o f  inter-cell 

interactions o f parts.

Design of manufacturing cells to 

improve throughput by using 

alternative process plan in case 

o f  machine failure.

The study is related to CMS 

reliability analysis.

2. Li and Shaw 

(1998)

MTBF, MTTR, scheduling o f jobs, part 

demand, WIP, job priority.

Visual interactive 

simulation.

Scheduling o f the jobs considered 

priority and bottleneck.

Status o f the workstation used 

for effective job rescheduling.

The study is related to the 

reliability considerations of 

the job shop.

3. Gupta and 

Kavusturucu 

(1998)

Finite buffer, unreliable machines, 

system throughput.

Stochastic queuing 

network, simulation.

Performance evaluation o f cellular 

manufacturing with unreliable 

machines.

Use o f  expansion node and 

decomposition to evaluate 

performance measures.

Performance evaluation of 

single flow line cells having 

unreliable machines.

4. Jeon et al. 

(1998a)

Part similarity coefficient, fixed number 

o f m/c breakdowns, alternative routes, 

and cost associated with inventory 

holding, early/late finish penalty, and 

operation.

Mixed integer 

programming model for 

grouping the machines 

into cells.

Minimization o f  m/c failure costs, 

inventory costs, early and late finish 

costs by considering scheduling and 

operational aspects.

Alternative process plans can 

improve resource utilization 

during machine failure.

It is a CMS study. It has 

considered m/c breakdowns; 

and the research is indirectly 

a reliability study.

5. Jeon et al. 

(1998b)
Part family, alternative routes for parts.

Calculation o f similarity 

ratio with algebraic 

relationship model.

Determination o f  part similarity 

coefficient considering number of 

alternatives routes during machine 

failure.

New similarity coefficient can 

be used for identifying part 

family.

The study considered 

machine breakdowns in 

CMS.

6. Kuroda and 

Tomita (2005)

MTBF, MTTR, cycle time 

Expected value o f over load from 

machine failure 

Assumed identical availability for all 

facilities

Cellular line design by 

MIP non-linear model

Objective to minimize number of 

facilities.
Using o f  MTBF and MTTR in 

designing a cellular line

Cellular line, each unit o f line 

a cell. Exponential 

distribution for machine 

failure
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Table 3.2 cont’d

Study F acto rs considered M odeling
descriptions

O bjectives M ajo r Findings Relevance

CMS RELIA BILITY  RELATED STUDY (Direct and  Indirect)

7.Seifoddini and 

Djassemi (2001

Intercellular workload, mean 

flow time, total work load, 

M/C reliability, WIP.

Simulation modeling.

Performance evaluation and relative 

sensitivity o f  job shop and CMS with 

machine reliability change.

CMS is more sensitive to 

reliability changes than job shop.

Reliability has been 

considered for the 

performance evaluation of 

the CMS.

8. Savsar 

(2000)

Pallet capacity, failure and 

repair rates and processing 

rates for machines, robot, and 

material handling device. 

Loading and unloading rate of 

jobs.

Markov model for a 

single machine FMC.

Comparison o f  performance of a reliable 

and unreliable FMC.

Development o f formulas for the 

utilization o f  machine, robot, 

and material handling devices 

under stochastic failure 

conditions.

The study is related to the 

flexible manufacturing cell.

9.Zakarian and 

Kusiak (1997)

Production capacity, 

availability, imperfect repair, 

imperfect coverage, repair 

rate, failure rates.

Analytical m odel, 

Markov chain, transient 

analysis.

Performance evaluation in terms o f  system 

availability.

Impact o f imperfect repair and 

imperfect coverage, system 

availability by decomposition 

approach.

Performance evaluation 

considering machine failure 

for automatic manufacturing 

shops.

FMS R ELIA B ILITY  STUDY

10. Miriyala and 

Vishwanadam (1989)

Part routing and reliability of 

individual machines and 

subsystems.

Process spanning graph, 

general probability law 

and exponential 

distribution.

To study part reliability defines as the 

steady state probability o f producing a part 

types by using at least one o f the available 

routes and FMS reliability.

Routing and operational 

flexibility can contribute to 

increased reliability in FMS.

FMS reliability 

consideration study.

11. Nagarajah et al. 

(1992)

M/C reliability, transporter 

speed, average flow times, 

total number o f parts 

produced.

Cell layout and process 

layout.

Simulation model with 

software MAST, 

data obtained from FMS 

users.

To study the effect o f machine reliability 

and transporter speeds on FMS 

performance.

Cellular layout is more efficient 

than process layout when all the 

machines have high reliability.

FMS related study. The 

result or findings are similar 

to CMS.
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Table 3.2 cont’d

Study Factors considered Modeling
descriptions Objectives Major Findings Relevance

FMS RELIABILITY STUDY cont’d

12. Lin et al. (1994)

Maintenance floats, failure 

rate, repair rate, production 

cost, availability.

Queuing models.

To implement maintenance float 

policy to keep operating equipment at 

a high level o f  availability.

Finding out the optimal maintenance float to 

achieve optimal repair capacity.

It is an FMS 

reliability study.

13. Rupe and Kuo 

(2001)

Machine failures, spare 

inventory and repair process.
Markov model.

Performability measure for mission 

effectiveness.

Performability measure which reflects system 

effectiveness.

FMS performance 

study. Can be used 

for similar analysis of 

CMS.

14. Wang 

and Wan 

(1993)

Initial reliability o f the 

machines, failure rate, 

production performance 

requirement and cost.

Dynamic reliability 

model with fuzzy 

information.

Effect o f failure modes, training of 

engineers and initial failure rates.

Identified 17 failure modes o f FMS.

If initial reliability is handled carefully and 

engineers are trained to handle failure system, 

performance will improve.

It is an FMS 

reliability study.

15. Yuanidis 

et al. (1994)

System throughput, average 

production rate, MTBF, 

MTTR, operation times for 

jobs.

Statistical and analytical 

model, established 

functional relationship 

to map parameter space 

into the response space.

Development o f a model or tool which 

closely resembles the FMS so that it 

can be used for system evaluation.

The algorithm GMDH which has been used 

to analyse the FMS, found to closely predict 

FMS output with the given input information.

It is an FMS 

reliability study.
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included in a single group, and a block replacement policy at fixed intervals was adopted. 

According to data analysis, the pulverizers were treated as a series system, and the failure process 

of the sub-systems was modeled as a renewal process. Due to the series structure, the 

opportunistic maintenance (OM) was considered to be appropriate. The study developed an 

(njj,N,) policy for OM maintenance where tiy represented OM age of component i, when the 

system was taken down for maintenance on component j ,  and Nt represented the age at which 

preventive maintenance(PM) was carried out on component i. If  A, was °o, the policy became (;% 

oo), and only OM was carried out when failure maintenance (FM) was conducted for j. OM ages 

for each component was specified corresponding to each opportunity class regardless of whether 

it was taken down for FM or PM. A simulation model was developed to validate the approach. 

This approach was suitable for small number of machines (systems as defined by the study); 

consequently, for a reasonable-sized CMS structure, it would be very complex to follow this 

procedure.

Sherwin (1997) constructed a block renewal model and illustrated it by assuming bad-as- 

old repairs between scheduled renewals. The study considered a total expected maintenance cost 

model which took into account the cumulative hazard rate function, planned renewal costs, and 

repair costs. The Weibull distribution was used for defining the cumulative hazard rate function. 

The best value for the number of intervals and the optimal interval were estimated from the model 

equation such that the minimum rate of change of expected cost per unit time was achieved. The 

paper emphasized the usefulness of the proposed component renewal model and illustrated the 

model with an example by considering n equal intervals and n-1 renewals. Although the model 

was developed for single machine systems, a similar approach may also be implemented for 

multi-machine situations.

Talukder and Knapp (2002) developed a heuristic method for grouping equipment that would 

allow the application of PM in a series system with the goal of minimizing the total maintenance- 

related costs. The Weibull distribution was applied to represent increasing failure rates of the 

equipment. The paper derived a total cost model, and evaluated the PM intervals by minimizing 

the total cost for individual equipment groups. Decisions on the number of groups and the 

assignment of individual equipment to the groups were made using a similarity coefficient -based 

heuristic method. The authors used a group forming methodology similar to the group technology 

(GT) approach and claimed that the approach generated excellent results for their problems.

Kardon and Fredendall (2002) developed a preventive maintenance model to balance 

breakdown and preventive maintenance costs through the evaluation o f preventive maintenance 

intervals that can limit the probability of system breakdown at the maximum tolerable limit set by
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the management. Using the Weibull distribution, their model was developed to decide the 

preventive maintenance interval so that the failure probability of a machine stayed below the 

specified limit set by the user organization. For multi-machine, multi-component systems the 

study considered four maintenance policies. The first policy was the replacement of components 

individually, which would incur very high costs and involve high downtime for conducting 

preventive maintenance in a serial manufacturing scenario similar to CMSs and, as such, was not 

a feasible proposition for multi-machine systems. The second policy was the block replacement 

or replacement of all components at the first failure. This is not a very efficient maintenance 

planning approach because it requires an organization to carry a high volume of spare parts to be 

ready to carry out the maintenance at the first failure. In addition, conducting preventive 

maintenance on all machines at every failure occurrence would be likely to incur very high costs. 

The third policy was a block replacement approach in which items were classified into a few 

categories or blocks depending on the similarity of maintenance intervals of the components as 

determined to ensure the minimum probability of failure. The fourth policy was the replacement 

of all components by determining the shortest maintenance interval to ensure a tolerable overall 

failure probability. After comparing the policies, the authors finally suggested to apply trial and 

error to adjust he interval to achieve the minimum possible total cost in a specific situation. The 

third and fourth policies may be applied to make a decision on preventive maintenance intervals.

To conclude on the studies related to preventive maintenance of CMSs or similar 

manufacturing environments: it is evident from these preventive maintenance studies for multi­

unit situations similar to CMSs that almost all research considered a cost-based approach for 

deciding on preventive maintenance intervals. As Wang (2002) pointed out, all maintenance 

actions aim to improve the reliability performance of the system, but most o f the maintenance 

models treated in the literature used cost optimization criteria, ignoring the reliability 

performance. Although Kardon and Fredendall (2002) did take machine reliability into 

consideration when developing the PM plans, their study did not consider the cost of performing 

unnecessary maintenance actions on some of the machines, as called for in block replacement 

policies. Considering the methodologies available in the literature, this dissertation proposes a 

new approach to PM planning in CMSs that addresses both machine reliability and cost. This 

dissertation also presents a CMS design model that incorporates machine reliability and PM 

planning concept to improve the performance of the system in terms of system reliability.
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3.5 Motivation for the Proposed Research

This literature review establishes that reliability is one of the major factors affecting the 

performance of the CMS. Machine downtimes in CMSs can be accommodated when they are 

preplanned (e.g., planned maintenance), and cell configuration is capable of rerouting the parts. 

The literature review also indicates that research considering machine reliability and 

maintainability of cellular manufacturing systems is somewhat limited. Most of the existing 

works on CMS design consider machines to be 100% reliable, which is clearly an impractical 

assumption. The limited research which does consider the reliability of CMS machines has 

mainly emphasized performance evaluation and comparison between manufacturing systems. 

Only a limited number of studies have considered reliability in the planning and design stages. 

This situation calls for an integrated approach to consider machine reliability in the cell formation 

and operation allocation processes to improve the performance of CMSs in terms of efficiency 

and cost-effectiveness.

Manufacturing organizations pursue preventive maintenance steps on the machines and 

equipment to restrict deterioration and improve the reliability performance of machines. As such, 

maintenance considerations of the machines should also be integrated in the CMS design and 

planning process. This dissertation focuses on considering and analyzing machine reliability and 

maintainability in the design of the cellular manufacturing system to achieve the objectives listed 

in section 1.5 while attempting to address most of the drawbacks o f CMS design models 

identified in the literature (Agarwal and Sarkis, 1998; Boughton and Arokiam ,2000; Savsar , 

2000, and Diallo et al.,2001).

As discussed previously, modem manufacturing machines (CNCs and others) are capable of 

performing multiple operations, which facilitates each part type to have more than one processing 

route. Uncertainties in the manufacturing system may arise from both internal and external 

disturbances (Garret, 1986). Internal disturbances such as machine breakdowns, variable task 

times, and queuing delays can be solved with the help of routing flexibility. Routing flexibility 

improves the CMS performance in the following two ways:

It facilitates the selection of alternate processing routes for a part type.

It allows a design model to select a processing route with the highest system reliability. 

Routing flexibility provisions can be used to overcome the challenges o f machine breakdowns, 

machine non-availability, or changes in machine reliability resulting in under capacity use of the 

cells. The CMS is often considered flexible in its ability to respond to machine capability 

changes, volume, and mix changes. Manufacturing cells should be designed with these types of 

changes in mind, because failure to consider these changes results in poorer CMS performance

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



( Vakharia et al, 1999). Two limitations related to routing flexibility in the existing CMS design 

approaches are:

There are several design methods in the literature which do not consider routing flexibility 

(Askin and Chieu, 1990; Ballkur and Steudel, 1987, etc). These CMS design approaches 

assume that each operation of a part type can be processed on one o f the specific types of 

machines. Therefore, they cannot handle unexpected changes in part demand or changes to 

product mix; they also fail to address the possible under capacity of the shop floor due to 

uncertainties such as worker absenteeism, queuing delays, and machine breakdowns. As 

such, these approaches develop an inferior cell configuration and reduce machine utilization. 

There are studies which take into account alternative routings in their design, and aim to 

achieve objectives other than solving machine reliability related issues. By considering 

machines to be reliable, these approaches use routing flexibility to determine the best 

processing route assignment and the best cell configuration that will minimize interaction 

between cells and improve resource utilization (Gindy et al. 1996; Rajamani et al., 1990; 

Shankar and Agarwal,1997; Caux et al.,2000).

Possible rerouting of the parts should be considered while developing the CMS design to handle 

machine breakdown situations (Jeon et al., 1998).

3.6 Research Methodology

From the literature review it is concluded that reliability consideration of machines in the 

design of CMSs have not received much attention. In addition, recent research reveals that CMSs 

have not met the expected performance criteria due to machine failures and machine non­

availability problems. Therefore, this research attempts to fill this gap. There are two common 

ways to ensure that the desired performance is achieved by the CMS. The first may be keeping 

more than one copy of each machine in the cells which will ensure very high reliability and 

availability levels. However, machines are the most costly resource in the CMS and, as such, this 

approach are not economically viable. The second approach focuses on integrating reliability 

considerations of the existing machines into the design phase so that the processing route selected 

for a part type has the highest system reliability for the machines along the route. Pursuing the 

second approach by giving due consideration to machine availability and alternate routing during 

operation allocation and machine loading will ensure a high level of system reliability. This is, 

however, an economic issue as we must balance the expected costs against the increased 

reliability to achieve an optimal solution.
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The methodology of this research includes the following factors to reduce the machine 

reliability related impacts and accomplish the set objectives:

consideration of machine availability to estimate effective machine capacity, 

selection of the most reliable machine routes for part types.

provision of alternative process plans for rerouting parts in case of machine failure, 

the optimization of operation and machine utilization related costs.

simultaneous considerations of system costs and system reliability along the part processing

route to ensure the development of an effective and economically viable cell configuration.

consideration of preventive maintenance in the CMS design process

evaluation of the alternative options in the light of reliability/ cost trade-offs.

evaluation of system availability as a measure of performance.

generation of a solution procedure for large scale CMS design problems.
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CHAPTER 4

DESIGN OF CMS WITH MACHINE RELIABILITY 

CONSIDERATIONS

This chapter is divided into 4 sections. Section 4.1 covers the assumption, definitions, 

problem statement and explanations of the multi-objective MIP model for simultaneous cell 

formation and operation allocation with consideration of machine reliability.

Section 4.2 presents the multi-objective mathematical model for designing cellular 

manufacturing systems (CMSs) with machine reliability considerations based on the exponential 

distribution. This model also evaluates CMS performance in terms of cell system availability for 

part type-process plan assignment by following the Markovian approach. For details on the 

analysis and development of the performance evaluation model, refer to section 2.4. System 

availability is defined as the total probability of cell states where relevant machines needed for 

processing a part type under a selected process plan are in the up (operating) condition. The 

steady state probability of the cell-machine states has been considered in the assessment of 

system availability. The applicability of the model is illustrated through an example solved by the 

developed procedure.

The development of the CMS design model with machine reliability considerations based on 

the Weibull distribution is presented in section 4.3. This section also addresses the optimal 

solution procedure for the model, and illustrates the comparison between outputs of the model 

based on Weibull distribution and the model based on exponential distribution by taking into 

consideration the same numerical example. The fact that the performance evaluation model is 

developed based on the Markovian approach makes it relevant to the exponential distribution 

model only. Therefore, section 4.3 does not include performance evaluation in terms of system 

availability.

In section 4.4, a large-sized problem is solved following the exponential distribution as well 

as the Weibull distribution based models in an effort to further illustrate the applicability of the 

models.

4.1 Model Development

The main goal of this research is to develop a multi-objective, mixed-integer programming 

model for simultaneous solutions of the cell formation and operation allocation problems in the 

design of CMSs with the considerations of machine reliability. The model, which follows the 

approach of Atmani et al. (1995), is based on the selection of a process plan for each part type
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which maximizes the overall system reliability, while minimizing the overall costs. The model 

has two objectives: The first objective is to optimize the variable costs of machining and intercell 

material movement as well as penalty costs for machine under-utilization in the joint cell 

formation and operation allocation problems. Detailed definitions of costs will follow.

The second objective is to optimize the system reliability of machines along the part- 

processing routes in the cell formation and operation allocation problem. The analysis and 

development of the system reliability of machines along part processing routes has been detailed 

in sections 2.3.2 and 2.5.2 for the two reliability distribution approaches.

4.1.1 Assumptions

The development of the mathematical model is based on the following assumptions:

1. The machines have been in the cell for some time, either in a functional layout (job 

shop-like) or a flow shop-like layout.

2. The machines are labeled by unit number (machine number), not by type.

3. The capabilities and capacities of the machines are known.

4. There is a set of part types to be processed, and the demand for each part type is fixed, 

and is chosen randomly from a uniform distribution.

5. Operation costs, refixturing costs, operation times and refixturing times for each part 

type to be processed on the machines are known.

6. Each operation of the part types may be performed on more than one machine.

7. Material handling costs from machine to machine within the cell (intracell) is 

negligible.

8. Material handling costs from cell to cell (intercell) is known. Material handling is done 

batch-wise. The total demand of each part type for a period is considered as a batch.

9. The number of cells to be used is specified in advance.

10. Bounds on the number of the machines in each cell are specified in advance.

11. Set up times are equivalent to refixturing times.

12. Since demand is uniform, the model is developed for a typical period of the demand.

13. There are certain machine reliability assumptions:

13.1 The maintenance files of the machines contain updated information on MTBF (mean 

time to failure) and MTTR (mean time to repair).

13.2 Machine availability for the model based on the exponential distribution is estimated 

by the interval availability approach ( equation 2.15), while that for the model based
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on the Weibull distribution is estimated by the inherent availability approach 

(equation 2.10).

13.3 The multi-objective CMS design model and performance evaluation model 

presented in section 4.2 are based on the exponential distribution.

13.4 The multi-objective CMS design model presented in section 4.3 is based on the 

Weibull distribution. Machines in this model are assumed to be independent and 

follow increasing failure rates with different assumed shape factors. The 

characteristic life for each machine is estimated based on its MTBF and shape factor.

14. Cell layout and job scheduling issues of the CMS design are not addressed in this 

dissertation.

4.1.2 Definitions of Objective Function Parameters

Processing/Operating cost is the cost of performing specific operations on part types, by 

individually capable machines. This cost depends on the type of machine and the number of hours 

needed to perform said operations. The cost per piece for each of the specific part types and 

operations can be determined by considering the type of machine and the number of hours needed. 

This model uses cost per part type for each operation to be performed on each individual machine.

Intercell material handling cost is the cost of transferring parts between cells when all the 

operations of a part type cannot be completed within a single cell. This intercell transfer can 

occur because not all the machine types required to process the parts are available in the cell to 

which the parts are allocated, or because the cell does not have sufficient processing capacity.

Refixturing cost is the cost of loading and fixing each part on machines for each of the 

operations. This cost depends on the refixturing time, fixture type, type of operation and type of 

machine. Considering all these factors, the cost is converted to cover the cost per part type for 

each operation on individual machines.

Machine under-utilization cost is the penalty cost for the proportion of the effective 

available time a machine is idle in a planning period. It is determined by multiplying the penalty 

cost coefficient by the proportion of non-productive time associated with a machine during a 

planning period. The penalty cost coefficient for a machine type may be estimated from the fixed 

cost, indirect labor and other factory overhead chargeable to the machine for the planning period 

under consideration.

Machine reliability is the survival probability of individual machines for the planned 

operation period of the system. The objective function of the model incorporates the system 

failure rate and the inverse of system reliability for the machines along the part-processing routes
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as a measure of reliability in the case of the exponential distribution and the Weibull distribution, 

respectively. The system failure rate is estimated from the MTBF values of the machines, and the 

inverse o f system reliability is estimated from the MTBF and shape factor values. Most 

researchers have developed cell formation and operation allocation models that consider 

machines to be 100% reliable. The proposed model considers machines to be unreliable, and 

includes the reliability and effective availability of the machines in the process of cell formation 

and operation allocation to optimize reliability and achieve an optimum/desired cost. The 

description in Chapter 2 forms the basis for considering machine reliability for the CMS design 

models in this chapter.

The three cost elements of the first objective function are interrelated, and could conflict. For 

example, operation costs can be minimized by selecting the machines which have the lowest 

processing cost, but penalty costs force the model to utilize all the machines. Similar arguments 

can be made for intercell material handling costs and processing costs. Processing costs may be 

minimized by selecting machines in two or more cells but intercell material handling costs force 

the model to limit intercell movement. Therefore, decisions for these costs need to be made 

simultaneously.

The first and second objective functions have contradictory requirements. While the first 

objective targets simultaneous cell formation and operation allocation by optimizing cost, the 

second objective targets the development of CMS design to optimize machine reliability only. 

Often, machines with higher reliabilities or lower failure rates have higher processing and 

refixturing costs. The penalty costs for machine under-utilization and intercell material movement 

are also in opposition in relation to machine reliability. Therefore, cost and reliability need to be 

integrated in the CMS design approach in order to successfully make trade off decisions and 

fulfill business goals.

4.1.3 Problem Definition

We assume that there is a set of m machines with indices j= l,2,..,m  to process a set of n part 

types with indices i= 1,2,..,n, where the part type i has uniform demands ^during the planning 

period T. Each machine j  has a reliability level defined by its MTBF] and MTTRj (mean time 

between failure and mean time to repair), and a specified capacity bj for the entire planning period 

in terms of total available hours. A part type i may be processed under any of the process plans p  

=l,2,..,P(i). For a process planp  of a part type i, the operations are represented by the indices 

o=l,2,..., O(ip), and the machines that can perform operation o of (ip) are represented by the set

' 1  w o -
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The objective is to group the machines into a number of cells, and to assign the part types to 

one or more cells for processing so as to minimize the total costs and maximize the over all 

system reliability.

4.1.4 Notations Used

Indices and sets

ce{l,2,. . ,C}  

ze{l,2,..,n}

j e { l , 2 , . . , m}

J ipoc  =

ke{\,2,..,N}

o e { \ ,2 , . . ,0 ( ip ) }

pe{l ,2, . . ,P(j)}

ip

Sj e {0,1} 

wk ={5!.52,...5m}

W = {wv w2,...wN} 

r

Parameters

A j(T )

bj

C0OJ{ip)

cpj

C R o jiip )  

d,

H.....
1JCJC

cells

part types 

machines

set of machines that can perform operation o of (ip)

index of the states of a cell in a Markovian transition

operations for part type i following process plan p

process plan for part type i

a part type-process plan combination

state of machine j;  1 = operating, 0 = not operating

cell states with m machines where each Sj € {0,1} 

cell state space 

gamma function symbol

availability of machine j  in time period T

amount of time available on machine j  during the planned 

manufacturing period

cost o f performing operation o of (ip) on machine j  

penalty cost for the non utilization proportion o f  machine j  

cost o f refixturing a unit of (zp)for operation o on machine j  

demand for part type i distributed uniformly over the planning 

period

cost of moving part type i from machine j  in cell c to 

machine j  in cell c for performing the next operation
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M SWJ

MTBFj

MTTRj

n
T0oj{ip)

TRojQp)

UM

b

Pi

Decision variables

LIRip

Mjc

SA(ip)

T H Wi{ip)

XojcitP)

Y o j c j c i i P )

Z(ip)

an indicator of the state of machine j  in CMS state wk; equals 1

if machine j  is in operating condition in CMS state wk,

0 otherwise

mean time between failures for machine j  

mean time to repair for machine j  

repair rate for machine j

time for performing operation o of (ip) on machine j  

time for refixturing (ip) for operation o on machine j  

maximum number of machines in a cell 

failure rate of machine j

steady-state probability of CMS being in state wk 

shape factor for machine j

system reliability measure corresponding to the machines 

performing the set of operations for (ip)

1 if machine j  is assigned to cell c; 0 otherwise 

manufacturing system availability indicator corresponding to a 

given (ip) in relation to the CMS state space W

1 if, in CMS state wk, machine j  is in operating condition to 

perform operation o of (ip)', 0 otherwise

1 if CMS state wk is selected in which machines needed to

perform all the operations of (ip) are in operating condition;

0 otherwise

1 if operation o of (ip) is performed on machine j  in cell c;

0 otherwise

1 if part type i moves to machine j  in cell c to perform

operation (o + 1) after performing operation o on machine j  

in cell c, following process plan p; 0 otherwise 

1 if part type i is processed following process plan p;

0 otherwise
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4.2 M athematical Model Based on Exponential Distribution for Machine Reliability

4.2.1 The M athematical Model

The following is a detailed description of the multi-objective mathematical model for the 

manufacturing cells.

Objective function: The first objective function (defined as objective function I) computes 

the total system costs consisting of the variable cost of machining (VCM), the inter-cell material 

handling cost (MHC) and the penalty cost of machine under utilization (MNC):

M inimize  Objective function I = VCM+MHC+MNC  (4.1)

The variable cost of machining VCM takes into account the operation cost COoj(ip) and the 

refixturing cost CR0j (ip). The 0-1 decision variable Xojc(ip) equals 1 if  operation o of (ip) is 

performed on machine j  in cell c , and is zero otherwise. Thus, VCM may be expressed as:

n  P ( i )  O ( i p )  C

v c M  = % d , £  £  £  {co„; ( i » + a ! !j( ! » ) £  x # ( tp )--------- (4.ia>
i = 1 P = 1 0=1 jeJipc c=l

The inter-cell material handling cost MHC computes the cost of moving parts from cell c to

cell c. Hjjcjc is the cost of moving a unit of part type i from machine j  in cell c, after performing

operation o, to machine j  in cell c for the next operation, (o+l):
n  P O )  0 ( , p ) - i

JMHC = £ r f , £  £  £  £  £
,=1 p=1 o=l jeJipa jeJ¥^ l)\ic,c<C

It is noted that MHC is a non-linear function, which may be linearized following the procedure

described in Taha (1992), by replacing the product term X 0jc ( i p ) X (o+I^j.(ip  j  by a binary

linearization variable, Y ^ .  (ip) which satisfies the following two constraints:

x  o j c  ( i p ) +  X  f o + i  )jc ( i p ) -  2 Y o j c j c  ( ip )  -  0 ’  (4 2)

V /, p , o e {1 ,2 ,..., O ( ip )  -  1}, j  e  { J  ipo , j  e  J  ip(o + 1 ) , c , c

X„,r (ip) + X  ,.-..(ip) -  Y . -..(ip) < 1
OJC \  r  s  ( o + l )  J C  V *  '  OJCJC v *  '     ( A

\ f i , p ,o  e {1,2,..., 0 ( i p ) - \ } , j  e J ipo , j  e J lp(o+l), c, c

It is evident that Y  ^ .(ip )  takes the value of 1 if and only if  a unit of part type i is moved from

machine j  in cell c, after performing operation o, to machine j  in cell c for operation (o+l).

Thus, the expression for MHC is:

n />(<) O ( i p ) - 1

JMHC = £ r f , £  £  £  £  £ % / „ * ( - » ----------- (4.1b)
;=1 p = l o= l j z J ¥ o  ] e J ip ( a + 1) l < c , c < C
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Finally, the term MNC computes the penalty cost for the proportion o f the time machine j  is 

under utilized:

m  n  P ( i )  O ( i p )  J O  ( i D \  J R  ( i D \  C

M N C - Z  cP, (  1 - E  I  1 E  x . , m
y= l i= 1 p —\  0=1 A-j K 1 ) ° j  c=1

----------- (4.1c)

where bj is the total capacity and A /T )  is the availability of machine j  during the planning period T, 

and therefore, Aj(T)bj represents the effective capacity of machine j. In addition, TO0/ip )  and 

TRoj(ip) are the operation and refixturing times, respectively, corresponding to operation o of (ip) 

on machine j, and cpj is the penalty cost of the non-utilized fraction o f the effective capacity of 

machine j.

The second objective function (defined as objective function II) computes the system 

reliability in terms of system failure rate over the set of all part-process plan combinations:

n  P ( l )

Minimize Objective function II = ̂  ^  LIR jp --------------- (4.4)
1=1 p = \

where,

o m  c
U R » =  2  I  £  v i ’P

0=1 jtJipo C=1

Assuming the failure rate of machine j  follows an exponential distribution,

A = -----------
7 MTBFj

LIR ip calculates the system failure rate corresponding to the machines which perform the set of 

operations for (ip). Objective function II seeks to select the set of process plans for all part types

that results in the minimum system failure rate, and thus maximizes the system reliability. A

detailed derivation for LIRip is described in section 2.3.2 

Constraints: The following constraints are defined:

Constraint set (4.5) assigns each part to a single process plan. The binary variable Z(ip) 

equals one if and only if part type i is processed under process plan p.

P O )

2  Z(ip) = 1 Vi --------------- (4.5)
p=\

Constraint set (4.6) ensures that when a process plan for a part type is selected, each 

operation of the process plan is assigned to one of the available machines in one of the cells.
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I  I  X OJC(ip) = Z (ip )  V i , p , o  -------------- (4.6)
j e J ipo c=l

The next set of constraints ensures that machine j  is assigned to at most one of the cells.

Variable Mjc equals one if  machine j  is assigned to cell c, and is zero otherwise.

i  M j c <\  V;  (4.7)
C = 1

Constraint set (4.8) enforces an upper limit, UM, on the number of machines allowed in each 

cell. This upper limit is a design factor set by the CMS user.
m

£  M ]c <  U M  V c   (4.8)
j =i

The next constraint set ensures that a machine j  has to be assigned to a cell c before any 

operation could be allocated to that machine.

n  P ( i )  0 ( i p )

I I I  X ojc Op) -  M jc V / ,c  -------------- (4.9)
1=1 p —1 0=1

Constraint set (4.10) ensures that the allocated operations do not overload a machine beyond 

its effective capacity.

n  P (0 O ( i p )

£ r f , £  £  [ro „ J(I» + n f , ( i p ) ] x , ( i P) < i JMJ„ ^ (r )  v ,\c  -----------(4.io>
(=1 p = 1 0=1

As explained earlier, T0oj(ip) and TRoj(ip) are, respectively, the operation time and the refixturing 

time of operation o of (ip) on a machine j  . The effective capacity o f machine j  is estimated by 

multiplying its capacity bj by the availability factor A/T)  which is computed as explained in 

section 2.3.1.

Constraint sets (4.11)-(4.14) evaluate the performance of the CMS when it is processing the 

(ip) combination. While the operation allocation variable Xojc(ip) selects machine j ,  in cell c, to 

perform operation o of (ip), constraint (4.11) selects the cell state wk in which machine j  is in 

operating condition. The zero-one variable SI'£°J equals 1 when machine j  (which is slated to 

perform operation o of (ip)) is in operating condition in cell state wh and is zero otherwise. The 

parameter M SWtJ assumes a value of 1 or zero, depending on whether machine j  is in operating

condition in cell state wk, or not. The value of MS' at each cell state wk may be determined bywkJ

the probable machine state analysis as per the Markov chain approach.

£  X ojc(ip)M SWij- S I % j = 0  Vwt , i , p , o , j  ----------- (4.11)
c=1
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Constraint sets (4.12) and (4.13) work together to ensure the selection of only those cell states 

Wk where all the machines needed to perform all the operations of (ip) are in operating 

condition. TH  w (ip) equals 1 when in the cell state wh all the machines needed to complete the 

processing of (ip) are in operating condition. For example, if a part type i needs machines j=2, 3, 

5 to perform operations 1, 2, and 3, respectively, then T H Wl(ip) will be 1 if and only if in the

cell state wk all three machines are in operating condition, depending on the decision made by 

operation allocation variables X0jc(ip)- Here MO is a large number.

0 ( i p ) C O ( i p )

£  £  £  * • < « -  £  £  iM O (  1 - 2 W „ »  ) V w „ /,p  ----------- (4.12)
0=1 j t J i p o  0=1 0=1 j e j ip„

0 ( i p ) C  0 ( i p )

£  l £ * * 0 » - £  £  S I ' * > ( l - T H „ ' ( i p ) )  Vw, , i , p ------------- (4.13)
0=1 j e J l p o  0=1 0=1 j £ j ipa

Constraint set (4.14) calculates the system availability SA(ip) of the manufacturing cell for 

the selected (ip) combination depending on the steady state probability of the cell state space W. 

