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Modeling Resources Allocation in Attacker-Defender
Games with “Warm Up” CSF

Peiqiu Guan and Jun Zhuang∗

Like many other engineering investments, the attacker’s and defender’s investments may
have limited impact without initial capital to “warm up” the systems. This article studies such
“warm up” effects on both the attack and defense equilibrium strategies in a sequential-move
game model by developing a class of novel and more realistic contest success functions. We
first solve a single-target attacker-defender game analytically and provide numerical solutions
to a multiple-target case. We compare the results of the models with and without consider-
ation of the investment “warm up” effects, and find that the defender would suffer higher
expected damage, and either underestimate the attacker effort or waste defense investment
if the defender falsely believes that no investment “warm up” effects exist. We illustrate the
model results with real data, and compare the results of the models with and without consid-
eration of the correlation between the “warm up” threshold and the investment effectiveness.
Interestingly, we find that the defender is suggested to give up defending all the targets when
the attack or the defense “warm up” thresholds are sufficiently high. This article provides new
insights and suggestions on policy implications for homeland security resource allocation.

KEY WORDS: Attacker-defender games; contest success functions (CSFs); game theory; subgame-
perfect Nash equilibria (SPNE); “warm up” threshold

1. INTRODUCTION

Hundreds of billions of dollars have been
spent on homeland security since September 11,
2001,(1) and numerous models(2–5) have been de-
veloped to study the strategic interactions between
the governments (defenders) and the terrorists
(attackers). In order to help the government to
make better decisions in alocating the limited
defense resources among multiple targets, binary
defense allocation,(6–12) such as defending or not
defending, may not be significantly informative to
support the real decision making.

When the defense and the attack efforts
are modeled as continuous, instead of binary,
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Hirshleifer(13) and Skaperdas(14) introduce two forms
of contest success functions (CSFs) among the
players in the field of rent seeking, tournaments,
and conflict.(15) One is the ratio form P(A, D) =

k1 Am

k1 Am+k2 Dm+C
, and the other is the exponential form

P(A, D) = exp [k1 A]
exp [k1 A]+exp [k2 D]+C

, where m > 0 and ki >

0 (i = 1, 2) are the mass effect parameters, A and
D represent the attacker’s and the defender’s in-
vestment efforts, and C is the inherent defense
level.

The CSFs capture the essential relationships
among the probability of a successful attack, defense
and attack efforts, and the inherent defense levels.
The CSFs are normally assumed to be continuous,
twice differentiable, and with diminishing marginal
returns with respect to both the defense and attack
efforts. Table I summarizes the CSFs in the counter-
terrorism literature. For example, for the func-
tion form of CSFs P(D) = e−λD, the probability of
successful attack P(D) decreases exponentially in
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Table I. CSFs in the Attacker-Defender Game Literature, Where A, D, and C Represent the Attack Effort, Defense Effort, and the
Inherent Defense Level, Respectively

Function References ∂ P
∂ D

∂ P
∂ A

∂2 P
∂ D2

∂2 P
∂ A2

Binary attack and continuous defense efforts (Exponential)

Bier et al.,(16) Hao et al.(17)

e−kD Wang and Bier(18) ≤ 0 NA ≥ 0 NA

Shan and Zhuang(19)

Continuous attack and defense efforts (Ratio)
A

k(A+D+C)
Zhuang and Bier(2) ≤ 0 ≥ 0 ≥ 0 ≤ 0

Am

Am+Dm Hausken(24) ≤ 0 ≥ 0 ≥ 0 ≤ 0
A

A+D+C
Hausken and Zhuang(21) ≤ 0 ≥ 0 ≥ 0 ≤ 0

k1 A
k1 A+k2 D+C

Guan et al.(22) ≤ 0 ≥ 0 ≥ 0 ≤ 0

1 − e−kA/D Nikoofal and Zhuang(23) ≤ 0 ≥ 0 ≥ 0 ≤ 0

the defender’s effort D,(16–19) but it does not de-
pend on the attack effort from the attacker. For an-
other body of the literature, ratio-form CSFs,(2,20–22)

the probability of successful attack decreases con-
vexly in defender’s efforts and the inherent defense
level, and increases concavely in the attacker’s ef-
forts. Nikoofal and Zhuang(23) combine both the ra-
tio and the exponential forms of the CSFs. As shown
in Table I, the probability of successful attack de-
creases in the defender’s effort ( ∂ P

∂ D
≤ 0) and in-

creases in the attacker’s effort ( ∂ P
∂ A

≥ 0), both with di-

minishing marginal returns ( ∂2 P
∂ D2 ≥ 0, ∂2 P

∂ A2 ≤ 0).
Although the property of diminishing marginal

returns may hold when the attacker and defender in-
vestments are sufficiently high, such property would
not hold in practice when the investments are small.
For example, depending on specific context, the
defender may need to spend millions or billions of
dollars to purchase, set up, and test a new security
program (e.g., new software to track millions of vis-
itors to the United States). The first several millions
of dollars spent may not decrease the probability of
a successful attack at all. Similarly, the attacker may
have to spend a significant amount of resources to
prepare for the attacks, and the initial thousands of
dollars (or even millions of dollars in a larger-scale
attack plot) may not increase the probability of
successful attack.

To our best knowledge, none of the previous lit-
erature studies the realistic phenomenon where the
diminishing marginal returns over continuous invest-
ment levels do not apply. We call such a phenomenon
the “warm up” effect. We acknowledge that the term
“warm up” could also be interpreted as the time win-
dow before the main activity (e.g., security system
restarted from a shutdown or sleep mode), and could

be modeled in multiple-period games. By contrast,
this article considers “warm up” effects statically, and
proposes a new functional form of CSF to model the
“warm up” effects in a single-period game, as an ex-
tension to the literature provided in Table I.

The rest of the article is organized as follows:
Section 2 introduces the notations and assumptions
in this article; Section 3 proposes a sequential game
model between the attacker and the defender with
the “warm up” CSFs, and solves a single-target game
model analytically; Section 4 solves for the multiple-
target case numerically, illustrates the results with
real data, compares the results of the models with and
without consideration of the correlation between the
level of “warm up” threshold and the investment ef-
fectiveness, and provides policy implications for the
homeland security resource allocation; Section 5 con-
cludes the article, and the Appendix provides the
proofs for propositions.

2. NOTATIONS, ASSUMPTIONS,

AND MODELS

2.1. Notations and Assumptions

The notations used throughout the article are de-
fined as follows:

� n > 0: The number of targets.
� Gi ≥ 0: Defense resource allocations to the ith

target, ∀i = 1, 2, . . . , n.
� G ≡ (G1, G2, . . . , Gn): Vector for defense re-

source allocation.
� Ti ≥ 0: The attack resources to target

i , ∀i = 1, 2, . . . , n.
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� T ≡ (T1, T2, . . . , Tn): Vector for attack re-
sources.

