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Abstract  

The accuracy of parametric, non-parametric and semi-parametric methods in 

predicting the one-day-ahead Value-at-Risk (VaR) measure in three types of markets (stock 

exchanges, commodities and exchange rates) is investigated, both for long and short trading 

positions. The risk management techniques are designed to capture the main characteristics 

of asset returns, such as leptokurtosis and asymmetric distribution, volatility clustering, 

asymmetric relationship between stock returns and conditional variance and power 

transformation of conditional variance. 

Based on backtesting measures and a loss function evaluation method, we find out 

that the modeling of the main characteristics of asset returns produces the most accurate 

VaR forecasts. Especially for the high confidence levels, a risk manager must employ 

different volatility techniques in order to forecast accurately the VaR for the two trading 

positions. 

Different models achieve accurate VaR forecasts for long and short trading 

positions, indicating to portfolio managers the significance of modeling separately the left 

and the right side of the distribution of returns. 

The behavior of the risk management techniques is examined both for long and 

short VaR trading positions, while to best of our knowledge, this is the first study that 

investigates the risk characteristics of three different financial markets simultaneously. 

Moreover, we implement a two-stage model selection in contrast of the most commonly 

used backtesting procedures in the attempt to identify a unique model. Finaly, we employ 

parametric, non-parametric and semi-parametric techniques in order to investigate their 

performance in a unify environment. 

Keywords: Asymmetric Power ARCH model, Evaluate Forecasting Ability, Skewed-t 

Distribution, Value-at-Risk, Volatility Forecasting. 

JEL: C32, C52, C53, G15. 
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I n t r o d u c t i o n  

 

Value-at-Risk (VaR) at a given probability level a , is the predicted amount of 

financial loss of a portfolio over a given time horizon. Given the fact that asset returns are 

not normally distributed, since they exhibit skewness and excess kurtosis, it is plausible to 

employ volatility forecasting techniques that accommodate these characteristics in order to 

accurate estimate the “true” but unobservable VaR.  

A researcher can either implement parametric, semi-parametric or non-parametric 

methods in order to calculate the VaR number. In the case of the non-parametric 

techniques, the historical simulation is the most well known and simplifies the computation 

of the VaR as it does not make any distributional assumption about portfolio returns. Even 

if this method has been thoroughly examined by several authors, their conclusions are 

controversial. For example, Hendricks (1996) and Daníelsson (2002) argued that the sample 

size affects the precision of the VaR estimates, with the longer one producing the most 

accurate estimations. On the contrary, Hoppe (1998) proposed the use of a smaller one, 

since it can accommodate the structural changes of the trading behavior more efficiently. 

On the other hand, many researchers prefer to parameterize the properties of the 

underlying distribution. Venkataraman (1996) and Zangari (1996) suggested to the market 

practitioners a mixture of normal distributions, while Billio and Pelizzon (2000) estimated a 

multivariate switching regime model in order to calculate the VaR for 10 Italian stocks. 

Their procedure is different from that of Zangari (1996) as the VaR forecasts were based on 

a two state Markov process instead of a Bernoulli. Alexander and Leigh (1997) estimated 

the exponentially weighted moving average (EWMA) and the autoregressive conditional 

heteroskedasticity (ARCH) models and found out that the ARCH is preferable to EWMA. 

Guermat and Harris (2002) extended the EWMA model allowing for time-variation in the 

higher moments of the return distribution and introduced the exponentially weighted 

maximum likelihood (EWML) model. In the case of US, UK and Japan equity portfolios, 

the EWML model, compared to the GARCH(1,1) specification under both the normal and 

the Student’s-t distribution, improved the estimated daily VaR number at the higher 

confidence level. Mittnik and Paoella (2000) studied the exchange rates and introduced the 

Asymmetric Power ARCH (APARCH) model with an asymmetric generalized Student’s-t 

distribution to allow for time varying skewness. Giot and Laurent (2003a, 2003b) 

considered a skewed Student’s-t distribution, in order to accommodate the leptokurtosis and 

the observed skewness of the financial time series. They focused on the joint behavior of 
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VaR models for long and short trading positions and argued that for both equity indexes 

and commodities the APARCH model had the best overall performance. Huang and Lin 

(2004) reached to the same conclusion, as they argued that the normal APARCH model is 

preferred at lower confidence level, while the Student’s-t APARCH model is more accurate 

than either the RiskMetricsTM or the normal APARCH models at higher confidence level. 

