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The model-based vision requires object appearances in the computer. How an object appears in
the image is a result of interaction between the object properties and the sensor characteristics.
Thus, in model-based vision, we ought to model the sensor as well as modeling the object. In the
past, however, the sensor model was not used in the model-based vision or, at least, was
contained in the object model implicitly.

This paper presents a framework between an object model and the object appearances. We
consider two aspects of sensor characteristics: sensor detectability and sensor reliability. Sensor
detectability specifies what kind of features can be detected and in what area the features are
detected; sensor reliability specifies how reliable detected features are. Commonly available
sensors are briefly examined in terms of their sensor characteristics. We define the configuration
space to represent sensor characteristics. We propose a representation method of the sensor
detectability in the configuration space. Sensor reliability distribution is also discussed in the
configuration space. Under this framework, we characterize the photometric ste m and the light-
smpe range finder as examples.
space on which a sensor's detectability is expressed in the uniform

way. Sensor reliability analysis consists of reliability distribution
and error propagation fron observed data to geometric features.
Under this framework, we characterize the photometric stereo and
the light-striperange finder as examples.

1. INTRODUCTION

The model-based vision requires object models in the computer.
Various researchers propose many kinds of object models, ranging
from generic models such as generalized cylinders(S, 28,9, 37},
extended Gaussian images(38, 19, 18), and super quadric
models [35] to specific models such as aspect model (25, 11, 20],
region-relation model (4, 34, 6], and smooth local symmetry (7, 81.

2. SENSORS IN THE MODEL BASED VISION

Thiis section gives a brief survey of commonly available sensors in
the model-based vision. We include both passive and active sensors.
The following sensors are often used: edge detector (36,27, 10],
shape-from-shading{17, 22), binocular stereo(29, 14, 3, 33), time-
of-flight range finder(24,15], light-stripe range finder[1, 34],
trinocular stereo [32], photometric stereo (40, 21}, polarimetric light

The object appearances, however, are determined by a product of an
object model with a sensor model. Thus, in the model based vision, it
is insufficient to consider only an object model; it is essential to
exploit a sensor model as well. On the other hand, modeling sensors

for model-based vision has attracted littte attension; quite often,
researchers who are familiar with the sensors they use tended to
construct object appearances by implicitly incorporating their sensor
behavior. This paper. in contrast. explores a general framework for
explicitly incorporating sensor models which govern the relationship
between object models and object appearances.

A sensor model must be able to specify two important
characteristics:  sensor detectability and Sensor reliability. The
sensor detectability specifies what kind of features can be detected
and in what condition the features are detected. The Sensor
reliability specifies how reliable the detected features are. This
paper, thus. present a method for modeling sensors with sensor
detectability and sensor reliability. Commonly available sensors are
briefly « xamined in terms of their sensor characteristics. Then,
representation techniques for sensor characteristicsare explored. We
define the configuration space to represent sensor characteristics.
Finally, we consider two aspects of sensor characteristics: sensor
detectability and sensor reliability. We propose a representation
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detector [26],and SAR (Synthetic Aperture Radar) [12, 39, 31].

Each sensor is a mapping function from object features to sensor
features. Object features such as faces, edges, and veneces exist in
the three-dimensional object space. These object features in the
object space are mapped to sensor features such as regions, lines, and
points in the sensor space. Note that the sensor features has no
meaningful interpretationin the sensor space. For example. a sensor
feature such as a region should be considered as a collection of
points which are not grouped as one meaningful unit by a sensor.
The conversion process from sensor features to geometric features
will group a collection of ponits into a geometric feature such as a
region

Table 1 gives the summary of detectable features in the object space
by commonly available sensors. For example, an edge detector can
detect some edges in the object space as lines in the sensor space.
Since it does not need special light sources, it is classified as a
passive Sensor.