� Ai > 0: The inherent defense level of the
target i .

� WTi
≥ 0 and WGi

≥ 0: The “warm up” thresh-
olds for the attack and defense investments for
target i , respectively; such threshold is defined
as the minimal level of investment before the
investment becomes impactful; zero or minimal
“warm up” effects could be accounted for by
setting the thresholds to be zero.

� Pi (Ti , Gi ) ∈ [0, 1]: The probability of a success-
ful attack for target i , which is continuous
and decreasing in defensive resource, Gi (when
Gi > WGi

) with diminishing marginal effect,
and increasing in attack resource, Ti (when Ti >

WTi
) with diminishing marginal effects, ∀i =

1, 2, . . . , n:

∂ Pi (Ti , Gi )

∂Gi

≤ 0,
∂2 Pi (Ti , Gi )

∂Gi
2

≥ 0,

∂ Pi (Ti , Gi )

∂Ti

≥ 0,
∂2 Pi (Ti , Gi )

∂Ti
2

≤ 0. (1)

� kT and kG: The effectiveness coefficients of the
attacker’s and the defender’s investment “warm
up” thresholds, respectively.

� βi ≥ 0 and αi ≥ 0: Effectiveness coefficients of
the attack and defense investments to target i ,
respectively.

� Vi ≥ 0: Valuation of target i , ∀i = 1, 2, . . . , n.
For simplicity, we use the same target valua-
tions for both the defender and the attacker(4)

in this article.
� LG(T, G) and LT(T, G): The objective functions

of the defender and the attacker, respectively.
� T̂(G) = (T̂1(G), T̂2(G), . . . , T̂n(G)): Attacker’s

best responses in the true model.
� T̄(G) = (T̄1(G), T̄2(G), . . . , T̄n(G)): Attacker’s

best responses in the defender’s false belief
model.

� (T∗, G∗): Subgame-perfect Nash equilibria
(SPNE) in the true model.

� (T∗∗, G∗∗): SPNE in the defender’s false belief
model.

Note that all the subscripts i will be omitted for the
notations in the case of n = 1.

Following Azaiez and Bier,(25) Wang and
Bier,(18) and Shan and Zhuang,(26) both the defender
and the attacker are assumed to be rational. The in-

teraction between the attacker and the defender is
modeled as a sequential game, and the attacker is as-
sumed to be the second mover. The attacker is as-
sumed to choose not to attack if he is indifferent be-
tween attacking and not attacking.

2.2. Contest Success Functions

Following Hirshleifer,(13) Zhuang and Bier,(2)

Hausken and Zhuang,(20) and Hausken and
Zhuang,(21) we consider the ratio-form CSF in
this article. Most of the CSFs in the literature assume
that the CSFs increase in attack investment and
decrease in defense investment, which may not hold
in practice when the attack and defense systems
need to “warm up.” Different from the literature as
summarized in Table I, the “warm up” CSF in this
article is defined as a piece-wise ratio function with
consideration given to the defense and the attack
investment “warm up” effects:

Pi (Ti , Gi ) (2)

=
βi (Ti − WTi

)+

βi (Ti − WTi
)++αi (Gi − WGi

)++ Ai

=

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

0, if˜Ti ≤ WTi

βi (Ti −WTi
)

βi (Ti −WTi
) +Ai

, if˜Ti > WTi
˜&˜Gi ≤ WGi

βi (Ti −WTi
)

βi (Ti −WTi
) +αi (Gi −WGi

) +Ai
, if˜Ti > WTi

˜&˜Gi > WGi

which has the following properties:

� If Gi is smaller than or equal to the defense
“warm up” threshold (Gi ≤ WGi

), the probabil-
ity of a successful attack would not be changed
by the increase of the defense investment Gi .
For example, if the defense investment for an
airport screening system is less than the cost of
purchasing backscatter machines, the probabil-
ity of successful attack would remain the same
or just slightly decreased in the defense invest-
ment.

� If Gi is larger than the defense “warm up”

threshold (Gi > WGi
), we have ∂ Pi (Ti ,Gi )

∂Gi
≤ 0,

which means that the probability of a success-
ful attack decreases in the defense investment.

� If the attack effect Ti is smaller than or equal to
the attack “warm up” threshold (Ti ≤ WTi

), we
assume that Pi (Ti , Gi ) = 0, which means that
no attack would be successfully launched. For
example, an attacker could not launch a bomb
attack successfully if he does not have enough
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Fig. 1. CSF with consideration of “warm up” effects.

resources to acquire, produce, or use such
bomb.

� If Ti is larger than the attack “warm up” thresh-

old (Ti > WTi
), we have ∂ Pi (Ti ,Gi )

∂Ti
≥ 0, which

means the success attack probability increases
in the attack effort.

Fig. 1 illustrates the “warm up” CSF as a func-
tion of the attack and defense investments. We only
consider a single target in this illustration; i.e., n = 1.
The baseline values of the model parameters are:
β0 = 1, α0 = 1, kG = kT = 0, A= 0.5, G = 1, T = 1,
and WG = WT = 0.5.

Fig. 1(a) shows that the probability of a suc-
cessful attack decreases in the defender investment
G with diminishing marginal effects in the interval
of (WG,∞), while the “warm up” CSF remains the
same within the defense “warm up” threshold (G ∈
[0, WG]) as WG increases. Fig. 1(b) shows that the
probability of a successful attack increases in the at-
tacker’s investment T with diminishing marginal ef-
fects when T > WT . When the attacker’s resource is
less than or equal to the attack “warm up” thresh-
old, T ∈ [0, WT], the probability of successful attack
equals to zero. Figs. 1(c) and (d) show how the prob-
ability of a successful attack changes as both the at-
tack and defense investments vary using a 3-D plot
and contour, respectively.