Furthermore, Brooks and Persand (2003) also concluded that the asymmetry is an important 

issue in the VaR framework and therefore it must be modeled either in the unconditional 

mean return distribution or in the volatility specification. 

The filtered historical simulation approach was introduced by Hull and White 

(1998) and Barone-Adesi et al. (1999). This method is a mixture of parametric and non-

parametric statistical procedures as it forecasts the variance through a parametric volatility 

model but it does not make any assumption about the distribution of standardized returns. 

According to Barone-Adesi and Giannopoulos (2001), who compared the filtered historical 

simulation with the historical one, the mixture of parametric and non-parametric statistical 

procedures produces more accurate VaR forecasts. 

Our study sheds a light on the volatility forecasting methods under a risk 

management framework, since it juxtaposes the performance of the most well known 

techniques for different markets (stock exchanges, commodities and exchange rates) and 

trading positions. Specifically, the 95% and 99% one day VaR number is estimated by a set 

of ARCH models (assuming four conditional variance specifications and three 

distributional assumptions), historical and filtered-historical simulations and the commonly 

used variance-covariance method. Under the framework of the parametric techniques, the 

different distributions will allow the selection of a model for the return tails, while we have 

investigated three different markets in order the results not to be dependent on a specific 

financial market. Moreover, we employ a two-stage procedure to investigate the forecasting 

power of each volatility forecasting technique. In the first stage, two backtesting criteria are 

implemented to test the statistical accuracy of the models. In the second stage, we employ 

standard forecast evaluation methods to examine whether the differences between models 

(that have exhibited sufficient unconditional and conditional coverage) are statistically 

significant.  

Although our analysis is similar to the presented papers, there are significant 

differences. First, we examine the behavior of the risk management techniques both for 

long and short VaR trading positions, while most of the research has been applied only on 

long ones. Therefore, we will be able to examine whether an asymmetric model is able to 
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capture both the characteristics of the two tails. Second to best of our knowledge, this is the 

first study that investigates the risk characteristics of three different financial markets 

simultaneously. Hence, we are able to infer whether the financial markets of stock 

exchanges, commodities and exchange rates share common features in the field of VaR 

forecasting.  Third, we implement a two-stage model selection in contrast of the most 

commonly used backtesting procedures in the attempt to identify a unique model. Last, we 

employ parametric, non-parametric and semi-parametric techniques in order to investigate 

their performance in a unify environment, on the contrary to the existent literature which 

focus only on one technique at time. 

Our study shows that although there is not a specific model that accurate estimates 

the VaR number for all financial markets and trading positions, there are some 

characteristics that should be taken into account in order for a risk manager to calculate the 

VaR accurately. For all the financial markets under investigation, we infer that the normal 

distribution produces adequate one-day-ahead VaR forecasts at the 95% confidence level. 

On the other hand, models that parameterise the leverage effect for the conditional variance, 

the leptokurtosis and the asymmetry of the data, forecast accurate the VaR at the 99% 

confidence level. Moreover, short-trading positions should be modeled using volatility 

specifications different from that of portfolios with long trading positions, which implies 

that even asymmetric models are not sufficiently asymmetric. 

The volatility forecasting models and the VaR evaluation methods are presented in 

the 2nd and 3rd sections, respectively. The fourth section illustrates the results of the study 

and the fifth section concludes. 

 

V o l a t i l i t y  F o r e c a s t i n g  M o d e l s  

 

Let  1ln100  ttt PPy  denote the daily return series, where tP  is the price of an 

asset at day t . The ARCH models can be presented in the following general framework: 
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where 0c  is a constant parameter, t  is the innovation process,  1,0f  is a density function 

of zero mean and unit variance, and  .;.g  is a functional form of the past innovations and 

their conditional standard deviation. 

