
Modeling Rewards and Incentive Mechanisms

for Social BPM

Ognjen Scekic, Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology, Vienna, Austria
{oscekic,truong,dustdar}@infosys.tuwien.ac.at

Abstract. Social computing is actively shaping Internet-based business
models. Scalability and effectiveness of collective intelligence are becom-
ing increasingly attractive to investors. However, to fully exploit this po-
tential we still have to develop crowd-management frameworks capable
of supporting rich collaboration models, smart task division and virtual
careers. An important step in this direction is the development of mod-
els of rewarding/incentivizing processes. In this paper, we conceptualize
and represent rewarding and incentive mechanisms for social business
processes. Our techniques enable definition, composition, execution and
monitoring of rewarding mechanisms in a generic way.

Keywords: rewards, incentives, socially-enhanced BPM.

1 Introduction

Incentives and rewarding are inseparable parts of business processes today. Their
main purpose is to align the interests of workers and employers. By stimulat-
ing workers with various monetary, material and psychological rewards the em-
ployer can enhance productivity, quality, knowledge, collaboration, leadership,
and other positive qualities in the company. Even more beneficial are the selective
effects of the incentives [4]. Each particular incentive usually targets to enhance
a single aspect of worker’s performance. This can lead to workers starting to
exhibit various dysfunctional types of behavior, meant to increase productiv-
ity only in segments targeted by the incentive while neglecting the others. This
is why in practice often a number of simple incentives are combined together
targeting each other’s unwanted consequences.

Motivation: Social Computing for business is expected to grow substantially in
the coming years[1]. Crowdsourcing is already a well-established business model,
but it is characterized by exploitation of unstructured crowds of independent
workers performing small, simple tasks. Collaboration models on the web are
becoming richer, evolving from traditional company to crowdsourcing to so-
cial business. In the future, we expect that the development and adoption of
novel business models involving social business processes will match or extend
the contemporary processes in traditional companies. These business processes
(so-called Social BPs) will (partially) rely on dynamic, distributed workforces,

A. Barros, A. Gal, and E. Kindler (Eds.): BPM 2012, LNCS 7481, pp. 150–155, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Modeling Rewards and Incentives for Social Computing 151

structured in problem-related, ad-hoc assembled teams of professionals. The new
business reality will require advanced organizational and management structures
for the workers, intelligent task division and distribution, with the advent of
long-lasting “virtual careers”.

These trends inevitably require advanced crowd-management capabilities in
future social computing platforms, including novel rewarding/incentive frame-
works exploiting the advantages of vast amounts of digital productivity records,
cheap peer evaluation, psychological techniques, etc. However, to the best of our
knowledge, existing social computing platforms lack techniques for formulating,
composing and automatically deploying incentive mechanisms.

Contribution: We identify the basic composing parts and conceptualize a
model for representing most real-world incentive mechanisms using rewarding
rules and events. Our model supports reasoning and acting along quantitative,
structural and temporal data associated with teams of workers, allowing com-
position of incentive mechanisms into complex schemes.

Related Work: Most related work in the area of rewarding and incentives orig-
inates from economics, organizational science, psychology and applied research.
It can be used to classify and substantiate the basic rewarding approaches and
expected outcomes, and to simulate the responses to incentive strategies. The
principal economic theory treating incentives today is the Agency Theory[3]. We
use many of the basic findings from this theory implicitly in the foundation of
our model. The paper [6] presents a comprehensive review and comparison of
different incentive strategies. In computer science, the topic has been treated
only within application-specific contexts so far, e.g., social networks[8], human
microtask platforms[5,7], peer-to-peer networks, etc. However, to the best of our
knowledge, the topic has not been previously addressed elsewhere in a compre-
hensive, general manner.

2 Modeling Rewards and Incentive Mechanisms

Incentive is any activity employed by the system to stimulate or discourage
certain worker activities before the actual execution of those activities. Reward
is any kind of recompense for worthy services rendered or retribution for wrong-
doing exerted upon workers after the completion of the activity.

Based on a thorough review of classical economic literature on the topic we
identified the three components that every incentive mechanism consists of:

(1) Evaluation methods serve to assess the quality of worker’s performance
from different aspects. They provide inputs for making a decision whether to ap-
ply a reward/sanction. (2) Incentive conditions represent the business logic
behind the incentive mechanism. They contain the rules for application of re-
warding actions and take the evaluation results as inputs. (3) Rewarding ac-
tions are concrete measures taken against individuals or teams to influence their
future behavior.

Any concrete incentive mechanism can be expressed as incentive rules contain-
ing these three components, in a system-independent way. It is is then possible

152 O. Scekic, H.-L. Truong, and S. Dustdar

State StructureTime

RMod representation

Cond
Action

Eval

incentive mechanisms social computing platform

Cr
ow

d
M

gm
t.notify

modify

translateassemble

HR Manager

Fig. 1. Supporting incentives in social computing environment

to translate automatically such rules into queries and actions upon a rewarding
model (RMod), representing the following aspects of a real-world system:

State represents quantitative state of the system. It includes global attributes
and individual worker attributes, representing different performance metrics
(QoS). These metrics are part of the business logic of a company, and, as such,
represent an input to our model. Time is expressed as a collection of time-
annotated records of past and future worker interactions, supporting various
time conditions and constraints. Structure allows representation and manipu-
lation of various types of relationships among workers.