2.3. Modeling Investment Effectiveness Depends on

“Warm Up” Threshold

Now we model the scenario in which a
higher start-up (“warm up”) cost leads to higher
efficiency.(27) For example, the backscatter machines
for airport screening cost $250,000 to $2,000,000
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Fig. 2. Probability of a successful attack as functions of defense
and attack investments for two levels of defense and attack “warm
up” thresholds, α0 = β0 = 1, ˜kT = kG = 1, T = G = 1.

each,(28) which is more expensive than the pat-down
(no equipment cost), but is less invasive and more
efficient. Other examples of such investment include:
(1) purchasing of vehicles and unmanned aerial vehi-
cles, and weapons for the border patrollers; (2) pur-
chasing and installing advanced monitors and secu-
rity systems for federal buildings. This is also true for
attack efforts. For example, the dirty bomb attack
could cause more damages than the regular bomb
attack(15) and it costs the attacker much more “warm
up” investment than that in the regular bomb attack.
In this article, we model relationships between the
investment “warm up” thresholds and their effective-
ness coefficients linearly:

βi = β0 + kTWTi
, (3)

αi = α0 + kGWGi
, (4)

where the initial effectiveness coefficients of attack
and defense investments are denoted as β0 and α0,
and corresponding correlation coefficients are de-
noted as kT and kG (kT, kG ≥ 0), respectively; when
kT = 0 or kG = 0, the investment effectiveness coef-
ficients are assumed to be insensitive to the changes
of the investment “warm up” threshold; the amounts
of the “warm up” thresholds do not impact the ef-
ficiency of the attack or the defense systems. When
kT > 0, kG > 0, higher investment “warm up” thresh-
olds lead to higher investment effectiveness.

Fig. 2 illustrates the relationships between the
“warm up” thresholds and the investment effective-
ness. Let W1

G, W2
G˜(W1

G < W2
G) represent two levels

of defense “warm up” thresholds; Fig. 2(a) shows
that although the probability of a successful attack
remains the same for both lines in the intervals of
G ∈ [0, W1

G] and G ∈ [0, W2
G], respectively, the prob-

ability of a successful attack decreases at a sharper
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rate in the case of W2
G than in the case of W1

G when
G > W1

G and G > W2
G.

Similarly, Fig. 2(b) shows that the probability of
a successful attack remains zero when the attack in-
vestment is less than or equal to the attack “warm
up” threshold (see the line with when T ≤ W1

T , and
the line with when T ≤ W2

T). The probability of a
successful attack increases at a higher rate in the
case with attack “warm up” threshold W2

T than in
the case with attack “warm up” threshold W1

T , where
W2

T > W1
T .

2.4. Optimization Models

In a sequential game model, the attacker is as-
sumed to be a second mover, who can decide the
attack strategy T after observing the defender’s re-
source allocation G over the n targets. The goal of
the attacker is to maximize the total expected dam-
age to the defender (CSF weighted by the target val-
uations), and to minimize the attack costs:

LT(T, G)

= max
T

n
∑

i=1

⎛

⎜
⎜
⎝

Pi (Ti , Gi )Vi
︸ ︷︷ ︸

Expected damage

− Ti
︸︷︷︸

Attack costs

⎞

⎟
⎟
⎠

. (5)

As the first mover, the defender considers the at-
tacker’s best response T̂(G) to the defender’s strat-
egy G, which is defined as

T̂(G) ≡ arg max
T

LT(T, G), (6)

before making the decision. The objective of the de-
fender is to minimize the total expected damage and
defense costs:

LG(T̂(G), G)

= min
G

n
∑

i=1

⎛

⎜
⎜
⎝

Pi (T̂i (G), Gi )Vi
︸ ︷︷ ︸

Expected damage

+ Gi
︸︷︷︸

Defense costs

⎞

⎟
⎟
⎠

.(7)

Thus, the SPNE is defined as follows:

Definition 1. We call a collection of strategy (T∗, G∗)
an SPNE, if and only if both Equations (8) and (9)
are satisfied:

T∗ = T̂(G∗), (8)

G∗ = arg min
G

LG(T̂(G), G). (9)

According to the attacker’s best response de-
fined in Equation (6), the SPNE can be solved
through backward induction.

3. MODEL SOLUTION AND ANALYSIS

FOR n = 1

With the “warm up” CSF defined in Equation
(2), this section solves the equilibrium strategies for
both the attacker and the defender in the sequential
game by using backward induction. We first study the
case with a single target n = 1.

3.1. Attacker’s Best Response Function

As the second mover in the sequential game
model, the attacker’s best response function is given
in Proposition 1.

Proposition 1. For n = 1, the attacker’s best response

function is given by:

T̂(G) = arg max
T

LT(T, G) =
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Case a :√
βV A−A

β
+ WT, G ≤ WG&V > A

β
&

WT <
√

βV A−A√
βV A

V + A−
√

βV A
β

Case b :√
βV�−�

β
+ WT, G > WG&V > �

β
&

WT <
√

βV�−�√
βV�

V + �−
√

βV�

β

Case c :
0, G ≤ WG& V ≤ A

β

or G ≤ WG&V > A
β

&

WT ≥
√

βV A−A√
βV A

V + A−
√

βV A

β

Case d :
0, G > WG&V ≤ �

β

or G > WG&V > �
β

&

WT ≥
√

βV�−�√
βV�

V + �−
√

βV�

β

(10)

where � = α(G − WG) + A, β = β0 + kTWT , and α =
α0 + kGWG.

Remarks: The attacker’s best response function
for a single target in Equation (10) shows that the at-
tacker would attack the target in Cases a and b, and
put forth zero effort in Cases c and d as his best re-
sponses. In Case a, the attacker’s best response effort
level does not depend on the value of the defender’s
strategy G, while the attacker’s best response effort
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Fig. 3. Best response of the attacker with consideration given to
the “warm up” threshold.

first increases then decreases in the defense effort G

in Case b.
Cases c and d provide the conditions to deter

attacks, including high attack “warm up” threshold,
high inherent defense level, high defense investment,
or low target valuation.

With the baseline values of model parameters
set at β0 = α0 = 1, kT = kG = 0, A= 0.5, n = 1, and
WG = WT = 0.5, Fig. 3 illustrates the attacker’s best
response function in Proposition 1 with considera-
tion given to both the defender’s and the attacker’s
investment “warm up” thresholds, for three levels of
target valuations.

Fig. 3(a) shows that the attacker would not at-
tack a low-value target, which illustrates Cases c and
d in Proposition 1. Fig. 3(b) shows the attacker at-
tacks a moderate target with the amount of attack
resource T̂(·) = 0.55 (Case a), which is greater than
the attack “warm up” amount WT = 0.5, during the
defender’s “warm up” period G ≤ WG, and does not
attack otherwise (Case d). Fig. 3(c) illustrates the
case for the high-value target. The attacker’s best re-
sponse remains constant (but at a higher level com-
pared to that in Fig. 3(b) for moderate-value target)
within the defender’s “warm up” period (G ≤ WG)
and does not depend on the defense effort G (Case
a). When the defense effort G is in a moderate inter-
val (WG = 0.5 < G < 6), the attacker’s best response
first increases and then decreases in the defense ef-
fort (Case b). We also note that an attack is de-
terred by a high defense effort G (G ≥ 6), which is
the Case d of the attacker’s best response function in
Equation (10).