Surveys of Bollerslev et al. (1994), Li et al. (2001), Poon and Granger (2003), 

Degiannakis and Xekalaki (2004) cover a wide range of ARCH presentations. Bollerslev 

(1986) proposed a generalization of Engle’s (1982) ARCH model and introduced the 

GARCH(1,1) specification: 

2
11

2
110

2
  ttt baa  , (2) 

where 00  , 01 a  and 01 b . RiskmetricsTM suggested the exponentially weighted 

moving average, or EWMA, which is a special case of the GARCH(1,1), since 00 a , 

06.01 a  and 94.01 b : 

2
1

2
1

2 94.006.0   ttt  . (3) 

Although the GARCH(1,1) model captures the volatility clustering phenomenon, it could 

not explain the asymmetric relationship between returns and conditional variance. Nelson 

(1991) proposed the exponential GARCH, or EGARCH(1,1), model: 

       2
1111111110

2 lnln   tttttttt bEaa  , (4) 

where the parameter 1  accommodates the asymmetric effect. Glosten et al. (1993) 

presented the TARCH(1,1) specification, where good news  0it  and bad news 

 0it  have different effect on the conditional variance: 

  2
11

2
110

2
  tttt bdaa  , (5) 

for td  denoting an indicator function (i.e. 1td  if 01 t  and 0td  otherwise). Ding et 

al. (1993) introduced the asymmetric power ARCH, or APARCH(1,1), model: 

    111110   tttt baa , (6) 

for 00 a , 01 a , 01 b , 0  and 1 . 

In the influential paper of Engle (1982), the density function of tz ,  .f , was 

considered as the standard normal distribution: 
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Bollerslev (1987) proposed the Student’s-t distribution in order to produce an unconditional 

distribution with thicker tails: 
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where v  denotes the degrees of freedom of the distribution. Lambert and Laurent (2000) 

suggested that not only the conditional distribution of innovations may be leptokurtic, but 

also asymmetric and proposed the skewed Student’s-t density function: 
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where g  is the asymmetry parameter,  .  is the gamma function, 1td  if smzt / , 

1td  otherwise,          11

2221 
 ggvvvm   and 

1222  
mggs  are the mean and the standard deviation of the non-standardized 

skewed Student’s-t distribution, respectively. 

Under the framework of the parametric techniques, the one-day-ahead VaR is 

computed as: 

  ttttt azFVaR |1|1
ˆ;    , (10) 

where  azF t ;  is the corresponding quantile of tz  distribution and tt |1
ˆ   is the one-day-

ahead conditional standard deviation forecast given the information that is available at time 

t . Under the assumption that  1,0~
..

N
dii

t , the calculation of the VaR can be simplified: 

  ttttt aFVaR |1|1
ˆ;    . (11) 

However, the conjecture of normality is not satisfied in financial returns and, hence, this 

method, which we will refer to as Variance-Covariance (VC), usually underestimates the 

“true” VaR. 

The Historical Simulation (HS) method is a simple and intuitive non-parametric 

procedure, which relies on historical returns to calculate the VaR as the corresponding 

percentile of the past m  returns[i]: 

 ayFVaR
m

ttt ;}{ 11|1   - . (12) 

In the case of the parametric methods, the distribution choice is crucial; while in the 

non-parametric case there is no consistent approach in forecasting the volatility. The 

Filtered Historical Simulation (FHS) method, which was presented in Hull and White 

(1998) and Barone-Adesi et al. (1999), combines the two approaches in order to make the 
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most of them. Given an adequate volatility model, such as the GARCH(1,1), the 
ttVaR |1  is 

computed based on the quantile of the standardized innovations: 

  tt

m

tttttt aFVaR |11|1|1|1
ˆ;}ˆˆ{     -- . (13) 

 

E v a l u a t e  t h e  F o r e c a s t i n g  A b i l i t y  o f  V a l u e  a t  R i s k  M e a s u r e s  

 

Our objective is to test these different volatility forecasting techniques under a risk 

management environment. Therefore, we employ a two-stage procedure to evaluate the 

various risk management techniques. In the first stage, two backtesting criteria 

(unconditional and conditional coverage) are implemented to examine the statistical 

accuracy of the models while, in a second stage, we employ a forecast evaluation method to 

investigate whether the differences between the VaR models, that exhibited sufficient 

unconditional and conditional coverage, are statistically significant. 

 The simplest method in determining the adequacy of a VaR measure is to test the 

hypothesis that the proportion of violations[ii] is equal to the expected one. Kupiec (1995) 

developed a likelihood ratio statistic: 

,~]])()1ln[2 2
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N
-  (14) 

under the null hypothesis that the observed exception frequency, TN / , equals to the 

expected one, p , where N  is the number of days over a period T  that a violation has 

occurred. Although the unconditional coverage test can reject a model that either 

overestimates or underestimates the “true” but unobservable VaR, it cannot examine 

whether the violations are randomly distributed. 