TH w (ip) selects the steady state probability^^ if  the cell state wk is available or if it can

perform all the needed operations for the (ip) combination. Steady state probability for each of the 

cell states can be calculated as per the approach described in section 2.4.

SA(ip) = X  n »7H ^  (?P) y i ’P   (4-14)

The last constraint set enforces the integrality o f the variables. 

x ojc 0-P)> YOJcji (*P)>Z  (z» ’ M Jc ’S I ’T H ^  VP) e  i0’1) - V i , p , o , j , c , ) , c ,  wk --------(4.15)

4.2.2 Model Summary

Assembling the above, the model may now be presented as follows:

Minimize objective function I

Objective function I = VCM+MHC+MNC  (4.16)

where,

n  />(/) O V P )  C

VCM  = X  £  £  {COo. 0 »  + C ^ 0 » } £  X ojc(ip)  (4.16a)
i = l  p = \  o= l j e J i p o  c= l
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„  P ( D  O ( i p ) - 1

M H C  = ■£<!, £  X L E  Z   (4.16b)l /C /C  OjCjC
,'=1 P=1 0=1 j e j ^ ,  j e y ipo l<c,c<C

m „ i’d) o(ip) j o  (iD) + TR (in) c
m n c = t  cp t ( 1 - ( Z  d , z  Z  7 , 1 .  ] ) I  - M W  —

y'=l /=! p = 1 o= l A . j  V î JD y  c=l

Minimize objective function II:

n  P ( i )

Objective function II = ̂  ^   (4.17)
i= l p = \

where,
0 (ip) c

i / s * = 2  Z . Z v * ( «   (4-17a)
0=1 C=1

subject to the following constraint sets:
Pd)
Y t Z ( i p ) =  1 Vi  (4.18)
/>=1

c
Z  Z  = z ( ^ )  v ^ > °   (4-19^

j^Jipo  0=1

/=1 p = l  0=1

« P ( |)  0 ( i p )

Z M , C<1 v /   (4.20)
C = 1  

m
J ^ M j c < U M  Vc  (4.21)
y=i

n / ’(/)  Q (fp )

E l I W K ,  y/,c  (4.22)

I  <*,Z Z  [ r o ^ o w  + r a ./ip ) ^ ( ip j s i j J V ^ J d J - )  v /,c  ----------- (4.23)
1=1 p =1 0=1

f  x ^ t i p w s ^ - s r ™  = 0  v » , ,/,p ,o ,y   (4.24)
c=i

0 ( i p )  C  0 ( i p )

Z  Z  Z  Z  Z  •« ? ' S M 5 < 1 

-

<4-25)
o=i y'Ê,)» c=i °=i J£Jip°

° ( i p )  C  0 ( i p )

Z  Z  Z  - M & o - Z  Z  s r ™ > ( i - m , i C'W ) v » ,  .‘' . p  ------------<426>
o=l y eA *  c= l o=l j ^ J lpa
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SA(ip) = £  n wT H Wk{ip) V i ,p (4.27)

X ojc( ip )+ X (o+1)]£( ip ) -2 Y oj,£(ip )> 0 , X i ,P ,o e { U ,  0 ( i p ) - l } , j  e { J ipo, j  e J ip(o+1),c,c

------------ (4.28)

■(4.29) 

(4.30)

X ojc(ip)+ x (n+nl- (ip) -  YmA, (ip) < 1 V i,p , o e  {1,2,.. 0 (ip )  -1} J  e J ipo, j  e J lp(0+V), c, c
( o + \ ) j c o j g c i p o ' i p ( o + 1 )9

The above mathematical model incorporates a pre-determined number of cells. Venugapal 

and Narendran (1992) show that the number of ways in which m machines may be assigned to C 

cells is given by the Stirling number of the second kind.

I< - i )
s m  = f±

C - c
c

a

For example, there are only 34,105 distinct partitions of 10 machines into 4 cells, but this number 

increases to 11,259,666,000 approximately, if 19 machines are to be partitioned into 4 cells, 

resulting in a combinatorial explosion. However, if C  is not pre-specified, with m machines, the 

total possible number of cells ranges from 1 (every machine is assigned to the same cell) to m 

(each cell has only 1 machine). The total number of ways in which machine-cell assignment may

m  m

be made explodes to y 1 S (C) = ^
c=i c=i

C=1 vc y
C!

It has been shown that this class o f problem is NP-complete (Gary and Johnson, 1979). Thus, in 

the problem formulation, the number of cells needs to be pre-specified in order to maintain 

tractability. This decision is generally based on several factors such as total number of machines 

to be assigned into cells, physical constraints on the workshop floor, labor relation and other 

management decision issues.

In a survey of 32 US manufacturing firms, Wemmerlov and Hyer (1989) reported that the 

average for manned cells was 6.2 machines. The second largest size was 15 machines (the largest 

is 40 machines). The smallest typical cell size for a manned cell was 2 machines.
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4.2.3 Optimal Solution Procedure

The two objective functions and all the constraints are linear equations. The objectives have 

competing interests that conflict with each other; therefore, they cannot be converted into a 

common scale of cost or benefits. The model is solved utilizing a hierarchical 

approach/preemptive approach that selects each objective as the most important (first priority) to 

decide the desired level of performance. Finally, the problem is solved with the G-constraint 

approach in order to provide options for the users— allowing them to make tradeoff decisions. 

Efficient frontier diagram and the data for efficient frontier solutions show the influence of 

reliability on the cell configuration, work allocation and system costs.

4.2.4 Numerical Examples

To demonstrate the applicability of the model, we present two examples. Example 1 is a cell 

design problem involving 7 machines and 12 part types, and Example 2 is one involving 10 

machines and 19 part types. The examples are solved using LINGO 07 on a PENTIUM 4, 2.26 

GHZ, 712 MB RAM computer. Example 2 is presented at the end of the chapter in section 4.4.

Values for the parameters: For examples, part and machine related information is generated 

randomly by considering similar data in the example problems o f the literature. For the first 

example, the planning period (7) is considered to be 1500 hours. It is also assumed that all the 

machines are not available for the total planning period. Accordingly, machine capacity has been 

randomly generated using a uniform distribution with parameters [950 - 1500] hours. For the 

second example, the planning period is 1875 hours and all the machines are assumed to have the 

same capacity. Machine reliability related information {MTBF and MTTR) is generated randomly 

using a uniform distribution with the following parameters in order to maintain machine 

availability up to a maximum of 90% for Example 1, and 95% for Example 2.

Example 1 Example 2 

MTBF (80-200) (90-225)

MTTR (8-30) (4-75)

We assumed the maximum number o f cells for both the example problems to be 3.

4.2.4.1 Example 1: a 7-machine-12-part cell design problem.

Input data: Demands, processing times and costs, operation sequences and process plan 

information for the part types are presented in Table 4.1. Machine related information is given in 

Table 4.2. According to the input information, there are two process plans for each part type. A 

part can be allocated to different machine routes following a process plan with different machine
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combinations. Each part needs two to three operations for its complete processing. Each operation 

can be performed on two machines. The inter-cell transfer cost for a batch of a part type is 

assumed to be $50.

Based on the MTBF and MTTR values from Table 4.2 the availability and effective available 

capacity of each machine during the planning period are evaluated. For example, machine 1 (Ml) 

has an availability of 0.896 (using equation 2.15, 6=0, and t2 =1500 hours) and an effective 

capacity of 1344 hours. From Table 4.1, we can see that whenever a machine is not available due 

to failure or the processing of other parts, there are other options for a part to be processed by 

other machines in alternative routes. The available alternative routes for each part type under each 

process plan are shown in Table 4.3. Table 4.4 illustrates a list of alternative routes for a typical 

part (part type 1) whenever machine j  (1, 2,..,7) is not available.

Calculation of steady state probability for cell states: To evaluate the CMS performance, 

we need the steady state probabilities of the cell states. With 7 machines in the cell, we have 27 = 

128 probable cell states, designated as W=  {1111111, 1111110,..., 0000000}. To develop the 

transition probability matrix TM, we need to compute, for each machine, the probability of 

making a transition within a short time interval, At, as explained in Section 2.4.1. As an example,

consider machine M2 for which we need to compute p \ {, P 20 , P 2’1, P 2’° > where, for instance, 

p Y  = probability that machine 2 is making a transition from “operating” to “operating” within 

At', the probability p Y  may be assumed to be the interval availability of machine 2 over the 

planning horizon under consideration, and therefore, p \°  = (1- availability o f  machine 2). In a 

similar fashion, p \ ° , p 2’x, P 2’0 may be defined.

The probability of making a transition from “down” to “up” within a short time interval 

At, Py’1 depends on the reparability and maintainability of the machine. Considering an

exponential distribution, the probability of completing the repair work within the time t is 

(Ebeling, 1997):

H  (t) = \ - e~,IMTTR

The total down time, t, is usually higher than MTTR due to supply delay time, waiting time, etc. 
Assuming t >1.5 MTTR, P y 1 is computed to be approximately in the range of 0.77 to 0.80, and

P°’° can be estimated from Py0,0 = 1- P y 1 • Table4.5 presents the probability for the four states of

each machine including the basis for the probability values. Taking these individual machine state 

probabilities as the input data, the elements of the transition probability matrix have been
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Table 4.1: Demands (units), processing times (hours), and costs ($) for all part types
(Example 1) ___________________________________________________

PART
TYPE

DEM
AND

DATA
TYPE

PROCESS PLAN
1 2

OPERATIONS OPERATIONS
1 2 3 1 2 3

1 100
M/C
Time
Cost

M l M4 
0.94 1.34 
0.32 0.86

M l M5 
0.85 2.42 
0.77 0.61

M4 M6 
2.25 2.02 
0.55 0.43

M l M5 
1.83 2.39 
1.0 0.86

M4 M6 
2.76 1.78 
1.00 0.72

2 125
M/C
Time
Cost

M2 M5 
1.98 0.99 
0.51 0.29

M3 M7 
2.44 2.44 
0.66 0.29

M2 M7 
1.54 0.94 
0.4 0.36

M3 M5 
1.70 1.75 
0.38 0.81

M2 M7 
1.91 1.70 

0.25 0.79

M3 M7 
1.75 1.65 
0.22 0.69

3 110
M/C
Time
Cost

M3 M7 
2.02 2.5 

0.76 0.39

M3 M6 
2.34 2.76 
0.73 0.83

M4 M6 
2.21 2.39 
0.46 0.53

M4 M7 
1.71 1.26 
0.72 0.26

M3 M6 
2.16 0.86 
0.76 0.57

M2 M4 
1.35 1.53 

0.52 0.51

4 120
M/C
Time
Cost

Ml M4 
1.86 1.86 
0.70 0.51

M3 M6 
0.95 1.76 
0.2 0.61

M2 M5 
1.47 2.09 
0.51 0.69

M l M5 
1.83 2.76 
0.57 0.43

M2 M6 
2.76 1.16 
0.4 0.50

5 200
M/C
Time
Cost

M2 M5 
1.2 2.47 
0.68 0.46

M l M5 
2.27 2.09 
0.24 0.7

M4 M6 
2.41 1.77 
0.43 0.62

M2 M7 
1.67 2.28 
0.55 0.54

M l M6 
2.45 0.86 
0.53 0.55

M4 M7 
1.12 2.33 
0.44 0.73

6 125
M/C
Time
Cost

M3 M7 
0.87 1.64 
0.61 0.27

M l M5 
1.24 1.42 

0.35 0.32

M2 M7 
1.14 2.36 
0.66 0.6

M3 M7 
2.01 1.81 
0.43 .315

M l M5 
1.08 2.24 
0.34 0.34

M3 M7 
0.86 0.84 
0.61 0.34

7 90
M/C
Time
Cost

M2 M5 
1.13 1.0 

0.31 0.72

M l M4 
1.15 0.85 

0.58 0.82

M l M4 
1.47 2.09 
0.74 0.61

M2 M6 
1.84 1.80 
0.55 0.74

M l M4 
1.41 2.61 
0.66 0.63

8 50
M/C
Time
Cost

M2 M5 
1.43 2.48 
0.3 0.68

M2 M7 
2.11 1.02 
0.75 0.41

M4 M6 
0.91 1.11 
0.36 0.3

M3 M5 
1.44 2.31 
0.70 0.75

M l M7 
2.42 1.26 
0.93 0.41

M3 M6 
1.22 2.36 
0.26 0.48

9 80
M/C
Time
Cost

M3 M7 
2.32 1.73 
0.31 0.59

M l M4 
0.85 2.11 
0.81 0.28

M3 M6 
1.73 1.35 

0.52 0.78

M l M3 
2.39 2.48 
0.58 0.72

M4 M7 
2.23 2.29 
0.51 0.67

M l M6 
1.46 1.35 

0.46 0.78

10 50
M/C
Time
Cost

M2 M5 
2.17 2.25 
0.37 0.62

M3 M6 
1.44 1.77 

0.25 0.48

M l M5 
2.19 1.22 
0.44 0.56

M2 M6 
2.01 2.03 
0.49 0.24

M3 M5 
2.08 2.29 
0.78 0.70

M l M5 
1.52 1.09 

0.44 0.31

11 60
MC

Time
Cost

M l M7 
4.9 5.2 
1.0 0.9

M3 M7 
2.4 2.3 
0.8 0.8

M2 M5 
3.5 4.0 

0..9 0.75

M3 M6
3.2 3.1
1.2 1.0

12 45
M/C
Time
Cost

M l M4 
0.8 0.9 
0.4 0.4

M3 M6 
1.2 1.5 
0.3 0.3

M2 M5 
2.0 1.9 
0.4 0.5

M3 M7 
1.7 1.6 
0.5 0.5

M2 M6 
1.8 1.9 
0.6 0.6

Table 4.2: Machine information (Example 1)
D a ta  T y p e MACHINES

M I M2 M3 M4 M5 M6 M7
Capacity (Hrs) 1500 1400 1200 1100 1300 1000 1400
MTBF (Hrs) 187 89 160 131 83 181 130
MTTR (Hrs) 22 10 18 14 10 28 12

Penalty cost for % non 
utilization 256 292 454 270 391 300 283
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Table 4.3: Available alternative routes for the part types (Example 1)
Part
type

Process
plan Alternative machine routes Total

1
1 M1-M1-M4, M1-M1-M6, M1-M5-M4, M1-M5-M6, M4-M1-M4, M4-M1-M6, M4-M5-

M4, M4-M5-M6
8

2 M1-M4, M1-M6, M5-M4, M5-M6 4
1 M2-M3-M2, M2-M3-M7, M2-M7-M2, M2-M7-M7, M5-M3-M2, M5-M3-M7, M5-M7-

M2, M5-M7-M7
8

2 M3-M2-M3, M3-M2-M7, M3-M7-M3, M3-M7-M7, M5-M2-M3, M5-M2-M7, M5-M7-
M3, M5-M7-M7

8

3

1 M3-M3-M4, M3-M3-M6, M3-M6-M4, M3-M6-M6, M7-M3-M4, M7-M3-M6, M7-M6-
M4, M7-M6-M6

8

2 M4-M3-M2, M4-M3-M4, M4-M6-M2, M4-M6-M4, M7-M3-M2, M7-M3-M4, M7-M6-
M2, M7-M6-M4

8

4
1 M1-M3-M2, M1-M3-M5, M1-M6-M2, M1-M6-M5, M4-M3-M2, M4-M3-M5, M4-M6-

M2, M4-M6-M5
8

2 M l-M2, M1-M6, M5-M2, M5-M6 4

5

1 M2-M1-M4, M2-M1-M6, M2-M5-M4, M2-M5-M6, M5-M1-M4, M5-M1-M6, M5-M5-
M4, M5-M5-M6

8

2 M2-M1-M4, M2-M1-M7, M2-M6-M4, M2-M6-M7, M7-M1-M4, M7-M1-M7, M7-M6-
M4, M7-M6-M7

8

6

1 M3-M1-M2, M3-M1-M7, M3-M5-M2, M3-M5-M7, M7-M1-M2, M7-M1-M7, M7-M5-
M2, M7-M5-M7

8

2 M3-M1-M3, M3-M1-M7, M3-M5-M3, M3-M5-M7, M7-M1-M3, M7-M1-M7, M7-M5-
M3, M7-M5-M7

8

7
1 M2-M1-M1, M2-M1-M4, M2-M4-M1, M2-M4-M4, M5-M1-M1, M5-M1-M4, M5-M4-

M l, M5-M4-M4
8

2 M2-M1, M2-M4, M6-M1, M6-M4 4

8

1 M2-M2-M4, M2-M2-M6, M2-M7-M4, M2-M7-M6, M5-M2-M4, M5-M2-M6, M5-M7-
M4, M5-M7-M6

8

2 M3-M1-M3, M3-M1-M6, M3-M7-M3, M3-M7-M6, M5-M1-M3, M5-M1-M6, M5-M7-
M3, M5-M7-M6

8

9
1 M3-M1-M3, M3-M1-M6, M3-M4-M3, M3-M4-M6, M7-M1-M3, M7-M1-M6, M7-M4-

M3, M7-M4-M6
8

2 M1-M3-M1, *M1-M3-M6, M1-M7-M1, M1-M7-M6, M3-M3-M1, M3-M3-M6, M3- 
M7-M1, M3-M7-M6

8

10

1 M2-M3-M1, M2-M3-M5, M2-M6-M1, M2-M6-M5, M5-M3-M1, M5-M3-M5, M5-M6-
M l, M5-M6-M5

8

2 M2-M3-M1, M2-M3-M5, M2-M5-M1, M2-M5-M5, M6-M3-M1, M6-M3-M5, M6-M5-
M l, M6-M5-M5

8

11
1 M l-M3, M1-M7, M7-M3, M7-M7 4
2 M2-M3, M2-M6, M5-M3, M5-M6 4

12
1 M1-M3-M2, M1-M3-M5, M1-M6-M2, M1-M6-M5, M4-M3-M2, M4-M3-M6, M4-M6-

M2, M4-M6-M5
8

2 M3-M2, M3-M6, M7-M2, M7-M6 4
Total 168

*M1-M3-M6 means: operations 1, 2 and 3 of part type 9 are performed under process plan 2 by 
machine route M1-M3-M6,

Table 4.4: Alternative routes for part 1 when machine j  is not available (Example 1)
Part
types

Unavailable
machine./ Alternatives machine routes available after failure Total

1

MI M4-M5-M4, M4-M5-M6, M5-M4, M5-M6 4
M2 All possible routes are available, no effect 12
M3 All possible routes are available, no effect 12
M4 M1-M1-M6, M1-M5-M6, M1-M6, M5-M6 4
M5 M1-M1-M4, M1-M1-M6, M4-M1-M4, M4-M1-M6, M1-M4, M1-M6 6
M6 M1-M1-M4, M1-MS-M4, M4-M1-M4, M4-M5-M4, M 1-M4, M5-M4 6
M7 All possible routes are available, no effect. 12
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computed by solving the equation (2.21) using LINGO 07. For a 7-machine cell we have a 128 X  

128 matrix. For example, the element TM (3, 5) of the matrix (i.e., the probability of transition 

from cell state w j={1111101} to cell state w5={1111011}) is computed as follows:

t m  (3,5) -  P W3 ;lVj =/>}■* * p \ l * p y  * p \ l * p \°  * p 0/  * p y

= 0.896*0.899*0.900*0.905*(1-0.893)*0.78*0.894 = 0.0489. Similarly, the other elements of the 

transition probability matrix TM are constructed. The complete representation of the TM 

occupies a large amount of space, and therefore, only a part of the matrix is included in Table 4.6 

From the relationship of steady state probability vector, TM and normality equation, steady 

state probabilities have been estimated following the Markovian analysis (refer to section 2.4.1 

for a detailed description). The steady state probabilities have been evaluated using LINGO 07 

and are shown in Table 4.7.

4.2.4.2 Solution and Analysis

The total number of variables, integer variables and constraints in the model are 52228, 

49088 and 18948, respectively.

The model solution determines the cell formation and the allocation of operations for each 

(ip) combination. It then calculates the system availability indicators SA (ip) as per equation 

(4.14). Table 4.8 shows the optimum cell formation, operation allocation and reliability related 

information when only the first objective function (total costs) is optimized. In this scenario, cell 

1 consists of machines M l, M2, M3 and M4 while cell 2 consists o f machines M5, M6 and M7. 

As an example, part type 1 is processed in cell 2 where operations 1 and 2 are performed on 

machines M5 and M6, respectively. The total costs (first objective function) equal $1,771.46, and 

the overall system failure rate (second objective function) evaluated at this solution point is 

0.2621467. It is also noted that, for instance, SA (1,2) = 0.682, implying that the machine route 

for part type 1 under process plan 2 has an expected availability of 68.2% over the planning 

period.

In a similar fashion, Table 4.9 shows the results when only the second objective function 

(overall system failure rate) is optimized. In this case, the overall system failure rate (second 

objective function) is 0.2019891, and the total costs (first objective function) evaluated at this 

solution point is $3,068.32. Between these two extremes there is the collection of efficient 

solutions to the problem (i.e., the efficient frontier) which are obtained by using the G-constraint 

method as follows:
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Table 4.5: Individual machine state probabilities using exponential distribution, 
(Example 1)

Machines
Machine state matrix Availability and reparability

states states Parameters Values
1 0

Ml 1 0
0.896 0.104* A,m 0.896
0.80 0.20 H,(t) 0.80

T
M2 J 0.899 0.101 A2(T) 0.899

0.79 0.21 HM 0.79
1

M3 J 0.90 0.10 As(V 0.90
0.80 0.20 HM 0.80

1
M4 J 0.905 0.096 A/T) 0.904

0.80 0.20 HM 0.80
1.......... .. .............

ms ;
0.893 0.107 As(T) 0.893
0.79 0.21 HM 0.79

1
M6 J 0.869 0.131 A,(T) 0.869

0.78 0.22 HM 0.78
1

M7 J
0.894 0.107 A,(T) 0.893
0.8 0.2 HM 0.8

u uA](T) = Availability o f machine j, in planning period T which may be assume to be Pj , u: up (I)
d u

Hj(t) = Reparability o f  machine j , by the time t which may be assumed to be p  j d . down (0)

* p lj°  = 0.104, when 1 = machine is up , 0 = machine is down
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Table 4.6: Transition probability matrix for the cell states (partial results, Example 1)
Machine

states
Ceil states

-wl ....... . h>2 wi W, ,.wf ___ n>7 H’124 W12S JZ w _____ J llil_____ -ULm____
1111111 1111110 1111101 1111100 1111011 1111010 1111001 1111000 0000100 0000011 0000010 0000001 0000000

W, m i n i 0.4555 0.0542 0.0685 0.0082 0.0545 0.0065 0.0082 0.0010 0.0000012 0.0000082 0.0000010 0.0000012 0.0000001
w2 1111110 0.4078 0.1019 0.0613 0.0153 0.0488 0.0122 0.0073 0.0018 0.0000023 0.0000074 0.0000018 0.0000011 0.0000003
w3 1111101 0.4087 0.0486 0.1153 0.0137 0.0489 0.0058 0.0138 0.0016 0.0000021 0.0000074 0.0000009 0.0000021 0.0000002
W4 1111100 0.3659 0.0915 0.1032 0.0258 0.0437 0.0109 0.0123 0.0031 0.0000039 0.0000066 0.0000017 0.0000019 0.0000005
W5 1111011 0.4029 0.0479 0.0606 0.0072 0.1071 0.0127 0.0161 0.0019 0.0000011 0.0000162 0.0000019 0.0000024 0.0000003
w6 1111010 0.3607 0.0902 0.0542 0.0136 0.0959 0.0240 0.0144 0.0036 0.0000021 0.0000145 0.0000036 0.0000022 0.0000005
Wj 1111001 0.3615 0.0430 0.1020 0.0121 0.0961 0.0114 0.0271 0.0032 0.0000018 0.0000145 0.0000017 0.0000041 0.0000005

c Ws 1111000 0.3236 0.0809 0.0913 0.0228 0.0860 0.0215 0.0243 0.0061 0.0000035 0.0000130 0.0000033 0.0000037 0.0000009
E n>9 1110111 0.4029 0.0479 0.0606 0.0072 0.0482 0.0057 0.0072 0.0009 0.0000026 0.0000173 0.0000021 0.0000026 0.0000003
L w,0 1110110 0.3606 0.0902 0.0542 0.0136 0.0431 0.0108 0.0065 0.0016 0.0000049 0.0000154 0.0000039 0.0000023 0.0000006
L W,i 1110101 0.3615 0.0430 0.1020 0.0121 0.0432 0.0051 0.0122 0.0015 0.0000043 0.0000155 0.0000018 0.0000044 0.0000005

W,2 1110100 0.3236 0.0809 0.0913 0.0228 0.0387 0.0097 0.0109 0.0027 0.0000082 0.0000139 0.0000035 0.0000039 0.0000010
S W,3 1110011 0.3563 0.0424 0.0536 0.0064 0.0947 0.0113 0.0142 0.0017 0.0000023 0.0000339 0.0000040 0.0000051 0.0000006
T W,4 1110010 0.3190 0.0797 0.0480 0.0120 0.0848 0.0212 0.0128 0.0032 0.0000043 0.0000304 0.0000076 0.0000046 0.0000011
A WI5 1110001 0.3197 0.0380 0.0902 0.0107 0.0850 0.0101 0.0240 0.0029 0.0000038 0.0000305 0.0000036 0.0000086 0.0000010
T W,6 1110000 0.2862 0.0716 0.0807 0.0202 0.0761 0.0190 0.0215 0.0054 0.0000072 0.0000273 0.0000068 0.0000077 0.0000019

E WI7 1101111 0.4048 0.0482 0.0609 0.0072 0.0484 0.0058 0.0073 0.0009 0.0000025 0.0000165 0.0000020 0.0000025 0.0000003
S W,8 1101110 0.3624 0.0906 0.0545 0.0136 0.0433 0.0108 0.0065 0.0016 0.0000046 0.0000148 0.0000037 0.0000022 0.0000006

WI9 1101101 0.3632 0.0432 0.1025 0.0122 0.0434 0.0052 0.0122 0.0015 0.0000042 0.0000148 0.0000018 0.0000042 0.0000005

W20 1101100 0.3252 0.0813 0.0917 0.0229 0.0389 0.0097 0.0110 0.0027 0.0000078 0.0000133 0.0000033 0.0000037 0.0000009

Wl2I 0000111 0.2807 0.0334 0.0422 0.0050 0.0336 0.0040 0.0050 0.0006 0.0000209 0.0001394 0.0000166 0.0000210 0.0000025

Wt22 0000110 0.2512 0.0628 0.0378 0.0094 0.0300 0.0075 0.0045 0.0011 0.0000392 0.0001248 0.0000312 0.0000188 0.0000047

W123 0000101 0.2518 0.0300 0.0710 0.0085 0.0301 0.0036 0.0085 0.0010 0.0000351 0.0001251 0.0000149 0.0000353 0.0000042

W,24 0000100 0.2254 0.0564 0.0636 0.0159 0.0270 0.0067 0.0076 0.0019 0.0000660 0.0001119 0.0000280 0.0000316 0.0000079

wns 0000011 0.2482 0.0295 0.0373 0.0044 0.0660 0.0079 0.0099 0.0012 0.0000184 0.0002741 0.0000326 0.0000412 0.0000049

Wl26 0000010 0.2222 0.0556 0.0334 0.0084 0.0591 0.0148 0.0089 0.0022 0.0000347 0.0002453 0.0000613 0.0000369 0.0000092

Wi27 0000001 0.2227 0.0265 0.0628 0.0075 0.0592 0.0070 0.0167 0.0020 0.0000310 0.0002459 0.0000293 0.0000694 0.0000083

W/28 0000000 0.1994 0.0498 0.0562 0.0141 0.0530 0.0133 0.0149 0.0037 0.0000584 0.0002201 0.0000550 0.0000621 0.0000155
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Table 4.7: Steady state probability of cell states (Example 1)
States, 
(w t )

1 States
1 (Wi )

States 
(w* )

1111111 0.4319963 1010011 0.0002896 0101000 0.0000283
1111110 0.0563236 1010010 0.0000378 0100111 0.0003383
1111101 0.1085529 1010001 0.0000728 0100110 0.0000441
1111100 0.0141531 1010000 0.0000095 0100101 0.0000850
1111011 0.0743690 1001111 0.0036138 0100100 0.0000111
1111010 0.0096962 1001110 0.0004712 0100011 0.0000582
1111001 0.0186876 1001101 0.0009081 0100010 0.0000076
1111000 0.0024365 1001100 0.0001184 0100001 0.0000146
1110111 0.0291598 1001011 0.0006221 0100000 0.0000019
1110110 0.0038018 1001010 0.0000811 0011111 0.0019938
1110101 0.0073273 1001001 0.0001563 0011110 0.0002600
1110100 0.0009553 1001000 0.0000204 0011101 0.0005010
1110011 0.0050199 1000111 0.0002439 0011100 0.0000653
1110010 0.0006545 1000110 0.0000318 0011010 0.0003432
1110001 0.0012614 1000101 0.0000613 0011011 0.0000448
1110000 0.0001645 1000100 0.0000080 0011000 0.0000863
1101111 0.0626395 1000011 0.0000420 0011001 0.0000112
1101110 0.0081669 1000010 0.0000055 0010110 0.0001346
1101101 0.0157402 1000001 0.0000106 0010110 0.0000175
1101100 0.0020522 1000000 0.0000014 0010101 0.0000338
1101011 0.0107835 0111111 0.0345597 0010100 0.0000044
1101010 0.0014060 0111110 0.0045059 0010011 0.0000232
1101001 0.0027097 0111101 0.0086842 0010010 0.0000030
1101000 0.0003533 0111100 0.0011322 0010001 0.0000058
1100111 0.0042282 0111011 0.0059495 0010000 0.0000008
1100110 0.0005513 0111010 0.0007757 0001111 0.0002891
1100101 0.0010625 0111001 0.0014950 0001110 0.0000377
1100100 0.0001385 0111000 0.0001949 0001101 0.0000726
1100011 0.0007279 0110111 0.0023328 0001100 0.0000095
1100010 0.0000949 0110110 0.0003041 0001011 0.0000498
1100001 0.0001829 0110101 0.0005862 0001010 0.0000065
1100000 0.0000238 0110100 0.0000764 0001001 0.0000125
1011111 0.0249229 0110011 0.0004016 0001000 0.0000016
1011110 0.0032494 0110010 0.0000524 0000111 0.0000195
1011101 0.0062627 0110001 0.0001009 0000110 0.0000025
1011100 0.0008165 0110000 0.0000132 0000101 0.0000049
1011011 0.0042905 0101111 0.0050112 0000100 0.0000006
1011010 0.0005594 0101110 0.0006534 0000011 0.0000034
1011001 0.0010781 0101101 0.0012592 0000010 0.0000004
1011000 0.0001406 0101100 0.0001642 0000001 0.0000008
1010111 0.0016823 0101011 0.0008627 0000000 0.0000001
1010110 0.0002193 0101010 0.0001125
1010101 0.0004227 0101001 0.0002168
1010100 0.0000551
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Minimize: Objective function I 

Subject to the original constraints, and 

Objective function II < G, and 

0.2019891 <G <0.2621467 

The summary of the results related to the efficient frontier is shown in Table 4.10, and the 

efficient frontier diagram is displayed in Figure 4.1. Following this G-constraint approach, the 

efficient point # 2, Table 4.10 is the one that optimizes cost subject to achievement of the: 

Objective function II <0.2019891. Details of this solution are presented in Table 4.11. The result 

(point # 2, Table 4.10) illustrates the benefits of simultaneously considering cost and reliability. 

The solution achieves the desired reliability level while lowering the overall cost to $2,781.38 

from $3,068.32, which has been the cost when considering only reliability. Quite convincingly, 

the cell configuration has also changed to a better machine combination to achieve the optimum 

cost (lower intercell material handling cost) and ensure the expected system reliability. 

Comparisons of cell configurations, system costs and system failure rates for the three solutions: 

1) optimizing objective function I only; 2) optimizing objective function II only and 3) efficient 

point # 2, Table 4.10 are presented in Table 4.12 to highlight the advantages of simultaneously 

considering system reliability and system costs.

Table 4.8: Model results when optimizing objective function I only (exponential model, 
Example 1)____________________________________________________________________
Solution type P a rt -p rocess plan M achine routes in cell 1 M achine routes in cell 2

Min = Objective 
Function I 

only

1-2 M5-M6
*2-2 M3-M2-M3
3-1 M7-M6-M6
4-2 M l-M2

**5-1 Ml(2)-M4(3) M5(l)
6-2 M7-M5-M7
7-2 M2-M4
8-2 M5-M7-M6
9-1 M3-M4-M3
10-1 M2-M3-M1
11-1 M l-M3
12-1 M4-M3-M2

Objective function I (total costs) = $1,771.46 (VCM= $1410.34 MHC= $50.00 MNC = $311.12)
Objective function 11 (system failure rate) = 0.2621467

Performance
Machine utilization ***MU(1)= 0.80, MU(2) = 0.74, MU (30) = 0.95, MU (4) = 0.93, MU(5) = 0.97, MU(6) = 0.99, MU(7) = 0.53
System availability SA (1,2) = 0.682, SA( 2,2) =0.826, SA(3,1) = 0.707, SA(4,2) = 0.875, SA(5,1) = 0.74, SA( 6,2) = 0.755, 

SA(7,2) = 0.876, SA(8,2) = 0.603, SA (9,1) = 0.808, SA(10, 1) = 0.765, SA( 11,1) = 0.808, ****SA(12,1) =
0.764.