3.2. Subgame-Perfect Nash Equilibrium (SPNE)

According to Definition 1, substituting the at-
tacker’s best response function in Equation (10)
into the defender’s optimization problem (Equation
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(7)), the SPNE solution is solved and provided in
Proposition 2.

Proposition 2. There are five cases of SPNE so-

lutions (T∗, G∗) for a single-target model. All the

SPNE solutions (T∗, G∗), the corresponding feasible

set Fk, optimal conditions Ok, ˜∀k = A, B, . . . , E, the

CSF P(T∗, G∗), and attacker’s and defender’s objec-

tive functions LT(T∗, G∗) and LG(T∗, G∗) are pro-

vided in Table II.

3.3. Sensitivity Analyses

This section studies how the probability of a
successful attack, the defender’s and the attacker’s
equilibrium strategies, and their objective functions
change when the model parameters vary. Based on
a set of baseline values, WT = 0.1, WG = 0.5, β0 =
α0 = 1, A= 0.1, and V = 15, we change the same
model parameters one at a time and keep the others
constant.

We first conduct the sensitivity analyses with-
out consideration of the relationships between the
“warm up” thresholds and the investment effective-
ness (i.e., kG = kT = 0).

Fig. 4(a) shows that the defender first increases
the defense effort as the defense “warm up” thresh-
old (WG) increases, and then gives up defending the
target if WG is sufficiently high (WG > 2.7). The de-
fender’s expected damage and costs increase in WG.
From Fig. 4(b), we note that the attack would be de-
terred by a high attack “warm up” threshold. The
defender reduces the defensive resource, even down
to zero defense resource, to the target if the at-
tack “warm up” threshold WT is sufficiently high.
The probability of a successful attack slightly de-
creases as the attack “warm up” threshold increases
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Fig. 5. The sensitivity analysis of V and Awithout considering the
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ment effectiveness (kG = kT = 0).
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Fig. 6. The sensitivity analysis of WT and WG with consideration
given to the relationships between the “warm up” thresholds and
the investment effectiveness (kG = kT = 0.1).

and drops to zero when the attack is deterred (for
WT > 0.3).

Fig. 5 shows how the model results are sensitive
to the change of the target valuation V and the inher-
ent defense level A. In particular, Fig. 5(a) shows that
(a) the target with low valuation (0 < V < 2) would
not be defended but attacked (Case A); (b) the tar-
get with moderate valuation (2 ≤ V ≤ 5) would be
defended and not be attacked (Case E); and (c)
both defender and attacker increase their investment
(Case B) if the target’s valuation is large (V > 5).
From Fig. 5(b), we note that attack could be deterred
by a high inherent defense (A> 12.8) even when no
defense investment is allocated to the target, which
implies that no attack would be launched on a target
with a high inherent defense level.

Fig. 6 studies the sensitivity analyses of the de-
fense and attack “warm up” thresholds with consid-
eration given to the relationships between the value
of the thresholds and the investment effectiveness.
In the analyses, we set kT = kG = 0.1, which means
one unit of the “warm up” investments can increase
0.1 units of effectiveness of the attack and defense
investments: β = β0 + kTWT and α = α0 + kGWG.
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Fig. 7. The sensitivity analyses of kG, kT .

Comparing to the case without consideration of
the relationships between the defense “warm up”
thresholds and the investment effectiveness in
Fig. 4, the defender gives up defending with a higher
defense “warm up” threshold (WG > 6 in Fig. 6(a),
and WG > 2.7 in Fig. 4(a)). Similar to the case with-
out consideration of the relationship between the at-
tack “warm up” threshold and the investment effec-
tiveness in Fig. 4(b), the attack is also finally deterred
by some significant level of WT , which is WT > 0.3.

Fig. 7(a) shows that the defense equilibrium in-
vestment G∗ first increases and then decreases in
kG (the defense investment becomes more effective).
We also note that an attack would be deterred if kG

is high (kG > 0.3) because of the increased effective-
ness of the defense investment. Fig. 7(b) shows that
both the attack and defense investments (T∗ and G∗)
decrease as the attack investment becomes more ef-
fective, and the defender would give up defending as
the kT is sufficiently high (kT ≥ 140).

3.4. Comparison of the Models With and Without

Consideration of the Investment

“Warm Up” Effects

To study the importance of the novel “warm
up” model, we compare the results of the hypo-
thetical model (defender’s false belief model) when
the defender does not consider the “warm up” ef-
fects (WG = WT = 0), but in fact the thresholds exist
(WG > 0, WT > 0), with the model proposed in this
article (true model). We study the consequence due
to this hypothetical belief. In the defender’s belief,
her optimal strategy should be defined as follows:

G∗∗ = arg min
G

LG(T̄(G), G)

= P(T, G|WT = 0, WG = 0)V + G,
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Fig. 8. Best response of the attacker in the hypothetical model
where the defender does not consider the “warm up” threshold.

where T̄(G) = arg max LT(T, G) = P(T, G|WT =
0, WG = 0)V − T is denoted as the attacker’s best
response function according to the defender’s belief.

However, the attacker makes his best response
with consideration given to the investment “warm
up” effects. The defender’s payoff in the hypothetical
mode depends on the defender’s equilibrium strategy
in the hypothetical model G∗∗ and the true attacker
equilibrium strategy T∗, which is defined in Equation
(8). Thus, due to the false belief, the SPNE (T∗∗, G∗∗)
is given as follows:

T∗∗ = T̂(G∗∗)

= arg max LT(T, G∗∗)= P(T, G∗∗)V−T,(11)

G∗∗ = arg min
G

LG(T̄(G), G)

= P(T, G|WT = 0, WG = 0)V + G, (12)

where T̄(G) = arg max LT(T, G) = P(T, G|WT =
0, WG = 0)V − T. Note that the defender’s and the
attacker’s objective functions at the equilibrium
points are denoted as L∗∗

G and L∗∗
T , respectively.

Fig. 8 shows the results of the attacker’s best re-
sponse T̄(G) without considering the “warm up” ef-
fects of the attack and defensive investments, WT =
WG = 0.

