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ABSTRACT

Motivation: Describing biological sample variables with ontologies
is complex due to the cross-domain nature of experiments.
Ontologies provide annotation solutions; however, for cross-domain
investigations, multiple ontologies are needed to represent the data.
These are subject to rapid change, are often not interoperable and
present complexities that are a barrier to biological resource users.
Results: We present the Experimental Factor Ontology, designed
to meet cross-domain, application focused use cases for gene
expression data. We describe our methodology and open source
tools used to create the ontology. These include tools for creating
ontology mappings, ontology views, detecting ontology changes and
using ontologies in interfaces to enhance querying. The application of
reference ontologies to data is a key problem, and this work presents
guidelines on how community ontologies can be presented in an
application ontology in a data-driven way.
Availability: http://www.ebi.ac.uk/efo
Contact: malone@ebi.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The description of experimental variables, even within a single
discipline, involves the use of many cross-domain concepts. For
example, describing the characteristics of a single sample in an
experiment can use terminology from cell biology, proteomics,
transcriptomics, disease, anatomy and environmental science. This
is not a new problem and it is not restricted to bioinformatics.
However, it is pressing within this domain due to the quantity of
heterogeneous data available in different formats across multiple
resources (Schofield et al., 2009). The desire to integrate data
generated with different experimental technologies and in different
biological domains motivates our work.

Experimental descriptions are captured and made available as
text within database records, published papers and web site content.
These descriptions contain latent semantic information that is hard to
extract and reflects the natural language of the domain. One solution
to this problem is the use of a controlled vocabulary to describe the
data. With this approach, the terminology used in a particular context
is restricted to a set of terms that define important aspects of a domain
or application. Ontology adds an extra layer of expressivity by
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structuring this vocabulary into ontological classes and by specifying
the sorts of operations that can be performed on them. Importantly,
the ontological models produced from this process are expressed in
a language that enables human understanding and computational
reasoning over the representation. Languages such as the W3C
recommendation Web Ontology Language (OWL) (Horrocks et al.,
2003) aid interoperability by standardizing the syntax across all
domains. Advantageously, validation of this OWL representation
can also be performed through the use of description logic reasoners
(Sirin et al., 2007).

In bioinformatics, the interest in ontologies to model domain
knowledge is apparent from the steadily increasing number of groups
developing them. In an attempt to align these efforts, the OBO
Foundry (Smith et al., 2007) provides useful guidance on ‘best
practice’ for developing ontologies in the biomedical domain. This
includes the creation of orthogonal reference ontologies, from which
classes are considered defining units of the area they describe.
Although this is a worthwhile longer term aim, the state of the art
is that existing ontologies are not orthogonal or interoperable, and
many present a focus that is unsuitable for gene expression data.
They can, however, be used to construct application ontologies that
focus on describing and structuring a data space for a particular
application.

While a vision of full interoperability between ontologies
overcomes some of the barriers to integration, there still remain
unresolved issues for data-driven applications. Cross products,
i.e. classes composed of two or more existing classes (formally in
OWL, the intersection of two or more classes), are required between
existing ontologies to more accurately describe ‘omics’ data. For
example, a cell type in a given tissue or the transcription factors
within a pathway activated in a disease state. Few cross products
are available to date partly because many ontologies do not use
a common upper level ontology. Where there are non-orthogonal
ontologies, those that best describe a dataset of interest typically do
not have the necessary cross products. Furthermore, combining even
ontologies that are interoperable can present problems. Ontologies
such as FMA (Rosse and Mejino, 2003) contain tens of thousands
of classes, combined with other ontologies such as Gene Ontology
(GO) and Disease Ontology (Osborne et al., 2009), and this presents
a large model to consider; this is a particular problem if description
logic reasoners are used for consistency checking and inference.