*Part 2 uses process plan 2, operations sequence: M3-M2-M3 processed in cell 1.
** Part 5, uses process plan 1, operations sequence: M5-M1-M4, 1“ operation is performed on M5 in cell 2 ,2”d and 3rd operations 

performed on Ml and M4 respectively in cell 1.
***MU(1) : machine utilization for machine 1
**** SA (12,1) = System availability for part type 12, process plan 1
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Table 4.9: Model results when optimizing objective function II only (exponential model,
Example 1)_________________________________________________________________
Solution type P art -p rocess plan M achine routes in cell 1 M achine routes in cell 2

Min = Objective Function 11 
only

1-2 M1-M4
*2-2 M3-M7-M3
3-2 M4(l)-M4(3) M6(2)
4-2 M1 (1) M6(2)

**5-2 M7(l) M 4(3) M6 (2)
6-2 M7-M1-M3
7-2 Ml (2) M6(l)
8-2 M3-M 1-M 3
9-1 M 7(1)- M 1(2) M6(3)
10-2 M3(2)-M1(3) M6(l)
11-1 M l-M3
12-2 M3(l) M6(2)

Objective function II (system failure rate) = 0.2019891
Objective function I (total costs) = $3,068.32, (VCM = $1,790.38, MHC = $450.00, MNC = $827.94)

Performance
Machine utilization ***MU(1)= 0.91, MU (3) = 0.93, MU (4) = 0.86, MU(6) = 0.99, MU(7) = 0.82
System availability SA(1,2) = 0.858, SA(2,2) = 0.773, SA(3,2) = 0.739, SA( 4,2) = 0.74, SA(5,2) =0.662, SA(6,2) = 

0.715, SA( 7,2) = 0.74, SA(8,2) = 0.809, SA(9,1) = 0.646,
SA(10,2) = 0.646, SA(11,1) = 0.809, ****SA(12, 2) =0.697

*Part 2 uses process plan 2, operations sequence: M3-M7-M3, processed in cell 1.
** Part 5 uses process plan 2, operations sequence: M7-M6-M4, M6 in cell 2 performs 2nd, M7 and M4 in cell 1 performs 1“ and 3'd 

operations.
***MU(1) : machine utilization for machine 1
**** SA (12,2) = System availability for part type 12, process plan 2

Table 4.10: Information for the efficient frontier diagram (exponential model, Example 1)

Points
Objective 
function 

I (S)

Objective function I 
components

Objective
function

II
epsilon

C

Cells

VCM
($)

M HC
($)

MNC
(S)

1 2

1 3068.32 1790.38 450.00 827.94 0.2019891 N/A M1,M3,M4,M7 M6
2 2781.38 1768.28 200.00 813.10 0.2019891 0.2019891 M1,M3,M6,M7 M4
3 2594.14 1759.00 50.00 785.14 0.2044610 0.2044610 M1,M3,M4,M6 M2.M7
4 2389.10 1737.05 50.00 602.05 0.2096879 0.2096879 M1,M3,M4,M6 M2,M5,M7
5 2196.82 1573.91 100.00 522.91 0.2193262 0.2193262 M1,M3,M4,M6 M2,M5,M7
6 2034.84 1574.78 50.00 410.06 0.2289411 0.2289411 M1,M3,M4,M6 M2,M5,M7
7 1913.28 1490.68 100.00 322.60 0.2371155 0.2371155 M1,M3,M4,M6 M2,M5,M7
8 1851.77 1425.60 100.00 326.17 0.2486248 0.2486248 M l,M2,M3,M4 M5,M6,M7
9 1775.15 1410.40 50.00 314.75 0.254513 0.254513 M1,M2,M3.M4 M5,M6,M7
10 1771.46 1410.34 50.00 311.12 0.2621467 0.26215 M l,M2,M3,M4 M5,M6,M7
11 1771.46 1410.34 50.00 311.12 0.2621467 N/A M l,M2,M3,M4 M5,M6,M7
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Figure 4.1: Efficient frontier depicting cost and reliability optimization (exponential model, 
Example 1)

Table 4.11: Model results corresponding to point #2, in Table 4.10
Solution type Part-process plan M achine routes in ceil 1 M achine routes in cell 2

Min = Objective function I 
s.(objective function II < 

0.2019891 
and other constraints

1-2 M l(l) M4(2)
*2-2 M3-M7-M3
3-2 M6(2) M4(l) M4(3)
4-2 M1-M6

**5-2 M7(l)- M6 (2) M4(3)
6-2 M7-M1-M3
7-2 M6-M1
8-2 M3-M1-M3
9-1 M3-M1-M6
10-2 M6-M3-M1
11-1 M1-M7
12-2 M3-M6

Objective function Ilfsystem failure rate) = 0.2019891
Objective function I (total costs) = $2,781.38, (VCM = $1768.28, MHC = $200.00, MNC = $813.10)

Performance
Machine utilization ***MU(1)= 0.91, MU (3) = 0.96, MU (4) = 0.86, MU(6) = 0.99, MU(7) = 0.82
System availability SA(1,2) = 0.858, SA(2,2) = 0.773, SA(3,2) = 0.739, SA(4,2) = 0.74 SA(5,2) =0.662, 

SA(6,2) = 0.715, SA( 7,2) = 0.74 SA(8,2) = 0.809, SA(9,1) = 0.646,SA(10,2) =0.646, 
SA(11,1) = 0.819, ****SA(12,2) = 0.697

*Part 2 uses process plan 2, operations sequence: M3-M7-M3, cell 1,
** Part 5 uses process plan 2, operations sequence: M7-M6-M4, M4 in cell 2 performs 3rd and M7 and M6 in cell 1 perform 1“ and 2"d 

operations.
***MU(1): machine utilization for machine 1
**** SA (12,2) = System availability for part type 12, process plan 2
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Table 4.12: Comparison of model results for cost-only, reliability-only optimization and
considering cost and reliability simultaneously (Example 1)

Comparison
focus

Optimizing

Tangible benefits from (III)Only cost
(I)

Only reliability
(II)

Cost and 
reliability together 

(III)

Total costs $1,771.46 $3,068.00 $2,781.39

(I) Very economic but probability 
o f machine failure is very high
(II) Very expensive
(III) Effectively competitive

System failure rates 0.2621467 0.2019891 0.2019891
(III)Highest reliability with better 
cost than (II)

Cell configuration
Cell 1:

M l, M2, M3, M4
Cell 1:

M l,M3, M4, M7
Cell 1:

M l,M3, M6, M7 (III) Ensured h igh  utilization 
o f  reliable m achinesCell 2: M5, M6, M7 Cell 2: M6 Cell2: M4

The efficient frontier analysis approach is developed by solving various problem instances for 

different combinations of system reliability and cost, so that the user/designer can study the 

pattern of solutions in terms of cell configuration, costs and desired machine system reliability in 

terms of system failure rates in order to make a suitable decision. In addition to this, the model 

also evaluates system availability as a performance indicator. This provides the user with the 

option of emphasizing the system availability of a part type-process plan combination depending 

on the delivery priority or customer importance.

The solution presented here shows the influence of machine reliability on the cell 

configuration and cost. Depending on the business perspective and priority, the model will help 

the user make an effective design decision.

4.3 Mathematical Model Based on Weibull Distribution for Machine Reliability

In this section, the multi-objective CMS design model considers machine reliability by 

following the Weibull distribution. In this model, the second objective function is different from 

the exponential distribution approach presented in Section 4.1. Other than the second objective 

function, the first objective function and the constraints—represented by model equation (4.1) to 

(4.3) and (4.5) to (4.10), including their relevant explanations—are similar to Section 4.1. The 

constraint sets—represented by equations (4.11) to (4.14) of Section 4.2— are performance- 

evaluation related and, as such, are not applicable to this section. The model summary based on 

the Weibull distribution is presented in this section and explanations of the second objective 

function based on Weibull distribution are described within the model summary.
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4.3.1 The Mathematical Model

The Weibull distribution-based model is presented in an assembled condition by providing a 

relevant explanation for the second object function only. The first objective function and the 

constraints from the previous section are incorporated as discussed above.

Minimize objective function I:

Objective function I = VCM+MHC+MNC  (4.31)

where,

n  P ( i )  O O P )  C

= X  X  {C 0oj(ip) + CROJ( i p ) } ^  X 0]c(ip) ------------- (4.31a)
/ = 1  p = 1 0=1 j e j  c = lipo

„ /’(/) 0(ip)-l
M /C  = £ < / , £  I  I  I  I "   (4.31b)

;=1 p = l o= i j e J ipa j a j lpa 1 < c , c < C

™ " Qti) °^p> TO (ip) + T R f (ip) c
MVC = £  cp , (  l - [ £  < / ,£  £  •' ] ) £  x j i p )   (4.31c)

j = l  !=1 p =  1 0=1 A j  U  ) 0 j  C=1

The second objective function computes the system reliability over the set of all the part type- 

process plan combinations:

Minimize objective function II:

*  po)
Objective function II = X  X  LIR ip  (4.32)

/ = 1  p = 1

where

7T(1 + — )
oop) c  B

= Z Z Z I w f -  Y ‘ X J . i p )  V i.P  ------------- (4.32a)
0 = 1  j e J ipo c=l M IB T j

Assuming the failure rate of machine j  follows the Weibull distribution, LIRip calculates the 

inverse of system reliability in logarithmic scale corresponding to the machines which perform 

the set of operations for the (ip). The second objective function seeks to select the set of process 

plans for all the part types that results in the minimum value for the inverse of system reliability, 

and thus maximizes system reliability. Detailed derivation of LIRip for the Weibull distribution 

approach is described in Section 2.5.2
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Constraints

The following constraints are defined:

I  Z ( !»  = 1 Vi  (4.33)
p = 1

S  Z  x q/cdp) = z dp)  Vi, p , o 

-

(4.34)
j e J lp„ c = 1

f ;  M,, <1 v / -------------(4.35)
C=1

m
2  M Jc < UM  Vc  (4.36)
7=1

» / ’(O  0(<P)

' L 1 l L X *V p ) > M i< Y /,c  ---------- (4.37)
/= 1  /7 = 1  0 = 1

n P (  0  0 ( i »

I  4 1  £  [ T 0 OJ(ip) + TRoj(ip) ]X 0,c( ^ ) < ^ .M ,e44 .(r) Vf ,c  ------------- (4.38)
1=1 P = 1 0 = 1

+ x (0+{)jc dp) ~ 2Yojgc dp) ̂  0, Vi, p,oe  {1,2,.....Oiip) -1} J  e {Jjpo , j  g Jip{o+l), c, c

 (4.39)

x ojcdp) + * ((t+1)* d p ) -  dp) ^  1 V/,/?,o e  { l,2 ,...0 (ip )-l} ,y  G J ipo,]  G J,piB+l),c ,c

------------- (4.40)

Xojcdp)’Yojcjcdp)’z d p ) ,M jC e  {0,1}. . . \ / i ,p ,o , j , c , j , c  ----------------- (4.41)

4.3.2 Numerical Example

Input data: Example 1—with the same part and machine information as given in Tables 4.1 

and 4.2—is illustrated in this section to show the applicability of this model. We also present 

Example 2 in section 4.4 to further investigate the applicability of the model. We assume that the 

machines follow increasing failure rates with different p (shape factor) and 0 (characteristic life)

values. For our Example 1, the model is studied for the following three ranges of p values, with

the p values generated randomly following the uniform distribution with the parameters given: 

We first illustrate the model solution by the lowest range (P = 1.1 -1.4), and then extend the 

analysis for the other two ranges.
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Parameters/Ranges Individual machine B Values Range description

(1.1 -1.4) 1.11,1.25,1.15,1.34,1.18,1.2,1.33 lowvalue

(1.35 -1.75) 1.38, 1.5, 1.72, 1.63, 1.38, 1.7, 1.39 high value

(1.1-1.8) 1.21,1.26,1.78,1.16,1.56,1.59,1.33 longrange

It may be mentioned here that, since objective function II, equation (4.32.a), is developed by 

replacing 0j in terms of MTBFj and Pj by following equation (2.32), we do not need to address 0j 

values separately for the model solution.

The 6-constraint method is also utilized for the solution and analysis of this model. Following the 

same steps outlined in Section 4.2.6, the multi-objective model is first solved by the hierarchical 

approach considering objective functions I and II separately. The next steps are determining the 

efficient point solutions, and constructing an efficient frontier diagram.

4.3.3 Solution and Analysis

The model is solved using LINGO 07. The total number of variables (continuous plus 

integer), integer variables and constraints are 32260, 32193 and 2051, respectively.

Table 4.13 shows the optimum cell formation, operation allocation and reliability-related 

information when only the first objective function (total costs) is optimized. Under this cost 

optimization scenario, the cell configuration and operation allocation is identical to the 

exponential distribution-based model solution presented in Table 4.8. For example, cell 1 consists 

of machines M l, M2, M3 and M4 while cell 2 consists of machines M5, M6 and M7. Part type 1 

is processed in cell 2 where operations 1 and 2 are performed on machines M5 and M6. There is, 

however, a $3.01 difference in the total cost as a result of the difference in the machine 

availability calculation basis. The total costs (objective function I) equal $1768.45and objective 

function II, which is the inverse value of system reliability given in natural logarithmic scale, 

evaluated at this solution point is 667.27.

Table 4.14 details the cell formation, operation allocation, reliability information and system 

cost when only reliability (objective function II) is optimized. As is evident in Tables 4.13 and 

4.14, there are significant differences in the part routes and cell configuration of the two solutions. 

The model selected part processing routes (Table 4.14) for this solution point to get the optimum 

value of the inverse of system reliability, the objective function II value from this solution is 

474.5, and the total costs (objective function I) value evaluated from this solution is $3,026.55. In 

the first step, cost is optimized. Consequently, the objective function II value (667.27) is very 

high, while in the next step—when reliability is optimized to obtain the lowest objective function
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II value (474.5)—the system costs become very high in the process of achieving the optimum 

reliability, which is exhibited in the above cases.

However, the two extreme values of the second objective function obtained from the above 

solution instances are the bounds on objective function II for the following G-constraint method. 

Between these bounds there is a collection of efficient solutions. The summary of the efficient 

solutions are given in Table 4.15, and the efficient frontier diagram is presented in Figure 4.2. 

Minimize: Objective function I 

Subject to the original constraints, and 

Objective function II < G, and

474.5 < G < 667.27

Following the G-constraint approach, the efficient point #2, Table 4.15, Figure 4.2, for example, 

is solved by optimizing system costs subject to the achievement of the : Objective function II 

<474.5. The detail of this solution is presented in Table 4.16. This solution illustrates the benefits 

of simultaneously considering cost and reliability by reducing cost from $3,026.55 to $2,776.55, 

while achieving desired reliability level (objective function II value 474.5). The efficient frontier 

analysis for different combinations of system reliabilities and costs offers the user/designer the 

opportunity to study different solutions in terms of cell configuration, costs and expected machine 

reliabilities for a system to make suitable trade off decisions. The solution results presented here 

show the influence of machine reliability on the cell configuration and processing routes of part 

types.

Table 4.13: Model results when optimizing objective function I only (Weibull model,
Example 1, P = 1.1 to 1 .35)

Solution type Part -process plan Machine routes in cell 1 Machine routes in ceil 2
1-2 M5-M6

*2-2 M3-M2-M3
3-1 M7-M6-M6
4-2 M l-M2

**5-1 M l(2)-M 4(3) M 5(l)
6-2 M7-M5-M7

M in  = Objective function I 7-2 M2-M4
only 8-2 M5-M7-M6

9-1 M3-M4-M3
10-1 M2-M3-M1
11-1 M l-M3
12-1 M4-M3-M2

Objective function I( total costs) = $1,768.45, (VCM= $1,410.33 MHC= $50.00 MNC = $308.12)
Objective function II = 667.27

Performance
Machine utilization ***MU(1) = 0.80, MU(2) = 0.74, MU (3) = 0.96, MU (4) = 0.93, MU(5) = 0.97, MU(6) = 0.99, 

MU(7) = 0.53
*Part 2 uses process plan 2, operations sequence: M3-M2-M3 , processed in cell 1
** Part 5 uses process plan 1, operations sequence: M5-M1-M4, M5 performs 1” operation in cell 2 and M l and M4 perform 2nd 

and 3rd operations in cell 1.
*** MU (1) Machine utilization for machine 1
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Table 4.14: Model results when optimizing objective function II only (Weibull model, 
Example 1, ft =1.1 to 1.35)_____________________  ’____________________

Solution type Part -process plan Machine routes in cell 
1

Machine routes in ceil 2

M/n=Objective function II 
only

1-2 M l( l) M4(2)
2-2 M2(2)-M3(3) M 5(l)
3-2 M4-M6-M4
4-2 M l( l) M6(2)

” 5-2 M 2(l) M6 (2)-M4(3)
6-1 M3-M1-M2
7-2 M l (2) M 6(l)

•8-2 M3-M1-M3
9-1 M 3(l) -M l(2) M6(3)
10-2 M3(2) -M l(3) M 6(l)
11-1 M l-M3
12-2 M 3(l) M6(2)

Objective function II = 474.5
Objective function I ( total costs) = $3,026.55, (VCM = $1,800.00, MHC = $400.00, MNC = $826.55)

Performance
Machine utilization ***MU(1) = 0.93, MU (2) = 0.57, MU (3) = 0.91, MU(4) = 0.86, MU(5) = 0.19 MU(6) = 0.99,

MU(7) = 0.00
’ Part 8 uses process plan 2, operations sequence: M3-M1-M3, processed in cell 1,
** Part 5 uses process plan 2, operations sequence: M2-M6-M4, M2 performs 1st operation in cell 1, M6 and M4 performs 2nd and 3rd 

operations in cell 2 
*** MU (1) Machine utilization for machine 1

Table 4.15: Information for efficient frontier diagram (Weibull model, f) =1.1 to 1.35, 
Example 1)

Points
Objective 
function 

I (S)

Objective function 
I components Objective

function
II

epsilon
e

Cells

VCM
(S)

MHC
($)

MNC
(S)

1 2

1 3026.55 1800.00 400.00 826.55 474.5 N/A M l,M2,M3 M4,M5,M6

2 2776.55 1800.00 150.00 826.55 474.5 474.5 M1,M3,M4,M6 M2,M5

3 2334.65 1677.00 100.00 557.65 504.7 504.7 M1,M3,M4,M6 M2,M5,M7

4 1991.32 1559.78 50.00 381.54 559.45 559.45 M1,M3,M4,M6 M2,M5,M7

5 1891.28 1467.68 100.00 323.60 593.6 593.6 M1,M3,M4,M6 M2,M5,M7

6 1848.78 1425.59 100.00 323.19 622.3 622.3 M1,M2,M3,M4 M5,M6,M7

7 1772.12 1410.38 50.00 311.74 643.8 643.8 M l,M2,M3,M4 M5,M6,M7

8 1768.45 1410.33 50.00 308.12 667.3 667.3 M1,M2,M3,M4 M5,M6,M7

9 1768.45 1410.33 50.00 308.12 667.3 N/A M1,M2,M3,M4 M5,M6,M7
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Figure 4.2: Efficient frontier depicting cost and reliability optimization (Weibull model, 
P=1.10-1.35, Example 1)

Table 4.16: Model results corresponding to pomt #  2, in Table 4.15
Solution type Part -process plan Machine routes in cell 1 Machine routes in cell 2

*1-2 M1-M4
2-2 M3(3) M 5(l)-M 2(2)
3-2 M4-M6-M4
4-2 M1-M6

Af/n=objective function I 
s.t Objective II < 474.5 
and other constraints

**5-2 M6(2)-M4(3) M 2(l)
6-2 M3(1)-M1(2) M2(3)
7-2 M6-M1
8-2 M3-M l-M3
9-1 M3-M1-M6
10-2 M6-M3-M1
11-1 M l-M3
12-2 M3-M6

Objective function II = 474.5
______________ Objective function I(total costs) = $2,776.55, (VCM = $1,800.00, MHC = $150.00, MNC = S826.55)_____________
_________________________________  Perform ance_____________________________________________________

Machine utilization 1 ***MU(1) = 0.93, M U(2)=0.57, MU(3) = 0.91, MU(4) = 0.86, MU(5)= 0.19, MU(6) = 0.99
*Part 1 uses process plan 2, operations sequence: M1-M4, processed in cell 1
* Part 5 uses process plan 2, operations sequence: M2-M6-M4, M2 performs 1st operation in cell 2, M6, and M4 performs 2nd and 3rd 

operations in cell 1.
*** MU (1) Machine utilization for machine 1
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4.3.4 Comparisons of the Weibull and the Exponential Distribution Based Model

As discussed above, the cell configuration and part processing routes for optimizing “cost 

only” or objective function I is the same for both approaches—based on the solution of the model 

example. The objective function II values at this solution point vary due to the fact that they are 

in different scales, with one evaluating system failure rates and the other dealing with the inverse 

value o f system reliability, along the part processing routes.

For ease of comparison regarding the model solutions for optimizing objective function II 

only and efficient point #2 solutions, the objective function values, machine utilization and cell 

configurations for these solution instances are reproduced in Table 4.17.

For optimizing “reliability only” case, (instance 1, Table 4.17) cell configuration generated 

by the two models is completely different. The model has selected part processing routes with the 

aim of achieving the highest reliability, based on the two different failure distributions—as can be 

seen in Tables 4.9 and 4.14. Although which solution is best cannot be decided, the model based 

on the Weibull distribution generated better cell configuration in terms of inter-cell material 

handling costs and total costs of the model, as shown in Table 4.17.

Table 4.17: Comparisons of the Weibull and the exponential distribution based model 
solutions

T he exponential d is trib u tio n  based 
solutions

T h e  W eibu ll d is trib u tio n  based 
solutions

INSTANCE 1 Min = Objective function II
Objective function I (total 

costs)
$3,068.00 $3,026.55

System cost components VCM = $1,790.00, MHC= $450.00, MNC 
= $828.00

VCM =$1,800.00, MHC= $400.00, MNC = 
$826.55

Objective function II (system 
reliability)

0.2019891 474.5

Cell configuration Celll: Ml, M3, M4, M7, 
CeU2:M6

Celll: M l,M2, M3 
Cell2: M4, M5, M6

Machine utilization MU1= 0.91, MU2 = 0.00, MU3= 0.93, 
MU4 = 0.86, MU5= 0.00, MU6 = 0.99, 

MU7= 0.82

MU1= 0.93, MU2 = 0.57, MU3= 0.91, MU4 = 
0.86, MU5= 0.19, MU6 = 0.99, MU7= 0.00

INSTANCE 2 Efficient point # 2 in Table 4.11 and 
Figure 4.1

Efficient point # 2 in Table 4.15 and Figure 
4.2

Minimize Objective function I, s.t. 
Objective function II< 0.2019891

Minimize Objective function I, s.t. 
Objective function 115 474.5

Objective function I (total 
costs)

$2,781.38 $2,776.55

System cost components VCM = $1,768.28, MHC= $200.00, MNC 
= $81310

VCM = $1,800.00, MHC= $50.00, MNC = 
$826.55

Objective function II (system 
reliability)

0.2019891 474.5

Cell configuration Celll: Ml, M3, M6, M7, 
Cell2:M4

Celll: M l M3, M4, M6, 
Cell2: M2,M5

Machine utilization MU1= 0.91, MU2 = 0.00, MU3= 0.93, 
MU4 = 0.86, MU5= 0.00, MU6 = 0.99, 

MU7= 0.82

MU1= 0.93, MU2 = 0.57, MU3= 0.91, MU4 = 
0.86, MU5= 0.19, MU6 = 0.99, MU7= 0.00
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For the model solution corresponding to efficient point # 2, for optimizing cost subject to 

achievement of the highest reliability (instance 2, Table 4.17), the Weibull distribution based 

model generates better cell configurations in consideration of machine utilizations and inter-cell 

material movement with almost same cost.

For the intermediate efficient points (Tables 4.11 and 4.15), a comparison in terms of the 

reliability criteria and cost is difficult to make because of the different scales of G. What is clear 

from the cell configuration, however, is that the solutions are almost similar for the data ranges 

under consideration.

The Weibull-based model evaluates the inverse of system reliability, which gives a better 

insight than the system failure rates of the exponential-based model when making decisions 

regarding machine reliability. The Weibull distribution-based models develop better cell 

configurations when the expected reliability level is higher (points 1, 2 and 3 of Table 4.15 

compared to points 1, 2 and 3 of Table 4.11). To further explore the conclusion, we took both a 

higher range of |3 (1.35-1.75), as well as a long-range p (1.16-1.80). The summary of efficient 

points and the efficient frontier diagram for these two ranges of P are presented in Table 4.18, 

Figure 4.3 and Table 4.19, Figure 4.4, respectively. Comparing the efficient points of Table 4.18 

and Table 4.19 with those of Table 4.11 reveals that the solutions for efficient points 2, 3 and 4 in 

the Weibull distribution-based model for a higher range p (1.35-1.75) and a long range p (1.16- 

1.80) are completely different from the exponential-based model solutions. We may also observe 

from these solutions that with higher range P values the Weibull distribution-based model 

develops better cell configuration when the expected reliability level is higher.

The cost of solutions for both the Weibull and exponential distribution-based models are, 

however, considerably similar. As a result, it cannot be clearly concluded which of the two cell 

configurations is better. Practically failure rates of machines used in manufacturing increase with 

the increase of machine usage, and also from the illustration of this solution analysis, Weibull 

approach may be considered to generate better solution when reliability is more emphasized than 

the cost.

The solutions of the example problem obtained by following the model based on the 

exponential distribution, as well as the Weibull distribution clearly indicate that machine 

reliability influences cell configuration, part processing routes, and cost in both approaches. In 

general, the G-constraint method of solution procedure facilitates the selection of appropriate 

trade-off options between machine reliability and cost.
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Table 4.18: Information for efficient frontier diagram (Weibull model, p = 1.35 to 1.75, 
Example 1)____________________________________________________________________

Points
Objective 
function I 

($)

Objective function I components Objective 
function II

epsilon
E

Cells

VCM  ($) MHC ($) MNC($) 1 2 3

1 3292.3 1754.05 700.00 838.31 965.9 N/A M1,M6 M3,M7 M4

2 2670.19 1683.99 150.00 836.20 965.9 965.9 M1,M3,M6,M7 M4,M5

3 2237.00 1704.00 100.00 433.00 1000.00 1000.00 M1,M3,M6,M7 M4,M5

4 2060.09 1520.18 50.00 489.91 1049.6 1049.6 M1,M5,M6,M7 M2,M3,M4

5 1946.65 1465.38 100.00 381.27 1097.8 1097.8 M1,M3,M4,M6 M2,M5,M7

6 1891.28 1467.68 100.00 323.60 1148.1 1148.1 M1,M3,M4,M6 M2,M5,M7

7 1814.43 1413.08 50.00 351.35 1197.7 1197.7 M l,M2,M3,M4 M5,M6,M7

8 1772.11 1410.37 50.00 311.74 1226.6 1226.6 M1,M2,M3,M4 M5,M6,M7

9 1768.45 1410.34 50.00 308.11 1271.02 1410.34 M l, M2, M3, M4 M5,M6,M7

10 1768.45 1410.34 50.00 308.11 1271.02 N/A M l, M2, M3, M4 M5,M6,M7

1300
9 & 10

1250

1200

1150

1100

1050

1000

2350 35501750 2050 2650 3250
Objective I

Figure 4.3: Efficient frontier depicting cost and reliability optimization ( Weibull model, 
P=1.35-1.75, Example 1)
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Table 4.19: Information for efficient frontier diagram (Weibull model, P = 1.1 to 1.8,
Example 1)______ _____________________________ _______ __________________

Points Objective 
function I

(S)

Objective function 
I Components Objective 

function II
epsilon

e

Cells

VCM
($)

MHC
($)

MNC
($)

1 2 3

1 3320.19 1712.43 650.00 957.76 715.4 N/A M1,M7 M4,M6 M2

2 2822.90 1632.92 200.00 989.98 715.4 715.42 M1,M2,M4,M6 M7

3 2528.14 1495.68 150.00 882.46 746.9 747.9 M1,M4,M6,M7 M2,M3

4 2310.87 1571.66 100.00 639.21 796.4 796.4 M1,M2,M3,M4 M7,M6

5 2108.26 1411.98 150.00 546.28 872.9 872.9 M1,M4,M6,M7 M2,M3,M5

6 1951.08 1419.10 100.00 431.98 946.5 946.5 M l,M2,M3,M4 M5,M6,M7

7 1806.53 1399.08 50.00 357.45 1021.7 1021.7 M1,M2,M3,M4 M5,M6,M7

S 1772.12 1410.38 50.00 31274 1094.8 1094.8 M l,M2,M3,M4 M5,M6,M7

9 1768.45 1410.33 50.00 308.12 1110.7 1110.7 M l,M2,M3,M4 M5,M6,M7

10 1768.45 1410.33 50.00 308.12 1110.7 N/A M l,M2,M3,M4 M5,M6,M7

1150
9&10

1100

1050

1000

950

800

700
3160 3360 35601760 1960 2160 2360 2560 2960

Figure 4.4: Efficient frontier depicting cost and reliability optimization (Weibull model, p 
= 1.1 to 1.80, Example 1)
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4.4 Solution and Analysis of Example 2

Input Data: Example 2 concerns a CMS design problem involving 10 machines and 19 part 

types. Table 4.20 and Table 4.21 present the part types and machine related data for this problem. 

Each part type requires two to six operations. For example, part type 19 needs 2 operations, while 

part types 8 and 10 need as many as 6 operations. As is evident, most of the parts have two 

process plans, and each operation of the part type can be performed by more than one machine. 

As a result, there are options for the part types to be processed in alternative routes whenever a 

machine breaks down, or when a machine is busy with the operations of other parts.

Unlike Example 1, the part types in this example have limited options for selecting the 

rerouting provision. For example, according to the input information presented in Table 4.20, part 

type 1 can be processed in alternative routes if  machine M4 fails, but the part does not have the 

option to reroute when any one of the other machines (Ml, M5, M3 or M2) fail. Some of the part 

types have multiple options for selecting alternative routes in the case o f machine failure. Part 

type 18 is an example of one that has several options. This scenario of alternative routes is near to 

a practical situation where one may not have the rerouting option for any machine failure while 

alternative options are provided for the important machines and parts.

Using the machine data in Table 4.21, machine availability and effective machine capacity 

are evaluated by following the interval availability, equation (2.15) for an exponential-based 

model, and the inherent availability, equation (2.10) for a Weibull-based model. The shape factor 

(P) values for the Weibull-based model solutions are generated randomly from the uniform 

distribution U (1.10, 1.8). For other input data, we have followed the basis assumed in Section 

4.2.4.

4.4.1 Exponential Distribution Based Model Solution-Example 2

The example problem is composed of 205743 total variables, 205670 integer variables and 

1790 constraints.