Table 1 Detectable Object Features

Sensor Vertex |Edge Face active/passive
Edge Detector no yes no passive
Shape-from-shading no no yes passive

SAR yes yes yes active
Time-of-FlightRange Finder | no no yes active
Light-stripe Range Finder | no no yes active
Binocular Stereo no yes no passive
Trinocular Stereo no yes no passive
Photometric Stereo no no yes active
Polarimetric light detector | no no yes active

Since the brightness change does not occur over any face, passive
sensors have usually difficulty in detecting faces. An active sensor
projects lights over the scene; stronger reflection can be obtained
from faces; weaker or no reflection is given from edges and vertices.
Thus, most active sensors are good in detecting faces, while they can
detect neither edges nor vertices.

Sensor features in the sensor space are summarized in Table 2. In
Table 2, a line means a line-shaped collection of detected points and
a region means a region-shaped collectionof detected points. For all
sensors except SAR the correspondence between the object feature
and the sensor feature is one-to-one. For example, an edge detector
geenrates one line-shaped sensor feature corresponding to either one
edge or one reflectance discontinuity line of a object feature in the
object space. Photometric stereo generates a surface orientation
distribution as sensor features which corresponds to one physical
face in the object space. On the other hand, SAR generates either
line-shaped sensor feature or point sensor feature from one edge in
the object space depending on the sensor configuration. A precise
discussion of SAR will be found elsewhere[12, 39, 31].

‘ Table 2 Detected Sensor Features |

| sensor | vertex |[EBdge  |Face |
| Edge Detector - line |-
|§1£é-from-shading - - region
L point point/line | line
Time-of-FlightRange Finder | - - region
Light-stripe Range Finder - - region
Binocular Stereo - line -
Trinoouwtar Stereo - line -
Photometric Stereo - - region
Polarimetriclight Detector |- - point

While this summary tells in general what object features are
detectable in what forms by various sensors,:t is also important ©
characterize in what viewing conditions those features are actually
detectable and how reliable the detected features are. FOr that, we
need to develop a representation tool for relation between object
coordinates and sensor coordinates.
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3. REPRESENTING SENSOR CONFIGURATION
This section defines the sensor configuration space on which sensor
detectablility and sensor reliability are specified. Sensor
detectabilityand reliability depend on various factors: distance of an
object, configuration of an object. reflectivity of an object.
transparency of air, and background noise such as the sun’s
brightness. In the model-based vision, since the target object and its
rough distance is a prior known, mainly angular freedom of object
affects on detectability and reliability. Thus, we will define a space
to spacify the relationship between the sensor coordinate and the
object coordinate.

The relationship between the sensor coordinate and the object
coordinate can be specified by three degrees of freedoms; two
degrees of freedom in the sensor directionand one degree of freedom
in the sensor rdt=at@on  Since the relationship between two
coordinatesis ralative, for the sake of convenience. we fix the sensor
coordinate and discuss how to specify the object coordinate with
respect to the sensor coordinate.

We will depict an object coordinate as a point in the following
sphere. The point direction from the center denotes the z axis of the
object coordinate, (8,¢), where 8 and ¢ specify the zenith angle and
the azimuth angle of the z axis. The distance from the spherical
surface to the point denotes the axis rotation around the z axis, .
On the spherical surface. we set points such that corresponding
coordinates satisfy ¢+y=0. The north pole of the sphere corresponds
to the sensor coordinate.

Due to the bias of z axis rotation, this sphere has no discontinuity
around the north pole. Actually. this sphere is a three dimensional
projection of four dimensional quaternion space. Precise discussion
will be found [23). We will refer to the sphere as the configuration
space.

Figure 1: The configuration space



4. DETECTABILITY OF SENSORS

In the previous section, we have defined the way to represent the
relationship between the sensor coordinate and the object coordinate.
In this section, we will develop a constraintto determine whether an
object feature can be detected at each point of the configuration
space.

4.1. Constraintsin Configuration Space for Feature
Detection

Each sensor has two components: sources and detectors. For
example, both a time-of-flight range finder ad a light-stripe range
finder have one source and on detector. Binocular stereo has one
source and two detectors; photometric stereo has three sources and
one detector. Table 3 summarizes the number of sources and
detectorsof each sensor.