The use of multiple ontologies to annotate experimental data
brings with it a considerable overhead. Consider an annotation
example, where a biological user submitting data needs the term
lymphoma. BioPortal (Noy et al., 2009) returns 629 matches from
24 ontologies. The casual user is not equipped to select from these
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non-orthogonal ontologies and selecting a more specific child term
is more problematic; the Disease Ontology alone has 16 subclasses.
In other cases, such as genetic disease, many diseases are not
present in the Disease Ontology or SNOMED despite their large
size. Inconsistent use of synonyms also presents a problem, as
synonyms are often for a more or less granular term in another
ontology. Another consideration is that ontologies change over time
and managing this in the context of annotations is problematic.
Mechanisms are therefore required to help manage this.

Representation of biological ontologies is necessarily complex
as they have multiple purposes; explicitly modeling biological
relationships, aiding interoperability with other ontologies and
facilitating data annotation, to name a few. This complexity is a
barrier to the consumer of ontology annotated data as they may be
unfamiliar with the language, constructs and labels used. Consider
the class ‘information content entity’ from Information Artifact
Ontology (IAO) (http://purl.obolibrary.org/obo/iao) defined as ‘an
entity that is generically dependent on some artifact and stands
in relation of aboutness to some entity’. Such a definition may
be incomprehensible to a biologist, yet is an important class in
Experimental Factor Ontology (EFO). A user-friendly view on upper
level ontology is thus required.

In this article, we describe our data annotation and query use
cases. We present an application ontology, the EFO, which fulfills
the use cases in the context of gene expression data; the methodology
and tools that we have developed to produce the ontology are
also described and are freely available. We also illustrate the novel
cross-product classes that we create using reference ontologies. Our
application ontology provides a solution for integrating reference
ontologies, extracting information from text, applying annotation
and visualization of biological data.

1.1 Motivation: the Gene Expression Atlas
The Gene Expression Atlas (Kapushesky et al., 2010) provides
summaries of gene expression across multiple experimental
conditions, called ‘experimental factors’. It also provides a gene
level view of experimental data acquired from ArrayExpress
(Parkinson et al., 2009). This data is manually curated to provide an
explicit, consistent and homogenous description across a wide range
of sample attributes, such as species, developmental stage, disease
and tissue type. Protocol parameters related to the processing of
samples, such as application of chemical compounds and sampling
times, are also needed. As of November 2009, there are ∼40 000
unique annotations of sample or assay properties covering 330
species in datasets suitable for the Gene Expression Atlas.

Given the diverse nature of the annotations, there is a need
to support complex queries that contain semantic information.
For example, the query, ‘which genes are under-expressed in
brain cancer samples in human or mouse’, requires the querying
mechanism to understand the term ‘cancer’. Annotations made
at the experimental level are necessarily granular in nature;
an experiment where the sample is of adenocarcinoma will
be annotated with ‘adenocarcinoma’ rather than more generally
‘cancer’. A database query requiring ‘cancer’ would therefore not
return annotations to adenocarcinoma since this requires additional
knowledge. An alternative solution would be to annotate this
sample with adenocarcinoma and cancer and any other intermediate
classifications such as ‘carcinoma’; however, this has a number

of disadvantages. First, this requires curation, a labor-intensive
process. Second, it embeds the semantics within the database, tightly
coupling the data with the domain knowledge. This makes the
approach fragile, since a change or extension to domain knowledge
may require a large database update. It also limits reuse of the
knowledge within other resources.

A better solution to this problem is to annotate data using
ontologies. This enables the separation of the formal description
of domain knowledge, allowing reuse of these resources and
improving interoperability with other data with similar semantic
representations. To annotate the diverse data in the Gene Expression
Atlas, classes are required from multiple existing ontologies to
capture the cross-domain nature of the data.

Initially, we limited scope to data generated to 12 species
including: human, mouse, rat, Arabidopsis, budding yeast, fission
yeast, Drosophila melanogaster, Caenorhabditis elegans and zebra
fish. These species have ontologies that describe anatomy and
developmental stages, though the limitations of gene expression
technology mean that only a subset of tissues or other variables
are typically analyzed. An important use case is the comparability
between experiments, for example, where the same tissue, cell type,
disease and developmental stage was studied across experiments
and species and the data can be potentially combined. Finally, name
value pairs that could be mapped to existing domain ontologies were
prioritized as these also cover the most common queries e.g. disease
state, cell line, cell type developmental stage, etc. Data in the gene
expression domain are typically not mapped to an ontology at the
point of submission, and neither Gene Expression Omnibus nor
ArrayExpress use species-specific ontologies in their submission
tools. Requiring use of ontologies at this point is a barrier to
data deposition, therefore, the majority of ontology mapping occurs
after submission and is based on user-supplied name value pairs
e.g. ‘DiseaseState = breast cancer’. An important use case is text
mining of data prior to its inclusion in ArrayExpress.