Christoffersen (1998) developed a conditional coverage test, which jointly 

investigates whether i) the total number of failures is equal to the expected one and ii) the 

VaR violations are independently distributed. Under the null hypothesis that the failure 

process is independent and the expected proportion of violations equals to p , the 

appropriate likelihood ratio is: 

2
211 ~])1()1ln[(2]1ln[(2 11100100 XpLR

nnnnN

cc  110101

N-T --p)-  , (15) 

where ijn  is the number of observations with value i  followed by j , for 1,0, ji  and 
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  are the corresponding probabilities. 1, ji  denotes that a violation has been 



    

 8 

made, while 0, ji  indicates the opposite. Contrary to Kupiec's (1995) test, 

Christoffersen’s procedure can reject a VaR model that generates too many or too few 

clustered violations. 

However, in most of the cases, there are more than one risk models that satisfy both 

the backtesting measures and therefore a risk manager can not select a unique volatility 

forecasting technique. Hence, in order to select one model among the various candidates, 

we compare the best performed models via a loss function. 

Lopez (1999) proposed to market practitioners a procedure of evaluating VaR 

models based on a loss function approach. According to the Basle Committee on Banking 

Supervision (1996) proposal, he incorporated both the total number of violation and their 

magnitude term. More formally, Lopez’s loss function can be described as: 
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The magnitude term 2
1t|1 )y-(  ttVaR ensures that the larger the failure is the more the 

penalty is added to a model, while a score of one is added, similar to Kupiec's test, 

whenever a violation occurs. According to Lopez's loss function, a model, which minimizes 

the total loss, 



T

t

t

1

, is preferred over the others. 

Based on Diebold and Mariano (1995), Sarma et al. (2003) and Angelidis et al. 

(2004), we examine whether the forecast accuracy of two VaR models is statistically 

significant. Specifically, we test the null hypothesis of equivalent predictive ability of 

models A and B, against the alternative hypothesis that model A is superior to model B. 

The Diebold-Mariano statistic is the "t-statistic" for a regression of tz  on a constant with 

heteroskedastic and autocorrelated consistent standard errors (HAC), where B

t- A

ttz , 

and A

t  and B

t  are the loss functions of models A and B, respectively. A negative value 

of tz  indicates that model A is superior to model B. 

 

E m p i r i c a l  R e s u l t s  

 

Table I summarizes the basic descriptive statistics of the 6 series, while the daily log-

returns graphs are presented in Figure 1. Volatility clustering is clearly visible in Figure 1, 

which suggests the presence of heteroskedasticity. Moreover, based on Jarque-Bera 
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statistic, the null hypothesis of normality is rejected at any level of significance, as there is 

evidence of excess kurtosis relative to that of the normal distribution and non-zero 

skewness. The preliminary descriptive statistics indicate that the characteristics of the two 

tails are different and therefore, it is interesting to evaluate the risk models for different 

trading positions.  

<<Take in Table I>> 

We generate out-of-sample VaR forecasts for two equity indices (S&P500, 

FTSE100), two commodities (Gold Bullion $/Troy Ounce, London Brent Crude Oil Index 

U$/BBL) and two exchange rates (US $ to Japanese ¥, US $ to UK £), obtained from 

Datastream for the period of January 3rd 1989 to June 30th 2003. For all models, we use a 

rolling sample of 2000 observations in order to generate, approximately, 1600 forecasts and 

calculate the 95% and the 99% ttVaR |1+  for long and short trading positions.  

<<Take in Figure 1>> 

The framework in (1) is estimated for (2), (4), (5) and (6) conditional variance 

specifications and (7) to (9) density functions by adopting the maximum likelihood method. 

The EWMA model, the variance-covariance procedure and the techniques of historical and 

filtered historical simulation are applied, giving a total of 16 volatility-forecasting models. 

Under the framework of the loss function approach, we evaluate all the models with 

p-value greater than 10% for both unconditional and conditional coverage tests. A high cut-

off point is preferred in order to ensure that the successful risk management techniques will 

not a) over or under estimate statistically the “true” VaR, as in the former case, the financial 

institution does not use its capital efficiently, while in the latter case it can not cover future 

losses and b) generate clustered violations, since an adequate model must wide the VaR 

forecasts during volatile periods and narrow them otherwise. In the case of a smaller cut-off 

point, an incorrect model could not be easily rejected, which might turn to be costly for a 

risk manager.  