Comparing the results in Fig. 3, we note that the
attacker chooses to not attack a low valued target
as his best response, regardless of the defender’s in-
vestment in both Figs. 3(a) and 8(a). Fig. 8(b) shows
that the attacker would only attack a moderate val-
ued target with low attack effort (T = 0.05) when
the defender’s investment is low (G = 0), and the at-
tacker would choose not to attack the target if the
defender’s investment G is large. However, the at-
tacker’s attack effort is about 10 times less in Fig. 8(b)
as compared to Fig. 3(b) (T = 0.55), which implies
that the defender would underestimate the attacker’s
attack effort if she does not consider the “warm up”
effects of the investment. Fig. 8(c) shows that the
attacker’s best response first increases and then de-
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Fig. 9. Comparison of defender’s expected payoff, defender’s
equilibrium strategy, and attacker’s equilibrium strategy in the hy-
pothetical model and the true model.

creases as the defender’s investment increases for
a high valued target case. Comparing the results in
Figs. 3(c) and 8(c), we note that the overall attacker’s
best response would be underestimated if “warm up”
effects are not considered. From Fig. 3(c), we also
note that the attacker would not attack when his best
response level is lower than the attack “warm up”
threshold, but in Fig. 8(c) the attacker’s best response
is positive even when it is below the attack “warm
up” threshold, which would lead to the waste of the
defense effort.

Figs. 9(a) and (b) show that the defender’s pay-
offs (expected damage and loss) in both models are
very close to each other when the defense and attack
“warm up” thresholds (WG and WT) are small, but
the differences enlarge as WG and WT increase. In
particular, Fig. 9(a) shows that the defender would
suffer up to 1.27 (6.62/5.22) times higher expected
damage and cost than that in the model proposed
in this article (true model) as the defense “warm up”
threshold increases if the defender fails to consider
the “warm up” effects. In Fig. 9(b), we note that the
defender suffers up to 5 units more expected damage
and cost than that in the true models if she fails to
consider the “warm up” effects.

Figs. 9(c) and (d) show that the defender’s equi-
librium strategy does not depend on the defense and
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attack “warm up” thresholds in the defender’s false
belief model, but it does in the true model.

Figs. 9(e) and (f) show that the attacker’s
equilibrium strategy is dependent on the defense
and attack “warm up” thresholds in both the hy-
pothetical model and the true model. In particular,
Fig. 9(e) shows that in the hypothetical model (de-
fender’s false belief model), the attacker’s equilib-
rium decreases as the defense “warm up” threshold
increases when WG is in a small range (WG ≤ 1.4),
while in the true model, the attacker’s equilibrium
strategy first increases and then decreases in WG

when WG is in a small range (WG ≤ 0.9). The at-
tacker’s equilibrium strategy remains the same in
both models when WG is high (when WG > 0.9 in
the true model, and WG > 1.4 in the hypothetical
model). Fig. 9(f) shows that the attacker would
give up attacking in a higher “warm up” threshold
(WT = 2.2) due to the defender’s wrong false belief
than that in the true model (WT = 1.5).

4. NUMERICAL ILLUSTRATION FOR

MULTIPLE-TARGET MODEL

In this section, we study the equilibrium solu-
tion for the model with multiple targets. According to
the complex analytical solution for the single-target
model in Proposition 2, we expect an intractable so-
lution for the multiple-target case. Instead of obtain-
ing the analytical solution, we focus on the numerical
solutions in this section.

4.1. Numerical Illustration

The numerical illustration for the multiple-target
model is generated in this section based on the
heuristic search algorithm. To illustrate the model
with multiple targets, following Bier et al.,(16) Hao
et al.,(17) Hu et al.,(5) Nikoofal and Zhuang,(23) and
Shan and Zhuang,(19) we use the expected prop-
erty damage caused by the terrorist attack for ur-
ban areas in the United States to estimate the target
valuations.(29)

In particular, we select the top five most valu-
able urban areas in the United States, which are New
York City, Chicago, San Francisco, Washington, DC,
and Los Angeles, as shown in Table III.

For the baseline values of other model pa-
rameters, we set WG = WT = 0.5, β0 = α0 = 1, and
A= 0.1 for all targets.

We study how the defensive allocation strategies
change as the level of defense “warm up” threshold

Table III. Expected Property Damage for the Top Five Urban
Areas in the United States

# Urban Area Expected Property Losses (Vi $M)

1 New York City 413.0
2 Chicago 115.0
3 San Francisco 57.0
4 Washington, DC 36.0
5 Los Angeles 34.0
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Fig. 10. Defense allocations as functions of the levels of defense
“warm up” thresholds levels.

WG increases, when the relationship of the defense
(attack) “warm up” threshold and defense (attack)
investment effectiveness coefficients kG (kT) are con-
sidered in Fig. 10.

Fig. 10 shows that the defender moves the
defense resources from the less valuable to more
valuable targets as the defense “warm up” threshold
increases and finally gives up defending any of the
targets if the defense “warm up” thresholds are
sufficiently high. Fig. 10 compares optimal defensive
resource allocations between two cases: (a) no corre-
lation between “warm up” threshold and investment
effectiveness kT = kG = 0, and (b) low correlation
kT = kG = 5%. We find that the defender gives up
defending targets from the low-valuation targets to
the high-valuation target in both cases as the “warm
up” threshold increases. For example, the most
valuable target “New York City” is the last target
that the defender would give up. In Fig. 10(a2), the
defender’s expected damage and cost increase as
the defense “warm up” threshold increases when
kT = kG = 0. From Fig. 10(b2), we note that the
defender’s expected damage and cost first decrease
and then increase in the case of kT > 0, kG > 0. Since
the high defense (attack) “warm up” threshold can
induce high defense investment effectiveness in the
second case through α = α0 + kGWG, as defense
investment “warm up” threshold increases, the
defender’s investment becomes more effective,
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Fig. 11. Defense allocations as functions of the levels of attack
“warm up” thresholds levels.

leading to less damage. The expected damage and
cost decrease. However, as the defense “warm up”
threshold increases, it costs the defender more to
“warm up,” leading to a high investment cost. Thus,
the defender’s expected damage and costs increase.

Fig. 11 studies how the defender’s defense allo-
cation strategy changes as the attacker’s “warm up”
threshold WT increases. We also compare the optimal
attack resource allocations between two cases: (a) no
correlation between “warm up” threshold and invest-
ment effectiveness kT = kG = 0, and (b) low correla-
tion kT = kG = 5%.

Since a high attack “warm up” threshold can
deter the attack, the defender would stop defend-
ing the target if the attack is deterred by the attack
“warm up” threshold. The defender stops defend-
ing targets one by one from the low-valued target to
the high-valued target. For example, since the most
valuable target, “New York City,” expects the high-
est attack “warm up” threshold to deter an attack,
the defender would stop defending it last. The de-
fender’s expected damage and cost decrease as the
attack “warm up” threshold increases for case (a),
which is shown in Fig. 11(a2). In case (b), the de-
fender overall suffers higher expected loss and cost
than in case (a) when the correlation between “warm
up” threshold and investment effectiveness is consid-
ered in Fig. 11(b2). There are a lot of ways to in-
crease the attack “warm up” threshold, such as in-
creasing the terrorists’ training cost, making it more
difficult for them to pass through the security, or ac-
quiring weapons. Though an attack with high attack
“warm up” threshold would cause more damage to
the defender because of high effectiveness, the attack
would be deterred if the attack “warm up” thresh-
old is sufficiently high such that the defender does
not need to defend some or all targets. Thus, the de-
fender’s expected damage and cost decrease to zero.

5. CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

In this article, we study a novel class of contest
successful functions (CSF) to capture the “warm up”
effects in the attack and defense investments in coun-
terterrorism. To our knowledge, such investment
“warm up” effects in attacker-defender resource al-
location problems have not been studied in the lit-
erature. This article fills the gap by studying attack
and defense “warm up” effects in a game-theoretical
model.

This article solves the equilibrium solution an-
alytically for the single-target model, identifies five
cases of SPNE in the attacker-defender game, and
solves the multiple-target model numerically. Inter-
estingly, we find that the defender would give up de-
fending all the targets as either the attack or defense
“warm up” thresholds are sufficiently high. For a high
defense “warm up” threshold, the defender gives up
defending some or all targets because it is too costly
to defend the targets. For a high attack “warm up”
threshold, the defender stops defending some or all
of the targets because the attacks are deterred by the
high attack “warm up” threshold, which leads to zero
expected damage to the defender. We also find that
the defender’s expected damage first decreases and
then increases as the defender’s defense “warm up”
threshold increases, and it first increases and then de-
creases as the attacker’s attack “warm up” threshold
increases.

This article also provides suggestions on how to
allocate limited defense resources to various targets
when the defense “warm up” thresholds are consid-
ered. We find that not only high inherent defense lev-
els could deter an attack, but also high attack “warm
up” thresholds for the attacker. There are scenarios
where these are correlated to each other; e.g., for a
well-constructed defense system, it usually costs the
attacker a high price (attack “warm up” threshold) to
pass through the security of the defense system and
launch an attack.

In the future, we could consider cooperations
among decentralized defenders. For example, if two
cities have similar defense needs and are close by,
but cannot afford the defense because of the high
defense “warm up” threshold, they could share
some common defense. Thus, a cooperative defender
game among multiple targets with overarching ef-
fects could be an interesting extension.

This article considers a complete-information
game without deception. In practice, the attacker
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may be uncertain about the “warm up” threshold and
thus we can study when and how deception and se-
crecy (12,30,31) could be used by the defender to mis-
lead the attackers.

In this article, we consider a one-period game
where the “warm up” effects are embedded in the
CSF, and such effects would not fail. In the future,
we could use multi-period or continuous-time games
to study more general “warm up” effects, including:
(a) a period of heightened vulnerability to the tar-
get during the “warm up” period; and (b) the use of
backup/standby systems (32) after a potential failure
of “warm up.”
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APPENDIX

Proof of Proposition 1 A.1

First, we prove the concavity of the attacker’s ob-
jective function. For n = 1, we have:

max
T

LT(T, G) = P(T, G)V − T.

From the assumption in Equation (1), we know that
∂2 P(T,G)

∂T2 ≥ 0. Then we have ∂2 LT(T,G)
∂T2 = ∂2 P(T,G)

∂T2 V ≥ 0.

Thus, the attacker’s maximization problem is
concave in T. In order to find a T maximizing the
attacker’s objective function, we let the first-order
derivative of the attacker’s objective function equal

to 0, ∂LT(T,G)
∂T

= 0, and solve for T.

For n = 1, according to Equation (2), we rewrite
the CSFs as follows:

P(T, G) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

0, if T ≤ WT

β(T−WT)
β(T−WT)+A

, if T > WT & G ≤ WG

β(T−WT)
β(T−WT)+α(G−WG)+A

, if T > WT & G > WG.

Then, we rewrite the objective function of the at-
tacker’s optimization problem as follows:

max
T≥0

LT(T, G)

=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

−T, if T ≤ WT

β(T−WT)
β(T−WT)+A

V − T, if T > WT & G ≤ WG

β(T−WT)
β(T−WT)+α(G−WG)+A

V − T, if T > WT & G > WG.

When G > WG, we have:

max
T≥0

LT(T, G)

=
{−T, if T ≤ WT

β(T−WT)
β(T−WT)+α(G−WG)+A

V − T, if T > WT.

(A1)

In order to maximize the attacker’s objective when
T ≤ WT , from Equation (A1), we note that the opti-
mizer is TC1 = 0 and the attacker’s objective is L

C1

T =
0.

If T > WT , according to the attacker’s objec-
tive function defined in Equation (A1), we have
∂LT(T,G)

∂T
= 0 ⇒ βV[α(G−WG)+A]

[β(T−WT)+α(G−WG)+A]2 V − 1 = 0.

Then, we have:

T̂(G) =
⎧

⎪
⎪
⎨

⎪
⎪
⎩

0, if V ≤ α(G−WG)+A

β

1
β

(
√

βV[α(G − WG) + A] if V >
α(G−WG)+A

β
.

−[α(G − WG) + A]) + WT

Let � ≡ α(G − WG) + A; we have:

{
T̂(G)C2 = 0, if V ≤ �

β

T̂(G)C3 =
√

βV�−�

β
+ WT, if V > �

β
.

(A2)

Substituting Equation (A2) into the attacker’s objec-
tive function in Equation (A1), we have:

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

L
C2

T = 0, if V ≤ �
β

L
C3

T =
(

1 − �√
βV�

)

V

−
(

1
β

(√
βV� − �

)

+ WT

)

if V > �
β
.
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If all inequality conditions in Equation (A3) hold
when G > WG, then T̂(G) is the attacker’s best re-
sponse function:

T̂(G) =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

0, if V > �
β

& L
C1

T ≥ L
C3

T

T̂(G)C3 , if V > �
β

& L
C3

T > L
C1

T

0, if V ≤ �
β
.

(A3)

Thus,

T̂(G) =
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

0, if V > �
β

& G > WG &

WT ≥
√

βV�−�√
βV�

V + �−
√

βV�

β
√

βV�−�

β
+ WT, if V > �

β
& G > WG &

WT <
√

βV�−�√
βV�

V + �−
√

βV�

β

0, if V ≤ �
β
.