Exploratory analyses of the data prior to the construction of EFO
revealed that many terms appear at high frequencies and there is a
‘long tail’on the data distribution (Malone et al., 2009). For example,
in the ArrayExpress archive ∼1350 samples have the annotation
‘heart’, 65 ‘ventricle’, 14 ‘myocardium’ and a single annotation for
‘pericardium’. Compare this with the representation of the human
heart from the Foundational Model of Anatomy (FMA) (Rosse and
Mejino, 2003) where there are >20 terms describing the various parts
of the heart. It is clear that comparatively few terms are needed
to describe the data in the Gene Expression domain and that the
complexity in FMA is not needed. For both text mining and query
purposes across free text in the data, there is a requirement for
synonyms. This includes ‘local synonyms’, e.g. ‘whole brain’, to
detect user-defined annotation or to deal with alternate spellings.
Our approach for the gene expression domain therefore is analogous
to that of the GO (Blake and Harris, 2008), which was initially
developed to describe gene products for model organism databases;
it has a data-driven motivation, with ontological principles such as
use of an upper level ontology applied to provide robustness and to
allow interoperability with other ontologies.

2 METHODS
The EFO is an application ontology—an ontology engineered for domain-
specific use or application focus and whose scope is specified through testable
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use cases and which maps to reference or canonical ontologies. EFO was
developed following the ‘middle-out’methodology first described in Uschold
and Grüninger (1996) and later by (Gómez-Pérez et al., 2004). Ontologies,
like software, should conform to a set of specifications and use cases, and
can be tested using competency questions. Use cases are used to determine
the classes we include, and the relations, restrictions and axioms used in our
ontology:

(1) Data annotation—goal: the primary use case for this application is
the annotation of transcriptomics data in the Gene Expression Atlas.
Task: this is a coverage use case, i.e. can we annotate all of the data
we wish to associate ontology classes with?

(2) Query support—goal: to enable querying across hierarchies for which
data exists (and is annotated). Task: enabling queries such as ‘retrieve
all cell line data that is derived from epithelial tissue and are associated
with cancer’.

(3) Data visualization and exploration—goal: to present a tree structure
of annotated data within Atlas. Task: presenting an ontology tree to
the user to show which classes have associated data.

(4) Data integration—goal: to allow integration of data both across
experiments in Gene Expression Atlas and externally. Task:
integrating with external resources that use or map to the same
ontology class and compare data from these independent sources.

(5) Data summarization and mining—goal: to obtain an analysis of
samples, given common conditions of interest. Task: provide a
summary for gene expression data levels for samples treated across
same condition, e.g. treated with bacterial toxins.

In addition to use cases, a list of competency questions allows us to evaluate
at which point the ontology is able to satisfy the scope of the application
(Stevens et al., 2000). Examples include ‘Which cell lines are derived from
epithelial cells?’ and ‘which organism parts are parts of the forebrain?’
As the ontology will be applied in the context of gene expression data,
e.g. ‘which genes in cancerous vs. normal kidney samples in humans show
differential expression?’, both an ontological query and a data-driven query
in the context of an application are needed. The ontology therefore should
represent ‘cancer’, ‘kidney’ and ‘human’ to resolve this query while the
differential expression is determined by the application of the ontology in
the context of the data, and this competency question therefore demonstrates
the application domain.