Table 4.22 presents the optimum cell formation and operation allocation, as well as the 

reliability-related information when only the first objective function (total costs) is optimized. As 

displayed in Table 4.22, the model solution has three cells—machines M9 and M10 are in cell 1; 

machines M2, M3, M5, and M6 form cell 2; and machines M l, M4, M7, and M8 are in cell 3.
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Table 4.20: Demands, processing times (hours) and costs ($) for all part types (Example 2)
P art (i) Data Process plan 1 Process plan 2

(Demand, di) type Operations O perations
1 2 3 4 5 6 1 2 3

1 M/C M l M5 M3 M5 M4 M2
(900) Time 2.78 2.76 3.48 3.88 2.18 3.92

Cost 4.73 4.42 4.18 6.21 3.92 7.06
2 M/C M7 M l M4 M5 M5 M7 M3 M l M4

(7700) Time 1.76 4.13 1.39 3.04 3.17 2.21 3.19 2.35 3.2
Cost 2.46 7.02 2.5 4.86 5.07 3.09 3.83 4.0 5.76

3 M/C M8 M l M7 M4 M6 M5 M l M7 M6
(2000) Time 2.29 2.88 2.77 2.68 2.97 2.87 2.77 2.47 2.86

Cost 4.12 4.90 3.88 4.80 4.75 4.59 4.71 3.46 4.58
4 M/C M8 M4 M9 M7 M4 M l M2

(3000) Time 2.82 2.45 2.53 2.57 2.33 2.83 2.35
Cost 5.08 4.41 4.81 3.60 4.19 4.81 4.23

5 M/C M8 Ml M9 M7 M l M5 M2 M6 M5 M2
(4200) Time 2.51 4.15 2.52 2.19 2.36 3.87 1.98 2.06 2.98 2.38

Cost 4.52 7.06 4.79 3.07 4.01 6.19 3.56 3.30 4.77 4.28

6 M/C M9 M5 M5 M10 M6 M7 M5 M6
(4500) Time 2.77 3.29 2.85 2.18 2.09 2.65 3.86 2.9

Cost 5.26 5.26 4.56 3.49 3.34 3.71 6.18 4.64

7 M/C M l M9 M5 M9 M5 M10 M4 M5 M9 M5 M10
(3824) Time 2.9 3.09 3.03 2.46 3.27 2.14 3.03 2.82 2.45 3.98 2.59

Cost 4.93 5.87 4.85 4.67 5.23 3.42 5.45 4.51 4.66 6.37 4.14

8 M/C M7 M9 M l M4 M3 M5 M l
(464) Time 2.48 2.79 2.84 2.48 3.37 3.01 4.18

Cost 3.47 5.30 4.83 4.64 4.04 4.82 7.11
9 M/C M l M4 M3 M5 M l M4

(3120) Time 2.47 1.88 2.99 3.23 2.75 3.18
Cost 4.20 3.38 3.59 5.17 4.68 5.72
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Table 4.20 cont’d
Part (i) Data Process plan 1 Process plan 2

(Demand, dj) type Operations Operations
1 2 3 4 S 6 1 2 3

10 M/C Ml M4 M9 M5 M5 M10 M6
(6496) Time 2.83 2.2 3.02 2.8 3.96 2.89 2.83

Cost 4.81 3.96 5.74 4.48 6.34 4.62 4.53
11 M/C M l M5 M9 M5 M10 M6

(3690) Time 4.07 3.04 2.5 3.27 2.25 2.78
Cost 6.92 4.86 4.75 5.23 3.60 4.45

12 M/C M8 Ml M4 M7 M9 M2 M6
(4140) Time 2.16 2.40 1.88 1.86 2.67 3.85 2.18

Cost 3.89 4.08 3.84 2.60 5.07 6.93 3.49
13 M/C M l M10 M2 M6 M5 M5 M2 M4 M5 M9

(1686) Time 2.76 2.13 2.33 3.00 3.9 3.04 1.87 2.25 3.23 3.09
Cost 4.42 3.41 4.19 4.80 6.24 4.86 3.37 4.05 5.17 5.87

14 M/C M5 M10 M2 M4 M6
(4135) Time 2.77 2.61 2.27 2.56 2.88

Cost 4.43 4.17 4.09 4.61 4.61
15 M/C M5 M10 M2 M4 M6 M10

(4805) Time 3.88 2.97 3.98 2.2 2.03 2.25
Cost 6.21 4.75 7.16 3.96 3.25 3.60

16 M/C M8 M4 M2 M6 M10
(3928) Time 2.17 1.89 2.15 2.11 2.10

Cost 3.91 3.40 3.87 3.77 3.36
17 M/C M8 M4 M7 M9 M2 M6 M10

(4475) Time 2.82 2.21 2.19 2.47 2.0 2.91 2.69
Cost 5.08 3.98 3.07 4.69 3.60 4.66 4.30

18 M/C M5 M10 M l M5 M8 M4 M l M7
(4582) Time 3.04 2.90 2.89 3.20 2.48 2.46 2.82 2.73

Cost 4.86 4.64 4.91 5.12 4.46 4.43 4.79 3.80
19 M/C M5 M10 M l M4 M l M7

(2508) Time 2.79 2.23 4.07 2.18 2.45 2.54
Cost 4.46 3.57 6.92 3.92 4.16 3.57
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Table 4.21 Machine information (Example 2)
M achine
n u m b er

C apacity  
( H ours)

MTBF
(H ours)

MTTR
(H ours)

Shape fac to r
P

Penalty  cost fo r %  non - 
u tiliza tion  (CP)

1 1875 97 17 1.80 230
2 1875 58 6 1.13 275
3 1875 211 70 1.11 255
4 1875 91 10 1.14 250
5 1875 208 37 1.64 220
6 1875 101 25 1.15 265
7 1875 134 57 1.32 270
8 1875 186 21 1.48 150
9 1875 184 10 1.21 175
10 1875 122 22 1.55 200

Part type 2, for instance, is processed in cell 3 where operations 1, 2 and 3 are performed 

sequentially on machines M7, M l, and M4. The total costs (objective function I) equal 

$19,448.72, and the overall system failure rate (objective function II) evaluated at this solution 

point is 0.63288.

Table 4.23 displays the solution when only the second objective (system failure rate) is 

optimized. As expected, the objective function II value at this solution instance is very low which 

is 0.60397 and objective function I value as obtained by this solution is $23,590.40, which is 

much higher than the solution for optimizing objective I only.

The two extreme outcomes of the objective function II values obtained from the above 

solutions are the bounds on objective function II. Between these bounds there is a collection of 

efficient solutions which may be solved using the following G-constraint method model:

Minimize: Objective function I 

Subject to the original constraints, and 

Objective function II < G, and 

0.60397 <G <0.63288

Table 4.24 summarizes the efficient solutions for various combinations of reliability and cost. 

The efficient frontier diagram is presented in Figure 4.5. For example, the solution of efficient 

point #2 in Table 4.24, Figure 4.5 optimizes cost (objective function I) subject to the achievement 

of: Objective function II <0.60397. This solution illustrates the benefits of simultaneously 

considering cost and reliability. Details of the solution are presented in Table 4.27. The solution 

achieves the expected highest reliability (with the lowest system failure rate 0.60397) while 

lowering the overall cost from $23,590.40 to $20,600.40.
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Table 4.22: Model results when optimizing objective function I only (exponential model,
Example 2)

Solution type Part -process plan Part processing route

Mn=Objective 
function I only

1-1
* 2-2
3-2
4-1
5-2
6-2
7-2
8-1
9-1
10-1 
11-1 
12-1
13-2
14-1
15-2
16-1
17-1
18-2 
19-1

M 1-M5-M3-M5-M2 
M7-M1-M4 
M1-M7-M6 

M8-M4-M7-M4-M2 
M6-M5-M2 
M7-M5-M6 

M4-M9-M10 
M 7-M 1-M4-M3-M5-M1 

M 1-M4-M3-M5-M1 
M 1-M4-M9-M5-M10-M6 

M1-M9-M10-M6 
M8-M4-M7-M2-M6 

M5-M2-M5 
M5-M2 
M4-M10 

M8-M4-M2-M6 
M8-M7-M2-M6 

M8-M7 
M10-M1

Machine cells
CELL 1=M 9, M10 

CELL 2 =M2, M3, M5, M6 
CELL 3 =M1, M4, M7, M8

Objective function I (total costs) = $19,448.72, (VCM= $18,182.52, M H O  S600.00, MNC= $666.20)
Objective function II = 0.63288

Performance
Machine utilization **MU(1) =0.93, MU(2) =0.65, MU(3) =0.16, MU(4) =0.96, MU(5) =0.91, MU(6) = 0.96, MU(7) =0.91 

___________________________ MU(8) =0.49, MU(9) =0.36, MU(IO) =0.56,___________________________
*2-2: part type 2 uses process plan 2, operations 1,2, and 3 are performed on machines M7, M 1, and M4, respectively. 
**M U (1): utilization o f  machine M l

Table: 4.23: Model results when optimizing objective function II only (exponential model, 
Example 2)_____ ____________________ ____________________________________________

Solution type P a r t - process plan Part processing route
1-1 M 1-M5-M3-M5-M2

*2-2 M3-M1-M4
3-2 M5-M7-M6
4-1 M8-M4-M9-M1 -M2
5-2 M6-M5-M2
6-2 M7-M5-M6
7-2 M4-M9-M10
8-1 M9-M1-M4-M3-M5-M1
9-1 M1-M4-M3-M5-M1
10-1 M 1-M4-M9-M5-M10-M6

Mm Objective function 11-1 M1-M9-M10-M6
II only 12-1

13-1
14-2
15-2
16-1
17-1
18-2 
19-1

M8-M4-M9-M2-M6 
M5-M6-M5 

M4-M6 
M4-M10 

M8-M 4-M 2-M10 
M8-M 9-M 2-M10 

M8-M7 
M5-M1

CELL 1: M l, M4, M 6,M 10
Machines cells CELL 2: M2, M3, M7, M9

CELL 3: M5, M8
Total Cost = $23,590.40, (VCM= $18,786.05, MHC== $41,20, MNC= $684.35)

Objective function II = 0.60397
Performance

Machine utilization * *MU(1) =0.96, MU(2) =0.53, MU(3) =0.45, MU(4) =0.99, MU(5) =0.93, MU(6) = 0.91, MU(7) =0.36 
MU(8) =0.49, MU(9) =0.64, MU(10) =0.71,

*2-2: part type 2 uses process plan 2, operations 1, 2, and 3 are performed on machines M3, M l, and M4, respectively 
**M U(1): utilization o f machine M l
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Table: 4.24: Information for efficient frontier diagram (exponential model, Example 2)

Points
Objective
function

I ($)

Objective function I 
components Objective

function
II

Epsilon
€

Cells

VCM
($)

MHC
($)

MNC
($)

1 2 3

1 23590.40 18786.05 4120.00 684.35 0.60397 N/A M1,M4,
M6.M10

M2,M3,M7,
M9

M5,M8

2 20600.40 18786.05 1130.00 684.35 0.60397 0.60397 M1,M2,
M3,M4 M5,M6,M7

M8,M9,
M10

3 20079.65 18495.39 930.00 654.26 0.60973 0.60973
M l,M2, 
M3,M4

M5,M6,M7,
M8

M9,M10

4 19816.00 18454.10 660.00 701.90 0.61395 0.61395
M1,M4,
M9.M10

M2,M3,M5,
M6

M7.M8

5 19751.09 18337.30 750.00 663.79 0.61529 0.61529 M l,M3, 
M5,M6 M2,M9,M10

M4,M7,
M8

6 19587.55 18224.34 690.00 673.21 0.61971 0.61971 M1.M4,
M7,M8

M2,M3,M5,
M6

M9,M10

7 19541.63 18210.19 660.00 671.44 0.62174 0.62174
M1,M4,
M7,M8

M2,M3,M5,
M6 M9,M10

8 19448.72 18182.52 600.00 666.20 0.63288 0.63288
M1,M4,
M7.M8

M2,M3,M5,
M6

M9,M10

9 19448.72 18182.52 600.00 666.20 0.63288 N/A
M1,M4,
M7,M8

M2,M3,M5,
M6

M9,M10

0.64

8 &9

0.63

■n
6

0.61

0.6
23400 2390019400 19900 20400 20900 21400 21900 22400 22900

Objective 1

Figure: 4.5: Efficient frontier depicting cost and reliability optimization (exponential model, 
Example 2)
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Table 4.25: Model results corresponding to point #2, in Table 4.24
Solution  type P a r t  -process plan P a r t  p rocessing  ro u tes

1-1 M 1-M5-M3-M5-M2
*2-2 M3-M1-M4
3-3 M5-M7-M6
4-1 M8-M4-M9-M1 -M2
5-2 M6-M5-M2
6-2 M7-M5-M6
7-2 M4-M9-M10
8-1 M9-M1-M4-M3-M5-M1

M'n=Objective function 
I

s. t.
Objective function II< 

0.60397

9-1
10-1

M1-M4-M3-M5-M1
M1-M4-M9-M5-M10

11-1 M1-M9-M10-M6
12-1
13-1
14-2
15-2
16-1
17-1
18-2 
19-1

M8-M4-M9-M2-M6
M5-M6-M5

M4-M6
M4-M10

M8-M4-M2-M10
M8-M9-M2-M10

M8-M7
M5-M1

CELL : M5, M6 M7
Machines cells CELL 2: M l, M2, M3, M4

CELL 3: M8, M 9.M 10
Objective function I (total costs) =$20,600.40, (VCM = $18,786.05, MHC=$1,130, MNC= $684.35)

Objective function II (system failure rate) = 0.60397
Performance

Machine utilization **MU(1) =0.96, MU(2) =0.53, MU(3) =0.45, MU(4) =0.99, MU(5) =0.93, MU(6) = 0.91, MU(7) =0.36 
MU(8) =0.49, MU(9) =0.64, MU(10) =0.71,

*2-2: part type 2 uses process plan 2, operations 1, 2, and 3 are performed on machines M3, M l, and M4, respectively 
**M U (1): utilization o f machine M l

The above results indicate that both the model and the G-constraint method of solution 

procedure may be applied to develop an effective CMS design for large, realistic-sized problems 

by simultaneously considering the machine reliabilities, and the system costs.

4.4.2 Weibull Distribution Based Model Solution - Example 2

The solution of Example 2—following the Weibull distribution-based model— involved the 

same number of continuous variables, integer variables and constraints as the exponential-based 

model solution.

To generate the efficient solutions based on the G-constraint method, the example is first 

solved for the two extreme cases: optimizing cost (objective function I) only; and optimizing 

reliability (objective function II) only—following the same procedure of exponential distribution 

-based solution presented in the previous section. As explained earlier, the second objective 

function in the Weibull distribution -based model evaluates the inverse of the system reliability in 

the natural logarithmic scale. This is unlike exponential-based model solutions, where the system 

failure rate is evaluated. Table 4.26 and 4.27 present the operation allocations, cell configurations, 

costs and reliability-related solutions, respectively, for optimizing the first objective and
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optimizing the second objective only. As expected, under the cost optimization scenario the cell 

configurations and operation allocation solutions are identical to the exponential-based solutions 

demonstrated in the previous section. For example, cell 1 consists of machines M9 and M10; cell 

2 of machines M2, M3, M5 and M6; and cell 3 of machines M l, M4, M7 and M8. Part 2, for 

instance, is processed using process plan 2 in cell 3 on machines M7, M l and M4 sequentially, as 

represented in Table 4.26. There is, however, a $4.66 difference in the total cost as a result of 

difference in the machine availability calculation basis. The total costs (objective function I) 

equal $19,444.06, objective function II evaluated at this solution point is 3619.68.

As expected, the reliability optimization solution summarized in Table 4.27 generated 

significantly different cell configurations and operation allocation solutions when compared to 

the cost optimization solutions in Table 4.26. For example in this solution instance, machines M2, 

M3, M9 and M10 formed cell 1, machines M l, M4 and M7 formed cell 2, and cell 3 consisted of 

machines M5, M6 and M8. Part 2 now is processed following process plan 1, which requires four 

operations. Operations 1, 2 and 3 are performed in cell 2 using the machine sequence M7-M1-M4, 

while operation 4 is processed in cell 3 on machine M5.

As expected, optimizing cost only generates the lowest objective function I value 

($19,444.06) but a very high objective function II value (3619.68), while optimizing reliability 

produces a low objective function II value (3191.19) but a very high cost of $22,808.00. This 

outcome is similar to the exponential-based solution presented in the previous section, as well as 

the solutions obtained for Example I in the similar scenario. However, from these two extreme 

values of the second objective, the following the G-constraint method is solved to generate a 

collection of efficient solution sets:

Minimize: Objective function I  

Subject to the original constraints, and 

Objective function II < G, and 

3 1 91 .19< £<  3619.68 

Table 4.28 presents the efficient set of solutions as generated from the above G-constraint 

approach for various combinations of reliability and cost. Figure 4.6 presents the efficient frontier 

diagram. To illustrate, let us take the efficient point #2 in Table 4.28, Figure 4.6 where the system 

cost (objective function I) is optimized to achieve the highest reliability. Table 4.29 presents the 

details of the efficient point #2 solution. From this solution, we get the minimum objective 

function II value of 3191.19, and at the same time the total cost is reduced to $21,368.00 from
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Table 4.26: Model results when optimizing objective function I only (Weibull model,
Example 2) _________________ _____________________________________

Solution type P a r t  -process plan P a r t  processing  rou tes
1-1 M 1-M5-M3-M5-M2

*2-2 M7-M1-M4
3-2 M1-M7-M6
4-1 M8-M4-M7-M4-M2
5-2 M6-M5-M2
6-2 M7-M5-M6
7-2 M4-M9-M10
8-1 M 7-M 1-M4-M3-M5-M1
9-1 M1-M4-M3-M5-M1
10-1 M 1-M4-M9-M5-M10-M6

Min=Objective function I 11-1 M1-M9-M10-M6
only 12-1 M8-M4-M7-M2-M6

13-2 M5-M2-M5
14-1 M5-M2
15-2 M4-M10
16-1 M8-M4-M2-M6
17-1 M8-M7-M2-M6
18-2 M8-M7
19-1 M10-M1

Machine cells CELL 1= M10, M9 
CELL 2 =M2, M3, M5, M6 
CELL3 =M 1,M 4, M7, M8

Objective function IfSystem cost) = 19444.06 (VCM= 18182.52, MHC=600.00, MNC=661.54)
Objective function 11 = 3619.68.

Performance

Machine utilization **MU(1) = 0.93, MU(2) = 0.65, MU(3) = 0.16, MU(4) = 0.96, MU(5) = 0.91, MU(6) = 0.96, MU(7) = 
0.91 MU(8) = 0.49, MU(9) = 0.36, MU(10) = 0.56,

*2-2: part type 2 uses process plan 2, operations 1, 2, and 3 are performed on machines M7, M l, and M4, respectively. 
**M U(1): utilization o f  machine M l

Table 4.27: Model results when optimizing objective function II only (Weibull model, 
Example 2)

Solution type Part -process plan Part processing routes
l- i M 1-M5-M3-M4-M2

*2-1 M7-M1-M4-M5
3-1 M8-M7-M4-M6
4-1 M8-M4-M9-M4-M2
5-2 M6-M5-M2
6-2 M7-M5-M6
7-2 M4-M9-M10
8-1 M 9-M 1-M4-M3-M5-M1
9-1 M1-M4-M3-M5-M4
10-1 M 1-M4-M9-M5-M10-M6
11-1 M1-M9-M10-M6
12-1 M8-M4-M9-M2-M6
13-2 M5-M4-M9

Mn=Objective function 14-1 M10-M2
II only 15-1 M10-M2

16-1 M8-M4-M2-M6
17-1 M8-M9-M2-M6
18-2 M8-M7
19-2 M4-M7

CELL 1: M2, M 3,M 9,M 10
Machines cells CELL 2: M l, M4, M7 

CELL 3: M5, M6,M8
Objective function I (total Cost) = 22808.00, (VCM= 19515, MHC=2670.00, MNC=623.00)

Objective function II = 3191.19
Perform ance

M achine utilization **MU(1) = 0.82, MU(2) = 0.81, MU(3) =0.17, MU(4) = 0.98, MU(5) = 0.96, MU(6) = 0.96, MU(7) = 
0.63, MU(8) = 0.54, MU(9) = 0.70, MU(10) = 0.65,

*2-1: part type 2 uses process plan 1, operations 1, 2, 3, and 4 are performed on machines M7, M 1, M4, and M5, respectively. 
**MU(1) : utilization o f machine M l
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Table 4.28: Information for efficient frontier diagrams (Weibull model, Example 2)

Points
O bjective
function

I($)

C om ponents o f 
objective function  I O bjective

function
II

epsilon
e

Cells

V C M
($)

M H C
<$)

M N C
($)

1 2 3

1 22808.00 19515.00 2670.00 623.00 3191.19 N/A M1,M4,M7 M2,M3,M9,
M10

M5,M6,
M8

2 21368.00 19515.00 1230.00 623.00 3191.19 3191.19 M l,M2 M3,M8,M9,
M10

M4,M5,
M6,M7

3 19932.68 18406.48 890.00 636.20 3299.98 3299.98 M1,M4,M7,M8 M2,M3,M5,
M6 M9,M10

4 19631.62 18401.77 600.00 629.85 3334.44 3334.44 M1,M4,M7,M8 M2,M3,M5,
M6 M9.M10

5 19470.26 18178.62 630.00 661.64 3482.94 3482.94 M1,M4,M7,M8 M2,M3,M5,
M6 M9.M10

6 19444.06 18182.52 600.00 661.54 3619.68 3619.68 M1,M4,M7,M8 M2,M3,M5,
M6 M9,M10

7 19444.06 18182.52 600.00 661.54 3619.68 N/A M1,M4,M7,M8 M2,M3,M5,
M6 M9.M10

6 & 73600 •

3550 ■

3500 ■

5  3450- 
«

■| 3400-

6  3350-

3300 •

3250 ■

3200 -

19400 19900 20400 20900 22400 22900 2340021400 21900

Objective I

Figure 4.6: Efficient frontier depicting cost and reliability optimization ( Weibull model, 

Example 2)
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Table 4.29: Mode results corresponding to point# 2 in Table 4.28
Solution type Part -process plan Part processing routes

l- i M1-M5-M3-M4-M2
2-1* M7-M1-M4-M5
3-1 M8-M7-M4-M6
4-1 M8-M4-M9-M4-M2
5-2 M6-M5-M2
6-2 M7-M5-M6
7-2 M4-M9-M10
8-1 M9-M1-M4-M3 -M5-M1

M n=Objective function 9-1 M1-M4-M3-M5-M4
I 10-1 M 1-M4-M9-M5-M10-M6

s. t. 11-1 M1-M9-M10-M6
Objective function 12-1 M8-M4-M9-M2-M6

1153191.19 . 13-2 M5-M4-M9
14-1 M10-M2
15-1 M10-M2
16-1 M8-M4-M2-M6
17-1 M8-M9-M2-M6
18-2 M8-M7
19-2 M4-M7

CELL 1: M3, M 8,M 9, M10
Machines cells CELL 2: M4, M5, M6, M7 

CELL 3: M l, M2
Objective function I (total costs) = 21368.00, (VCM= 19515.00, MHC=1230.00, MNC= 623.00)

Objective function II = 3191.19
Perform ance

M achine utilization **MU(1) = 0.82, MU(2) = 0.81, MU(3) =  0.17, MU(4) = 0.98, MU(5) = 0.96, MU(6) = 0.96, MU(7) 
= 0.63, MU(8) = 0.54, MU(9) = 0.70, MU(10) =  0.65

*2-1: part type 2 uses process plan 1, operations 1, 2, 3, and 4 are performed on machines M7, M 1, M4, and M5, respectively. 
**M U (1): utilization o f machine M l

$22,808.00—  the cost obtained by optimizing objective function II only. The efficient point #2 

solution establishes the advantage of considering cost and reliability simultaneously.

The solution and analysis of this large size problem further establishes that machine 

reliability has a major influence on the cell configuration as well as the overall performance of the 

CMS. The above results also indicate that the proposed mathematical models may be used to 

develop effective CMS designs by considering system cost and machine reliability to follow 

exponential ( constant failure rate) as well as Weibull distribution ( increasing failure rate) for 

realistic size problems.
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CHAPTER 5 

HEURISTIC SOLUTION APPROACH

5.1 Introduction

Mathematical models for solving realistic size cell formation problems with various 

conflicting and practical requirements are often computationally expensive, if not intractable. The 

partitioning of manufacturing systems into cells has been identified as an NP-complete problem 

in several studies ( Zolfagari and Liang, 1998; Sofianopoulou, 1997) and is considered unsolvable 

by the traditional optimization methods. Vakharia and Chang (1997) pointed out that most of the 

CMS design models in literature are computationally intractable for large size problems, creating 

the need for heuristic methods to obtain reasonably good solutions within an acceptable amount 

of time. In recent years, heuristic methods such as simulated annealing (SA), genetic algorithm 

(GA), and tabu search have been widely applied to CMS design problems. Among the heuristics, 

simulated annealing is the easiest to implement and has been recognized by a number of 

researchers to generate better quality solutions when compared to other meta-heuristics. Vakharia 

and Chang (1997) used SA and tabu search-based heuristics to solve their cell formation model. 

Their paper concluded that the SA-based heuristic performed better than the tabu search for their 

CMS design model. Asokan et al. (2001) solved three CMS design models selected from the 

literature using GA and SA algorithms. The study compared the solution quality for different 

sized problems. SA performed better for the type of models under consideration.

For a large, practical size problem, the multi-objective model presented in Chapter 4 involves 

too many 0-1 variables and a large number of constraints, causing the optimal solution—if 

attainable—to be computationally expensive. Therefore, we present a heuristic solution approach 

which incorporates the basic steps of SA to obtain near-optimal solutions. The solutions are 

further improved in terms of quality and computational time by applying the crossover and 

mutation operations—as in GAs—to generate better solutions, or neighboring solutions from a 

pair of good solutions. The proposed algorithm can generate near-optimal solutions for fairly 

large size problems within acceptable amounts of CPU time. It may also generate global optimum 

solutions for reasonable size problems, but at higher levels of computational effort.

5.2 Simulated Annealing (SA)

Simulated annealing is a random search method proposed by Kirkpatrick, et al. (1983) for 

solving combinatorial optimization problems. The method differs from the local search method in 

its ability to escape local optima by considering a probability according to the Metropolis
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criterion (Metropolis et al.1953) of accepting a neighboring solution worse than the current 

solution. The SA algorithm generally accepts all solutions that improve the objective function, 

while those which do not result in improvements may be accepted by the acceptance probability 

criterion. The acceptance probability is determined by a control parameter defined as the 

annealing temperature, which decreases with the progress of the SA steps. According to the 

Metropolis criterion, if the difference between the cost function values of the current and the 

newly produced solutions A E  < 0, a random number 5 [0, 1] is generated from a uniform 

distribution, and if:

A E  

(- = - )
8  < e r “

where Ta is the annealing temperature, then the newly produced solution is accepted as the current 

solution. Otherwise, the current solution remains unchanged.

The performance of the SA based solution algorithm depends largely on the clarification and 

definition of the following basic elements:

- solution

- cost function

- generating initial solution

- initial temperature

- neighborhood of a solution

- annealing schedule and

- termination criteria

5.3 Definitions of the Basic Elements of the Algorithm

5.3.1 A Solution

A solution is represented by an assignment of machines to cells, and processing routes to 

parts so that it is feasible with respect to the cell size and machine capacity constraints. 

Considering the numerical example of a cell with 5 machines processing 4 part types, in Section

2.3.2, a typical solution S  is represented as an array with a total of 9 bits of information arranged 

as follows:

The first five bits describe the assignment of the five machines to cells (the cell assignment 

part). In this case, machines 1, 2, and 3 are assigned to cell 2, and machines 4 and 5 are assigned 

to cell 1. The remaining bits in the solution represent the processing routes assigned to the four 

part types (the processing route assignment part). For example, part type 1 is processed under
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process plan 2 through processing route # 04. The processing routes for part type 1 in this 

example are listed in Table 2.2.

S=  (2, 2, 2, 1,1) (1204

; Z X I -
i Cell assignment part ;
! ■i '
I - Position of digits indicates machines ;
j - Digits indicate cell number |
! Position 1: Machine 1 in cell 2 !
! Position 2: Machine 2 in cell 2 !I 1
| Position 3: Machine 3 in cell 2 !
! Position 4: Machine 4 in cell 1 j
; Position 5: Machine 5 in cell 1 1
■ 'i______________________________________ j

It may be noted that the solution automatically satisfies constraint equations (4.5), (4.6), (4.7) 

and (4.9) of the CMS design model presented in section 4.2.1. Each solution is also checked for 

the cell size constraint, equation (4.8), and the machine capacity constraint (4.10).

5.3.2 Cost Function

The cost function (Z) corresponding to a solution is defined as:

Minimize Z  = w/* Objective function 1+ w2‘ Objective function II 

= w/* F t + w2• F2

where objective function I and objective function II are described by equations (4.1) and (4.4) 

respectively, in Section 4.2.1, and wj and w2 are the user-specified weights assigned to the two 

objectives. We may use an appropriate method of scaling the objective functions in order to 

assign the weights in a systematic and logical way.

To determine the range of variations for the two objective functions, we solve the model for 

the two extreme cases o f (w/ = 1, w2= 0) and (w/ = 0, w2 = 1), where, respectively, F t and F2 are 

individually optimized. In this case, F/ represents the total costs (typically, in the range of 

thousands of dollars), and F2 evaluates the overall system failure rate (typically very small, less 

than one in our case). Following the method of range equalization (Steuer, 1986), we can estimate 

appropriate values for wj and w2. This will be discussed further when the numerical example is 

represented.

5.3.3 Initial Solution and the Initial Temperature

The following steps are taken to generate the initial solution and the initial temperature:
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1. Ten random, feasible solutions (Si, S2, ......  Sw) are generated;

2. Among the solutions, Z best and Z wors, are determined, and the solution corresponding to

Zbest is set as the initial solution;

3. diff= Zworst -Zbest is evaluated;

4. The initial annealing temperature is determined by the following equation derived from
7 * XT

the Metropolis criterion described above: T  = (-------- ) ,  where p  is the probability of
log/?

accepting bad solutions.

5.3.4 Neighborhood Solution

A neighborhood solution in SA is generated by a perturbation scheme that makes a slight 

change in the current solution to obtain a new solution that can be traced from the previous one. 

According to the reviewed research, the neighborhood solution generation procedure is problem- 

specific, and differs from one study to the next. The algorithm proposed in this research does not 

follow all the steps of the SA and has a major difference with respect to the neighborhood 

solution generation procedure. This procedural difference has been incorporated to improve the 

solution quality and performance in terms of time for generating a quality solution for a multi­

objective, multiple-process plan CMS design model.

The algorithm randomly selects cell configuration and part routes for generating 

neighborhood solutions. As discussed, if a newly generated neighborhood solution is feasible and 

has a better objective function value (cost) than the initial solution, it is replaced with the new, 

better solution. Otherwise, acceptance decisions about the new solution are made following the 

Metropolis criteria. Whenever the initial solution is replaced—with a neighboring solution with a 

better cost, or with a solution based on the Metropolis criterion of acceptance—the newly 

accepted solution and the initial solution are treated with two types of crossover and a predefined 

number of mutation operations. The aim of these operations, as shown in the following 

illustration, is to generate an even better solution by applying these population generation 

procedures of GA. If an even better solution is generated out of these operations (crossover and 

mutations), the illustrated procedure is repeated; otherwise, the algorithm returns to the usual 

procedure of generating neighborhood solutions by randomly selecting part routes and cell 

configuration.
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5.3.4.1 The Crossover and Mutation Operations

These operations are applied to a pair of solutions (initial solution and newly obtained better 

solution) in the following manner:

1) first, a crossover operation is performed in which the processing route assignment parts 

of the two solutions are interchanged, keeping the cell assignment parts unchanged,

2) next, a single point crossover is performed at a random point within the processing route 

assignment part of the solutions, and

3) finally, a mutation operation is carried out on the processing route assignment part of the 

best solution.

To demonstrate, we consider, once again, the numerical example of Section 2.3.2 with the 

following two solutions (initial solution and a better solution):

(1,1, 2, 2 ,1 ) I [1104, 2202, 3207, 4104]initialsolution 

(7, 2, 2, 2, 7); [7703, 2202, 3103, 420l]better or accepted solution 

[1]
The vertical line [1] indicates the first crossover operation which results in the interchange of the 

processing route assignment parts of the two solutions, as shown below:

(1,1, 2, 2 ,1 ) [7703, 2202, j 3703, 4201]new solution 1 

(7, 2, 2, 2, 1) [1104, 2202, j 3207, 4104]new solution 2

[2]
The vertical line [2] indicates the second crossover operation. A random number in the range of 1 

to 3 (i.e., the number of part types-1) is generated. Suppose the random number is 2. Thus, the 

crossover operation takes place after the processing route assignment of part type 2, as shown 

below:

(1,1, 2, 2 ,1) [1104,2202, 3103, 4201] new solution 3 

(7, 2, 2, 2, 7) [7703, 2202, 3207, 4104] new solution 4

Finally, the mutation operation is performed on the best solution generated from the 

crossover operations by generating a random number in the range of 1 to 3 (i.e., the number of 

part types -1). Suppose the random number is 3, then the processing route of part type 3 is 

changed to the next one on the list. Thus, in this case, the processing route of part type 3 in the 

new solution 3 is changed from #03 to #04:

(1,1, 2, 2 ,1) [1104, 2202, 3103, 4201] »»» (1,1, 2, 2,1) [1104, 2202, 3104, 4201], 

resulting in a new neighboring solution.
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5.3.5 Annealing/Cooling Schedule and Limiting the Computational Time

The annealing/cooling schedule is a plan to reduce the annealing temperature after a specified 

number of iterations. The cooling schedule recommended in the literature is a geometric 

reduction function, a (t) = a*Ta , where a  is the reduction factor. Generally, high values of a 

perform the best, and most of the successful studies in the literature reported a  values from 0.8 to 

0.99 (Dowsland, 1993).

To limit the computational time, we may specify limits on one or more of the following: 

the number of local searches at a temperature, 

the temperature reduction factor, 

the final temperature, and 

the total number of iterations.

5.4 The simulated Annealing Based Algorithm.

Most SA-related algorithms progress with an initial solution (considered to be the best) until 

it is replaced by a solution with a better cost, or a solution with a worse cost selected according 

to the Metropolis probability criterion. It is also possible (Xambre and Vilarinho, 2003; 

Zolfaghari and Liang, 1998) to isolate the best solution and move with two solutions, the best 

and the current best. The algorithm developed here incorporates the latter approach and 

progresses with two solutions: a best and a current best. Whenever a neighborhood solution has 

a better cost than the current best and the best, it replaces both the current best and the best. 

Otherwise, it replaces the current best in case it is better than the current best only. Alternatively, 

a worse solution is accepted in place of the current best only as per the Metropolis criterion. In 

this way, the algorithm ensures the selection and isolation of the best solution available for a 

search.

The following simulated annealing parameters have been used in the implementation of the 

CMS design algorithm:

In the calculation of the initial temperature, the probability of accepting bad solutions, p, 

is suggested to be in the range of 0.5 to 0.99 (Zolfagaghari and Liang, 1998). In our 

study, we found 0.5 to be the most suitable value for the problems solved.

As discussed in section 5.3.5, the temperature reduction factor, a, usually ranges from 

0.85 to 0.98. The best value in our study turned out to be 0.98.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The number of iterations at a local temperature is a user-specified, problem-specific 

value. Our study chose a value of 750. The limit on the number of total iterations is set at 

100,000 .

The final temperature is, again, a user-specified, problem-specific parameter which, in

our study, ranges from 0.05 to 0.0005 with 0.005 being the best performer. The final

temperature value is set so as to make the probability, p , very close to zero, thus 

avoiding the acceptance of any bad solutions at that stage.