Table 3 Source and Detector
Sensor Number of sources Number of detectors
Edge Detecor 1 1
Shape-from-shading 1 1
SAR 1 1
Time-of-Flight Range Finder 1 1
Lighi-stripe Range Finder 1 1
Binocular Stereo 1 2
Trinocular Siereo 1 3
Photometric Stereo 3 1
Polarimetric light detector n 1

One source only illuminates one part of an object; one detector only
observes one part of the object. Each sensor which consists of
sources and detectors, only detect one part of the object. Thus, in
order to specify the detectable area of each sensors. we need to
define each source’s illuminated area and each detector’s visible
area. We also need to define a operation method on illuminated
areas and visible areas.

In the following discussion, we will consider both sources and
detectors as generalized sources (G-sources). Each G-source has two
properties: the illurnination direction and the illuminated area. In the
source case, the illumination direction and the illuminated area are
the same as the nominal meanings. In the case of detectors, the
illumination direction correspondsto the line of sight of the detector,
and the illuminated area corresponds to the visible area from the
detector.

In order to define the sensor detectability. we will use the
configuration space previously defined. The illumination direction of
a G-source is specified as a line in the configuration space; its
illuminated area is specified as a volume in the configuration space.
We will define two kinds of G-sources in terms of the distribution of
illuminated areas: the uniform G-source and the directional G-
source. A uniform G-source distributes its light evenly in all
directions. An example of a uniform G-source is a usual light source
whose illuminated area is located as a hemispherical com of the

sensor space. The center direction of the com comesponds to the
source direction.
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We specify a uniform G-source as
(NS type direction angle)

The first argument, type, specifies what kind of feature the G-source
illuminates. and takes one of the values; face, edge, and vertex. The
second argument, direction, denotes the G-source illumination
direction as a vector. The third argument, angle defines the
illuminated area by specifying the spherical angle between the
illumination direction and the surface normals associated with object
features. If type isface, this angle defines the maximum allowable
angle between the face surface normal and the illumination direction.
If type is edge, this angle defines the maximum allowable angle of
the smaller one of the two angles between the illumination direction
and te two normals of incident surfaces to the edge. That is, if
either or both faces are well illuminated. then the edge is considered
to be illuminated. If type is vertex, we have to consider at least three
faces incident to the vertex. This angle defines the maximum
allowable angle of the smallest angle of those angles between the
illumination diretion and the normals of incident surfaces. That is, if
any of the incident faces of the vertex is illuminated. the venex is
considered to be illuminated.

Another kind of G-source is a directional G-source which projects
light depending on the rotation around the light source direction. We
specify a directional G-source as
(DS type direction angle spec-direction spec-angle)

The first argument, type. specifies one of the object features: vertex,
edge, and face. The second argument, direction, denotes the G-
source illumination directionas a vector. The third argument, angle.
defines the spherical angle of the illuminated area, as for the uniform
G-source.  The fourth argument, spec-direction defines the
constraint direction to be used in the following argument The fifth
argument, spec—angle defines the maximum allowable angle
between tte constraint direction and the principal direction such as
the surface normal of a face, the edge direction of an edge, and the
average surface orientationaround a vertex.

An example of a directional sourceis a directional edge dctecror. As
mentioned before, a detector is also considered as a source, and its
illuminated area corresponds to the detectable area. Since the
directional edge detector only detects edges with centain orientations,
it is regarded as a directional source. The illuminated area of a
directional source becomes a thin slice of the configuration space.

We can specify the sensor characteristic with AND and OR
operations of these formal definitions of all component G-sources of
the sensors. Figure 2 shows feature detection constraints represented
by this method for all sensors listed in table 3.