One approach to ontology development is the use of a modular
methodology using a mixture of generic domain, generic task and application
ontologies whose parts are clearly defined so that they can be reused
(Stevens et al., 2000). Our methodology reuses reference ontologies (full
list available at http://www.ebi.ac.uk/efo/metadata), where they exist and
where they describe classes that are in scope for EFO. We also enrich these
classes with additional axioms e.g. making associations between cell lines
and their cell types of origin. To promote interoperability with the OBO
Foundry ontologies, we have selected BFO as an upper ontology; however,
we use only a subset of its classes necessary to fulfill our use cases and we
provide user-friendly class labels. An outline of the high-level classes that
structure EFO is illustrated in Figure 1. The five primary axes used are as
follows: information, site, process, material and material property.

Our ontology development methodology is as follows (complete process
documents can be found at www.ebi.ac.uk/efo):

(1) Extract data annotations from the Atlas. Determine the depth and
breadth of these annotations and target the most frequently occurring
annotations.

(2) Identify OBO Foundry reference ontologies relevant to an EFO
category based on annotation use cases.

(3) Use the query use cases obtained from analysis of query logs to build
an appropriate hierarchy.

Fig. 1. EFO upper level structure used to organize the ontology with
intermediate node examples.

Fig. 2. Separating the ontology layer (EFO) from the data (ArrayExpress)
and the presentation layers (Atlas).

(4) Perform mapping between existing annotations and reference
ontologies using the Double Metaphone phonetic matching algorithm.
This produces a list of candidate ontology class matches.

(5) Expert validation of candidate matches, curate and include matched
classes into the EFO hierarchy with appropriate intermediate nodes.
Adding classes takes two forms: Where there is no overlap between
reference ontologies, import the class directly into EFO [maintaining
the original Uniform Resource Identifier (URI)]. Where overlap
exists, create a new EFO class (with EFO URI) as a ‘mapping class’
and add annotation properties with URIs of all mapped classes.

(6) Perform mappings to other reference or application ontologies where
these are not provided by the source ontology.

(7) Add structure to EFO to provide an intuitive hierarchy with user-
friendly labels and add restrictions to add value e.g. associate cell
lines with cell types and tissues of origin.

The strategy of decoupling the data, the presentation layer and the semantic
layer is illustrated in Figure 2. Using EFO as a separate layer in our
application means we are able to effect changes to the ontology, such as
adding new classes or new class relations, without modifying the underlying
data or the presentation layer and manage changes in reference ontologies
cleanly. A further advantage of this approach is that the ontology can be
reused without imposing any special requirements on the implementation or
on the application presentation layer, thereby enabling EFO to be used in
other applications and expanded accordingly.

Our methodology also aims to observe OBO Foundry best practice
guidelines. A set of OWL annotation properties are used to capture metadata
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about the classes; we add human readable labels and use univocal and
consistent syntax for class names. Metadata details for EFO can be found at
http://www.ebi.ac.uk/efo/metadata. We also use the Relation Ontology (RO)
(Smith et al., 2005). There are relations that are not captured by RO (such
as those used in OBI), and therefore, we extend RO where necessary. Our
intention is to integrate with future, richer versions of RO when available.

2.1 Detecting external ontology changes
Ontologies that are used within biology evolve rapidly due to scientific
advances and because the associated computational technologies are
themselves rapidly evolving (Smith et al., 2007). Because we consume from
multiple ontologies, class information must be maintained and updated. This
problem is no more severe than if we mapped data annotations to each
ontology separately, rather than to EFO that maps to external reference
ontologies.

Here we list the changes in external ontologies which affect EFO:

(1) An axiom is added to an existing named class.

(2) An axiom is removed from an existing named class.

(3) A new named class is added to the ontology.

(4) A named class is made obsolete.

(5) An annotation property is edited on a named class.