The following algorithm (The Algorithm) and the flow charts (Figure 5.1 and 5.2)

demonstrate detailed steps of the heuristic solution generations procedure:

The Algorithm
Step 1.0 Parameter initialization
Step 1.1 Set simulated annealing parameters,;?, a, t f  (final temperature)

Total accepted iterations TcourU, maximum iterations at local temperature tL accepted 
iteration counter at local temperature tl 

Step 1.2 Generate 10 feasible random solutions SI  to S10
Step 1.3 Evaluate objective function value for / ( Sl)= Z1 to f[S10) = Z10
Step 1.4 Evaluate dijf = ZworsrZbesl, set initial temperature Ta =(- diff /  log p)
Step 1.5 Initialize solution for Zbest as S„ and bS (best solution),

fibS) =Zbest m d fS i )  =Zbest 
Step 1.6 Set iteration counter count for main loop, initialize count = 0
Step 2.0 Execute main loop from step 2.1 to 2.8 until criteria at 2.9 is not met

2.1 Initialize inner loop i = 0 counter U = 0, solution S, objective value J[S)
2.1.1 Update i = i+ 1

Randomly generate a solution S
if  ( the solution is not feasible), go to step 2.1.1
else evaluate ffS), diff =f(S)-f(Si), go to step 2.1.2, tl = tl+1

2.1.2 i f  (diff<0); Si = S, f(Si)= f(S) go  to  step 2.2  
else go to step 2.6

2.2 evaluate diffl =f(S)-f(bS)
i f  (diffl <0); go  to  step 2.3.1 before updating and 
update bS = S, fb S )  = f(S) 
else go  to  step 2.3

2.3 aS = S,J[aS )=j{S), gS  = Si, ffgS) =J[Si) g o  to step 2.3.2
2.3.1 aS = S,ffaS  )=J[S), gS = bS,/g S )  =ffbS) go  to  step 2.3.2
2.3.2 generate neighborhood solution gScl and gSc2 by single point crossover 

between aS, and gS  keeping cell configurations unchanged
iff solutions are feasible,), go  to  step 2.3.3 tl = tl+1

else go to  step 2.3.4
2.3.3 i f  f(gScl)<f(gSc2), evaluate gdiff =f(gScl)-f(bS), go  to  step 2.4 

else, i f  f(gSc2) <f(gSc 1),
evaluate gdiff =f(gSc2)-f(bS), g o  to  step 2.4

2.3.4 generate neighborhood solution gScl and gSc2 by single point crossover  
between aS, and gS  starting from a random part route

Iff  solutions are feasible), go to step 2.3.3 tl = tl+1
else go to step 2.5
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2.4 lf(gdiff<0), go to step 2.4.1 before updating and update 
bS=gScj, f(bS) =f(gScj), j=  1 or 2

Else go  to  step 2.5
2.4.1 aS=gScj,f(aS)=f(gScj), gS = bS,J[gS) =J[bS) go to step 2.3.1
2.5 do the random m utations on part routes of bS and generate neighborhood 

solution gSm
I f  (the solution is feasible); tl = tl+1
evaluate diffm =fgSm)-j[bS) and go to  step 2.5.1 
else go to step 2.1.1

2.5.1 I f  (diffm <0); go to step 2.5.2 before updating and update bS=gSm, 
f(bS)=f(gSm)

else go to step 2.7
2.5.2 aS = gSm, f(aS) =f(gSm), gS  = bS, f ( gS) =f(bS) go to step 2.3.1
2.6 ( d iff)

i f ( S < e  Ta ) ;  where 5 is a random number [0,1], go  to step 2.3 before 
updating and update Si = S,f(Si) =j{S), 
else go to step 2.7

2.7 If(tl =tL)\ terminate the inner loop, go to  step 2.8 
Else go  to step 2.1.1

2.8 Update count =count +1,
Record Si, f(Si), bS,f(S)
Reduce cooling temperature Ta=a*Ta and go to  step 2.9

2.9 If(count>Tcount, or Ta< tf); terminate the main loop go to step 3 
else continue with main loop go to step 2.1

Step 3.0 Print the best solution bS and best objective function f(bS)

5.5 Illustrative Example

The algorithm has been coded in C++ (see Appendix A.4, CD FORMAT) and run on a PC 

(Pentium 4, 2.26GHz, 760 MB RAM) to solve a numerical example involving 14 machines and 

24 part types. Table 5.1 shows the machine-related information for the problem. The machine and 

part-related information is generated randomly by considering similar data from examples in the 

literature. Part type demands, processing times and costs, operation sequences and process plan 

information are presented in Table 5.2. The machine reliability-related information—MTBF and 

MTTR—are generated using uniform distributions of [160-360 hours] and [8-48 hours], 

respectively, to maintain machine availabilities of about 80% to 95% considering similar 

availability data in the literature (Askin et al.,1997). According to the input information, each part 

can be processed by either one of two process plans. Each operation of a part type may be 

performed on more than one machine in most cases, and each machine can perform more than 

one operation. As a result, each part type is associated with several processing routes. To 

illustrate, Table 5.3 shows the available processing routes for part type 1. The sequence of 

operations, operation times and the total cost for each route are also given in Table 5.3. The
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number of cells and the maximum number of machines allowed in a cell are assumed to be 3 and 

5, respectively.

Yes
N oIs the 

solution 
feasible?

N oIs this the 10' 
solution?

Yes

STA R T

C hoose the m inm. 
cost so lu tion  as 
in itial solution.

G o to  selection 
step.

D eterm ine the 
cost o f  solution.

D ecide initial 
tem perature based 
on difference o f  
best and

Random ly generate solution consisting o f  
C ell C onfiguration  and Part R outes

Z
 P roceed  for 

m ain loop.

Figure 5.1: Flow chart for generating initial solutions and determining of initial 
temperature
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Initial solution

r’'i

Yes

E valuate cost for 
the solution.

Is it feasible? Is the solution 
accepted?

Do crossover betw een 
current best and the 
accepted solution. U pdate the current 

solution.
Do m utation on the best

Has the #  o f 
iterations at I 

reached the 
target?

Generate new  
solution.

D ecrease the 
tem perature.

Has the 
termination 
criteria been 

reached?

Final solution

Figure 5.2: Flow chart for the main loop of the algorithm
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Table 5.1: Machine data for the numerical example

M a c h in e
C a p a c ity  bi 

(H o u r)  '
MTBF
(H o u r)

MTTR
(H o u r)

P e n a lty  cost f o r  %  non  
u til iz a tio n  (CPj)

1 1000 282 35 425
2 1000 288 24 470
3 700 190 37 408
4 1000 198 24 319
5 700 241 18 375
6 2000 207 10 490
7 700 312 30 485
8 1800 311 35 430
9 1000 175 15 472
10 1000 200 27 336
11 1000 191 20 419
12 1000 168 30 470
13 2000 346 40 452
14 1200 217 40 444

Table S.2: Demand, processing times (hour) and processing costs ($) for all part types

P a r t  ty p e  
(D em an d )

D a ta
ty p e

P ro c e ss  p la n  1 P ro c e ss  p la n  2
O p e ra tio n s O p e ra tio n s

1 2 3 4 1 2 3
1 M/C M4 M l M5 M7 M l M7 M13

(20) Time 5 6 8 4 3 6 5
Cost 9 7 7 8 8 4 6

2 M/C M4 M5 M6 M7 M l M4 M5 M12M 13
(10) Time 7 8 6 7 9 7 4 8 6

Cost 8 7 8 9 8 9 8 5 9
3 M/C M2 M3 M10 M9 M il M2 M3 M3 M il M13

(30) Time 8 3 6 6 5 6 7 10 9 7
Cost 6 4 8 5 7 2 3 9 8 7

4 M/C M2 M3 M5 M il  M13 M2 M 10M 12 M5 M il
(40) Time 9 5 6 11 9 6 7 6 7 8

Cost 5 4 7 7 4 8 4 4 9 4
5 M/C M8 M9 M il M6 M12 M9 M U M14

(10) Time 4 7 5 8 9 5 4 7
Cost 9 7 7 6 12 9 9 6

6 M/C M l M13 M4 M7 M5 M9 M12
(50) Time 6 6 7 8 5 6 7

Cost 5 5 5 4 8 7 4
7 M/C M3 M7 M10 M12 M13 M3 M4 M5 M il  M12

(20) Time 3 6 7 5 5 7 6 8 9 8
Cost 6 6 6 4 5 9 6 7 9 6

8 M/C M12 M13 M4 M5 M7 M8
(30) Time 5 7 9 10 4 4

Cost 6 8 7 8 6 4
9 M/C M6 M8 M8 M9 M il M13M14 M2 M8 M il M14

(40) Time 5 7 4 8 6 6 5 5 5 4 7
Cost 5 5 6 6 7 8 8 5 9 6 6

10 M/C M6 M10 M8 M9 M9 M12 M14
(10) Time 4 5 7 6 9 7 6

Cost 5 7 6 7 7 6 6
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Table 5.2: cont’d
P a r t  ty p e D a ta

P ro c ess  p la n  1 P ro c e ss  p la n  2

ty p e O p e ra tio n s O p e ra tio n s
1 2 3 1 4 1 1 2 1

3
11 M/C M6 M9 M12 M12 M14 M7 M9 M 10M 14

(20) Time 5 6 6 6 4 5 6 7 6
Cost 6 7 8 7 6 7 5 6 7

12 M/C M6 M8 M12 M9 M14 M8 M12 M 10M 14
(10) Time 6 7 5 5 6 8 4 7 6

Cost 6 9 9 5 4 6 8 4 6
13 M/C M9 M12 M13 M14 M6 M10 M8 M13

(10) Time 9 7 7 8 7 8 6 5
Cost 5 5 9 7 9 4 9 8

14 M/C M6 M8 M9 M13 M9 M12 M 13M 14
(50) Time 6 5 8 9 6 7 6 5

Cost 8 5 5 4 6 8 7 5
15 M/C M6 M10 M8 M9 M l 3 M l M3 M14 M8 M10 M14

(30) Time 5 6 9 4 3 9 7 4 8 7 6
Cost 6 4 7 8 7 7 4  8 6 8 5

16 M/C M6 M9 M8M 13 M9 M12 M5 M14
(50) Time 8 6 7 8 6 5 6 7

Cost 4 9 7 4 9 8 4 8
17 M/C M l M4 M5 M8 M7 M13 M l M10 M12 M13M 14

(20) Time 6 4 5 4 5 6 3 6 7 8 9
Cost 9 4 4 5 3 8 8 7 9 7 9

18 M/C M4 M13 M12M 14 M l M13 M6 M10
(30) Time 4 8 6 5 5 7 4 6

Cost 9 7 6 6 5 8 6 7
19 M/C M4 M7 M l M13 M5 M9

(40) Time 7 6 9 8 6 7
Cost 4 7 7 5 7 7

20 M/C M4 M7 M5 M9 M7 M l M4 M12 M14 M 9M 13
(10) Time 6 5 3 4 3 5 6 5 6 3 4

Cost 3 5 4 5 3 6 8 7 6 3 5
21 M/C M3 M7 M U  M14 M2 M6 M10 M12

(20) Time 7 6 8 7 7 6 7 5
Cost 7 5 5 7 7 7 8 6

22 M/C M6 M10 M8 M13 M9 M13 M5 M14
(30) Time 6 5 6 7 6 7 6 8

Cost 3 7 9 4 7 7 7 8
23 M/C M4 M13 M5 M il M13 M l M6 M9 M il M13

(50) Time 7 7 5 8 9 8 4 5 6 7
Cost 9 9 5 5 6 8 5 7 5 6

24 M/C M 10M 13 M il M12 M2 M10 M3 M13
(10) Time 5 6 7 8 7 8 5 6

Cost 8 5 5 7 5 7 4 6

Table 5.3: Processing routes for part type 1 of the numerical example
R o u te s M a c h in e  se q u en ce O p e ra t io n  tim es 

(h o u rs )
T o ta l  o p e ra t io n  cost 

fo r  th e  ro u te
1 2 3 4 1 2 3 4

1. 1101 M4 M l M7 - 5 6 4 - 24

2. 1102 M4 M5 M7 - 5 8 4 24

3. 1201 M l M7 - - 3 6 - - 12

4. 1202 M l M13 - - 3 5 14
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5.6 Performance Evaluation

The model has been solved for various values of the weight factors w; and w2, which have 

been estimated using the method of range equalization (Steuer, 1986) as mentioned in Section

5.3.2, and the results are displayed in Table 5.4. The performance o f the algorithm has been 

evaluated by comparing the objective function value of the example problem generated by the 

algorithm with that of the LP relaxation solution found by using LINGO 7. The objective 

function value of the LP relaxation solution is considered as a basis for evaluating the 

performance of the algorithm, since it provides a Lower Bound on the objective function value of 

the problem at hand. Following the approach of Vakharia and Chang (1997), the GAP (%) is 

introduced as a performance index for the algorithm, which is evaluated by the following 

formula:

GAP (%) = 100 [{Z* - LB}IZ*],

where,

Z* = the best objective function value found at the termination of the algorithm 

LB = the objective function value of the LP relaxation solution to the problem.

Table 5.4 lists the GAP (%) for each solution. This index may be used for assessing the solution 

quality of the algorithm. The assessment criterion is: the smaller the gap, the better the solution. 

However, it is noted that the actual gap between the objective function value of the integer 

program solved to optimality and that obtained by the algorithm is less than the GAP(%) values 

listed in Table 5.4.

Table 5.4: Performance summarY of the algorithm
Problem instance Perform ance items Lower

Bound
Solution from 

algorithm G ap CPU time 
(minutes)

Case 1 
Z= wl*Fl+w2*F2 

wl=l 
w2=0

Cost function Z 9187 10173 9.69 % 15
FI 10173

wl*Fl 10173
F2 0.243538

w2*F2 0

Case 2 
Z= wl*Fl+w2*F2 

wl= 0 
w2=l

Cost function Z 0.204851 0.219749 6.78% 16
FI 13348

wl*Fl 0
F2 0.219749

w2*F2 0.219749

Case 3 
Z= wl*Fl+w2*F2 

wl=l 
w2= 25 000

Cost function Z 14929 16498 9.51% 15
FI 10541

wl*Fl 10541
F2 0.238274

w2*F2 5957

Case 4 
Z= wl*FI+w2*F2 

w 1=0.75 
w2= 25 000

Cost Function Z 12547 13807 9.1% 15
FI 10795

wl*Fl 8096
F2 0.228459

w2*F2 5711
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Table 5.4: Cont’d
Problem instance Performance items L o w er

B o u n d
Solution from 

algorithm Gap CPU time 
(minutes)

Case 5 
Z= wl*Fl+w2*F2  

w l~  0.5 
w2= 25 000

Cost Function Z 10159 11148 8.87% 18
FI 10930

wl*Fl 5465
F2 0.227306

w2*F2 5683

Case 6 
Z= wl*F l+w 2*F2  

w l-0 .2 5  
w2= 25 000

Cost Function Z 7719 8377 7.85% 18
FI 11088

wl*Fl 2772
F2 0.224183

w2*F2 5605

Case 7 
Z= tvl*Fl+w2*F2  

w l = l  
w2= SO 000

Cost Function Z 20318 22220 8.56% 16

FI 10803
wl *F1 10803

F2 0.228348
w2*F2 11417

Case 8 
Z= wl*Fl+w2*F2  

w l=  0.75 
w2= 50 000

Cost Function Z 17901 19522 8.3% 16
FI 11126

wl*Fl 8344
F2 0.223538

w2*F2 11177

Case 9 
Z= w l*F l+w 2*F2  

w l— 0.50 
w2= 50 000

Cost Function Z 15439 16776 8.5% 18

FI 11244
wl*Fl 5622

F2 0.223084
w2*F2 11154

Case 10 
Z= w l*F H w2*F2  

w l=  0.25 
w2= SO 000

Cost Function Z 12922 13963 7.45% 16

FI 11652
wl*Fl 2913

F2 0.221
w2*F2 11050

Case 11 
Z= wl*Fl+w2*F2  

w l—1 
w2=100000

Cost function Z 30877 33665 8.28% 18
FI 11019

wl*F] 11019
F2 0.226465

w2*F2 22645

Case 12 
Z= wl*Fl+w2*F2  

w l=  0.75 
w2=100 000

Cost function Z 28388 30743 7.66% 18
FI 11222

wl*Fl 8415
F2 0.223275

w2*F2 22328

Case 13 
Z= wl*Fl+w2*F2  

w l=  0.5 
w2= 100 000

Cost function Z 25844 27830 7.13% 18
FI 11322

wl*Fl 5661
F2 0.22169

w2*F2 22169

Case 14 
Z= w l *Fl+w2*F2 

w 1-0.2 5 
w2= 100 000

Cost function Z 23215 24977 7.54% 16
FI 11699

wl*Fl 2925
F2 0.220525

w2*F2 22052

The computational times in each case are also listed in Table 5.4, and may be considered as a 

secondary measure of the performance of the algorithm—keeping in mind that the CMS design
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is a planning problem which is solved only once during the planning period and therefore the 

reduction of CPU time may not carry much importance.

5.7 Illustration of Detailed Solution Steps

To illustrate, we consider the model solution corresponding tow j=  1 and, w2= 0 (Case 1 in 

Table 5.4), which means optimizing objective function I  only. To start, the algorithm randomly 

generates 10 feasible solutions with the following cost function values:

12788.6, 12903.4, 12692.8, 12886.9, 12875.6,12126.9, 14622.4, 13130.6, 13202.6 and 12306.2. 

Thus, Zbest = 12126.9 and Zwors, = 14622.4, and diff= Zwors, - Zbest = 2495.54. Now, consideringp  =
j *  / y

0.5 in equation Ta = --------- , the initial temperature is computed as Ta = 8290. The initial
log p

solution, Si, is the one corresponding to Zbes,\

St= (1 1 2 2 3 3 1 2 1 2 2 3 1  3) (1201 2103 3102 4103 5201 6101 7202 8202 9202 10104 11104 

12101 13103 14101 15203 16101 17101 18103 19102 20205 21104 22101 23202 24102)

The objective function II corresponding to this solution = 0.265115, and the corresponding cost 

function Z is:

Z  = w r  Objective function 1+ w2m Objective function II 

= !• (12126.9)+ 0 • (0.265115)= 12126.9 

The cell configuration generated by this solution is:

Cell 1; M l, M2, M7, M9, M13

Cell 2: M3, M4, M8, M10, M l 1

Cell 3: M5, M6, M12, M14

Depending on the temperature reduction factor (a = 0.98), the total number of iterations (100,000), 

the final temperature (tf = 0.005), and the number of iterations at each temperature (750), the best 

solution obtained at the termination of the algorithm has:

Objective function I  = 10173 

Objective function II = 0.243538 

The solution details are presented below:

(1 3 3 1 1 2 1 3 2 3 1 2 3  2) (1201 2102 3202 4102 5201 6101 7204 8202 9202 10103 11204 

12202 13204 14104 15203 16204 17105 18202 19102 20103 21204 22101 23101 24201), and the 

cell configuration is:

Cell 1: M l, M4, M5, M7, M l 1

Cell 2: M6, M9, M12, M14

Cell 3: M2, M3, M8, M10, M13
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5.8 Discussion of the Results

The performance of the algorithm is discussed here in light of the fourteen solution cases 

listed in Table 5.4. The first two cases, 1 and 2, are designed to establish bounds on F I and F2. In 

case 1, we minimize Fi only, resulting in the lowest possible total cost of $10173, as generated by 

the algorithm. Similarly, in case 2, we minimize F2 only, resulting in the lowest possible total 

system failure rate of 0.219749, as generated by the algorithm.

In the next four cases— 3 to 6—we test the algorithm by assigning w2 = 25,000 and varying 

wi from 1 to 0.25, gradually decreasing the importance of Fi. As a consequence, the Fj value 

increases (from 10,541 in case 3 to 11,088 in case 6), while the F2 values decrease, (from

0.238274 in case 3 to 0.224183 in case 6), indicating the decreased importance of Fi and the 

increased importance of F2 in the optimization process. In the next four cases—7 to 10—the 

algorithm is tested by assigning w2 = 50, 000 and varying w; from 1 to 0.25, gradually decreasing 

the importance of F; as before. Now, the F t value increases (from 10,803 in case 7 to 11,652 in 

case 10), while the F2 value decreases, (from 0.228348 in case 7 to 0.221 in case 10), indicating 

once again the consequences of changing the levels of importance placed on each objective 

function.

The last four cases— 11 to 14— show the solution results when w2 = 100 000 and w/ is varied 

from 1 to 0.25, as before. As a consequence, the Fj value increases (from 11,019 in case 11 to 

11,699 in case 14), while the F2 values decrease, (from 0.226465 in case 11 to 0.220525 in case 

14), indicating the decreased importance of F/ and the increased importance of F2 in the 

optimization process. These results are depicted in Figure 5.3, where, in as much as the solutions 

are obtained by a heuristic procedure, the results constitute only a set of ‘pseudo-efficient’ 

solution points for this example.

The performance index of the algorithm, i.e., the GAP (%) as presented in Table 5. 4 shows a 

range of 6.78 to 9.7%. As pointed out earlier, the actual gap between the objective function 

values obtained from the optimal integer programming solution (if attainable) and from the 

algorithm is in fact smaller, due to the fact that the LP relaxation solution to the model generates 

an objective function value that is, in all likelihood, smaller that that of the optimal integer 

programming solution.
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sequence

Process
ing

route

Machine
sequence

Proce
ssing
route

Machine
sequence

Proce
ssing
route

Machine
sequence

Proce
ssing
route

Machine
sequence

1 1201 M1-M7 1202 M1-M13 1201 M1-M7 1201 M1-M7 1201 M1-M7 1201 M1-M7
2 2102 M4-M7 2104 M5-M7 2103 M5-M6 2104 M5-M7 2102 M4-M7 2102 M4-M7
3 3202 M2-M13 3202 M2-M13 3201 M2-M 11 3202 M2-M13 3202 M2-M13 3201 M2-M11
4 4102 M2-M3-M13 4202 M2-M10-M11 4102 M2-M3-M13 4101 M2-M3-M11 4101 M2-M3-M11 4102 M2-M3-M13
5 5201 M6-M9-M14 5101 M8-M9-M11 5101 M8-M9-M11 5101 M8-M9-M11 5202 M6-M11-M14 5101 M8-M9-M11
6 6101 M1-M13 6101 M1-M13 6204 M8-M9-M12 6101 M1-M13 6101 M1-M13 6101 M1-M13

7 7204 M4-M5-M12 7201 M3-M5-M11 7204 M4-M5-M12 7204 M4-M5-M12 7102
M1-M7-M12-

M13
7203 M4-M5-M11

8 8202 M4-M8 8202 M4-M8 8201 M4-M7 8201 M4-M7 8201 M4-M7 8203 M5-M7

9 9202 M2-M12-M14 9103 M6-M8-M11-M13 9202 M2-M12-M14 9102
M6-M8-M9-

M14 9202 M2-M12-M14 9108
M8-M8-M11- 

M14

10 10103 M10-M8 10103 M10-M8 10101 M6-M8 10103 M10-M8 10101 M6-M8 10101 M6-M8
11 11204 M9-M14 11202 M7-M14 11203 M9-M10 11204 M9-M14 11202 M7-M14 11202 M7-M14

12 12202 M12-M14 12102 M6-M8-M14 12102 M6-M8-M14 12102 M6-M8-M14 12102 M6-M8-M14 12102 M6-M8-M14

13 13204 M10-M13 13202 M6-M13 13204 M10-M13 13101 M9-M13 13103 M12-M13 13204 M10-M13
14 14104 M8-M13 14103 M8-M8 14104 M8-M13 14103 M8-M8 14103 M8-M8 14101 M6-M8
15 15203 M3-M8-M14 15102 M6-M8-M13 15102 M6-M8-M13 15102 M6-M8-M13 15102 M6-M8-M13 15205 M14-M8-M14
16 16204 M12-M14 16203 M12-M5 16102 M6-M13 16104 M9-M13 16102 M6-M13 16102 M6-M13

17 17105 M4-M5-M7 17108 M4-M8-M13 17105 M4-M5-M7 17101 M1-M5-M7 17105 M4-M5-M7 17102 M1-M5-M13

18 18202 M1-M9 18104 M13-M14 18201 M1-M5 18104 M13-M14 18201 M1-M5 18204 M13-M9

19 19102 M7 19102 M7 19102 M7 19101 M4 19101 M4 19101 M4
20 20103 M7-M5-M7 20103 M7-M5-M7 20101 M4-M5-M7 20103 M7-M5-M7 20204 M1-M14-M13 20103 M7-M5-M7
21 21204 M6-M12 21104 M7-M14 21101 M3-M11 21104 M7-M14 21202 M2-M12 21201 M2-M10

22 22101 M6-M9 22201 M9-M5 22202 M9-M14 22204 M13-M14 22102 M6-M13 22102 M6-M13

23 23101 M4-M5-M11 23202 M1-M6-M13 2320 M1-M6-M13 23202 M1-M6-M13 23103 M13-M5-M11 23204 M1-M9-M13

24 24201 M2-M3 24202 M2-M13 24202 M2-M13 24103 M13-M11 24104 M13-M12 24201 M2-M3
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Table 5.6: Cell configurations generated by the algorithm for cases in Table 5.4
Cases Cell 1 Cell2 Cell 3 1
Case 1 M l, M4, M5, M7, M l 1 M6, M9, M12, M14 M2, M3, M8, M10, M13
Case2 M l, M 4,M 5,M 9, M il M2, M3, M12, M13, M14 M6, M7, M8, M10

Case 3 M6, M8, M9, M10, 
M13 M 1,M 4, M5, M7, M12 M2, M3, M l 1, M14

Case 4
M2, M3, M 10,M 11, 

M12 M l, M6, M8, M9, M13 M4, M5, M 7.M 14

Case 5
M6,M 8, M9, M il ,  

M14 M2, M3, M4, M12 M l, M5, M7, M10, M13

Case 6
M6, M8, M9, M13, 

M14 M2, M 3,M 10,M 11 M l, M4, M 5,M 7,M 12

Case 7 M l, M4, M 5,M 7 M3, M l 1, M14 M2, M6, M8, M12, M13

Case 8
M l, M7, M10, M13, 

M14 M4, M6, M8, M9 M2, M3, M5, M il ,  M12

Case 9
M2, M3, M10, M12, 

M13 M l, M4, M 5,M 7 M6, M8, M9, M il ,  M14

Case 10 M 1, M4, M5, M7 M6, M8, M il ,  M14 M2, M3, M9, M10, M13

Case 11
M l, M5, M7, M10, 

M13 M 4,M 6, M8, M9, M14 M2, M3, M il

Case 12 M4, M6, M9, M il M l, M5, M7, M8, M14 M2, M3, M10, M12, M13

Case 13 M2, M8, M9, M14 M l, M6, M10, M l 1, M13 M4, M7, M12

Case 14 M2, M10, M l, M6, M 8,M 9, M13 M4, M5, M7, M il ,  M14
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Objective I

Figure 5.3: The ‘pseudo-efficient’ set of solutions for the numerical example

Table 5.5 displays, for each part type, the processing route and the machine sequence for 

selected cases in Table 5.4, and Table 5.6 presents the cell configurations corresponding to the 

cases in Table 5.4. As an example, in case 1 ,part typel is processed under process plan 2 through 

processing route W l,  and the machine sequence for this combination is M1-M7; according to 

Table 5.6, both the machines are in Cell #1. Similarly, in case 1, part type 7 is processed using
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process plan 2, through processing route #04, and the machine sequence is M4-M5-M12, which 

involves processing in two cells; M4 and M5 are in cell 1 and M12 is in cell 2, as shown in Table

5.6.

To further explore the performance, Table 5.7 is presented to compare the solution from the 

algorithm with the optimal solutions of the 7 machine 12 parts problem (Example 1 in section 

4.2.4) as obtained using LINGO 07. Machine data and part processing information for this 

problem are recorded in Tables 4.1, and 4.2. Table 5.7 also shows the comparison of cell 

formation by the optimal solution and the Algorithm. It is evident from the solution instances that 

the algorithm can generate near optimal solutions with the expense of a very small amount of 

CPU time. It may be mentioned here that the solution quality in terms of GAP% can be further 

improved by running the algorithm for longer times, or for a higher number of iterations.

Table 5.7: Performance summary of the heuristic (7 machine -12 part problem)
Problem instance Performance items Optimal

solutions*
Solutions by 

the algorithm
Gap CPU time 

( minutes)

Case 1 
Z =w l*F l+w 2*F 2  

w l= l  
w2=0

Cost function Z 1771 1826 3.0% 3.0
FI 1771 1826

wl*Fl 1771 1826
F2 0.2621467 0.273611

w2*f2 0 0 -

Cell formation Cell 1: 1,2,3,4 
Cell 2: 5,6,7

C elll: 1,2,3,4 
Cell 2: 5,6,7

Case 2 
Z = w l*F l+w 2*F2  

w l= 0  
w 2 = l

Cost function Z 0.2019891 0.2077 2.74% 4.0
FI 3068 2902 -

wl*Fl 0 0
F2 0.2019891 0.2077 -

w2*F2 0.2019891 0.2077 -

Cell formation Cell 1: 1,3,4,7 
Cell 2: 6

C elll: 1,2,3,7 
Cell 2: 4,6

Case 3 
Z = w l*F l+w 2*F2  

w l 1 
w2= 25000

Cost function Z 7630 7789 2.0% 4.0
FI 2497 2377 -

wl*Fl 2497 2377
F2 0.2053338 0.216466 -

w2*F2 5133 5412

Cell formation Cell 1: 1,3,4,6 
Cell 2: 2,7

Cell 1:1,2,3,4,6 
Cell 2: 7

Case 4 
Z = wl*F l+w 2*F2  

w l = l  
w2= 15000

Cost function Z 5428 5641 3.78% 4.5
FI 1959.6 2077 -

wl*Fl 1959.6 2077 -

F2 0.2312271 0.237581 -

w2*F2 3468 3563

Cell formation Cell 1: 1,3,4,6 
Cell 2: 2,7,5

Cell: 1,3,4,6,7 
Cell2:2,5

Case 4 
Z = wl*Fl+w2*F2  

w l= 1 
w2=5000

Cost function Z 3048 3177 4.0% 4.5
FI 1775 1884 -

wl*Fl 1775 1884 -

F2 0.2545131 0.258501 -
w2*F2 1273 1293

Cell formation Cell 1: 1,2,3,4 
Cell 2: 5,6,7

C elll: 1,2,3,4 
Cell 2: 5,6,7
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In this chapter we have presented an SA-based solution algorithm for the design of cellular 

manufacturing systems by considering machine reliability in the multi-objective model based on 

exponential distribution—which takes into account multiple part types, multiple machines and 

alternative process plans for each part type. The algorithm solves the CMS design model 

efficiently within reasonable limits of CPU time to provide a near-optimal solution. The 

algorithm incorporates an efficient neighboring solution generation procedure, using genetic 

algorithm-based operators (crossover and mutation), which improves the solution quality and 

reduces the computational time. The proposed algorithm is easy to implement and as such it can 

be applied to solve practical size CMS design problems to obtain reasonably good solutions.
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CHAPTER 6 

SENSITIVITY ANALYSIS

6.1 Introduction

This chapter consists of three main sections. The key factors/parameters that have a major 

impact on the expected output of the model are identified in Section 6.2. Also included in this 

section are the necessary assumptions and preliminary considerations that form the basis of the 

analysis. Sections 6.3 and 6.4 examine the output of the model for possible changes in the key 

factors—based on the exponential and Weibull distributions, respectively.

6.2 Key Factors

Machine reliabilities undergo changes as a result of aging, routine maintenance, failure 

repairs, and modifications through time. When formulating CMS design models using machine 

reliability considerations based on the exponential distribution, the mean time between failure 

(.MTBF) and mean time to repair (MTTR) are the parameters that impact the performance indices 

of the cell. Changes in MTBF impact both the system costs and the system reliability. Similarly, 

changes in MTTR impact machine availability, and thus the effective machine capacity, system 

utilization and system costs.

Characteristic life 6 and shape factor /? are the two key factors that impact the model outputs 

(system reliability, system cost, and operation allocations) for the CMS design model using 

machine reliability considerations based on the Weibull distribution. Changes in shape factor /? 

may be considered to be very rare during the life time of a machine. We assume that the shape 

factor P for the machine remains unchanged for the planning period under consideration. Since 6 

is a function of both MTBF and /?, the model outputs are ultimately influenced by MTBF.

The processing cost is a function of processing time, operator salary, machine type, set-up 

time and set-up cost. A decrease in processing cost is very rare in a manufacturing environment 

and is usually a result of major changes in the system. An increase in processing cost usually 

occurs by a certain percentage identically applicable to all the machines. It is evident that such 

increase in processing cost will not affect cell formation or operation allocation, but rather it will 

increase the system cost by a certain percentage only. Cell formation and operation allocation will 

be affected if there is a major change in machine type, change of set up arrangement, or major 

modification. We have not included the impact of processing cost in our sensitivity analysis 

because we do not assume any such changes for this study.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Considering the above information, sensitivity analysis is performed to examine the impact of 

changes in MTBF and MTTR on the cell configuration, operation allocation, system reliability, 

and total costs in the case of exponential-based and the Weibull-based model.

6.2.1 Assumptions and Preliminary Considerations

1. Since failure rate X is the inverse of MTBF in the exponential distribution, to simplify the 

analysis we investigate the effect of changes in the failure rate X—instead of MTBF—on 

the model outputs (total cost, system reliability, cell configuration, and operation 

allocations).