4.2. Use of Feature Detection Constraints

The feature detection constraints are used together with a geometric
modeler to predict how the object appears relative to the sensor. A
geometric modeler generates possible attitudes of an object
corresponding to each point in the configuration space. Then,
detectability of each component face. edge, or vertex of the object



( Sensor Constraints Constraints
in the formal definition in the sensor space
(AND (NS edge V d)
Edge Detector (NS eage V d))
« (NS edge V o)

(AND (NS face V d)

Shape-from-shading (NS face V d)}
= (NS lace V d)
(OR (NS faca Vo)
(NS edge V d)
SAR (NS vertex V d))

(needs postprocess)

(AND (NS tace V d)
(NS face V d))
= (NS face V d)

“ime-of -Flight Ran;
‘inder o &

(AND (NS tace V1 d)

Light-strip Range
Finder (NS face V2 d))

(AND (NS edge V1 dI)
(0S edge V2 d2 VE de)
(DS edge V3 03 VE de))

Binocular Stereo

(AND (NS sage VI dl)
(DS edge V2 d2 VE de)
(DS edge V3 d2 VE de)
(DS edge V4 d2 VE de))

Trinocular Stereo

(AND (NS face V d1)
(NS face V1 d2)
(NS tace V2 d2)
(NS lam va d2))

Photometric Stereo

(OR (AND (NS face V d)
(NS bo VI d))

(AND (NS face V/ d)
(NS bo V2 )

‘olarimetric L
Jetector o

D |
where V .V = cos 2d

Figure 2: Feature detection constraints

under this attitude is determined using the oconstraint. The
illumination direction constrains the surface shape to be detected,
and the illuminated area constrains the surface orientation to be
detected.

More precisely. we can imagine puting the configuration space on
each point of the object in order checked whether it can be detected
by the sensor. If the illumination direction from that point intersects
with any of the surfaces of the object, the point cannot be detected.
If the illumination direction does not intersect with any of the
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surface, the point is detectable. If the surface orientation on the point
is contained in the illuminated area, the point is detectable. If the
surfaceorientationis outside of the illuminated area, the point cannot
be detected. Figure 3 illustrate the outline of this operation for the
illumination directionand illuminated area using this constraint.

WO B8 ace vi 1) 08 tece v2 @) used consiraind

illumination direction v}

illeminated area it

illuminavion direction v2

illuminasd eres i2

Figure 3: How to use the constraints

4.3. Detectability Distribution

The feature detection constraint gives the upper bound of the
detectable areas in the configuration space. In some cases, however
even though a object feature exists within the detectable area. the
feature may be undetected due to noise. We define the detectability
distribution such that a feature in trte detectable area is actually
detected. The probability is usually high in the central part and low
in the peripheral part of the detectablearea.

The detectability distribution can be described by multiplication of
detectabilitydistributionsof the component G-sources. Namely, each
G-source has a detectability distribution defined over the illuminated
area In the previous subsection, the constraint was either
illuminated or non illuminated or either detectable or non-detectable.
We will expand this idea to the continuous case. Namely, each G-
source has its own continuous detectable distribution over its
illuminated area defined in the configurationspace.

Since all sensors detect features based on a brightness distribution,
the detectability distribution also depends on a brightness

distribution whiich is detected and converted to sensor features.
However, there are two types of sensors in terms of the conversion

method; direct sensors and indirect sensors. The direct sensor
measures the brightnessvalue and converts it to sensor features. such
as surface orientation, directly from the brightness value. The
indirect sensor measures the brighmess value and positional
information of the bright spot if the brightness value is greater than
some threshold. The indirect sensor then converts the positional
information to sensor features such as depth. Table 4 shows a
classification of sensorsbased on thisdifference.

Since a TV camera is a most typical input device, we will examine
its performance before exploring the detectability distribution. Let
P(x|d),P(dlx), and P(x) be the conditional probability of a real value x



Table4  Measurement method 1
sensor direct/indirect
Edge Detector direct
Shape-from-shading direct

SAR indirect

Time-of-FlightRange Finder indirect

Light-stripe Range Finder indirect

Binocular Stereo indirect

Trinocular Stereo indirect

Photometric stereo | direct
Polarimetriclight detector | indirect |

under the observed value d. the conditional probability of the
observed data d under a real value x, and the probability of x,
respectively. Then. TV camera performance can be described using
Bayes' theorem as

Plaidye. PADPG)
[ PP

If we assume that P(x) is constant, namely the brighmess distribution
occurs randomly.