The OWL-API (Horridge et al., 2009) provides a Java-based interface which
allows manipulation of OWL ontologies at the axiom level. Therefore,
comparing two different versions of OWL ontologies in an axiom-based
approach, as seen in the OWL-API, can be achieved using a set difference
operation. In set theory this is given by a relative complement. Formally, for
sets A and B the relative complement of A in B, that is, the set of elements
in B, but not in A, is given as:

B\A={x∈B|x /∈A} (1)

Given two sets of axioms, A and B, and axiom an:

A = {a1,a2,a3,a4},B = {a1,a2,a3,a5}
B\A = {a1,a2,a3,a5}\{a1,a2,a3,a4}

= {a5}
For a set of axioms which are equal:

A = {a1,a2,a3,a4},B = {a1,a2,a3,a4}
B\A = {a1,a2,a3,a4}\{a1,a2,a3,a4} = ∅ (2)

∴A=B (3)

We can use this information to deduce that no changes have occurred
between ontologies and moreover to infer that the classes A and B are
logically equivalent. We have designed a freely available tool, Bubastis, to
analyze and report on the five major types of ontology changes we enumerate.
Specifically, we extract the classes mapped to EFO and check for changes.
A log of any changes is created along with relevant time and date stamps and a
report generated. Usefully, if there are no changes the tool will automatically
report this too.

This approach allows us to computationally manage the imports and
mappings we create within EFO, ensuring they are valid and reducing the
overhead on ontology curation. It also allows us to manage remapping data
annotations to EFO which makes the curation process easier. Importantly, this
allows us to maintain a consistent use of external resources ensuring that we
do not map to obsolete classes, and erroneous mappings caused by external
changes are flagged. There is still an outstanding issue of how ‘correct’ the
external resources are. For example, reference ontologies EFO has consumed
contain their own mappings which we have further imported to expand
interoperability. On scrutiny, some of these were found to be incorrect. For

example, mappings to EFO class brain structure derived from synonyms
in an external ontology Minimal Anatomical Terminology (MAT) included
abnormal brain. Errors of this type are communicated back to the authors of
the source ontology. This represents a useful feature of this methodology; we
review how reference bio-ontologies map to one another and how correct
these mappings are. It is clear that synonyms are used in different ways
in different contexts and care must be exercised when using these; we
now validate synonyms prior to including these and provide feedback both
requesting terms and flagging errors when performing mapping.

2.2 Creating an ontology view
While an upper level framework can provide structure to the ontology, such
high-level classes (cf. Fig. 1) can often appear as abstract and confusing
for biological users. For example, the Basic Formal Ontology (BFO)
(Grenon and Smith, 2004) contains the classes continuant and occurent.
Such classes are useful to organize the ontology and to aid interoperability
between ontologies, but are less helpful for a biological user. With this in
mind, we use only some of BFO within EFO, and those parts are hidden
from users. First, we create an annotation property, ArrayExpress_label,
which we use to indicate a preferential label that is displayed in the Atlas
browser which replaces any other label on the class, though such labels
may also be synonyms and are supported for queries. For example, the
BFO class processual entity is displayed as process in the Atlas user
interface for readability. Second, we use a further annotation property
organizational_class which is given a value of ‘true’ in any classes we wish
to hide from the user (e.g. disposition) which are identified as structural and
which are not desired to be visualized in queries. This allows us to show parts
of the ontology relevant to the users, while still using an accepted upper level
ontology.

Views generated from EFO are used in both the Atlas and ArrayExpress
Archive. EFO is used to improve searching across textual experimental
descriptions and key value pairs used to annotate samples. When a user enters
a keyword that matches an EFO class, synonyms found in alternative_term
annotation properties in EFO classes are also used in the search, thereby
returning extra matches. We also provide an option to extend searches with
classes related to their query via is_a or part_of ontological relations.

This functionality as deployed in the ArrayExpress Archive is powered
by the Apache Lucene as a search engine, and we have packaged the EFO-
powered search extension as a separate Java library. The algorithm consists of
two parts. First, EFO in OWL format is parsed; the ontology tree is traversed
and synonyms, all part_of or is_a children for all classes in EFO are extracted
and a map structure is built for fast lookup. Second, the map structure is used
with a rewritten input Lucene Query with additional synonyms and children
(if the option is selected and if they exist). For our previous example, query
‘breast carcinoma’is transformed to (breast carcinoma OR ‘breast cancer’OR
‘ductal carcinoma in situ’, etc.). This library is available as stand-alone JAR,
Maven artifacts and source code from http://github.com/arrayexpress/ae-
interface/tree/master/components/efo-query-expand/. The Gene Expression
Atlas code base is currently under revision to create a stand-alone install
anywhere utility, which will also become publicly available and open source
in the near future.