2. Only increases in failure rate (or decreases in MTBF) are included in the sensitivity 

analysis, because a decrease in failure rate (or an increase in MTBF) is very rare, and it 

can happen only when there is a major modification to the machine or the system. No 

such modification is assumed for the machines or the system under consideration in this 

study.

a) To investigate the impact of an increase in failure rate 1 on the model solutions 

based on exponential distributions, we increment the failure rates of all the 

machines by 10% to a maximum of 50%. For brevity, a 10% increase in failure 

rates would be represented as 1.102.

b) To investigate the impact of a decrease in MTBF on model solutions based on the 

Weibull distributions, we decrement MTBF of all the machines by 10% to a 

maximum of 50%. For example, a 10% decrease in MTBF would be represented 

as 0.90MTBF.

3. While an increase in MTTR is a usual phenomenon, organizations often pursue efficient 

maintenance policies (employing efficient crews, going for maintenance contracts, using 

efficient maintenance aids and equipments, etc.) with the aim of completing repair work 

as quickly as possible. As such, the impact of both possible increases and decreases in 

MTTR on the model result are investigated. Thus, the MTTR values of all the machines 

are changed by ±10% up to a maximum of ±50%. A 10% increase in the MTTR values 

would be represented as 1.10MTTR and a 10% decrease will be represented by 

0.90MTTR.

4. Example 1 in Chapter 4 has been used for this study. For the exponential distribution- 

based study, we follow the solution steps identical to section 4.2 ignoring the steps 

described for performance evaluation. For the Weibull distribution based study, we use
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the solution procedure of section 4.3 and the model is solved for long range (3 (1.16-1.80) 

values, as defined in section 4.3.2.

5. The existing or initial values of the parameters (M TBFM TTR), given in the input data 

tables (Table 4.1 and 4.2), are the basis of sensitivity analysis for the models.

6. An increase in failure rate or a decrease in MTBF does not impair the capability of the 

machines. The machines remain capable of performing the operations at the same rate as 

long as they are in operating condition either at the initial, or at the changed levels of 

their parameters.

7. Considering that the model in question is a multi-objective one, conducting sensitivity 

analyses for all the points on the efficient frontier of the model solution is prohibitively 

time consuming; thus, the analysis carried out in this chapter pertains to the efficient 

point #2 in Figures 4.1 (efficient frontier for the exponential model solutions) and 4.4 

(efficient frontier for the Weibull model solutions), as an example.

6.3 Sensitivity of the Exponential Distribution-Based Model Outputs

6.3.1 Effect of Increased Failure Rates

The effects of the increased machine failure rates on machine parameters (availability, 

utilization etc.), on the objective function values, and on the part processing routes are 

summarized, respectively, in Tables 6.1, 6.2, and 6.3, and displayed in Figure 6.1. In so far as 

these three tables are inter-related in terms of the information presented, the following analysis 

makes simultaneous references to them while discussing the results.

1) Table 6.1 summarizes the effects of increased failure rates on machine availability, available 

time and machine utilization. As machine failure rates increase, we expect a decrease in both 

availability and available time, and an increase in machine utilization which, in turn, results in a 

decreased non-utilized machine time (MNC) cost, as illustrated in Table 6.2. We have not 

included the cost of a decrease in machine availability combined with an increase in maintenance 

cost due to increased failure rate. However, a decrease in MNC creates insight into why the 

effective available times on machines are decreasing—adding to machine down time with the 

increase in machine failure rate. For example, Table 6.2 reveals that with a 50% increase in 

failure rates from the existing level, the decrease in MNC is $813-$764 = $ 49. Simultaneously, 

Table 6.1 shows that machine M l lost (1344 -1277) = 67 hours of its effective capacity with a
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Table 6.1: Effect of increased failure rates (X) on machine times (exponential model)

Parameter
Performance
parameters

Machines

M l | M2 | M3 | M4 | M5 | M6 |  M7
Total machine capacities (hours)

1500 1400 1200 1100 1300 1000 1400

1.01

availability 0.896 0.900 0.900 0.905 0.893 0.869 0.894

available time (hrs) 1344.18 1259.49 1080.29 995.01 1161.17 869.28 1251.15

%utilization 0.910 0.000 0.961 0.861 0.000 0.993 0.825

utilized time (hrs) 1223.50 0.00 1036.85 856.40 0.00 862.80 1032.75

non-utilized time (hrs) 120.68 1259.49 42.44 138.61 1161.17 6.48 218.40

1.1*

availability 0.887 0.891 0.891 0.896 0.884 0.858 0.884

available time (hrs) 1330.36 1246.98 1069.62 985.61 1148.91 858.06 1236.99

“/((Utilization 0.920 0.000 0.999 0.869 0.000 0.880 0.917

utilized time(hrs) 1223.50 0.00 1068.75 856.40 0.00 754.80 1135.65

non-utilized time (hrs) 106.86 1246.98 0.87 129.21 1148.91 103.26 102.34

1.2*.

availability 0.878 0.882 0.883 0.888 0.875 0.847 0.875

available time (hrs) 1316.82 1234.71 1059.16 976.38 1136.89 846.11 1225.10

%utilization 0.966 0.000 0.992 0.867 0.000 0.891 0.956

utilized time (hrs) 1272.30 0.00 1050.65 846.70 0.00 754.80 1171.35

non-utilized time (hrs) 44.52 1234.71 8.51 129.68 1136.89 92.31 53.75

1.3*

availability 0.869 0.873 0.874 0.879 0.865 0.836 0.866

available time (hrs) 1303.55 1222.68 1048.90 966.32 1125.13 836.47 1212.47

%utilization 0.939 0.000 0.985 0.885 0.000 0.902 0.937

utilized time (hrs) 1223.50 0.00 1033.15 856.40 0.00 754.80 1135.65

non-utilized time (hrs) 80.05 1222.68 15.75 110.92 1125.13 81.67 76.82

1.4*

availability 0.860 0.865 0.866 0.871 0.857 0.826 0.857

available time (hrs) 1290.55 1210.88 1038.83 958.42 1113.61 826.08 1200.11

%utilization 0.948 0.000 0.995 0.894 0.000 0.914 0.946

utilized time (hrs) 1223.50 0.00 1033.15 856.40 0.00 754.80 1135.65

non-utilized time (hrs) 66.05 1210.88 5.68 102.02 1113.61 71.28 64.46

1.5*

availability 0.852 0.857 0.857 0.863 0.848 0.816 0.849

available time (hrs) 1276.81 1199.31 1028.96 949.69 1102.32 815.94 1186.99

%utilization 0.958 0.000 0.963 0.902 0.000 0.925 0.986

utilized time (hrs) 1223.50 0.00 990.65 856.40 0.00 754.80 1171.35

non-utilized time (hrs) 54.31 1199.31 38.31 93.29 1102.32 61.14 16.64

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 6.2: Effect of increased failure rates (X) on the model solution (exponential model)

Parameter Objective I
Components of objective I

Objective II
VCM MHC MNC

1,0X 2781 1768 200 813 0.2019891

i . a 2712 1713 200 799 0.2271107

1.2X 2727 1701 250 776 0.2477571

1.3X 2719 1735 200 784 0.2684036

1.4X 2705 1735 200 770 0.2890500

1.5X 2733 1769 200 764 0.3096964

3200

2800
0.25

2400

0.22000

1600

1200

0.05
400

Failure rates

MHC Objective IIObjective I ■m—  VCM MNC

Figure 6.1: Effect of increased failure rate (k) on the model solution (exponential model)
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Table 6.3: Effect of increased failure rate ().) on process plan and part routes assignment
(exponential model)

10

12

Plan
1.0?.

Processing
route

M1-M4

1.1). 1.2*. 1.3). 1.42.

M3-M7-M3

M4-M6-M4

M1-M6

M7-M6-M4

M7-M1-M3

M6-M1

M3-M1-M3

M3-M1-M6

M6-M 3-M 1

M1-M7

M3-M6

1.5).

Plan I Process 
route

Process
route

Plan I Process 
route

Plan I Process 
route

Process
route

M4-M6
M4

M4-M6-
M4

M4-M6
M4

M7-M6
M4

M7-M1-
M3

M7-M1
M7

M7-M1 M7-M1- M7-M1-

M3-M1-
M3

M3-M4-
M1

t-H

7  r F T # * h i

1
M7-M1-

M3
1 M7-M1-

M3 i

M l-M3 M l-M3

M7-M1-
M3

M1-M7

Cell 1

Cell 2

M l,M3, M6, M7

M4 -4 BBHHSHKh h

Notes:
1 —  Indicates no change in part processing routes/cell configuration relative to the 

current state 1.0 X

2 **2 M7-M1-M7 indicates a change in processing route for part type 6 from M7 -  
M l-M3 to M7-M1-M7, but no change in process plan

50% increase in failure rate. A similar amount of time is lost by other machines also, and these 

values are added to the down time. These insights into decreases in MNC help focus attention on 

the areas that contribute to the abnormal reliability performance of the CMS.

All other changes in the costs—recorded in Table 6.2—are due to adjustments in processing 

routes. When the available time on a machine decreases to a point where the current operation 

assignments are no longer feasible, the model attempts to adjust processing routes for the part 

types in order to optimize the costs (objective function I) and achieve the desired value for 

objective function II, as shown in Table 6.3.

2) Considering machine M l as an example, as the failure rates increase by 10%, Table 6.1 

indicates that the machine availability declines from the current level of 0.896 to 0.887. The 

available time decreases from 1344.18 units to 1330.36 units, and machine utilization increases 

from 0.910 to 0.920. A similar trend can be observed for machine M4. At the current level,
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machine M6 is almost folly loaded. Accordingly, a 10% increase in machine failure rates prompts 

a shift in the model solution (documented in Table 6.3). The processing route of part type 9 

changes from M3-M1-M6, to M3-M1-M3 while, that of part type 6 converts from M7-M1-M3, to 

M7-M1-M7. While the model decremented the load on M6 by shifting its work to machine M3 

through the change of processing route for part type 9, it also readjusted the load of M3 by 

changing the processing route of part type 6. As a result of these changes, objective function I 

decreases by $(2781-2712) = $ 69 (or, -2.48%), and objective function II is increased by 

(0.2271107 - 0.2019891) = 0.0251216, a 12.4% increase.

Now, with a 10% increase in machine failure rates, machine M3 is almost folly loaded. 

Consequently, we observe the next shift in the model solution at 1.2X, as seen in Table 6.3, when 

the processing routes of part types 3, 6, and 9 are changed. With an increase in failure rate from 

10% to 20%, objective function I changed from $2712 to $2727, and objective function II 

increased from 0.2271107 to 0.2477571, a 9% increase, as can be seen in Table 6.2 and Figure

6.1. This trend continues for nearly every increase in the failure rates.

As discussed, during all the changes the model attempted to adjust machine times and change 

processing routes in order to optimize cost and achieve the desired value for objective function II 

as shown in Table 6.2. For example, the model solution has not selected machines M2 and M5 

(see Table 6.3) during all the changes, and therefore their times have not been utilized. The 

reason machines M2 and M5 have not been selected lies in their high failure rates (revealed by 

the MTBF values in Table 4.2). Instead, the model attempted to complete the part assignments 

with a combination of more reliable machines to achieve comparatively higher system reliability.

As expected, Figure 6.1 illustrates how the value of objective function II steadily increases as 

the machine failure rates increase. As failure rates increase, machine reliabilities decrease, and it 

becomes more and more difficult to maintain a desired level of system reliability. From the above 

discussion, it may be concluded that the increased machine failure rates have a fairly insignificant 

effect on the total cost (objective function I), and a significant impact on system reliability. 

Within the range of the failure rate values under consideration, objective function I has decreased 

by $(2781-2733) =$ 48 (or 1.7%), which is mainly due the decrease in machine non-utilization 

cost (MNC). As indicated before, a decrease in MNC is an indirect indication of an increase in 

down time. However, the model could keep the variable cost of machining almost the same by 

changing the processing routes. For a 50% increase in failure rates, the increase in the objective 

function II value is about 53.3%—indicating that although machine performances are degrading 

as time passes, the model is fairly robust with respect to the operation assignments at a reasonable 

cost, as well as the cell configuration.
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6.3.2 Effect of Changes in MTTR

The effect of an increase and/or decrease in the MTTR values of the machines on machine 

parameters, part processing routes and the objective function values are summarized, respectively, 

in Tables 6.4, 6.5, 6.6a and 6.6b (and displayed in Figure 6.2). Again, these four tables are inter­

related in terms of the information presented, and require simultaneous references when 

discussing the results.

1) Table 6.4 summarizes the effects of changes in MTTR on machine availability, available 

time and machine utilization. As MTTR decreases, we expect an increase in machine availability 

and available time and, generally, a decrease in machine utilization that leads to an increase in 

MNC—the cost of non-utilized machine time—as shown in Table 6.5. When the available time 

on a machine increases, the model attempts to make changes to processing routes for the part 

types in order to generate a solution with a lower cost (objective function I) and achieve the 

desired value for objective function II (illustrated in Table 6.6b).

2) Table 6.4 reveals that machine availability for all the machines increased due to a 10% 

decrease in MTTR from the existing level. For example, the availability of machine M7 increases 

from the current levels (1.0MTTR) of 0.894 to 0.903, and available time increases from 1251 to 

1264 units. With a 10% decrease in MTTR we observe a shift in the model solutions indicated in 

Table 6.6b; the processing route for part type 6 changes from M7-M1-M3 to M7-M1-M7, and 

that of part type 11 changes from M1-M7 to M1-M3. With these changes, the utilization of M7 

increases from 0.825 to 0.924—suggesting that the model could generate lower cost solutions and 

reduce the objective function I value by ($ 2781 - $ 2739) = $ 42 (= 1.5% improvement) while 

maintaining the system reliability (objective function II value) at the existing level (recorded in 

Table 6.5 and displayed in Figure 6.2). This improvement was not previously possible due to the 

limitation of available time on M7, as shown in Table 6.4.

3) A further decrease in MTTR (from 0.9MTTR to 0.5MTTR) boosts the effective machine 

capacities (as is displayed in Table 6.4); however, these additional capacities (extra time) on a 

machine creates a slight deterioration in the cost picture because it is added to the machine 

non-utilization time and—in turn— cost, (shown in Table 6.5). For instance, the additional 

capacity added as a result o f  a 50% decrease in MTTR  increases the M NC or machine 

non-utilization cost by ($856-$776) = $80 (shown in Table 6.5).
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Table 6.4: Effect of increased and decreased MTTR on machine times (exponential model)

Parameter Performance
parameters

Machines

M l M2 M3 M4 M5 | M6 | M7

Total machine capacities (hours)

1500 1400 1200 1100 1 1300 1000 1 1400

Q.5MTTR

availability 0.945 0.947 0.947 0.950 0.943 0.929 0.944

available time (hrs) 1416.24 1325.78 1136.55 1044.54 1226.40 929.14 1321.08

%utilization 0.950 0.000 0.910 0.991 0.000 0.929 0.662

utilized time (hrs) 1346.70 0.00 1034.75 1034.80 0.00 862.80 874.75

non-utilized time (hrs) 70.54 1325.78 101.80 9.74 1226.40 66.34 446.33

0.6MTTR

availability 0.935 0.937 0.937 0.940 0.933 0.916 0.933

available time (hrs) 1401.91 1311.93 1124.76 1034.19 1212.74 916.37 1306.42

%utilization 0.971 0.000 0.900 0.836 0.000 0.954 0.834

utilized time (hrs) 1361.23 0.00 1012.61 864.86 0.00 874.59 1089.89

non-utilized time (hrs) 40.69 1311.93 112.15 169.33 1212.74 41.78 216.53

0.7MTTR

availability 0.925 0.927 0.928 0.931 0.923 0.904 0.923

available time (hrs) 1386.95 1298.39 1113.25 1024.07 1199.39 904.02 1292.11

%utilization 0.897 0.000 0.970 0.836 0.000 0.954 0.904

utilized time (hrs) 1243.50 0.00 1080.35 856.40 0.00 862.80 1168.50

non-utilized time (hrs) 143.45 1298.39 32.90 166.67 1199.39 41.22 123.61

O.ZMTTR

availability 0.915 0.918 0.918 0.922 0.913 0.892 0.913

available time (hrs) 1372.35 1285.14 1102.01 1014.17 1186.36 892.07 1278.14

%utilization 0.906 0.000 0.980 0.844 0.000 0.967 0.914

utilized time (hrs) 1243.50 0.00 1080.35 856.40 0.00 862.80 1168.50

non-utilized time (hrs) 128.85 1285.14 21.66 156.77 1186.36 29.27 109.64

0.9MTTR

availability 0.905 0.909 0.909 0.913 0.903 0.880 0.903

available time (hrs) 1358.10 1272.18 1091.02 1004.49 1173.62 880.49 1264.49

%utilization 0.916 0.000 0.990 0.853 0.000 0.980 0.924

utilized time (hrs) 1243.50 0.00 1080.35 856.40 0.00 862.80 1168.50

non-utilized time (hrs) 114.60 1272.18 10.67 148.09 1173.62 16.69 95.99

l.OMTTR

availability 0.896 0.900 0.900 0.905 0.893 0.869 0.894

available time (hrs) 1344.18 1259.49 1080.29 995.01 1161.17 869.28 1251.15

%utilization 0.910 0.000 0.961 0.861 0.000 0.993 0.825

utilized time (hrs) 1223.50 0.00 1036.85 856.40 0.00 862.80 1032.75

non-utilized time (hrs) 120.68 1259.49 42.44 138.61 1161.17 6.48 218.40
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Table 6.4 cont’d
Machines

Parameter Performance M l M2 M3 M4 | M5 | M6 1 M7
parameters Total machine capacities

1500 1400 1200 1100 1300 1000 1400

availability 0.896 0.900 0.900 0.905 0.893 0.869 0.894

available time (hrs) 1344.18 1259.49 1080.29 995.01 1161.17 869.28 1251.15
1.0A/777? %utilization 0.910 0.000 0.961 0.861 0.000 0.993 0.825

utilized time (hrs) 1223.50 0.00 1036.85 856.40 0.00 862.80 1032.75

non-utilized time (hrs) 120.68 1259.49 42.44 138.61 1161.17 6.48 218.40

availability 0.887 0.891 0.891 0.896 0.884 0.858 0.884

available time (hrs) 1330.58 1246.08 1069.79 985.74 1149.01 858.41 1238.11
\.\MTTR %utilization 0.920 0.000 0.999 0.869 0.000 0.879 0.917

utilized time (hrs) 1223.50 0.00 1068.75 856.40 0.00 754.80 1135.65

non-utilized time (hrs) 106.08 1246.08 1.04 129.34 1149.01 103.61 102.46

availability 0.878 0.882 0.883 0.888 0.875 0.848 0.875

available time (hrs) 1316.29 1234.92 1059.53 976.66 1136.11 846.87 1225.36
12MTTR %utilization 0.966 0.000 0.992 0.867 0.000 0.890 0.956

utilized time (hrs) 1272.30 0.00 1050.65 846.70 0.00 754.80 1171.35

non-utilized time (hrs) 44.99 1234.92 8.88 129.96 1136.11 93.07 54.01

availability 0.870 0.874 0.875 0.880 0.866 0.838 0.866

available time (hrs) 1304.31 1223.01 1049.50 966.77 1125.48 836.64 1212.89
1.3A/777? %utilization 0.938 0.000 0.984 0.885 0.000 0.901 0.936

utilized time (hrs) 1223.50 0.00 1033.15 856.40 0.00 754.80 1135.65

non-utilized time (hrs) 80.81 1223.01 16.35 111.37 1125.48 82.84 76.24
availability 0.861 0.865 0.866 0.872 0.857 0.828 0.858

available time (hrs) 1291.62 1211.35 1039.68 959.06 1114.10 826.72 1200.70

1.4 A/777? %utilization 0.947 0.000 0.994 0.893 0.000 0.912 0.946
utilized time (hrs) 1223.50 0.00 1033.15 856.40 0.00 754.80 1135.65

non-utilized time (hrs) 68.12 1211.35 6.53 102.66 1114.10 72.92 65.05
availability 0.853 0.857 0.858 0.864 0.848 0.818 0.849

available time (hrs) 1279.21 1199.93 1030.07 950.53 1102.96 818.08 1188.77
1.5A/777? %utilization 0.956 0.000 0.962 0.901 0.000 0.923 0.985

utilized time (hrs) 1223.50 0.00 990.65 856.40 0.00 754.80 1171.35

non-utilized time (hrs) 55.71 1199.93 39.42 94.13 1102.96 63.28 16.42
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Table 6.5: Effect of increased and decreased MTTR on the model solution (exponential
model)__________________________________________________

Parameter Objective
I

Components of objective I
Objective II

VCM MHC MNC
0.5MTTR 2795 1839 100 856 0.199227
0.6MTTR 2787 1763 200 823 0.201989
0.1MTTR 2771 1763 200 808 0.201989
0.&MTTR 2755 1763 200 792 0.201989
0.9MTTR 2739 1763 200 776 0.201989
l.OMTTR 2781 1768 200 813 0.201989
\.\MTTR 2713 1713 200 799 0.206464
\2MTTR 2728 1701 250 777 0.206464
1.3 MTTR 2721 1736 200 785 0.206464
\ A MTTR 2706 1736 200 770 0.206464
1.5 MTTR 2736 1770 200 766 0.206464

0.21
2900

- 0.22500

2100

1700

1300

900

0.16
500 -

0.5 0.7 0.9
MTTR

Objective 1 Objective II■*— VCM MHC MNC

Figure 6.2: Effect of increased and decreased MTTR on the model solutions (exponential 
model)
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Table 6.6a: Effect of increased MTTR on process plan and part routes assignment
(exponential model)

Part
type

1.0 MTTR l . l  MTTR 1.1MTTR 1.2 MTTR 1AMTTR 1SMTTR

plan process
route

plan process
route

plan process
route

plan process
route

plan process
route

plan process
route

1 2 M1-M4 -
2 2 M3-M7-

. . .
f* , i t  -X i w f ♦, ,

M3

3 2 M4-M6-
M4 2

M7-M6-
M4 2

M4-M6-
M4 2

M4-M6-
M4 2

M4-M6-
M4

4 2 M1-M6

5 2 M7-M6-
M4

m r

6 2 M7-M1-
M3 **2

M7-M1-
M7

2
M7-M1-

M3 2
M7-M1-

M7 2
M7-M1- 

— —
2

M7-M1-
M3

7 2 M6-M1 |  I -4-------y. ..............
8 2 M3-M1- i  

M3 1 ...........

9 1 M3-M1-
M6 1 M3-M1-

M3 2
M3-M4-

M1 i
M7-M1-

M3
1 M7-M1-

M3 1
M7-M1-

M3

10 2
M6-M3-

M1 ■ ■ 1 1 1 (
11 1 M1-M7 1 M1-M3 j 1 | M l-M3 1 M1-M7

h ~ ~ 1 ---------------12 2 M3-M6 ..; ...... ..:.....1 : .  ....T .......
!

i I
1 j

' t :Cell 1 M1,M3,M6,M7 1  ■' *■ ■ '
''y**: V  ; ' j . ..  .

Cell 2 M4 I  ■ • 1
Notes:

1. liiili—  Indicates no change in part processing routes/cell configuration relative 
to the current state 1 .QMTTR

2. ** 2 M7-M1-M7 indicates a change in processing route for part type 6 from M7 
-  M1-M3 to M7-M1-M7, but no change in process plan
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Table 6.6b: Effect of decreased MTTR on process plan and part routes assignment
(exponential model)

Part 1.0MTTR 0.9 MTTR 0.8M7TR QJMTTR 0.6MTTR 0.5MTTR
type plan process

ronte
plan process

route
plan process 

route
plan process

route
plan process

route
plan process

route

1 2 M1-M4 •*. ‘ ■ :•
2 2 M3-M7-

M3 M i ^
■v.

,.L ** X ►- Hf i - - M3-M7-
\ r

3 2 M4-M6-
M4

:
i 'V V i i i i 1 ?  : ! * i i t H

. .. .
.i, ■

4 2 M1-M6 .r- • •

5 2 M7-M6-
M4

lv-.- * . . * X"' !; • -

6 2 M7-M1-
M3 ** l M7-M1-

M7
1 M7-M1- 
* M7 i M7-M1

M7
- 1 M7-M1-

M7 2 M3-M1-
M3

7 2 M6-M1 ■?£ VTST T T S ' j "?■■ M f* ■* • 1 ■- ♦: f1* 1 ' I
8 2 M3-M1-

M3 V:. : '< ::
< *. 4'** N ■ !'

9 1 M3-M1-
M6 '

. . K . V.
' i •

’* •y& M1-M4-1
M6 I

10 2 M6-M3-
M1

■*, 'V'*, ?■
.  ni| ̂  i . vr.^nn,,.,

\>* . y ■

11 1 M1-M7 i Ml-M3 1 Ml-M3 i M1-M3 Ml-M3 1 Ml-M3
12 2 M3-M6 |

Cell 1 M1,M3,M6,M7 m
*

>■' ■' ■
t -  • ■ ■ -v-

v " ■ 1 M1,M4,M3,M6

Cell 2 M4 - • • 1 - •. "  ' ' 1 M7

Notes:
1 • r  "1 Indicates no change in part processing routes/cell configuration relative

to the current state 1.0MTTR

2. ** 1 M7-M1-M7 indicates a change in processing route for part type 6 from M7 
-M l-  M3 to M7-M1-M7, and change in process plan from 2 to 1

Table 6.6b, however, observes that the model solutions shift with a 50% decrease in MTTR as 

the processing route of part types 2, 6, 9, and 11 are changed. As a result of this shift, Table 6.5 

and Figure 6.2 reveal that the model achieved a higher reliability when the value of objective 

function II decreased from 0.201989 to 0.199227 (approximately 1.4% improvement). This 

improvement in system reliability was not possible previously due to the limitation of available 

time on machines M l and M4, as can be seen in Table 6.4. Table 6.6b also shows that with a 

50% decrease in MTTR, the model solution displays a change in cell configuration from {cell 

1: M l, M3, M6, M7 and cell 2: M4} to {cell 1: M l, M3, M6, M4 and cell 2: M7}.

4) Conversely, Table 6.4 shows that as the MTTR increases by 10%, the availability for 

machine M7 decreases from the current level of 0.894 to 0.884, while the available time 

decreases from 1251 units to 1238 units and machine utilization increases from 0.825 to 0.917. 

This is the general trend for each increase in MTTR. At the current level (1.0MTTR), Table 6.4
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displays machine M6 as almost 100% loaded. To accommodate the process assignment of M6 at 

a 10% increase in MTTR, we observe a shift in the model solutions (illustrated in Table 6.6a). The 

processing route of part type 6 changes from M7-M1-M3 to M7-M1-M7, while the processing 

route of part type 9 changes from M3-M1-M6 to M3-M1-M3. Objective function II increased 

from 0.201989 to 0.206464, a 2.2% deterioration in system reliability—recorded in Table 6.5 and 

displayed in Figure 6.2— as a result of this shift. The model solution could, however, reduce cost 

(objective function I) by $(2781-2713) = $68.

5) Table 6.4 indicates that with a 10% increase in MTTR (\AQMTTR levels), machine M3 is 

practically 100% loaded. This prompts the second shift in model solutions at 1.20MTTR 

(observed in Table 6.6a) where the processing route of part type 3 changes from M4-M6-M4 to 

M7-M6-M4; part type 6 reverts back to M7-M1-M3; and part type 9 changes process plans from 

#1 to #2 while the processing route switches from M3-M1-M3 to M3-M4-M1. At this point, the 

value of objective function I increased from $2713 to $2728 due to a change in machine 

processing assignments, and the objective function II value (0.206464) remained unchanged as 

shown in Table 6.5.

6) A study of Table 6.6a reveals a shift in model solutions and changes in selected 

processing routes at every increase in MTTR. It is also evident from Table 6.4 that as MTTR 

increases, machine availability decreases and—as discussed—the model solutions resort to 

changing the processing routes of part types to accommodate the processing times and achieve 

the desired reliability level. Table 6.5 and Figure 6.2 show that although MTTR increased from 

10% to 50% and machine availability decreased at every increase in MTTR, the model solutions 

could maintain the objective function II value at the same level through the change of processing 

routes.

7) Table 6.5 and Figure 6.2 indicate that as the MTTR increases, the objective function I 

value tends to decrease. The total decrease in the objective function I value for an increase from 

current level to 50% is $(2781-2736) = $ 45. The variation between the highest (at 1.0MTTR) 

and the lowest (at 1AMTTR) is $75 (approximately -2.7%). As previously explained, the decrease 

in the objective function I value is mainly due to a decrease in MNC, which contributed $(813- 

766) = $ 46 for the 50% increase in MTTR from the current level. As discussed, a decrease in 

MNC is the consequence of a decrease in availability. This decrease in machine availability may 

be considered equivalent to an increase in machine down-time and repair and maintenance 

costs—usually a significant amount although they are not accounted for in this study.

From the above discussion, it m ay be concluded that the m odel solutions in terms o f  

processing route assignments are significantly sensitive to changes in MTTR  values. W e
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m ay also conclude that although there are changes in part processing routes for every 

increase or decrease in MTTR, the model solution (in terms o f  system costs and system 

reliability) is not overly sensitive to changes in the M TTR  values, as displayed in Tables 

6.5, 6.6a, 6.6b and Figure 6.2. W hen the M TTR  values for machines change in the range of 

-50% to 50%, we can see the corresponding changes in the objective function I value from -0.5% 

to +2.7 %.(-$14 to +$75) and changes in the objective function II value from +1.4% to 2.2%.

6.4 Sensitivity of the Weibull Distribution-Based Model Outputs

6.4.1 Effect of Decreases in MTBF

The effects of a decrease in MTBF on machine parameters, objective function values and part 

processing routes are summarized in Tables 6.7, 6.8 and 6.9 and displayed in Figure 6.3. The fact 

that these results are interrelated allows us to take a similar approach to Section 6.3, and we will 

be making simultaneous references to them during our discussion on sensitivity analysis.

1) Table 6.7 summarizes the effect of a decrease in MTBF on machine availability and 

machine utilization. As MTBF decreases, machine availability and the available time on machines 

decrease. Due to this decrease in availability, un-utilized time on machines decreases—implying 

a reduction in MNC (observed in Table 6.8). This effect of a decrease in MTBF is similar to that 

of an increase in failure rates, as explained in Section 6.3.1 for exponential distribution-based 

model solutions. With the decrease in MTBF, the available time on a machine reaches a point 

where it can no longer accommodate the process assignment it has been performing. The model 

attempts to select a different part processing route to accommodate the processing times and 

achieve the desired reliability (objective function II value) as shown in Tables 6.8 and 6.9.