The RMod represents an abstraction layer between an actual real-world plat-
form that manages worker teams and client’s system-independent representation
of an incentive mechanism (Figure 1). At any time, the RMod must mirror the
current state of the external system. RMod must be versatile and general enough
to model many different real-world platforms and support application of any in-
centive mechanism. Therefore, it must stay decoupled of both. This allows for
seamless switching between different incentive strategies and application of same
strategies on different systems. The aforementioned implies a highly abstract and
minimalistic RMod that fits to various underlying systems, and is able to sup-
port expressing a range of specific incentive mechanisms by the end-users. We
believe that incentive mechanisms should be expressed declaratively, i.e. without
explicit control flow and data manipulation. As in real life, a client then needs
only to specify what incentive actions should be applied and upon which condi-
tions. The condition evaluation and actual scheduling and execution of incentive
actions should be encoded imperatively at runtime in RMod, transparent to the
client. The benefit for the client is the ability to specify human-friendly, portable,
scalable, composable and modifiable incentive strategies. In the remainder of this
paper we focus only on RMod.

2.1 The Rewarding Model (RMod)

To develop a general-purpose model we adopt simple and abstract representa-
tions. An organization, referred to as principal, employs a group of workers to
perform a complex process, consisting of multiple tasks. The principal uses a
system that splits, assigns, and in every other aspect manages task lifecycles. A
worker is assigned a (sub)task to perform in a given time and agrees to be sub-
ject of incentive evaluations. Workers can work individually on assigned tasks, or
have a formalized organization or relationship with the principal (be employed,
be part of teams, have managers, etc.) Workers can be paid and/or otherwise
rewarded for their contribution. Principal’s knowledge of the task progress is

Modeling Rewards and Incentives for Social Computing 153

obtained by periodic messages (updates) that he receives from workers and sub-
sequent reasoning over that data. Similarly, his influence over a worker (penalty,
promotion, bonus, etc.) is performed via legally-binding messages to the worker.
With this assumption, a worker can be represented by a real human, e.g., as a
member of a Social Compute Unit (SCU) [2] and via a Web Service interface.
Without loss of generality, we can assume that the principal employs a group of
humans that perform their work via Web Services, by contracting a third-party
human-labor platform that fully takes care of task and worker management. That
way, we can focus solely on providing the services of management of incentives
and rewards (RI Management).

Task is the basic working unit. Workers are rewarded for working on a par-
ticular task within the task’s timeframe, although the outcome of the evaluation
can also depend on the history of previous contributions. Therefore, the lifetime
of a worker is not related to the duration of the task. The principal maintains
his own view of the workers and the relations between them in a community
graph. The nodes in the graph represent the workers, while the edges represent
different real-world relationships among the workers (e.g., records of past collab-
orations, trust, dependencies, managerial relations, etc.). In addition, each node
is described by a set of attributes. The attributes may represent task-specific
(short-lived) or permanent records of worker’s performance. This is the most
general representation possible. However, in practice we expect this model to be
coupled with a real-world system, so the nodes and relations can be mapped to
entities in a system that uses, e.g., BPEL4People, SCU or a custom platform for
managing tasks and workers.

Each task is performed in iterations. Iteration length is measured in clock
ticks. Clock tick is the basic unit of time measurement. Worker’s progress is
submitted upon iteration expiry so the system can update the QoS metrics.
Iteration is the basic unit for splitting, monitoring and evaluating task execution
in runtime. Iteration cycle length is tunable to allow better runtime adaptability,
as the iteration length can be a significant factor when evaluating results and
can affect the performance of the team. In order to represent history of past
behavior, as well as scheduling of future performance evaluations and rewarding
actions, we include in the model the notions of timeline and event. The timeline
is a time-stamped collection of past and future event records. An event object
encapsulates an executable action and a timestamp. Events are interpreted by
the system as orders or suggestions to the system itself or particular workers,
e.g, to notify a worker to increase QoS level in future iterations, to dissolve a
team, invite new workers, terminate contracts, etc. Events can be generated by
the system itself or originate from an incentive mechanism. They can target
individual workers, groups of workers or global system properties, depending on
the query that forms part of the action contained in the event object.