Table II summarizes the two-stage model selection procedure[iii]. In the first stage 

(columns 2 and 3) the models that have not been rejected by the statistical backtesting 

procedures are presented, while in the second stage (column 4), the volatility methods that 

are preferred over the others, based on the loss function approach, are exhibited. For 

example, in panel A, for the S&P500 index, the GARCH(1,1)-normal model achieves the 

smallest value of the loss function, while its forecasting accuracy is not statistically 
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different to that of the EWMA, EGARCH(1,1) and APARCH(1,1) models with normally 

distributed innovations. 

<<Take in Table II>> 

The VC method underestimates the "true" VaR, since portfolio returns exhibit excess 

kurtosis relative to that of the normal distribution. For example, the average exception rate 

at the 99% confidence level for long (short) trading positions is 2.67% (2.80%). Therefore, 

in most of the cases, the p-values of the backtesting measures are close to zero. Examining 

the 95% confidence level we reach to similar conclusion, thus this method is not an 

appropriate technique for risk management. 

On the other hand, the RiskMetricsTM method is more appropriate technique than the 

VC one, as for the 95% confidence level the exception rates are statistically equal to the 

theoretical values. However, in some cases this method generates clustered violations 

indicating that the risk model is misspecified. At the higher confidence level it 

underestimates the “true” value of VaR, since the average exception rate is 68% greater 

than it is expected. 

More sophisticated techniques that accommodate the features of the financial time 

series are needed, in order to calculate the one-day-ahead VaR. ARCH models based on the 

normal distribution (GARCH(1,1), EGARCH(1,1), TARCH(1,1) and APARCH(1,1)) 

perform better than the VC and the RiskMetrics methods. Especially, for the 95% 

confidence level the failure rates are statistically equal to the theoretical values, 

irrespectively of the trading position. However, they underestimate the VaR at the higher 

confidence level, even if this underestimation is smaller than that of the RiskMetricsTM. 

Thus the degree of leptokurtosis induced by the ARCH process does not capture all the 

leptokurtosis presented in the data. Hence, in order to model more adequately the thickness 

of tails, we use two different distributional assumptions for the standardized residuals: 

Student’s-t and skewed Student’s-t distributions.  

Brooks and Persand (2003) pointed out that models, which do not allow for 

asymmetries either in the unconditional return distribution or in the volatility specification, 

underestimate the “true” VaR. Giot and Laurent (2003a) proposed the skewed Student’s-t 

distribution and argued that it performed better than the pure symmetric one, as it 

reproduced the characteristics of the empirical distribution more accurately. These views 

are confirmed for both confidence levels and trading positions, as most of the selected 

models parameterise these features. 
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The volatility specifications, which parameterise the leverage effect for the 

conditional variance and the asymmetry of the innovations’ distribution, forecast the VaR at 

the 99% confidence level more adequately. However, the models that must be employed for 

the short and the long trading positions are not the same. This finding is in contrast with 

that of Giot and Laurent (2003a) who argued that the APARCH model based on the skewed 

Student’s-t distribution forecasts the VaR adequately for both trading positions. 

Contrary to the findings for the 99% confidence level, the ARCH models under the 

Student’s-t and the corresponding skewed distribution overestimate the 95% VaR numbers 

for both trading positions, a result that is also documented by Guermat and Harris (2002) 

and Billio and Pelizzon (2000) among others. Therefore, even if the leptokurtic 

distributional assumption seems to be a better choice overall for the 99% confidence level, 

it should not be applied for the lower confidence interval as it produces higher than 

excepted VaR forecasts. 

Turning the discussion to the non-parametric methods, the HS method underestimates 

total risk, as for most of the cases the exception rates are greater than the expected ones. 

The inadequate performance of the HS may is due to the fact that the underlying 

distribution does not remain constant. 

In terms of the coverage tests, the FHS procedure combined with a GARCH(1,1) 

updating volatility technique offers a major improvement over both the parametric and the 

non-parametric methods, as the exception rates are too close to the theoretical ones for both 

trading positions. For example, at 95% confidence level, the average proportion of failures 

for the long (short) trading position is 5.55% (5.78%). This is also the case for the 99% 

confidence level, as the corresponding percentages are 0.96% and 1.13%, respectively. 

However, the FHS method does not yield the best VaR forecasts, as, for example, it 

underestimates the risk for the FTSE100 index at the 95% confidence level. 