2) Investigating the effect of a decrease in MTBF on machine times and considering machine 

M7 as an example, we can observe that with a 10% decrease in MTBF, availability decreases 

from the current 0.893 to 0.882 while available time decreases from 1250 to 1235 hours (shown 

in Table 6.7). Although M7 utilizes the same amount of time (836 hours) to complete its current 

assignment, as well as at the 10% decrease in MTBF, utilization increases from 0.670, to 0.678 

due to the decrease in available time for the machine. This trend is generally followed for all the 

machines at all decrements of MTBF until the model attempts to shift the solutions and change 

the processing routes for part types to accommodate processing times, as discussed above. Due to 

the shift in solutions, there are changes in the machine utilization and utilized time. For example, 

M4 is practically 100% loaded at the current level. Thus, with a 10% decrease in MTBF we
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Table 6.7: Effect of decreased MTBF on machine times (Weibull model)

Parameter Performance
indicators

Machines

M l j M2 j M3 M4 | M5 M6 M7

Total machine capacities ( hours)
1500 1400 1200 1100 1300 | 1000 1400

MTBF
availability 0.895 0.899 0.899 0.903 0.892 0.866 0.893

available time ( hrs) 1342.11 1258.59 1078.65 993.79 1160.22 866.03 1250.00
“/.utilization 0.946 0.934 0 0.999 0 0.939 0.670

utilized time (hrs) 1269.1 1175.1 0 993.7 0 813.3 836.5
non-utilized time (hrs) 73.01 83.49 1078.65 0.09 1160.22 52.73 412.50

0.9MTBF
availability 0.884 0.889 0.889 0.894 0.882 0.853 0.882

available time ( hrs) 1326.59 1244.62 1066.67 983.24 1146.52 853.33 1235.29
%utilization 0.964 0.930 0.000 0.928 0.000 0.996 0.678

utilized time ( hrs) 1279.2 1158 0 912.00 0 849.79 836.5
non-utilized time ( hrs) 46.39 86.62 1066.67 71.24 1146.52 3.53 396.79

O.SMTBF
availability 0.872 0.877 0.877 0.882 0.869 0.838 0.870

available time ( hrs) 1306.69 1226.59 1052.05 970.37 1129.84 836.96 1216.39
%utilization 0.993 0.957 0.000 0.967 0.000 0.933 0.688

utilized time ( hrs) 1298 1175.1 0 938.3 0 781.8 836.4999
non-utilized time 9.69 52.49 1052.05 32.07 1129.84 56.16 379.89

0.7MTBF
availability 0.856 0.862 0.862 0.868 0.853 0.819 0.854

available time ( hrs) 1284.17 1206.36 1033.85 954.30 1109.10 819.00 1195.12
%utilization 0.995 0.993 0.000 0.983 0.000 0.982 0.804

utilized time ( hrs) 1278.00 1198.20 0.00 938.30 0.00 804.60 961.25
non-utilized time ( hrs) 6.17 8.16 1033.85 16.00 1109.10 14.40 233.87

0.6MTBF
availability 0.836 0.842 0.842 0.849 0.833 0.795 0.833

available time ( hrs) 1254.10 1179.18 1010.53 933.69 1082.61 795.02 1166.67
%utilization 0.879 0.997 0.000 0.861 0.000 0.953 0.985

utilized time ( hrs) 1102 1175.1 0 804.3 0 756.8 1149.5
non-utilized time( hrs) 152.10 4.08 1010.53 129.39 1082.61 36.22 16.17

0.5 MTBF
availability 0.810 0.817 0.816 0.824 0.806 0.764 0.806

available time ( hrs) 1214.29 1143.12 979.59 906.29 1046.57 763.71 1129.03
%utilization 0.936 0.979 0.000 0.995 0.000 0.901 0.915

utilized time ( hrs) 1136.00 1119.60 0.00 901.90 0.00 686.80 1033.15
non-utilized time ( hrs) 78.29 23.52 979.59 4.39 1046.57 75.91 95.88
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Table 6.8 : Effect of decreased MTBF on model solutions (Weibull model)

P a ra m e te r O bjec tiv e  I O bjective I  com ponents O bjective II
VCM MHC MNC

1.0 MTBF 2822 1632 200 990 715.42
0.9 MTBF 2894 1708 200 986 823.79
O.SMTBF 2848 1671 200 977 965.78
0.1 MTBF 2803 1640 250 913 1155.08
0.6MTBF 2713 1630 150 932 1429.9
0.5 MTBF 2839 1667 250 922 1830.6

Table 6.9: Effect of decreased MTBF on part processing routes (Weibull model)

P a r t
type

1.0M TBF 0.9MTBF 0.8MTBF 0.1MTBF 0.6MTBF 0.5 MTBF

plan process
ro u te

p lan process
rou te

p lan process
ro u te

p lan process
rou te

p lan process
rou te

p lan process
rou te

1 2 M1-M6 2 M1-M4 1 M4-M1-
M6 1 M4-M1-

M6 2 M1-M6 2 M1-M4

2 1 M2-M7-
M7 1 M2-M7-

M2

3 2 M4-M6-
M4

**-> M4-M6-
M2

4 2 M1-M6 2 M l-M2 2 M1-N16 TL M1-M6

5 2 M2-M6-
M4

6 1 M7-M1-
M2 IBllllIM • \  'j 1 M7-M1-

M7 1 M7-M1-
M2 1 M7-M1-

M7
7 2 M2-M4 2 M6-M1 2 M2-Ml 2 M6-M1 2 M2-M1 2 M2-M1

8 1 M2-M2-
M6 1 M2-M2-

M4 1 M2-M2-
M6 1 M2-M2-

M4 1 M2-M2-
M4 1 M2-M7-

M4

9 2 M1-M4-
M1 2 M1-M4-

M6 2 M1-M4-
M1 2 M1-M4-

M1 2 M1-M4-
M1 1 M7-M1-

M6

10 1 M2-M6-
M1

11 1 M1-M7 1 M7-M7 M7-M9

12 2 M7-M6 1 I H H I •

Cell 1 M l, M2, M4, M6
Cell 2 M7 ■

Note:  n
1. K S M I  Indicates no change in part processing routes/cell configuration relative 

to the current state 1.0MTBF

2. ** 2 M4-M6-M2 indicates a change in processing route for part type 3 from 
M4—M6-M4 to M4-M6-M2, but no change in process plan
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Figure 6.3: Effect of decreased MTBF on model solutions (Weibull model)

observe a shift in the model solution (recorded in Table 6.9) when the processing routes of the 

following part types are changed:

Part type Change o f processing routes Part type Change of processing routes 

1 from M1-M6 to M1-M4 7 fromM2-M4 to M6-M1

3 from M4-M6-M4 to M4-M6-M2 8 from M2-M2-M6 to M2-M2-M4

9 from M l -M4-M1 to M1-M4-M6

While these processing route changes could accommodate the part processing times within the 

available times of the machines while achieving the desired objective function II value (823.79), 

the objective function I value increased by $(2,894-2,822) = $72 (illustrated in Table 6.8 and 

Figure 7.3). Again, at 0.9MTBF machine M6 is almost 100% loaded, which prompts the next shift 

in the model solution at a 20% decrease in MTBF, where the processing route of part type 1 

changes from M1-M4 to M4-M1-M6 while that of part type 7 changes from M6-M1 to M2-M1. 

The processing routes of part types 8 and 9 revert back to the current state routes (M2-M2-M4 to 

M2-M2-M6 and M1-M4-M6 to M1-M4-M1, respectively) as shown in Table 6.8. With a 20% 

decrease in MTBF, the model solution improves the objective function I value by $(2894-2848) = 

$46 and achieves the desired reliability (objective function II value target 965.78) as recorded in
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Table 6.8 and Figure 7.3. At each decrement of MTBF, similar changes in part processing routes 

and objective function values may be observed from Tables 6.8 and 6.9, and Figure 6.3.

3) As expected, Table 6.8 and Figure 6.3 reveal that the objective function II value steadily 

increases (implying deterioration of system reliability) with each decrement in MTBF. With each 

decrease in MTBF, achieving the desired reliability becomes more and more difficult. 

Consequently, the model solution attempts to make many changes in the part processing routes to 

achieve the desired reliability target and accommodate part processing times within the available 

times of the machines—details of which are made evident in Table 6.9.

From the above discussion it may be concluded that—in terms of system reliability and 

part processing routes—the Weibull distribution-based model solution is considerably sensitive to 

decreases in MTBF. As MTBF decreases the system reliability decreases, the objective function II 

value increases, and the model resorts to changes in part processing route in order to 

accommodate the operation assignments and maintain reasonable system reliability. In terms of 

system cost (objective function I) the model solution is less sensitive to a decrease in MTBF. For 

example, within the range o f MTBF values under consideration, the objective function II value 

increases by (1830.6-715.42) = 1115.18, whereas, the highest change in objective function I value 

is $(2894-2713) = $181(which is 6.4% of the current solution cost). This finding is similar to the 

sensitivity exhibited by exponential distribution-based model solutions when subjected to 

fluctuations in machine failure rate. The difference lies in the fact that the sensitivity of the 

Weibull distribution-based model solution to decreases in MTBF—in terms of system reliability 

and part processing routes— is more prominent than that of the exponential distribution-based 

model’s solution to increases in failure rate, which is exhibited by a larger number of changes in 

the processing route assignments.

6.4.2 Effect of Changes in M TTR

Table 6.10, 6.11 and 6.12a and 6.12b summarize the effects of the increase and decrease in 

MTTR on the model solutions in terms of machine parameters, objective function values and part 

processing routes. Figure 6.4 displays the effect o f changes in MTTR on the objective function 

values. Similar to the effect of key factors discussed previously, Tables 6.10, 6.11, 6.12a and 

6.12b are interrelated in terms of the information presented. Therefore, simultaneous references 

will be made to them during the following discussion.

The effect of an increase and a decrease in MTTR on machine availability, available time and 

machine utilization is presented in Table 6.10. As expected, with the increase in MTTR we 

observe a decrease in availability and available time, as well as an increase in machine
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Table 6.10: Effect of increased and decreased MTTR on machine times (Weibull model)

Param eter Perform ance
indicators

Machines

M l 1 M2 | M3 M4 M5 1 M 6 1 M7

Total machine capacities (Hours)

1500 1400 1200 1100 1300 1000 |  1400

0.5MTTR
availability 0.944 0.947 0.947 0.949 0.943 0.928 0.943

available time (hrs) 1416.66 1325.53 1136.09 1044.20 1226.14 928.21 1320.75

%utilization 0.985 0.907 0.000 0.770 0.000 0.991 0.545

utilized time (hrs) 1395.99 1202 0 804.3 0 919.8 720

non-utilized time (hrs) 0.89 123.53 1136.09 239.90 1226.14 8.41 600.75

0.6MTTR
availability 0.934 0.937 0.937 0.940 0.933 0.915 0.933

available time (hrs) 1401.10 1311.58 1124.12 1033.72 1212.36 915.07 1305.97

%utilization 0.994 0.916 0.00 0.996 0.00 0.811 0.551

utilized time (hrs) 1392.00 1202.00 0.00 1029.30 0.00 741.80 720.00

non-utilized time (hrs) 9.10 109.58 1124.12 4.42 1212.36 173.27 585.97

OJMTTR
availability 0.924 0.927 0.927 0.930 0.922 0.902 0.923

available time (hrs) 1385.87 1296.92 1112.40 1023.44 1198.89 902.29 1291.51

%utilization 0.993 0.944 0.000 0.786 0.000 0.840 0.653

utilized time (hrs) 1376 1225.1 0 804.3 0 756.8 843.75

non-utilized time (hrs) 9.87 72.82 1112.40 219.14 1198.89 144.49 446.76

O.SMTTR

availability 0.914 0.918 0.917 0.921 0.912 0.890 0.912

available time (hrs) 1370.97 1284.54 1100.92 1013.36 1185.71 889.87 1276.37

%utilization 0.999 0.816 0.065 0.981 0.000 0.984 0.661

utilized time (hrs) 1370.10 1048.10 72.00 993.70 0.00 875.80 843.75

non-utilized time (hrs) 0.87 236.44 1028.92 19.66 1185.71 14.07 433.62

0.9MTTR

availability 0.904 0.908 0.908 0.912 0.902 0.878 0.903

available time (hrs) 1356.38 1271.43 1089.67 1003.48 1172.83 876.79 1263.54

%utilization 0.990 0.812 0.095 0.802 0.000 0.965 0.668

utilized time (hrs) 1342.5 1032 104 804.3 0 846.3 843.7501

non-utilized time 13.88 239.43 985.67 199.18 1172.83 30.49 419.79

l.OMTTR
availability 0.895 0.899 0.899 0.903 0.892 0.866 0.893

available time (hrs) 1342.11 1258.59 1078.65 993.79 1160.22 866.03 1250.00

“/■utilization 0.946 0.934 0.000 1.000 0 0.939 0.670

utilized time (hrs) 1269.10 1175.10 0.00 993.70 0.00 813.30 836.50

non-utilized time (hrs) 73.01 83.49 1078.65 0.09 1160.22 52.73 412.50
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Table 6.10 cont’d
Machines

Parameter Performance indicators M l M2 M3 | M4 J M5 I M6 M7
Total machine cartacities

1500 1400 1200 1100 I 1300 1000 1400
availability 0.895 0.899 0.899 0.903 0.892 0.866 0.893

X.QMTTR available time (hrs) 1342.11 1258.59 1078.65 993.79 1160.22 866.03 1250.00
%utilization 0.946 0.934 0.000 1.000 0 0.939 0.670

utilized time (hrs) 1269.10 1175.10 0.00 993.70 0.00 813.30 836.50
non-utilized time (hrs) 73.01 83.49 1078.65 0.09 1160.22 52.73 412.50

availability 0.885 0.890 0.890 0.895 0.883 0.855 0.883

\.\MTTR available time (hrs) 1328.13 1246.00 1066.85 984.29 1146.87 854.58 1236.75
%utilization 0.963 0.929 0.000 0.927 0.000 0.994 0.677

utilized time (hrs) 1279.20 1158.00 0.00 912.00 0.00 849.80 836.50
non-utilized time (hrs) 48.92 88.00 1066.85 72.29 1146.87 4.78 399.25

availability 0.876 0.881 0.881 0.886 0.874 0.843 0.874

\2MTTR available time (hrs) 1314.43 1233.66 105627 974.97 1135.79 843.50 1223.78
%utilization 0.987 0.953 0.000 0.962 0.000 0.927 0.684

utilized time (hrs) 1298.00 1175.10 0.00 938.30 0.00 781.86 836.50
non-utilized time (hrs) 16.43 58.56 1056.27 36.67 1135.79 61.63 386.28

availability 0.867 0.873 0.872 0.878 0.865 0.833 0.865

1.3JW7TR available time (hrs) 1301.02 1221.57 1046.89 965.82 1123.96 832.57 1211.07
%utilization 0.998 0.962 0.000 0.972 0.000 0.939 0.692

utilized time (hrs) 1298.00 1175.10 0.00 938.30 0.00 781.80 836.50
non-utilized time (hrs) 3.02 46.47 1046.89 26.52 1123.96 50.77 373.57

availability 0.859 0.864 0.864 0.870 0.856 0.822 0.856

1AMTTR available time (hrs) 1286.88 1209.71 1036.72 956.84 1112.37 821.98 1198.63
%utilization 0.992 0.926 0.000 0.981 0.000 0.951 0.746

utilized time (hrs) 1278.00 1119.60 0.00 938.30 0.00 781.80 894.75
non-utilized time(hrs) 9.88 90.11 1036.72 18.54 1112.37 40.18 303.88

availability 0.850 0.856 0.856 0.862 0.847 0.812 0.847

1.5 MTTR available time (hrs) 1275.00 1198.08 1026.74 948.03 1101.02 811.66 1186.44
%utilization 0.986 0.875 0.071 0.903 0.000 0.993 0.828

utilized time (hrs) 1256.00 1048.10 73.16 856.40 0.00 805.80 982.15
non-utilized time (hrs) 18.00 149.98 953.58 91.63 1101.02 5.86 204.29
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Table 6.11: Effect of decreased and increased MTTR on model solutions (Weibull model)

Parameter Objective I
Objective I components

Objective II
VCM MHC MNC

ft.SMTTR 2978 1658 250 1069 694.6
0.6MTTR 2957 1651 250 1056 696.71
ftTMTTR 2973 1605 300 1067 702.61
0.SMTTR 2913 1638 300 975 706.51
ft.9 MTTR 2899 1632 250 1017 714.23
\.ft MTTR 2822 1632 200 990 715.42
l.IMTTR 2896 1708 200 988 715.42
\2MTTR 2854 1671 200 983 718.52

3 MTTR 2841 1671 200 970 718.52
I AMTTR 2807 1640 250 917 718.81
1.5 MTTR 2899 1719 250 930 722.9

740

* = = *  720

2400
- 700

2000  -

VIo
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1200  -

■J: 640
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• 620400
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Figure 6.4: Effect of increased and decreased M TTR  on model solutions (Weibull model)
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Table 6.12a: Effect of increased MTTR on
Part
type

10

11

12

Cell 1

Note:

Cell 2

I .M T T R

plan process
routes

M1-M6

iart processing routes (Weibull model)
l  AMTTR

plan process
routes

X.1MTTR

plan process
routes

\ AMTTR

plan process
routes

\  AMTTR

plan

M2-M7-M7

process
routes

M4-M1-M6

1.5MTTR

plan

M4-M6-M4

M1-M6

M2-M6-M4

M7-M1-M2

M2-M4

M2-M2-M6

M1-M4-M1

M2-M6-M1

M1-M7

M7-M6

**2 M6-M1

M2-M2-M4

M2-M1

M2-M2-M4

M2-M1

M2-M2-M4

M l-M2

M7-M1-M7

M6-M1

M2-M7-M4

process
routes

M1-M4

M2-M7-M2

M7-M1-M7

M2-M1

M3-M1-M6

M7-MI-M6 

M2-M6-M1

M l, M2, M4,M6

M7

M1,M4,M6,M7 M1,M2,M6,M7

M2
M3,M4

1.1 i Indicates no change in part processing routes/cell configuration relative to the current state 1 .OMTTR

2. ** 2 M 6-M 1 indicates a change in processing route for part type 7 from M 2-M 4  to M 6-M 1, but no change in process plan
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Table 6.12b: Effect of decreased MTTR on part processing routes (Weibull model)

\J\MTTR 9.9MTTR 9.SMTTR 9.1 MTTR V.6MTTR 9.5MTTR

process
ro u te

process
rou te

process
rou te

process
rou te

process
rou te

process
rou te

M1-M6M1-M6 M1-M1-M4

M2-M7-M7 M2-M7-M2 M2-M7-M2 
:—r—

M2-M7-M2 M2-M7-M2 M2-M7-M2

M4-M6-M4

M1-M6

M2-M6-M4

M7-M1-M2 M7-M1-M2M7-M1-M2 M7-M1-M7 M7-M1-M7 M7-M1-M7
M6-M1M2-M4 M2-M4 M6-M1M6-M1

M2-M2-M4M2-M2-M6 M2-M2-M4 M3-M1-M6 M2-M2-M4 M2-M2-M4

M1-M4-M1

M2-M6-M1M2-M6-M1 M6-M3-M1 M2-M6-M1

M1-M7
M7-M6M7-M6 M7-M2 M7-M6

M1,M4,M6,M7M l, M2, M4, M6 M1,M3,M4,M6

M2,M3Ce 2 M2, M7

Note:
1. Indicates no change in part processing routes/cell configuration relative to the current state 1.0MTTR

2. ** 2 M7-M1-M7 indicates a change in processing route for part type 6 from M7 -M1-M2 to M7-M1-M7, but no change in 
process plan

148



utilization—resulting in an overall decrease in the cost of machine non-utilized time (MNC). 

These results (recorded in Table 6.11.) show that a 50% increase in MTTR (i.e., at 1.5MTTR 

level) decreases MNC by $(990-930) = $60. Considering machine M l as an example, Table 6.10 

reveals that a 50% increase in MTTR decreases availability from 0.895 to 0.850, and available 

time is decreased by (1342-1275) = 65 hours. Similar losses in availability can be observed for 

other machines also. These decreases in available times are added to the machine down time, 

impacting machine maintenance and repair costs. As previously discussed, a decrease in MNC 

provides insights into areas of abnormal reliability performances.

Tables 6.10, 6.12a and 6.12b also depict the effect of each change in MTTR on the model 

solutions. For example, Table 6.10 shows that at the current level (1.0MTTR), machine M4 is 

practically 100% loaded. With a 10% increase in MTTR we observe a shift in the model solutions 

(recorded in Table 6.12a). The processing route of part type 7 is changed from M2-M4 to M6-M1, 

that of part type 8 is changed from M2-M2-M6 to M2-M2-M4 and that of part type 9 is changed 

from M1-M4-M1 to M1-M4-M6. This shift allows the model solutions to accommodate the 

processing times of part types within the available capacity of machines. The objective function I 

value increased by ($2896-2822) = $74 and the objective function II value remained the same as 

the current level solution. Tables 6.10 and 6.12a reveal that similar shifts in model solutions are 

observed for almost all increases in MTTR. The implications for these shifts are also displayed in 

Table 6.11 and Figure 6.4.

2) Conversely, Table 6.10 illustrates that as MTTR decreases, machine availability and 

available time increases and—consequently—machine utilization decreases, leading to an overall 

increase in the cost of non-utilized machine time (MNC) as shown in Table 6.11. A 50% decrease 

in MTTR, for example, increases MNC by ($1069-990) = $79. Considering the example of M l, 

when MTTR decreases by 50%, available time increases by (1416-1342) = 74 hours. The increase 

in machine availability is an advantage as long as the available time is utilized. Otherwise, it will 

only add to the non-utilized time and the cost.

To further study the effect of MTTR on model solutions, investigation of Table 6.12b shows 

as MTTR decreases, available time increases and, thus the model solution attempts to utilize the 

increase in available time and improve system reliability. For example, at a 10% decrease in 

MTTR we observe a shift in model solutions. The processing route of six part types (types 2, 6, 7, 

8, 10 and 12) and their cell configurations changed. Table 6.11 explains how this shift allows the 

model solutions to improve system reliability. One example is the objective function II value 

decreasing from the current 715.42 to 714.23. Tables 6.10, 6.11, 6.12b and Figure 6.4 also show

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



that the model solutions shift with almost every decrease in MTTR in their attempts to improve 

the system reliability

3) From the above analysis, we can observe that the system reliability deteriorates (with the 

objective function II value increasing) as MTTR increases. In contrast, system reliability improves 

(with the objective II value decreasing) as MTTR decreases. The effect of decreases and increases 

in MTTR on the objective II value are recorded in Table 6.1 land displayed in Figure 6.4.

From the above analysis we may conclude that the model solution is somewhat sensitive to 

the changes in MTTR, which is displayed by many shifts in the processing route assignments and 

changes in cell configuration. However, if we examine the model solutions in terms of changes in 

the objective function I and objective function II values, the impact of a change in MTTR is very 

low. A -50% to +50% change in the MTTR prompts a change o f -2.6% to +0.5% in the objective 

function I value (system cost) while the objective function II value changed from +2.9% to 

-1.04%.
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CHAPTER 7 

CONSIDERATION OF 

PREVENTIVE MAINTENANCE IN CMS

7.1 Introduction

Machines are the major components of a cellular manufacturing system (CMS), and they 

represent a significant share of the capital investment in such systems. Machines are subject to 

deterioration relative to both usage and age, which leads to reduced product quality and increased 

production costs (Valdez-Flores and Feldman, 1989). Manufacturing industries carry out 

preventive maintenance (PM) on machinery and equipment in an effort to prevent or slow down 

deterioration. Preventive maintenance is a scheduled downtime—usually periodical—during 

which a well-defined set of tasks (e.g., inspection, repair, replacement, cleaning, lubrication, 

adjustment and alignment) is performed (Ebeling, 1997). It is important to note that PM is 

justified only when it is cost effective, reduces unscheduled breakdowns, and extends the useful 

life of the equipment. Further, for the PM to be effective, the failure rate of the equipment must 

increase with time (Jardine, 1973; Ebeling, 1997), which is usually the case in the manufacturing 

industry (e.g., CNC machines). Figure 7.1 shows how preventive maintenance can result in 

improved reliability over time.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3
PM
Cumulative PM 
No PM

0.2

0.1

0

Figure 7.1: A periodic maintenance reliability curve for an increasing failure rate (Ebeling, 

1997)
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Chapter 2 analyzed the way a part type in a CMS is typically processed on several machines 

in a serial fashion, causing the system reliability to follow a series reliability structure. Therefore, 

a single-machine PM plan is not feasible in these cases, due to the interruptions suffered in the 

upstream and downstream operations when a machine undergoes the maintenance action. Instead, 

a multi-machine PM plan is required to address this kind of interdependent structure. A number 

of studies have reviewed the various PM policies in manufacturing systems (Wang, 2002; Dekker, 

et al., 1997; Cho and Parlar, 1991). Among the policies that may be applicable to CMSs are the 

fixed group planned maintenance policy outlined by Dekker, et al. (1997), and the group 

maintenance policy mentioned by Wang (2002). Both are based on the concept of replacing a 

selected group of components after a fixed interval of time, while addressing the unplanned 

failures of the components during the interval through repairs or minimal repairs. Another group 

maintenance policy studied by Wilderman, et al. (1997) concerned the maintenance activities 

carried out on a group of equipment, and involved a system-dependent set up cost that was the 

same for all the activities. The grouping of machines saved costs, since the execution of a group 

of activities required only one set up.

Chapter 4 showed how machine reliability can be incorporated in the CMS design model with 

the aim of optimizing system reliability and system cost, simultaneously. To address the 

increasing failure rate of machines we have developed a CMS design model based on the Weibull 

distribution. The model attempts to select machines along the processing route for each part type 

in order to get the lowest overall probability of failure, or the highest system reliability. It is 

evident that despite these efforts, there is still the probability of failure for the machines. In 

addition to this, the CMS design model develops cell designs based on the existing reliability 

status of the machines. This existing status for the machines is subject to deterioration due to 

usage and age.

As discussed above, the objective of a PM plan is to prevent the deterioration and improve 

the reliability o f the equipment—enhancing equipment’s performance. Consequently, a PM 

policy becomes an important requirement for improving the overall performance of CMSs. In 

addition, because PM is a planning process, it may be possible to integrate it into the development 

of the CMS design along with the system costs and other relevant factors. In a complex system 

such as the CMS, the impact of unplanned shut-downs is significant. If the machine reliability 

and maintainability can be effectively managed during the planning phase, losses due to 

unplanned failures can be kept at a minimum.

The objective of this chapter is to develop a reliability-based PM planning in a cellular 

manufacturing environment. Analyses of the cost-based, reliability-based and combined
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approaches to PM planning are presented in Section 7.2. In Section 7.3, an algorithm that 

modifies the reliability-based model to develop a group PM plan based on an effective 

maintenance interval is presented. In Section 7.4, the proposed procedure for the integration of 

PM policies in the CMS design model is outlined. Numerical examples are provided throughout 

the chapter to illustrate the procedures discussed.

7.2. Preventive Maintenance Models

7.2.1 Cost-based Approach

The main objective of the cost-based approach to PM planning is to determine the optimum 

maintenance interval that will balance the system failure repair costs and the PM costs so that the 

system performance in terms of machine reliability, cost, and machine utilization is improved by 

reducing system down time due to unplanned failures.

The basic cost-based approach to maintenance planning was developed by Jardine (1973) and 

extended and refined over time in multiple studies (Talukder and Knapp, 2002; Sherwin, 1997). It 

estimates the optimal interval between preventive replacements of equipment/components subject 

to failures, and may be applied to preventive maintenance and overhaul— assuming that the 

overhaul returns the equipment to the as-good-as-new condition and that the failure repair 

between preventive maintenance actions makes it possible to run the machine up to the next 

interval (i.e., it results in a bad-as-old condition).

Using the approach suggested by Jardine (1973), and defining tpc as the PM interval, the 

total maintenance cost per unit time for a group of m machines in a cell may be represented by:
m m

Co + X  CPMRj + X  c f jH j  (tp c )
T C (tp c ) f t   (?1)

tpc tpc

The first expression in the numerator,
(  ^

Co + Y j CPMRj
V 7'=' y

computes the PM cost during the interval tpc, where Co is the fixed cost incurred every time PM 

is carried out, and CPMRj is the estimated average maintenance cost to return machine j  to the as- 

good-as-new condition.
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The second expression,
m

Y ^ c f jH  j ( tp c )
j= i

is the failure repair cost during the interval tpc, where c f  is the average cost of a failure repair on 

machine j ,  and H/tpc) is the estimated cumulative number of failures of machine j  during the 

interval tpc. Assuming the machine failure times are Weibull distributed, H/tpc) is computed as 

(Talukder and Knapp, 2002; Sherwin, 1997):

H j< tpc) = ( ‘J ^ / ‘
Vj

where 6j and /  are, respectively, the scale parameter and the shape parameter of the Weibull 

distribution for machine j .

Replacing H/tpc) in equation (7.1), the total maintenance cost per unit time is:

m m *
rrY, . C0 + £CMffi,+I c / / ! - / '  

z  = T C (tp c l =  a H  0j   p 2 )
tpc tpc

The optimal preventive maintenance interval can be found by taking the first derivative of 

equation (7.2) and equating it to zero:

m m *

- (  Co + ^ C P M R j  ) + t i c fj ( f i J - l ) ( ^ - / J = 0  (7.3)
J=i J=i

Using a numerical search procedure (e.g., the golden section search), equation (7.3) can be solved 

to estimate tpc.

Let n be the total number of preventive maintenance actions during the planning period T, 

then n= T/tpc, and the corresponding total maintenance cost, TC (T), is:

TC (T) = n Co + ^ C P M R j   (7.4)
V M  J

The following numerical example illustrates the above approach.

7.2.1.1 Numerical Example 1

We consider a cell consisting of seven machines when demonstrating the cost-based 

maintenance model. The cost and maintenance related input data for the cell is given in Table 7.1. 

The preventive maintenance costs CPMRj and the failure repair costs cfj are randomly generated 

from the uniform distributions [30, 70] and [200, 500], respectively. The parameters ) and
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MTBFj are also randomly generated from the uniform distributions [1.1, 1.80] and [160, 360], 

respectively. The parameter Qj is computed from the relationship: $j= MTBFj/r(l+l//3j).

The optimal interval tpc has been determined by solving equation (7.3) using the golden 

section search in MATLAB 6.5. The results are shown in Table 7.2, where the preventive 

maintenance costs, failure repair costs, and total maintenance costs are also evaluated and 

displayed.

The optimal tpc value is computed to be 70 hours; thus, the set of machines in the cell 

will undergo a total of 1500/ 70 ~ 22 PM actions during the planning period. The total PM cost 

for the 22 planned maintenance actions is $8,844 while the failure repair cost is $23,303, and the 

total maintenance cost equals $32,147.

Table 7.1: Input data for numerical example 1

D a ta  T y p e
MACHINES

M l M2 M3 M4 M5 M6 M7
M T B F  (Hrs) 187 89 160 131 83 181 130

e, 1.21 1.26 1.78 1.16 1.56 1.59 1.33
0, 199.61 97.83 179.85 138.09 92.36 201.73 110.00

Co $50
CPMRj $31 $53 $62 $44 $50 $51 $61

eft $270 $455 $220 $230 $490 $185 $320
Planning period, T 1500 hours

Table 7.2: Solution to numerical Example 1 (cost based model solution)

tpc (hours,) 70.00

Total preventive maintenance cost
$8,844

Total failure repair cost
$23,303

Total maintenance cost $32,147

7.2.2 Machine Reliability-based Approach

The reliability-based group PM planning for CMSs aims to compute the largest possible 

interval to minimize the total maintenance cost by reducing the number of maintenance actions 

while keeping the individual machine failure probabilities below a predefined Upper Bound. For 

deciding the limit on the failure probability of machines we have followed the approaches of 

Johnson (1959) and Kardon and Fredendall (2002).
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As usual, the total maintenance costs over the planning period consist o f the cost of PM 

actions and the cost of unplanned failure repairs that occur between the PM actions on each 

machine.

7.2.2.1 Development of the Preventive Maintenance Interval Model

We define tpr to be the PM interval when using a reliability-based approach. Assuming a 

Weibull distribution, the probability of failure for machine j  at time tpr is:

Fj (tpr) = 1 -  exp (-( tp r  /  6 j ) Pj) ,  (tpr, 6j, Pj)> 0  (7.5)

where 6j and /?, are as defined before.

Following the approach of Kardon and Fredendall (2002), the PM interval, tpr, may be 

derived from equation (7.5) when an organization sets an Upper Bound on the failure probability 

of machine j ,  i.e., F/t):

1
tpr < Q. {In

1 - F j ( t p r )

and

Fj (tpr) £  Upper Bound, j  =1,2,..., m

-(7.6)

-(7.7)

Now, the following optimization model (hereafter designated as Optimlnterval) is proposed to 

estimate the optimal PM interval:

Optimlnterval. Maximize tpr 

s.t.

tpr < 0j {In
1

1 - F j ( t p r )
} j= l ,2, . . . ,  m

Fj (tpr) ^Upper Bound, j= l,2 ,..., m 

The model is illustrated by the following numerical example.

-(7.8)

-(7.9)

1.2.2.2 Numerical Example 2

We illustrate the above approach using Numerical Example 1 with the same data given in 

Table 7.1, and the Upper Bound parameter set at 0.30. The model is solved using LINGO 9, and 

the results are shown in Table 7.3. The optimal PM interval tpr is computed as 42.28 hours, 

which implies that the set of machines in the cell will undergo a total of 1500/42.25 ~ 36 PM 

actions during the planning period. Using equation (7.4), the corresponding total PM cost, failure
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repair cost and the total maintenance cost are computed as $19,026, $14,472 and $33,498, 

respectively as presented in Table 7.3.

A closer examination of Table 7.3 indicates that at tpr = 42.28 hours, only the failure 

probability of Machine 2 (M2) is at the Upper Bound of 0.30, whereas for other machines the 

failure probability is lower than the Upper Bound. This implies that, by implementing PM actions 

after every 42.25 hours, the failure probabilities of the machines are maintained at or below the 

reliability threshold set by the Upper Bound parameter.

Table 7.3: Solution to numerical example 2 (reliability based model solution)

Data Type M A C H I N E S

Ml  | M2 | M3 | M4 | MS | M6 | M7
tpr (hours) 42.28

Failure probability for machine j  at 

tpr=42.28 14.18% 30% 7.32% 22.38% 27.59% 8% 24.44

Total PM cost $19,026

Total failure repair cost $14,472

Total cost (TCR) $33,498

7.2.3 A Combined Approach

A more desirable approach is to combine the cost-based and the reliability-based models to 

determine the optimum PM interval. The cost-based approach focuses on the total maintenance 

costs at the expense of machine failure probabilities, thus it may generate maintenance plans that 

leave some machines with unacceptably high failure probabilities. For instance, in Example 1, the 

failure probabilities of each machine, computed at the interval tpc = 70 hours, are given in Table 

7.4. As can be observed, machine M2 has a 49% failure probability during the interval of 70 

hours.

Table 7.4: Failure probability of machines in Example 1 computed at tpc =70 hours

Data Type M A C H I N E S

Ml | M2 | M3 | M4 | M5 | M6 | M7
tpc (hours) 70

Failure probability for machine J at tpc 
=70 hours

0.25 0.49 0.17 0.37 0.48 0.17 0.42

The cost based model computes the interval tpc based on the ratio of the PM cost, CPMRj, to the 

failure repair cost, cfj (refer to section 7.2.1). In the example presented above, this ratio is 

approximately 1/7. To explore further, we consider a second example in which CPM Rj and cfj are
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generated randomly from the uniform distributions U [20-35] and U[200-600], respectively, as 

given below:

CPMR, $35 $20 $33 $30 $32 $25 $23
Cfi $589 $550 $438 $480 $599 $399 $426

Now, the ratio is 1/15, and we obtain a PM interval of 40.71 hours. From these two examples, it is 

clear that in the cost-based approach the ratio of PM cost to failure repair costs has a significant 

effect on the length of the PM interval. When PM cost is «  failure repair cost (a higher ratio, e.g., 

in the second example, 1/15), a shorter interval is generated which implies too many maintenance 

actions, but when the PM cost is < failure repair cost (a lower ratio, e.g., in the Example 1, 1/7), a 

longer interval is generated, implying fewer maintenance actions, but more failure repair with the 

interval.