(A4)

Similarly, for G ≤ WG, according to the CSFs defined
in Equation (2), we write the attacker’s objective
function for n = 1 as follows:

max
T≥0

LT(T, G)

=
{ −T, if T ≤ WT

β(T−WT)
β(T−WT)+A

V − T, if T > WT.
(A5)

From Equation (A5), we note that TC4 = 0 is the op-
timizer for the attacker when T ≤ WT , and the corre-
sponding attacker’s objective is L

C4

T = 0.
If T > WT , according to the attacker’s objective

function defined in Equation (A5), we have:

∂LT(T, G)

∂T
= 0

⇒
βV A

[β(T − WT) + A]2
V − 1 = 0

⇒

⎧

⎪
⎪
⎨

⎪
⎪
⎩

T̂(G)C5 = 0, if V ≤ A
β

T̂(G)C6 if V > A
β
.

= 1
β

(√
βV A− A

)

+ WT,

(A6)

Substituting the local optimizers in Equation (A6)
into the attacker’s objective function in Equation

(A5), we have:

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

L
C5

T = 0, if V ≤ A
β

L
C6

T =
(

1 − A√
βV A

)

V if V > A
β
.

−
(

1
β

(√
βV A− A

)

+ WT

)

(A7)

The attacker’s best response function T̂(G) under the
condition of G ≤ WG is defined as follows:

T̂(G)

=

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

0, if V > A
β

& L
C4

T ≥ L
C6

T

T̂(G)C6, if V > A
β

& L
C6

T > L
C4

T , when G ≤ WG

0, if V ≤ A
β

=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

0, if G ≤ WG, V > A
β

&

WT ≥
√

βV A−A√
βV A

V+ A−
√

βV A

β
√

βV A−A

β
+ WT, if G ≤ WG, V > A

β
&

WT <
√

βV A−A√
βV A

V+ �−
√

βV A
β

0, if G ≤ WG, V ≤ A
β
.

(A8)

Combining Equations (A4) and (A8), the attacker’s
best response function is summarized as follows:

T̂(G) = arg max
T≥0

LT(T, G)

=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

√
βV A−A

β
+ WT, G ≤ WG & V > A

β
&

WT <
√

βV A−A√
βV A

V + A−
√

βV A

β
√

βV�−�

β
+ WT, G > WG & V > �

β
&

WT <
√

βV�−�√
βV�

V + �−
√

βV�

β

0, G ≤ WG & V ≤ A
β

or

G ≤ WG & V > A
β

&

WT ≥
√

βV A−A√
βV A

V + A−
√

βV A

β

0, G > WG & V ≤ �
β

or

G > WG & V > �
β

&

WT ≥
√

βV�−�√
βV�

V + �−
√

βV�

β

where � ≡ α(G − WG) + A, β ≡ β0 + kTWT .
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Proof of Proposition 2 A.2

We solve the equilibrium solution for the single-
target model by substituting the attacker’s best re-
sponse function (Equation (10)) into the defender’s
optimization model in Equation (7) under different
conditions:

� Case A: Under the conditions of G ≤
WG, V > A

β
& WT <

√
βV A−A√

βV A
V + A−

√
βV A

β
,

we have the attacker’s best response function

T̂(G) =
√

βV A−A
β

+ WT . After substituting T̂(G)

into the defender’s optimization model in
Equation (7), we have:

min
G≥0

LG(T̂(G), G)

=
β

((√
βV A−A

β
+ WT

)

− WT

)

β

((√
βV A−A

β
+ WT

)

− WT

)

+ A
V + G

=
√

βV A− A
√

βV A
V + G.

The minimizer that minimizes LG(T̂(G), G) =√
βV A−A√

βV A
V + G is GA = 0. The feasible set is

F A ≡ {V > A
β

& WT <
√

βV A−A√
βV A

V + A−
√

βV A
β

}.
The corresponding attacker’s strat-

egy is T A =
√

βV A−A

β
+ WT The CSF is

P(T A, GA) =
√

βV A−A√
βV A

.

And the corresponding payoffs of the at-

tacker and the defender are LA
T =

√
βV A−A√

βV A
V −

√
βV A−A

β
− WT, and LA

G =
√

βV A−A√
βV A

V
� Case B: Under conditions of G > WG & V >

�
β

& WT <
√

βV�−�√
βV�

V + �−
√

βV�

β
, we have

T̂(G) =
√

βV�−�

β
+ WT . Substitute T̂(G) to the

defender’s optimization model in Equation (7),
we have:

min
G≥0

LG(T̂(G), G)

=
βV

[(√
βV�−�

β
+ WT

)

− WT

]

β

[(√
βV�−�

β
+ WT

)

− WT

]

+ α(G − WG) + A
V + G

= V

⎛

⎝1 −

√

α(G − WG) + A

βV

⎞

⎠+ G, (A9)

where � = α(G − WG) + A.

Let ∂LG(T̂(G),G)
∂G

= 0, then we have:

∂LG(T̂(G), G)

∂G

= V

(

−

√

1

βV
×

α

2
√

α(G − WG) + A

)

+ 1 = 0

⇒ G =
{

αV
4β

− A
α

+ WG, V >
4β A

α2

0, V ≤ 4β A

α2

.

According to the conditions WG ≥ 0 and G >

WG, we have G > 0. Then the local optimizer
under this condition is GB = αV

4β
− A

α
+ WG.

The corresponding feasible set is F B ≡ {V >

max( α2V
4β2 ,

4β A

α2 ) & WT < V(1 − α
β

+ α2

4β2 )}.
The corresponding attacker’s strategy

is TB = V( α
2β

− α2

4β2 ) + WT. The CSF is

P(TB, GB) = 2βV−α

2βV−α+αV
. And the corre-

sponding attacker’s and defender’s payoffs are:

LB
T = ( 2βV−α

2βV−α+αV
− βα−α2

4β
)V − WT, and LB

G =
( 2βV−α

2βV−α+αV
− αV

4β
)V + WG.

� Case C: Under the conditions of G ≤
WG & V > A

β
& WT ≥

√
βV A−A√

βV A
V + A−

√
βV A

β
,

or G ≤ WG & V ≤ A
β

, we have the attacker’s

best response function T̂(G) = 0 such that
minG≥0 LG(T̂(G), G) = G.

We note that the minimizer GC3 = 0 mini-
mizes the defender’s minimization problem,
and the corresponding feasible set is FC ≡ {V >
A
β

& WT ≥
√

βV A−A√
βV A

V + A−
√

βV A

β
or V ≤ A

β
}. The

corresponding attacker’s strategy is TC = 0.

The CSF is P(TC, GC) = 0. And the attacker’s
and defender’s corresponding objectives are
LC

T = 0, and LC
G = 0

� Case D: Under the condition of G >

WG & V > �
β

& WT ≥
√

βV�−�√
βV�

V + �−
√

βV�

β
,

or G > WG & V ≤ �
β

, we have the attacker’s

best response function T̂(G) = 0 such that
minG≥0 LG(T̂(G), G) = G.