2.3 Supporting the linked data vision
In addition to using EFO within the Gene Expression Atlas and ArrayExpress
Archive, we also embrace the ideas of linked data and integration with
external resources. In the context of the semantic web, linked data
describes a method of creating typed links between data (Bizer et al.,
2009). In EFO, we use dereferenceable URIs for all of the classes in
the ontology which are assigned EFO URIs. Such classes are assigned
a unique identifier, e.g. http://www.ebi.ac.uk/efo/EFO_0000001, with the
number fragment incremented for each new class. Since each of these
identifiers is dereferenceable via the http protocol, they can be requested
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from a web server and information about the class returned as user-
friendly content. These pages contain information such as the Resource
Description Framework Schema (RDFS) class label, parent classes, child
classes and annotation properties e.g. text definition. These pages are also
machine readable: the source code for each page is actually an EFO
Resource Description Framework (RDF) fragment describing a specific
class. Computer agents can therefore interact with the EFO class web pages
in a way that is analogous to human user interaction. Note, this does not
apply to those classes in which URIs are imported from external ontologies;
for such ontology URIs, the owner of these ontologies would be responsible
for creating dereferenceable URIs.

There are two key elements to linking gene expression data. The first is
that parts of the Atlas sample and assay data are annotated with EFO class
identifiers. We associate data elements to our explicit definition of what the
data represent, by annotating each experiment with EFO classes. The second
element is the set of cross-ontology mappings that are maintained within
EFO. As EFO is an application ontology, there is an advantage in reusing
and importing classes from existing ontologies where possible. Not only
does this reduce the effort in adding new classes to EFO, but it also provides
interoperability (via cross references) with other resources that use these
existing ontologies.

There are a number of challenges associated with this approach. One of the
most challenging is deciding upon the appropriate ontology to select when
attempting to reuse classes. In the simplest case, where overlap does not
exist and there is a clear single authoritative reference ontology, we simply
import that class with the original URI maintained, e.g. BFO. However,
there are a limited number of examples for where this is the case; for many
terms, there may be multiple classes that can fulfill the required definition.
For example, consider the term hypertension: as of January 2010, there are
12 exact matches for this class label when querying the NCBO BioPortal
and most of these ontologies provide definitions consistent with our data
annotation use cases. For this reason, we performed some preliminary data-
ontology mapping which allowed us to both assess the matching algorithm
and the available reference ontologies for coverage on gene expression data
(Malone et al., 2009). Recently, a tool designed to assist with selecting
the most suitable ontologies for a given task has become available, and
essentially replicate our early work in an extensible framework (Jonquet
et al., 2009). As we require EFO to be cross-referenced to as many external
functional genomics datasets as possible, we maximize interoperability and
therefore add as many mappings to different ontologies as are valid for
our given class and curate these. The decision to create multiple external
mappings to EFO classes clearly presents additional overhead to both the
initial set of mappings and the subsequent maintenance of these mappings, as
both are labor intensive if performed manually. We have therefore developed
semi-automatic mapping tools.

Our matching approach uses the Metaphone (Phillips, 1990) and Double
Metaphone algorithms (Phillips, 2000), which were selected following
an empirical study of commonly used matching algorithms and their
utility in the biomedical domain (Malone et al., 2008).1 We were
particularly interested in algorithms yielding low false positive rates, as
we wished to use the same algorithm for semiautomatic annotation of
incoming data to the ArrayExpress Archive as a curator aid. Following
the evaluation of several algorithms, a combined strategy was implemented
using Metaphone for a first pass and then falling back to Double Metaphone
for those terms not matched by Metaphone. This strategy yields the
highest overall number of matches with minimal human intervention
(required only for multiple matches). Verified matched terms identified
by this strategy were included as valid mappings in EFO and added to
a definition_citation annotation property. We have developed a species-
specific ranked list of preferred ontologies with known good coverage
when mapping to new terms. We prefer to use OBO Foundry candidate
ontologies when these provide good matches and use general uncurated

1Tools available at http://www.ebi.ac.uk/efo/tools

Fig. 3. Added value relations between classes in EFO. The figure illustrates
the existential restrictions (i.e. one or more relationship) placed on some of
the subclasses of the classes shown (classes shown in boxes).

resources like Unified Medical Language System (UMLS) only when
necessary.