On the other hand, the reliability-based approach (refer to 7.2.2.1) maintains an Upper Bound 

on machine failure probabilities regardless of cost, thus it may generate very expensive 

maintenance plans.

The following multi-objective mathematical model is proposed for combining the cost and 

reliability-based maintenance planning approaches to determine a balanced maintenance plan.

7.2.3.1 The Combined Model

Maximize tpm  (7.10)

(  m \  m
Minimize TC = n Co + ^ C P M R . + „ J ^ qf j ( & p ) Pj  (7.11)

V ■/=>

s.t.

tpm < Gj {In
1

} UPl j  =  (7.12)
1 - F j  {tpm)

Fj (tpm) ^  Upper Bound, j  = 1,2, ...,m  (7.13)

T
n —------, an integer  (7.14)

tpm

where tpm is the PM interval, T is the planning period, and n is the number of PM actions carried 

out during T.
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1.23.2 Numerical Example 3

The combined approach is applied to the same numerical example used previously. The 

solution results are obtained using a pre-emptive optimization process (Rardin, 1998), and are 

displayed in Table 7.5. The process computes an optimum cost and interval combination 

depending on the user-specified priority placed on the first objective function (i.e., the PM 

interval or tpm), or on the second (i.e., the total cost or TC).

Table 7.5: Maintenance solution from the combined approach model

Upper Bound on machine failure 

probabilities

Priority on tpm Priority on TC

tpm

(hours)

TC

($)

tpm

(hours)

TC

($)

55% 79.95 31,340 70.17 31,236
50% 71.63 31,238 70.17 31,236
45% 63.7 31,295 63.7 31,295
40% 56.22 31,555 56.22 31,555
35% 49.11 32,088 49.11 32,088
30% 42.28 33,011 42.28 33,011

For example, at an Upper Bound value of 0.55, the model is solved in the following manner: 

if priority is placed on tpm, we first maximize the first objective function (tpm), subject to 

constraints (7.12) -  (7.14), and ignore the second objective function. The solution yields tpm = 

79.95, as shown in Column 2 of Table 7.5. In the next step, we minimize the second objective 

function (TC), subject to the same constraints (7.12 - 7.14), and the additional constraint tpm > 

79.97. The solution now is tpm = 79.95, and TC = $31,340—as shown in Column 3.

If priority is placed on TC, we first minimize the second objective function (TC), subject 

to constraints (7.12) -  (7.14), and ignore the first objective function. The solution yields TC = 

$31,236 (Column 5). Next, we minimize the first objective function (tpm), subject to the same 

constraints (7.12 - 7.14) and the additional constraint TC < 531,236. The solution now is tpm = 

70.17 (Column 4), and TC=  $31,236.

The solutions corresponding to the other values o f the Upper Bound parameter are obtained 

in a similar fashion, as listed in Table 7.5. It is evident that for Upper Bound values of 0.55 to

0.50, the model achieves a minimum total cost value of $ 31,236 when TC is optimized as a first 

priority and the corresponding tpm interval of 70.17 hours ensures that all the machine failure 

probabilities stay below the corresponding Upper Bound. However, when maximizing the tpm, 

interval is the first priority, we get a range of solutions with wider intervals and higher costs when
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compared to the previous cost-prioritized solution. For example, at Upper Bound = 0.55, we get 

tpm = 79.95 hours (compared to 70.17 hours) and TC = $31,340 (compared to $31,236). A wider 

interval implies fewer maintenance actions (e.g., 1500/79.95 -19 against 1500/70.17 « 22), but it 

also means a higher number of unplanned failures during the interval, as well as higher total costs.

In this example, when the Upper Bound value falls below 45%, both the cost-prioritized and 

the /p/M-prioritized solutions become identical. For example, at Upper Bound = 0.45, we have TC 

= $31,295, and tpm = 63.7 hours in both the solutions. The analysis indicates that as the Upper 

Bound—the failure probability tolerance for the set of machines—falls below a certain level, the 

emphasis shifts to machine reliability and the cost-prioritized approach can no longer generate a 

solution which reduces the total costs while satisfying the failure probability constraint at the 

same time.

7.3 The Group PM Planning Based on Effective Interval

In an effort to overcome the limitations of the cost-based and the reliability-based 

maintenance plans, we resorted to a multi-objective model that combines the two approaches with 

the expectation of determining a PM plan which will optimize the costs while at the same time 

ensure the desired machine reliability threshold. As noted above, the combined model fulfills this 

expectation up to a limit on the Upper Bound parameter, after which the model generates 

reliability-based solutions to satisfy the constraints on machine failure probabilities. Thus, 

although reliability-based maintenance planning is more costly, it turns out to be the only option 

for developing maintenance plans when the reliability expectations of the system are higher than 

threshold. Based on this observation, we modify the reliability-based model to develop a group 

PM plan centered on an ‘effective’ maintenance interval. An algorithm would outline the steps in 

the development of the methodology, and a numerical example would demonstrate its application.

To motivate the development of the algorithm, we note that the reliability approach 

determines tpr according to the Upper Bound parameter corresponding to a machine j  for which 

the 6j and values generate the optimum tpr. This is illustrated by examining Table 7.3, where it 

is observed that the failure rate of machine M2 at tpr = 42.25 hours is at the limit of 0.30, and that 

the failure rates of the other machines—evaluated at tpr = 42.25 hours— are all less than 0.30. 

Equivalently, we can evaluate ‘maximum’ PM intervals for the other machines— denoted as 

Tmaxj and evaluated at the failure probability Upper Bound of 0.30— which are all higher than 

42.25 hours. For instance, for machine M l the failure probability at tpr = 42.28 hours is 0.142; 

however, at the failure probability Upper Bound of 0.30, the PM interval is 87.14 hours. This 

implies that if maintenance planning is carried out at intervals of tpr = 42.28 hours, machines
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such as M l would undergo too many maintenance actions unnecessarily. By defining an 

‘effective’ maintenance interval for a machine, we can avoid the unnecessary PM actions and still 

maintain a threshold on the machine failure probabilities. This idea underlies the development of 

the algorithm, which addresses the above limitation.

7.3.1 Algorithm for Effective Maintenance Planning

Stepl- Input the values of Co, CPMRj, cfj, Upper Bound, 9j, fij

Step2- Compute the optimum tpr using Optimlnterval model, reproduced below:

Optimlnterval Model

Maximize tpr  (7-15)

Subject to:

1tpr < 9  {In j= l,2 ,..., m  (7.16)
1 - F j i t p r )

Fj (tpr) £  Upper Bound, j= l,2 ,...,m   (7.17)

Step3- Compute the maximum possible interval, Tmaxj, for each machine by setting Fj(tpr) = 
Upper Bound in equation (7.16):

1
T  m ax ; = 6j{  In

1 — (Upper B ound)
}uPi  (7.18)

Step 4- Compute the total cost TCr (T) for the planning period T using the above inputs in the 
following sequence.

T m a X j < t p r Y j ,  V/  (7.19)

efftPj = tpr Y j , V/   (7.20)

T>ef f tP j N j , Vj   (7.21)

^max = max {AT, j  = 1,2,..m}  (7.22)
m

CPcell -  N ^ C o  + Y j N £ PM Rj  (7.23)
7=1

„  efftp ■ a
CFcell = ^  Nj.cfj (—^-^-)  (7.24)

7=1 0 J

TCr(T) = CPcell +  CFcell  (7.25)
Yj, Nj integer

In this model, ^  computes the equivalent number of optimum intervals for the maximum interval 

value of machine j ,  efftpj represents the effective preventive maintenance interval applicable to 

machine j, and Nj is the number of preventive maintenance actions to be scheduled for machine j.
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CPcell = preventive maintenance cost, and CFcell = failure repair cost

Step 5: record CPcell, CFcell, TCr(T), Nj, Nmax

Step 6: develop preventive maintenance schedule for the group of machines according to Nj

7.3.2 Numerical Example 4

The algorithm is illustrated by Numerical Example 1, which is used to demonstrate the cost- 

based approach. The input data required in Step 1 of the algorithm is given in Table 7.1.

In Step 2, tpr is computed assuming a maximum acceptable failure probability (Upper 

Bound) of 0.30. The solution of the Optimlnterval model is presented in Table 7.6. The optimum 

interval tpr turns out to be 42.28 hours. Using this tpr, the model next computes the probability of 

failure for each machine, as shown in the second row of the Table. It is noted at this stage that the 

solution of the Optimlnterval model is the same as presented in Table 7.3. For ease of reference 

when considering the algorithm steps, the results are reproduced in Table 7.6. Table 7.6 reveals 

that the optimum tpr corresponds to machine M2 whose failure probability is at the Upper Bound 

level of 0.30. It is evident from the model solution that M2 has the minimum tpr for the 

combination MTBF2, 02, and (12 among the seven machines. For the other machines, the failure 

probabilities computed at tpr = 42.28 are less than 0.30. Equivalently, the corresponding tpr for 

these machines would be higher than 42.28 hours if their failure probabilities are set at the Upper 

Bound value. This is done by implementing Step 3 of the algorithm, which computes the 

maximum possible intervals (Tmaxj) for machines other than M2, as given in the third row of 

Table 7.6.

Detailed output from Step 4 of the algorithm is presented in Table 7.7. For practical 

considerations, we set tpr = 42. Using this tpr, equation (7.19) evaluates the equivalent number of 

common preventive maintenance intervals according to the maximum possible interval Tmaxj for 

machine j. For example, the maximum preventive maintenance interval of 100.78 hours— 

computed for M3—can be written as: 100.78 < 42.00*2, that is, Y3 =2.

Equation (7.20) computes the effective preventive maintenance interval for machine j  as 

a multiple of the optimum common preventive maintenance interval tpr. It may be noted that this 

interval is within the allowable limit of failure probability. For example, the effective interval for 

machine M3 is 84 hours, which is two times the common preventive maintenance interval (i.e., Y3 

=2). Thus, ^  determines the preventive maintenance schedule. In our example, there are 36 PM 

actions, so that when Yj = 1 , machine j  is scheduled for preventive maintenance in every period 

and the schedule is 1, 2 ,..., 36. When Yj = 2, machine j  is scheduled for preventive maintenance 

every other period and the schedule is 1,3, 5, ..,35, and so on.
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Equation (7.21) computes the number of times preventive maintenance action is carried 

out on each machine j  during the planning period T. For example, M3 undergoes preventive 

maintenance 18 times during the planning period of 1500 hours. Equation (7.22) computes Nmax 

—the maximum number of times preventive maintenance is carried out in the cell—a parameter 

which is used in the calculation of the total PM costs in equation (7.23).

Equation (7.25) computes the total maintenance cost or TCr(T) for the cell over the 

planning period T. The components of TCr(T) are the fixed costs incurred whenever a preventive 

maintenance action takes place, plus the total preventive maintenance costs (Equation 7.23), as 

well as the total failure repair costs (Equation 7.24). It is noted that Nmax in this case equals 36, as 

seen in Table 7.7.

Table 7.6: Solution of the Optimlnterval model

Data Type M A C H I N E S

MI M2 M3 M4 M5 M6 M7
tpr (hours) 42.28

Failure probability for machine j  at 

tpr=42.28
14.18% 30% 7.32% 22.38% 27.59% 8% 24.44

Tmaxj at 30% failure rate 87.14 42.28 100.78 56.77 47.69 107.48 50.67

Table 7.7: Solution of the TotalCost Model

Data Type M A C H I N E S

M l M2 M3 M4 M5 M6 M7

Effective interval for 
machiney, (e/ftp) 84 42 84 42 42 84 42

Number o f preventive 
maintenance actions (Nj) 18 36 18 36 36 18 36

Maintenance schedule for 
machine j 1.3 , ..,35 1,2,.., 36 1,3,.., 35 1,2,.., 36 1,2,.., 36 1,3, .,35 1,2,.., 36

CPcell (Total preventive 
maintenance cost) $11,880

CFcell (Total failure repair 
cost) $19,789

Total maintenance cost $31,669

7.4. Integrating PM Interval in the CMS Design Model

7.4.1 Machine Reliability Analysis in a Process Plan Route

To incorporate PM planning in machine reliability analysis along a process plan route for a 

CMS, we shall follow the approach developed in Chapter 2. Considering the numerical example
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of a 5 machine cell processing 4 part types, in section 2.5.2, system reliability equation (2.29) for 

the part processing route (1203), considering machine reliability to follow the Weibull 

distribution, is :

R s (1203) = exp[-(-^ -)A ] x exp[-(-^ -)A ] x exp [-(-^ -)A ]
ft f t f t

(7.26)

7.4.2 Preventive Maintenance Consideration in Machine Reliability Analysis

We consider the CMS discussed in Section 7.4.1 where there is a PM schedule defined by the 

organization based on the approach described in Section 7.3, and where tpr is the common 

maintenance interval. Thus, a machine j  will undergo PM, a total of Nj times during the planning 

period T:

R j ( T ) = [ R j i Y j t p r t f ' R j i T - N j Y j t p r )  - - ( 7 . 2 7 )

Here, we assume that the machine is restored to as-good-as new condition after a PM action is 

administered every Yjtpr time units (Ebeling, 1997). For Weibull distribution equation (7.27) 

becomes:

f l .(n = e x p [ -W ;.
'  Y jtpr

v J
] e x p [ -

f T - N j Y j t p r  A

V
f t

] (7.28)

Substituting equation (7.28) in system reliability equation of (7.26)

f t  (1203) = e x p f - f t ] e x p [ - f t Y^pr
\  J

] e x p [ - f t
04 ]*

exp[-
T - N J J p r

o 7

\Pi
]ex p [-

rnn f  R -  NT - N 3Y3tpr

which can be simplified as : 

1
ln-

(1203)

T  - N J j p r

ft

= N,
/ ' v t  ^Y^pr 

V f t  J

f t

—  (7.29)

]exp[-

r Y , t p r ^  

V f t  J

f t

( Y jp r ^  

V f t  7

+

+
T - N 3Y3tpr

f t

Pi
+

( T  - N 4Y4tpr
(7.30)

f t

It may be recalled that, for each machine, the planning period T is divided into a number of 

equivalent intervals, Nj (see equations (7.20) and (7.21)); thus, the term T-NjYjtpr does not exist, 

and equation (7.30) reduces to:
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In-
1

= jv/ £ ^ + Af,
R s (1203) \  0, ,

In general, for an (ip) combination, LIRip can be represented

+ AT
\ AY jp r

V * 4  ,

= LIRn  -7.31)

I  N ,
i^Jtp

r Y j p ^ Pj

v G J J

■ (7.32)

where Jip is the set machines along the process plan p  for processing part type i. 

Using the expression, d  - =
M TBFi

the equation (7.31) can be written as:
r o + i / / ; , )

L l K  =  S  N,
jeJip

Yjtpr(T(l + l /  f i j ) )

MTBFj

(7.33)

LIRip is the inverse of system reliability (in the natural logarithmic scale) corresponding to the 

machines along a part-processing route (ip) when machine failure follows a Weibull distribution 

and the PM on machine j  is conducted at intervals of Yjtpr.. Thus, minimizing LIRip will increase 

the system reliability along (ip). This is in fact one of the objectives of the CMS design model 

discussed in the next section.

7.4.3 CMS Design Model

To integrate machine reliability and maintainability in the CMS design process, we consider 

the CMS design model based on machine reliability to follow Weibull distributions from Section 

4.3.

As demonstrated in Section 4.3, the multi-objective CMS design model optimizes system 

costs in the objective function I and system reliability of machines in the objective function II. To 

integrate the preventive maintenance planning in the CMS design process we substitute equation

(7.33) in the expression for objective function II in the CMS design model.

The modified model may now be presented as follows:

• Minimize objective function I:

Fj= VCM+MHC+MNC   (7.34)
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n P(i)  0(ip) C
where, VCM = £  </,.£ £  £  {COoj(ip) + CRoJ( ip ) } T  X 0jc(ip)  (7.34a)

;=1 p = l 0= i j eJlpii c =1

n P(i)  0 ( , » - l

MHC=Y,dl'L S S . I  Z — (7'34b)
,'=1 p = l  0 = 1  j£jip0 jEJ!pio+l) 1 <C,C<C

m n PU) 0(ip) TO (jD) . 77? c
= £  cp ,( l - [ £  < / ,£  £  ^ ^ (~ ]  )I   (7.34c)

j = 1 1=1 p = l 0=1 A j  V  f b j  c=l

Minimize objective function II:

« P ( i )

^ = 1 1  LIRip - - ( 7 .3 5 )
1=1 p = \

oup) _  _c. f Yjtpr(T(\+ ii
where, 1//?^= £  £  £  AT

0=1 i*J,P C=1 MTBF,
X ojc(ip) V i,p  ------ (7.35a)

using the definitions in equation (7.33)

Constraints: Following constraints are defined:

£ Z ( i p )  = l Vi  (7.36)
p= 1

I  I  V i,p ,o   (7.37)
j e J ,  c=1

£  M jc < 1 V/  (7.38)
C=1

m
£  M jc < UM  Vc  (7.39)
M
n P( 0  0(ip)

I I  £  X ojc( ip )> M jc \/j,c   (7.40)
j= l p = l 0=1

/>(/) 0 ( ip )

£ < / , £ £ [  ToOJ(ip)+TROJ(ip) ]x 0.cO p)<i.M yĉ .(r) y /,c  ---------------- (7.4i)
1=1 p= l 0=1

X OJC(ip) + x (o+i)]. (ip) -  2Y0Jye (ip) ^  °> Vi, p, o e  {1,2,......0(ip)- l } , ) e  j  e J I>(0+1), c, c

---------------(7.42)

X„jc(ip) + X (o+[)]. ( i p ) - Y oĵ ( ip )< l  Vi,p,o&  {1,2,...0(ip)-1 } ,y ipo, j  e J ip(0+l)c,c

---------------(7.43)
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To illustrate the applicability of the model, we have solved the 7 machine 12 part cell design 

problem (Example 1 in section 4.3.3). Table 4.1 gives the part processing information—including 

part demand—and Tables 4.2 and 7.1 gives the relevant machine and maintenance cost related 

information for the problem. We first solve the model by taking a hierarchical approach for 

optimizing cost only, and optimizing reliability only. After computing the highest achievable 

reliability from the solution of reliability only optimization, we solve optimizing cost subject to 

achievement o f  the highest reliability. Table 7.8 compares the model outputs with and without 

preventive maintenance.

Table 7.8: Comparison of model outputs for considering and ignoring preventive 
maintenance (CMS design model based on machine failures to follow Weibull distribution)

Comparison Factors
Model outputs

CommentsPreventive maintenance 
is considered

Preventive maintenance 
is not considered

Min = Objective function I only

Considerable decrease 
in the objective 
function II value when 
PM is considered.

Objective function I $1,768.45 $1,768.45
Objective function I components

VCM $1,410.33 $1,410.33
MHC $50.00 $50.00
MNC $308.12 $308.12

Objective function II 257.6 1110.7

Cell configuration Cell 1 =[M 1 ,M2,M3 ,M4] 
Cell 2=[M5,M6,M71

Cell 1 =[M1,M2,M3,M4] 
Cell 2=|M5,M6,M71

Min = Ob jective function II only

1. Objective function II 
value improved to a 
great extent when PM 
is considered.
2. Changes in other 
aspects are negligible.

Objective function I $3,401.00 $3,320.19
Objective function 1 components

VCM $1,827.00 $1,712.43
MHC $750.00 $650.00
MNC $824.00 $957.76

Objective function II 197.2 $715.4

Cell configuration
Cell 1=[M4,M7], 
Cell2 =[M1,M6], 

Cell 3 =[M3]

Cell 1=[M1,M7], 
Cell2 [M4,M6], 

Cell 3 =[M2]
Min = Objective function I, s. t. 

Objective function II < G
£=197.2 £=715.4 As expected the model 

achieved the objective 
function II according 
to the target and 
improved cost factors 
when preventive 
maintenance is 
considered

Objective function I $2,778 $2822.90
Objective function I components

VCM $1768.00 $1632.92
MHC $200.00 $200.00
MNC $810.00 $989.98

Objective function II 197.2 715.4

Cell configuration Cell 1 =[M 1 ,M3,M6,M7] 
Cell 2=[M41

Cell 1 =[M 1 ,M2,M4,M6] 
Cell 2=fM7j

Total maintenance cost $31,669.00 $83,653.00

Maintenance cost with 
PM steps is much 
lower than the cost 
when PM is ignored.

When PM is included, the outputs of the CMS design model demonstrate an improvement in 

the system reliability by a considerable decrease in the objective function II value (the inverse of
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system reliability in the logarithmic scale). For example, the objective function II value for 

optimizing costs, optimizing reliability, and optimizing costs subject to the achievement of 

highest reliability obtained from the solutions are 257.6, 197.2 and 197.2 respectively—against 

the values 1110.7, 715.4 and 715.4 when PM has been ignored. This improvement in the system 

reliability is an expected outcome of preventive maintenance planning. Table 7.8 also 

demonstrates that the inclusion of PM improves the total operations and machine utilization 

related costs, as well as changes the cell configuration when the model is solved for simultaneous 

consideration of system reliability and system costs. For example, the model solution for 

optimizing costs subject to achievement of the highest system reliability {Min = objective 

function I, s. t. Objective function II < 197.2) reduces the total cost to $2,778.00 from the 

previous level of $2,822.90 when PM was not been considered. Cell configuration is changed to 

Cell 1 = [M1,M3,M6,M7], Cell 2 = [M4] as opposed to the previous Cell 1 = [M1,M2,M4,M6] 

and Cell 2 = [M7], In addition to this, PM improves overall performance by reducing total 

maintenance cost. For example, it can be seen in Table 7.8 that by ignoring PM considerations, 

total maintenance cost comes to $83,653.00, against $31,669.00, when PM is considered.

There is, however, no considerable influence of preventive maintenance on the cell 

configuration and system costs when the model is solved for only cost (Min = Objective function 

I only) or reliability optimization {Min = Objective function II only).

The reliability based PM planning model, centered on the ‘effective interval’ of individual 

machines as developed in this chapter for CMS, will aid the user organization to improve 

resource utilization, and maintenance costs, while at the same time fulfill the desired reliability 

target. The integration of the PM planning policies in CMS design model will improve the overall 

performance of the CMS in terms machine reliability.
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CHAPTER 8 

DISCUSSIONS, CONCLUSIONS AND 

DIRECTIONS FOR FUTURE RESEARCH

8.1 Discussions and Conclusions

Despite the extensive research that has been conducted in the area of cellular manufacturing 

systems, only a few studies address the consideration of machine reliability in the design and 

analysis of CMSs. Another important aspect, which has rarely received attention in the design 

process, is the simultaneous consideration of system reliability and system cost.

The primary goal of this research was to develop a CMS design methodology that considers 

machine reliability and system costs simultaneously. A multi-objective, mixed-integer 

mathematical programming model for designing cellular manufacturing systems has been 

developed. The model takes into account the manufacturing system costs and reliability of 

machines along the part-processing routes. The components of system costs are the variable cost 

of processing the part types, inter-cell material handling costs and machine under-utilization costs. 

The system reliability of machines along the part processing routes considers the updated 

reliability status of each individual machine for performing operations on the part types in the 

design process o f CMSs. The approach allocates parts to the processing routes in order to 

optimize cost and achieve the lowest probability of machine failure while developing the 

manufacturing cells. Moreover, the approach incorporates provisions for rerouting the parts in the 

case of machine failure during processing. The potential benefits of the design approach have 

been demonstrated by the analysis of the numerical examples.

Machine reliability analysis and its integration into the CMS design process is achieved by 

using the exponential and the Weibull distribution. The exponential distribution approach may 

make the design more tractable and easy to implement. The model based on this approach 

requires only the basic machine-maintenance related information, such as MTBF and MTTR, for 

developing a satisfactory CMS design and improving the overall performance of the system. 

Since most real world production machines experience increasing failure rate with time, the 

exponential distribution approach has the practical limitation of not representing the reliability 

behavior of the system for the aging machines. The Weibull distribution is a versatile approach 

for machine reliability analysis, and is able to deal with the increasing, decreasing and constant 

failure rate of machines. This research has developed a CMS design model based on the Weibull 

distribution that incorporates the increasing failure rate of machines in the design process. The
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CMS design models—based on the two most frequently used distributions for machine 

reliability—have made the approach both suitable and practical for industrial users, and have 

provided options for selecting the one appropriate for the organization.

The applicability of multi-objective CMS design models has been illustrated by solving 

numerical examples using the G-constraint approach in Chapter 4. The G-constraint method of 

solution is easy to understand and analyze, and may be used to balance the reliability and cost 

requirements of a business.

A performance evaluation model based on the Markovian analysis approach has also been 

developed, and incorporated in the CMS design model, based on the exponential distribution. 

This allows the designer or user to emphasize the priority and performance of the individual part- 

plan combination for each design input according to the system reliability requirements and cost 

combination. This integration of performance evaluation into the CMS design model provides the 

user and/or designer with multiple options to select from.

Due to a demanding amount of computational time and resource requirement for large 

problems, the developed model is not suitable for solving a realistic-size CMS design problem. 

This led to the development of a heuristic which is able to solve realistic-size problems within a 

reasonable amount of time and resources. A simulated annealing-based algorithm which is further 

improved by including GA operators (crossover and mutation) to generate better neighboring 

solutions has been developed and implemented.

The performance of the heuristic has been evaluated by estimating the GAP% between the 

heuristic solution and optimal solutions (whenever it was possible to obtain using commercial 

software), and by estimating the GAP% between the heuristic solution and the LP relaxation 

solution for large, realistic-size problems. The heuristic performs sufficiently in terms of solution 

generation time and solution quality for almost all the problem instances attempted in this 

dissertation. The GAP% comes very close to optimal for reasonable-size problems, while 

exhibiting a very small variation from the LP relaxation solution for large problems.

The model outputs’ sensitivity to changes in key factors has also been investigated to provide 

a performance perspective for the CMS designer and user organization, so that they can plan to 

manage the impacts. The effect of the machine reliability related parameter MTBF on the model 

outputs is significant, based on both exponential and Weibull distributions. The impact of another 

reliability-related parameter MTTR is not as high as MTBF, but it does affect the output to a 

reasonable extent in the case of both exponential, and Weibull distribution-based models.

To restrict the deterioration of manufacturing machines and improve the overall performance 

of the system, this dissertation developed a preventive maintenance planning model for CMSs
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that combines relevant costs, and machine reliability. The multi-machine preventive maintenance 

model takes into account the interdependence of CMS machines, resource utilization (in terms of 

useful resource life), repair cost, and other related costs to decide on preventive maintenance 

intervals and maintenance scheduling for the individual machines. The dissertation also outlines 

the development of the CMS design model by integrating preventive maintenance planning 

policies for system reliability and system costs. Preventive maintenance considerations and the 

integration of preventive maintenance planning in the design process will make a significant 

contribution to the overall CMS performance. The solution and analysis—in relation to the 

maintenance consideration—is illustrated by a few problem instances.

8.2 Research Contributions

The research for this work contributes to the area of cellular manufacturing by introducing a 

multi-objective design model that simultaneously considers the system costs and reliability of 

machines along part processing routes. The contributions of the research may be summarized as 

follows:

1. A multi-objective MIP model for designing cellular manufacturing systems has been 

developed by incorporating the following important factors:

a. estimation of effective machine capacity by considering machine availability;

b. selection of part processing routes to achieve the highest system reliability of the 

machines along the route;

c. optimization of system costs which consist of part processing cost, inter-cell 

material handling cost and machine under-utilization cost;

d. and inclusion of rerouting options for the parts in case of machine failure.

2. A machine reliability analysis model for the CMS has been developed based on:

a. the exponential distribution;

b. and the Weibull distribution.

3. The machine reliability analysis model has been integrated with the basic CMS design 

model to simultaneously consider system cost and system reliability.

4. A performance evaluation model has been developed by following the Markovian approach,

and the performance evaluation in terms of system availability is incorporated in the CMS 

design model based on the exponential distribution.

5. A heuristic has been developed—based on the basic steps of simulated annealing and 

solution generation procedure (crossover and mutation) of GA.
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6. A reliability-based preventive maintenance planning model for the CMS has been developed

to improve the resource utilization and maintenance cost, and to achieve the desired 

reliability at the same time.

7. A CMS design model is outlined to integrate preventive maintenance planning policies with 

system reliability and cost and incorporate in the design process for overall improvement of 

the system’s reliability performance.

8.3 Future Research

The possibilities for future research in this area include:

1. developing a CMS design model that includes any future change in reliability and the 

dynamic demand of parts;

2. using Genetic Algorithms to solve the model, and comparing the performance of GA- 

based heuristics with SA-based heuristics;

3. solving real world CMS design problems by integrating preventive maintenance and 

machine reliability consideration to further explore the applicability of the model;

4. investigation of other reliability distributions in the cell formation and work allocation 

design; and

5. evaluating the performance of the heuristic in relation to its various factors by developing 

an appropriate experimental design.

6. developing a cell layout according to the integrated reliability, cost, and maintenance 

planning based CMS design

7. developing a job scheduling plan to optimize processing times of jobs in a reliability 

based cell design
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APPENDIX A.1: BRIEF SUMMARY OF MODELS
Description of Model Solution Procedure C hapter references

1. System Reliability Model for the CMS machines associated with a part processing route 

Model deveiODment: Analvtical annroach. considering machine reliahilitv to follow- Optimal solution for CMS design 
using LINGO 09

a) Development: Section 2.3.2 

Application: Section 4.2

a) the exponential distribution and ( Objective function II)

b) the Weibull distribution b) Development: Section 2.4

Purpose : To develoD a machine reliability analysis model and reliability based ohiectives Application: Section 4.3.1

for CMS design ( Objective function II)

2. System Availability Model for a part type-process plan combination a) Basis data computation by analytical a) Development for TM : Section 2.4

Model development bv Markovian annroach. The model has three parts approach,
Application :Section 4.2.4.1

a) Transition probability matrix (TM) TM by LINGO 09

b) Steady state probability evaluation b) Steady state probability by LINGO 09 b) Development for Steady state probability analysis :

c) Evaluation o f system availability c) System Availability by LINGO 09 Section 2.4

Purpose : Performance evaluation in terms of svstem availabilitv for nart tvoe-Drocess nlan Application : Section 4.2.4.1

assignment Development and application, Section 2.4 and 4.2.1

3. M ulti-Objective M IP CMS Design Model using machine reliability consideration to 

follow the exponential distribution

Purpose : Desien o f CMS bv simultaneous consideration o f  svstem reliability and svstem 

cost using machine reliability consideration based on the exponential distribution

- € -  constraint approach 

solved using LINGO 09

- Solved large size problems using the 

Heuristic approach

Development and application 
Section 4.2

4. M ulti-Objective M IP CM S Design Model using machine reliability consideration to 

follow the Weibull distribution

Purpose : Design of CMS bv simultaneous consideration o f svstem reliability and svstem 

cost using machine reliability consideration based on the W eibull distribution

G- constraint approach 

Solved using LINGO 09

Development and application 
Section 4.3
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APPENDIX A.1: Cont’d
Description of Model Solution Procedure Chapter references

s. M aintenance Planning Model for CM S ( N L P ) a) Maintenance interval by Golden Development and application

a) Cost based Section search by MATLAB 6.5. Total a ) Section 7.2.1

b) Reliability based cost using LINGO 09 b) Section 7.2.2

c) Combined model to consider both cost and reliability b) Reliability based model using LINGO c) Section 7.2.3

d) Extension of reliability based approach based on effective interval for individual 09 d) Section 7.3

machine to improve resource utilization and improve cost and reliability c) Combined model by Pre-emptive

performance optimization-using LINGO 09

Purnose : Preventive Maintenance D lannine and scheduling d) Extension o f  reliability approach using 

LINGO 09

6. Integration of PM Planning in M ulti-Objective CM S design model

Purpose : Integrating PM planning in the CMS design process to consider cost, reliability

and maintenance planning for overall improvement o f reliability performance and cost in a

CMS

G- constraint approach 

solved using LINGO 09

Development and application 
Section 7.4
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APPENDICES A.2, A.3, A.4, A.5 in CD FORMAT

A.2 LINGO PROGRAM FILES FOR CMS DESIGN
A.2.1 Design and Performance Model (Exponential Distribution) 
A.2.2 Design Model ( Weibull Distribution, Short Range Beta) 
A.2.3 Design Model ( Weibull Distribution, High Range Beta) 
A.2.4 Design Model ( Weibull Distribution, Long Range Beta) 
A.2.5 Transition Probability Matrix Model 
A.2.6 Steady State Analysis Model

A.3 LINGO PROGRAM FILES PREVENTIVE MAINTENANCE 
A. 3.1 Optimum and Maximum Interval Model 
A.3.2 Total Cost Model ( Algorithm Based)
A.3.3 Total Cost Model (Cost Based)
A.3.4 Combined Model
A.3.5 Cell Design Model with PM Integration

A.4 C++ PROGRAM FILES
A.4.1 14 Machine 24 Parts Model Solver ( Machine reliability

consideration based on exponential distribution)

A.5 MATLAB FILES
A.5.1 Golden Section Search (Preventive Maintenance Interval)
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