- Under the condition of G > WG & V >
�
β

& WT ≥
√

βV�−�√
βV�

V + �−
√

βV�

β
,

* If V > WT , from condition WT ≥
√

βV�−�√
βV�

V +
�−

√
βV�

β
, we have 1

α
( β(V−

√
VWT)2

V
− A) + WG ≤

G ≤ 1
α

( β(V+
√

VWT)2

V
− A) + WG. Then the
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minimizer is GD = 1
α

( β(V−
√

VWT)2

V
− A) + WG.

The corresponding feasible set is:

F D ≡

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

V > WT , V >
(V−

√
VWT )2

V
+ A

β

WT ≥ 1 − (V−
√

VWT )2

V
(

V−
√

VWT−1

V−
√

VWT
) − V +

√
VWT

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

.

The corresponding attacker’s strategy is TD =
0. The CSF is P(TD, GD) = 0 And the de-
fender’s and defender’s corresponding objec-

tives are LD
T = 0, and LD

G = 1
α

( β(V−
√

VWT)2

V
−

A) + WG.

* If V ≤ WT , from condition WT ≥
√

βV�−�√
βV�

V +
�−

√
βV�

β
, we have 0 ≤ G ≤ 1

α
( β(V+

√
VWT)2

V
−

A) + WG. Then the minimizer is G = 0. It con-
flicts with the conditions G > WG, ∀WG > 0.
So, G = 0 is not a feasible solution under this
condition.

- Case E: Under the condition of
G > WG & V ≤ �

β
= α(G−WG)+A

β
, from

condition V ≤ �
β

= α(G−WG)+A

β
, we have

G ≥ βV−A
α

+ WG. Thus, the minimizer of the

case under the condition G > WG & V ≤ �
β

is GE = βV−A
α

+ WG. The corresponding

feasible set is F E ≡
{

V > A
β

}

. The corre-

sponding attacker’s strategy is TE = 0. The
CSF is P(TE, GE) = 0. And the attacker’s
and defender’s corresponding objectives are
LE

T = 0, and LE
G = βV−A

α
+ WG.

According to the feasible set Fk, case k is opti-

mal if Fk ∩ F j = ∅, or if Fk ∩ F j �= ∅ and Lk
G ≤ L

j
G,

, ∀k, j = A, B, . . . , E, k �= j . Therefore, the optimal
range of case i is defined as:

Ok ≡
⋂

j=A,B,...,E, j �=k{{Fk ∩ F j ∩ {Lk
G ≤ L

j
G}} ∪ {Fk

∩F̄ j }}, k = A, B, . . . , E.

Thus, for Cases A–E, we have the optimal set as
follows:

OA =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{{F A ∩ F B ∩ {
√

βV A−A√
βV A

V ≤
(

2βV−α
2βV−α+αV

− αV
4β

)

V + WG}} ∪ {F A ∩ F̄ B}}
⋂

{{F A ∩ FC ∩ {
√

βV A−A√
βV A

V ≤ 0}} ∪ {F A ∩ F̄C}}

⋂

{{F A ∩ F D ∩ {
√

βV A−A√
βV A

V ≤ 1
α

(

β(V−
√

VWT )2

V − A

)

+WG}} ∪ {F A ∩ F̄ D}}
⋂

{{F A ∩ F E ∩ {
√

βV A−A√
βV A

V ≤ βV−A
α + WG}} ∪ {F A ∩ F̄ E}}

OB =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{{F B ∩ F A ∩ {
(

2βV−α
2βV−α+αV

− αV
4β

)

V + WG ≤
√

βV A−A√
βV A

V}} ∪ {F B ∩ F̄ A}}
⋂

{{F B ∩ FC ∩ {
(

2βV−α
2βV−α+αV

− αV
4β

)

V + WG ≤ 0}} ∪ {F B ∩ F̄C}}
⋂

{{F B ∩ F D ∩ {
(

2βV−α
2βV−α+αV

− αV
4β

)

V

+WG ≤ 1
α

(

β(V−
√

VWT )2

V − A

)

+ WG}} ∪ {F B ∩ F̄ D}}
⋂

{{F B ∩ F E ∩ {
(

2βV−α
2βV−α+αV

− αV
4β

)

V+WG ≤ βV−A
α + WG}} ∪ {F B ∩ F̄ E}}

OC =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{{FC ∩ F A ∩ {0 ≤
√

βV A−A√
βV A

V}} ∪ {FC ∩ F̄ A}}
⋂

{{FC ∩ F B ∩ {0 ≤
(

2βV−α
2βV−α+αV

− αV
4β

)

V + WG}} ∪ {FC ∩ F̄ B}}

⋂

{{FC ∩ F D ∩ {0 ≤ 1
α

(

β(V−
√

VWT )2

V − A

)

+ WG}} ∪ {FC ∩ F̄ D}}
⋂

{{FC ∩ F E ∩ {0 ≤ βV−A
α + WG}} ∪ {FC ∩ F̄ E}}

OD =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{{F D ∩ F A ∩ { 1
α

(

β(V−
√

VWT )2

V − A

)

+ WG ≤
√

βV A−A√
βV A

V}} ∪ {F D ∩ F̄ A}}

⋂

{{F D ∩ F B ∩ { 1
α

(

β(V−
√

VWT )2

V − A

)

+ WG ≤
(

2βV−α
2βV−α+αV

− αV
4β

)

V

+WG}} ∪ {F D ∩ F̄ B}}

⋂

{{F D ∩ FC ∩ { 1
α

(

β(V−
√

VWT )2

V − A

)

+ WG ≤ 0}} ∪ {F D ∩ F̄C}}

⋂

{{F D ∩ F E ∩ { 1
α

(

β(V−
√

VWT )2

V − A

)

+ WG ≤ βV−A
α + WG}}

∪{F D ∩ F̄ E}}

OE =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

{{F E ∩ F A ∩ { βV−A
α + WG ≤

√
βV A−A√

βV A
V}} ∪ {F E ∩ F̄ A}}

⋂

{{F E ∩ F B ∩ { βV−A
α + WG ≤

(
2βV−α

2βV−α+αV
− αV

4β

)

V+WG}} ∪ {F E ∩ F̄ B}}
⋂

{{F E ∩ FC ∩ { βV−A
α + WG ≤ 0}} ∪ {F E ∩ F̄C}}

⋂

{{F E ∩ F D ∩ { βV−A
α + WG ≤ 1

α

(

β(V−
√

VWT )2

V − A

)

+WG}} ∪ {F E ∩ F̄ D}}

Thus, the five cases of optimal strategies and their
corresponding optimal ranges and payoffs are proved
as documented in Table II.
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