Furthermore, for long position on OIL index (95% VaR) and short position on GOLD 

index (99% VaR), there are no models that produce adequate VaR forecasts. Given the fact 

that for these cases the models have been rejected by the conditional coverage test, there is 

evidence that clustered violations were generated. So, all the models are very slow at 

updating the VaR number when market volatility changes rapidly. 

Finally, we can not compare directly the models based on the backtesting measures, 

as a greater p-value of a model does not indicate its superiority among its competitors. 

However, under the framework of the loss function, this is possible as we evaluate 

statistically the differences between the various risk models. No model seems to 
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systematically produce globally acceptable VaR estimates for all securities, trading 

positions and confidence levels. However, based on the proposed model selection 

procedure, we manage to conclude to a smaller set of models and in some cases we identify 

a unique risk management model. 

 

C o n c l u s i o n  

 

In this paper we examined the most recently developed VaR methods for stock 

exchanges, commodities, and exchange rates. In an out-of-sample study we compared 

parametric, non-parametric and semi-parametric techniques both for long and short trading 

positions. As the backtesting tests do not identify a unique model for each portfolio, we 

define a loss function to evaluate the models that have met the prerequisite of the correct 

unconditional and unconditional coverage. Under the new framework, a model that 

minimizes the total loss is preferred over the remaining ones, while by implementing a test 

for the differences of the forecast error we provide statistical inference for the forecasting 

ability of the models. 

Assuming normality for the conditional return distribution, we forecast accurate the 

one-day-ahead VaR at the 95% confidence level. However, gains in forecasting the 99% 

VaR with models that allow for asymmetries either in the conditional return distribution or 

in the volatility specification are substantial. Different models achieve accurate VaR 

forecasts for long and short trading positions, indicating to portfolio managers the 

significance of modeling either the left or the right side of the distribution of returns. Using 

data from three types of financial markets (stock exchanges, commodities, and exchange 

rates) there is evidence that our results hold for different types of markets. 

An interesting issue for further research would be the implementation of the 

described two-stage model selection procedure for the expected shortfall risk measure, 

which is the value of the loss conditioned that a VaR violation has occurred and has been 

considered as an alternative downside risk measure.  
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Table I. Descriptive Statistics of S&P500, FTSE100, Gold Bullion $/Troy Ounce, London 

Brent Crude Oil Index U$/BBL, US $ to UK £ and US $ to Japanese ¥, for the period of 

January 3rd 1989 to June 30th 2003. 

 S&P 500 FTSE100 GOLD OIL US_UK US_YEN 

Mean 0.034% 0.022% -0.005% 0.016% -0.002% 0.001% 

Median 0.039% 0.043% -0.015% 0.118% 0.015% -0.024% 

Maximum 5.573% 5.903% 7.382% 12.556% 3.058% 6.574% 

Minimum -7.113% -5.885% -7.218% -22.521% -3.081% -3.568% 

Std. Dev. 1.048% 1.070% 0.786% 2.017% 0.586% 0.705% 

Skewness -0.164 -0.105 -0.026 -0.986 -0.162 0.552 

Kurtosis 6.894 5.770 14.571 15.981 5.482 7.653 

Jarque-Bera 2325 1176 19784 25572 934 3523 
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Figure 1. Daily log-returns for the period of January 3rd 1989 to June 30th 2003. 
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Table II. Exhibit 4. The two-stage model selection procedure. Column 2 presents the models that have 

not been rejected by the unconditional coverage backtesting criterion (Kupiec 1995), Column 3 presents 

the models that have not been rejected by the conditional coverage backtesting criterion (Christoffersen 

1998), Column 4 presents the models that are preferred over the others based on the loss function 

approach. In Column 4, the model with the lower value of the loss function is bold faced. 