P(xdd)=P(dlx).
The conditional probability of observed data & under the real value x
is assumed as the Gaussian distribution whose mean value is x and
standard deviationis o,

1 _G-a?
P(xid)= .
e

We can obtain ¢ from experiments. Our SONY CCD camera has
o=3, which roughly coincides with a result elsewhere [2].

Since the detectability distribution depends on sensing methods, we
will develop the distributions for the photometric stereo as a
representative case of the direct sensor,and for the light-striperange
finder as a representative case of the indirect sensor.

43.1. Detectability distribution of photometric stereo
An direct sensor such as photometric stereo can be modeled as
y=Ax)
where x is the input brighmess. y is the output feature values. and fis
the conversion function. Suppose X* is the definition area of the
function £ ie. the direct sensor outputs a feature value y from any x;
if x;e X*. Then, the detectability distribution can be determined as
the probability that the input brightness, x+8x, disturbed by &x, is
still contained in the definition area, X*. In order to be the problem
more specific. we will examine the definition area of photometric
stereo.

Photometric stereo determines the surface orientation from tree
images taken from the same position under different lighting
directions.

l‘=SloN

1,=S,N

1;=8,eN,
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where /,S,,N are the brightness value under light source i, the i th
light source direction vector, and the surface normal vector,
respectively. Thus, expressing the brighmess as a vector, I, and the

light source as a matrix, S.
I=SN.

Applying $-! to both sides, we obtain an explicitexpression of N.
N=§S-1L

Thisis the basic idea of photometric stem [40].

Working photometric stereo has, however, two modification [21] to
this theory.
1.8°1 is determined from calibration and stored in a
lookup table rather than calculated from the ideal case.

2. Brightness values are normalized 11| SO that we can
cancel the albedo effect.

We will obtain the detectability distribution of the photometric
stereo. At first. we consider light source 1's detectability
distribution. Assume a brighmess value moves from i, to i, +8i; due
to Sensor  error. The normalization gives
U\ +8 =i +8e )/ +84 +i,+iy).  However, the normalized intensity
(" +87,1%,1"y) exists on the same plane i\ +8" +i’,+i’,=1. Since a
continuous area on the plane is the solution area for photometric
stereo, we can obtain #e solution from the new triple ,+8¢',,i,,i5.
Than is. we will always succeed to obtain the feature values, ie. we
will have a unit detectability distribution for the light source 1.
(Though of course the resultant value may be less reliable as will be
discussed in the reliability section.) The same discussion is
applicable to light source 2 and light source 3. Since the total
detectability distribution is given as the multiple of dl three
detectability distributions of sources. the detectability distribution is
a constant distribution over the detectable area in the configuration
space. This analysis reveals that the normalization makes the
detectability to be a unit value, and thus, helps to detect features in a
stable manner.

43.2. Detectability distribution of a light-stripe range finder

An indirect sensor projects light on the scene and determines the
positioal features from the observed image or signal. Thus, the
detectability distribution depends on whether a sensor can detect the
returned light or not. Usually, to avoid the confusion of the returned
value with background noise. threshold operations are applied. such
as

i is detected

L ifi2i,
L is not detected

otherwise,

Let us consider the light-stripe range finder as an example. A light-
stripe range finder projects light stripes on the scene and recovers the
depth at a point from the distance between two adjacent light stripes.
Thus, the detectability function depends on whether the TV camera
observes the light stripes or not

Assuming that the surface is lambertian. the brightness of the stripe
is determined by the angle between the surface normal, N, and the
light source direction, S. Then, the brighmess i is given by NeS,
while the disturbance factor 6i is given by a Gaussian distribution,



@7
p(&)—_.l._e-?.

2nG
In almost all illuminated areas. NeS—ig>> 3¢ holds, and the
viewer direction does not affect the observed brightness. Thus. the
detectability distributionis constant over the most part of illuminated
area of the light source. In the peripheral area, however,

Pd‘,‘mut(i)=l’(i+8i2io)=_[f Jz_Le%zd(&)
ot g {e ]

3L Figure 4.