3 RESULTS
The diversity of experiments captured in the Gene Expression Atlas
and ArrayExpress provides a wide range of experimental variables.
A typical experiment includes factors such as disease, anatomical
parts, developmental stage, species and chemical compounds.
Within these experimental factors, there is additional knowledge that
we capture to support our use cases. Consider the query, ‘retrieve
all data for cancer cell line samples’. This query requires more than
just samples in the database which have been annotated with cancer
and with a cell line. The query is more accurately expressed as cell
lines that are derived from some diseased sample. We therefore add
logical relations between classes in the context of EFO; these can
serve as OBO Foundry integration use cases. An example of some
of the existential restrictions between classes is shown in Figure 3.

The ability to explicitly express richer statements of knowledge
(such as the example above) is one of the major advantages of using
ontologies; however, with increased complexity comes increased
possibility of contradiction and inconsistent expression. To help
manage this issue, we chose to use the Web Ontology Language
(Horrocks et al., 2003), the recommendation for representing
knowledge with formally defined meaning. Using the OWL-DL
flavor of the language, we are able to create axiomatic statements
about classes, and use the Pellet 1.5.2 description logic reasoner
(Sirin et al., 2007) to ensure the ontology is consistent, i.e. class
membership is axiomatically correct and there are no contradictions
in the model. OWL also offers the ability to create ‘equivalent
classes’ (often called defined classes) which are useful for inferring
hierarchies and managing multiple inheritance. Considering the
previous example of the EFO class ‘cancer cell line’, this is defined
in OWL as any class which has the ‘bearer_of some cancer’ axiom.
In other words, any cell line which bears the disease cancer will be
inferred to be a subclass of this type. Here we illustrate some of
these examples from our application.

3.1 Querying gene expression data
In order to demonstrate that EFO is fit for purpose, we evaluate it
against the competency questions and use cases. One of the primary
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Fig. 4. Gene Expression Atlas Query for genes under- or overexpressed in
mammalian ‘craniofacial tissues’.

use cases for EFO was to annotate ArrayExpress data (i.e. providing
ontological coverage) and to ask meaningful questions of gene
expression data.

In a recent review conducted by Jonquet et al. (2009), EFO was
assessed for coverage in annotating biological datasets using an
NCBO tool, the Open Biomedical Annotator. Alongside 98 English
ontologies in UMLS 2008AA and 92 of the BioPortal ontologies,
in total, these resources offer a dictionary of 3 582 434 classes
and 7 024 618 textual terms. Following experimentation with three
biological datasets, EFO is reported as fourth best in all three tests.
EFO performs well in these tests due to the data-driven development,
cross-domain method we use. It is also noticeable that the ontologies
that finished in the top three were significantly larger than EFO, for
example, NCI Thesaurus has ∼35 000 classes compared with ∼2600
classes in EFO.

The real return for the user when using an ontology is in
the additional relations used for improving queries. Due to the
relations used in EFO, we are able to ask general questions without
requiring that every subtype is enumerated in the query. For example,
for experiments about cancer, we want all subtypes of cancer,
for example prostate carcinoma, without requiring the user to
specifically enumerate these subtypes and we want to return only
subtypes for which we have data. Similarly, we want a user to
be able to ask for ‘forebrain’ and the query to return data that
is annotated with forebrain substructures such as hypothalamus.
Finally, for mouse we want to return data annotated to Mus musculus
and substrains thereof.

Figure 4 shows the results of a query for ‘gene that is expressed
in craniofacial tissues or sub structures’. Within the ontology,
relations are made between classes such as those seen in Figure 4.
Specifically here, the query is asking for genes which are over- or
underexpressed in assays that are annotated with an organism part
that is craniofacial tissue or a sub-structure. Figure 4 presents the
parts of the ontology that satisfy this query at the top of the image.
The tree includes classes such as eye (synonym eye structure), which
expands to include its substructures such as retina.