An event can be in two states: scheduled and past. Scheduled events are
used to enforce/influence future behavior. They contain information to execute
performance measurements, evaluations or concrete rewarding actions in a spec-
ified moment in the future. Scheduled events can be canceled or re-scheduled

154 O. Scekic, H.-L. Truong, and S. Dustdar

HR manager

rules

RModManager

<<provides>>

<<EvaluatedOnChange>>

te1

iteration

ticks
e2 e3 e4

Timeline

<<generates>><<evaluates>>

RModManager

<<executedBy>>

<<usesForGeneratingEvents>>

[tags]

[attributes]

Graph

<<changes/evaluates>>

Fig. 2. Components and interactions in RMod

when needed. The timestamp can be expressed either in iterations or clock ticks.
Time expressed in clock ticks is fixed, whereas time expressed in iterations is au-
tomatically recalculated to an appropriate clock tick if the iteration duration is
altered. This can be useful in many real-world situations. For example, we want
Christmas bonuses to be paid out on a fixed date, while if a process stage is
prolonged due to some unexpected events, we want to reschedule the current
iteration and perform the rewarding only at its end. When the time to execute
an event is reached, the contained action is executed and the results stored back
in the event, which is then archived and put into past state. After that point,
the purpose of the past event is to serve as a historical reference for future
evaluations of workers. An event execution can generate new events, or perform
modifications of the team structure and worker attributes. Events are initially
generated by executing rewarding rules. The rules encode an actual rewarding
mechanism provided by the principal. Those rules that fulfill the execution con-
dition generate new event objects to be stored in the timeline. Rules also contain
the various bits of logic that get embedded into event objects.

Figure 2 describes a typical working cycle of our Rewarding Model (RMod).
Rules provide the necessary logic for performing evaluations and rewarding ac-
tions. At every clock tick rules get evaluated. Only the rules that fulfill a logical
condition will be triggered to execute. The rules examine the current state of
the model and, if an action needs to be performed, produce one or more events.
The action contained in the event will include the logic contained in the rule.
The events then get stored into the timeline. When the appropriate time comes,
the events get executed, modifying the attributes and the graph structure, and
possibly spawning new events. The RModManager boxes in Figure 2 represent
the system that implements the functionalities and manipulates RMod.

Modeling Rewards and Incentives for Social Computing 155

The RMod allows us to express and compose different incentive mechanisms.
For example:

– “At the end of iteration, award each contributor who scored better than the
average score of his neighbors in that iteration.”

– “Reward every worker (contributor) who within the last n iterations scored
a score t or greater in at least k iterations (k ≤ n).”

– “Assign the person with most check-ins at a place a ’Mayor’ badge.”

– “Unless the productivity increases to a level p within n next iterations, replace
team’s current manager with the most-trusted of his subordinate workers.”

3 Conclusions and Future Work

Considering the lack of general methods for defining and composing incentive
mechanisms for social business process, in this paper we analyze common com-
ponents of incentive mechanisms and devise novel techniques for modeling and
representing incentive schemes suitable for emerging, social-based processes. Our
Rewarding Model supports expressing, composing and executing customized,
complex incentive schemes. We are currently developing a prototype and intend
to illustrate our techniques with real-world scenarios that cover the most impor-
tant aspects of rewarding. Furthermore, we are integrating our model with the
Social Compute Unit[2], a framework for on-demand virtual team provisioning
for managing distributed large-scale software systems in clouds.

References

1. Austin, T., Drakos, N., Rozwell, C., Landry, S.: Business Gets Social,
http://www.gartner.com/DisplayDocument?doc_cd=207424&ref=g_noreg

2. Dustdar, S., Bhattacharya, K.: The Social Compute Unit. IEEE Internet Comput-
ing 15(3), 64–69 (2011)

3. Laffont, J.J., Martimort, D.: The Theory of Incentives: The Principal-Agent Model.
Princeton University Press, New Jersey (2002)

4. Lazear, E.P., Shaw, K.L.: Personnel economics: The economist’s view of human
resources. Journal of Economic Perspectives 21(4), 91–114 (2007)

5. Mason, W., Watts, D.J.: Financial incentives and the ”performance of crowds”.
ACM SIGKDD Explor. Newsl. 11(2), 100–108 (2010)

6. Prendergast, C.: The provision of incentives in firms. Journal of Economic Litera-
ture 37(1), 7–63 (1999)

7. Shaw, A.D., Horton, J.J., Chen, D.L.: Designing incentives for inexpert human
raters. In: Proceedings of the ACM 2011 Conference on Computer Supported Co-
operative Work, CSCW 2011, pp. 275–284. ACM (2011)

8. Yogo, K., Shinkuma, R., Takahashi, T., Konishi, T., Itaya, S., Doi, S., Yamada,
K.: Differentiated incentive rewarding for social networking services. In: 10th
IEEE/IPSJ International Symposium on Applications and the Internet (SAINT),
pp. 169–172. IEEE Computer Society (2010)

http://www.gartner.com/DisplayDocument?doc_cd=207424&ref=g_noreg

	Modeling Rewards and Incentive Mechanisms
for Social BPM
	Introduction
	Modeling Rewards and Incentive Mechanisms
	The Rewarding Model (RMod)

	Conclusions and Future Work
	References