Series Unconditional Coverage Conditional Coverage Loss Function 

95% VaR 

Long Positions 

S&P 500 EWMA, G-N, E-N, A-N, FHS EWMA, G-N, E-N, A-N, FHS EWMA, G-N, E-N, A-N 

FTSE100 G-T, T-T, G-ST, E-ST, T-ST G-T, T-T, G-ST, E-ST, T-ST G-ST, T-ST 

OIL VC, EWMA, G-N, E-N, T-N, A-N, 

FHS 

- - 

GOLD EWMA, G-N, E-N, T-N, A-N, FHS EWMA, G-N, E-N, T-N, A-N, FHS G-N, E-N, T-N 

US_UK EWMA, G-N, E-N, T-N, A-T, A-ST, 

FHS 

EWMA, G-N, E-N, T-N, A-T, A-ST, 

FHS 

EWMA, G-N, E-N, T-N, A-T, A-

ST, FHS 

US_YEN EWMA, G-N, E-N, T-N, HS, FHS EWMA, G-N, E-N, T-N, HS, FHS G-N, E-N, T-N 

Short Positions 

S&P 500 EWMA, G-N, E-N, T-N, A-N G-N, A-N G-N, A-N 

FTSE100 EWMA, G-N, E-N, T-N, A-N, A-ST EWMA, G-N, E-N, T-N, A-N, A-ST EWMA, T-N, A-ST 

OIL VC, EWMA, G-N, E-N, T-N VC, EWMA, G-N, E-N, T-N G-N, E-N, T-N 

GOLD EWMA, G-N, E-N, T-N, A-N, FHS G-N, E-N, T-N, FHS G-N, T-N 

US_UK G-N, E-N, T-N, A-ST, FHS G-N, E-N, T-N, A-ST, FHS E-N 

US_YEN VC, EWMA, G-N, E-N, T-N, A-N, 

HS, FHS 

VC, EWMA, G-N, E-N, T-N, A-N, 

HS, FHS 

VC, G-N, E-N, T-N, HS, FHS 

99% VaR 

Long Positions 

S&P 500 E-T, T-T, A-T, A-ST, FHS E-T, T-T, A-T, A-ST, FHS E-T, T-T, A-T, A-ST, FHS 

FTSE100 G-T, E-T, T-T, A-T, G-ST, E-ST, 

T-ST, A-ST 

G-T, E-T, T-T, A-T, G-ST, E-ST, 

T-ST, A-ST 

G-T, E-T, G-ST, E-ST, T-ST, 

A-ST 

OIL E-N, A-N, G-T, E-T, T-T, A-T, G-

ST, E-ST, T-ST, HS, FHS 

A-N, A-T, G-ST, FHS A-T, G-ST 

GOLD G-N, FHS G-N, FHS FHS 

US_UK VC, EWMA, G-N, E-N, T-, A-T, 

A-ST 

VC, EWMA, G-N, E-N, T-, A-T, 

A-ST 

VC, G-N, E-N, A-T, A-ST 

US_YEN VC, G-N, T-N, HS, FHS VC, G-N, T-N, HS, FHS T-N, HS, FHS 

Short Positions 
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S&P 500 G-N, T-N G-N, T-N G-N, T-N 

FTSE100 A-N, FHS A-N, FHS A-N 

OIL VC, EWMA, G-N, E-N, T-N, A-N, 

HS, FHS 

VC, EWMA, G-N, E-N, T-N, A-N, 

HS, FHS 

VC, E-N, A-N, HS, FHS 

GOLD A-T, A-ST, FHS - - 

US_UK VC, A-T, A-ST, FHS VC, A-T, A-ST, FHS VC, A-T, A-ST, FHS 

US_YEN G-T, E-T, T-T, A-T, G-ST, T-ST, 

A-T, HS, FHS 

G-T, E-T, T-T, A-T, G-ST, T-ST, 

A-T, FHS 

G-T, E-T, A-T, G-ST, T-ST, A-T 

Models: G-N (GARCH(1,1)-normal), G-T (GARCH(1,1)-Student’s-t),  G-ST (GARCH(1,1)-skewed-t), E-N (EGARCH(1,1)-normal), E-T 

(EGARCH(1,1)-Student’s-t), E-ST (EGARCH(1,1)-skewed-t), T-N (TARCH(1,1)-normal), T-T (TARCH(1,1)-Student’s-t), T-ST (TARCH(1,1)-

skewed-t), A-N (APARCH(1,1)-normal), A-T (APARCH(1,1)-Student’s-t), A-ST (APARCH(1,1)-skewed-t), EWMA (RiskMetrics), VC (Variance 

Covariance Method), HS (Historical Simulation Technique), FHS (Filtered Historical Simulation Technique). 

 

                                                 
[i] For more information about HS method see Hendricks (1996), Van den Goorbergh and 
Vlaar  (1999) and Daníelsson (2002) among others. 
[ii] A violation occurs if the predicted VaR is not able to cover the realized loss. 
[iii] Exhibits with detailed results are available upon request. 