Fig. 5. Ontology-enabled search using EFO, showing query expansion for
keyword ‘cancer’ with breast carcinoma selected. Subtypes (red), synonyms
(green) and matches to the search term (yellow) shown in the ArrayExpress
Archive.

As described earlier, EFO has also been used in the ArrayExpress
Archive (http://www.ebi.ac.uk/arrayexpress) to enrich querying.
Figure 5 illustrates that in addition to keyword ‘breast carcinoma’
(yellow), EFO-enabled search returns experiments matching is-a
children, e.g. ‘medullary breast cancer’.

3.2 Linking data through BioPortal
An additional advantage to using an ontology to annotate data in
the Atlas is in the use of external ontology tools. The BioPortal
resource at NCBO is an open repository of biomedical ontologies
that provides access via web services and web browsers to
ontologies developed in OWL, RDF and OBO format (Noy et al.,
2009). It allows the searching of biomedical data resources such
as ArrayExpress, through the annotation and indexing of these
resources with ontologies that can be accessed through BioPortal.

Since EFO is used to annotate data in ArrayExpress and also
provides multiple mappings to other ontologies, it is possible to
query data through BioPortal using ontology class names and return
annotated data from multiple resources via the BioPortal’s Resources
facility, for example, pathway data from Reactome.

4 DISCUSSION
In this article, we present EFO, an application ontology driven by
the annotation and query needs of samples in ‘omics’ datasets. Our
approach to ontology engineering uses the many existing reference
bio-ontologies while allowing us to develop a hierarchy that supports
our use cases. EFO enables queries of the data that were not
previously possible because we add value to existing ontologies
by adding explicit relations and because we have adopted a data-
driven methodology. Furthermore, EFO separates knowledge from
the experimental data, is reusable and easy to maintain; when
modification to the knowledge is required, modification to the data
is not. We believe the methodology and tools present a reproducible
and maintainable strategy to create ontological solutions for a
particular application focus. EFO has also proven to be useful for
text mining annotation of gene expression datasets and has been used
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in data mining. An EFO-R package that facilitates such analysis is
currently under development.

Essentially EFO represents a custom view of several domain-
specific ontologies. We believe that use of ‘ontology views’ will
help end users to understand and use ontologies. An advantage
of EFO for ArrayExpress staff is that they do not need specialist
domain knowledge of multiple ontologies and are able to apply EFO
consistently to data, while users typically do not perform well as
annotators. Ideally, views should contain a subset of the ontology
that is still logically consistent containing only classes, instances and
properties that are desirable. The requirements of a view are likely
to be driven by particular applications and user communities as
described here. Improved tools that support the creation and use
of views will help the users of bioinformatic resources overcome
one of the largest obstacles of using ontologies: that the learning
curve is extremely steep and the climb is a disincentive to users.

There is a great deal of useful work presently under way within the
bio-ontology community. However, it is impractical and undesirable
to import, wholesale, ontologies that touch upon many domains and
expect users to apply them consistently. Guidelines on development
of application ontologies and appropriate reuse of existing resources
would be useful. In particular, maintenance and mapping of original
ontology identifiers and development of public domain tools are
important. Similarly, there are several important challenges facing
reference ontologies. One of the most challenging is mapping
anatomy between multiple species. This is not in scope for EFO
and we look forward to consuming such reference ontologies, but
application data should inform some of this work.

Our work with ontologies is focused on enabling us to do novel
research with the experimental data we have, such as answer more
complex questions and integrate multiple data sources. In this
respect, ontologies are a means to an end; our work here is based
on describing experimental data, and we believe this should be the
driving force behind ontology development and consumption.

Future work will develop an RDF triple store representation
of Atlas and provide federated querying using SPARQL end
points. An ontology-enabled annotation application for functional
genomics data—Annotare (code.google.com/p/annotare/ ) is being
collaboratively developed, which allows users and curators to select
terms from multiple ontologies, including EFO. We hope this will
expose users to ontologies in a user-friendly way and help provide
better annotated datasets.
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