Figure 4: Detectabilitydistribution
of a light-striperange finder

5. RELIABILITY OF SENSORS

Once a sensor feature is detected, then the next question is how
reliable the sensor feature is. This section discusses two issues of
sensor reliability. The first issue is the reliability of the detected
sensor feature; data detected by a sensor always contains
measurement error. To determine the bound of the error is important
for model based vision. For example, suppose there is a sensor
feature which the geometric model takes two nominal value 100 and
90 for two distinct situations or anitudes. If a sensor has an error
range of pluy/minus 1 for the sensor feature. we can use the feature
from that sensor as one of reliable discriminatorsin the recognition
stage. On the other hand, if a sensor has an error range of plus/minus
20, we cannot use the feature from that sensor.

The second issue is propagation of error from sensor features to
geometric features, hence the resulting reliability of those geometric
features. In some cases, a detected sensor feature from a sensor is
used directly as a feature; in most cases. however, geometric features
are derived from sensor features and are used as features in model
based vision. Thus, it is necessary to determine the error propagation
mechanism.

5.1. Reliability Distribution of Sensor Feature

Table 5 shows the main sources that affect reliability of sensor
features. In addition to these, various digitization such as phase
digitizationin a time-of-flightrange finder and spatial digitizationin
binocular stereo must be considered but are omitted for the time
being.
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Table§ Main facta of unrelisbility

Sensa Factor
Edge Detector G-source brightness (TV camera)
Shape-from-shading G-source brightness (TV camera)

SAR G-source direction (camera direction)
Time-of-Flight Range Finder | G-source direction (mimvor direction)

Lighi-Strip Range Finder G di (mirror d )
Binocular Sterco G directi direction)
Trinocular Stereo G directi direction)
Photometric Stereo G-source brightness (TV camena, light sources)
Polari ic light G di (light source direction}

orientation N.
N=S-ir°,

Let us denote the brighmess disturbance distribution as ~(0,6?).
Then the normalized brightness distributionis denoted as N(/,(6/)?),
wheref is the first derivative off. Figure Sa shows the distribution
off over the detectable area. Although it is possible to approximate
the distribution with polynomial, we assume it is constant (0.004)
over the detectable area for simplicity. Since o=3, 20'=0.03. This
value corresponds to a 1.5 mesh in tre lookup table.

We determine §-! from the real data, because S~! is represented as a
lookuptable. Figure 5b shows the angular distance in terms of mesh
number. Namely, the figure shows angular differences between two
adjacent surface normals in the lookup table. By using this result
and a 1.5 mesh error from the brightness distribution, the total error
becomes 5 degrees over the detectable ma. This agrees with the
As shown in Table 5, the main error comes from G-source brightness
in a direct sensor and from G-source direction in a indirect sensor.
Thus. we will analyze the reliability of photometric stereo and the
light-stripe range finder as representatives of the direct and indirect
SENSOrS, respectively.

$.1.1. Reliability distribution of photometric stereo
For the direct sensor, y=Ax), the disturbance of 8x is propagated via
£. Namely, the disturbanceof the detected value, 8y is

By=f(x)bx

Qur photometric stereo can be described as two step processes. First
a original brighmess triple is converted to a normalized brightness
triple.
=141l

Then. the normalized brighmess triple is converted to a surface
observation from the experiment, which has plus/minus 5 degrees
error in determining surface orientations over the range of detectable
surface orientations. See Figure 5¢.

§.1.2. Reliability distribution of a light-stripe range finder

In the case of indirect sensors. the main source of unreliability comes
not from the G-source brightness but from the G-source direction
The indirect sensor can be modeled as

2=Ry(v,¥5,..V,)).

v; denotes the ith G-source direction. and y denotes the conversion
function from G-source directions to the positional information.
while f denotes the conversion function from the positional
information such as a bright spot to the observed data. and z specifies
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direction, V.

The third step is the propagation from the image plane to the
distance. For the simplicity, we will assume that the camera model
be orthographic projection. Then, the horizontal difference. 6i. is
propagated into the distance error 8z as

8i

Sz=——0,
1an
where ¥, is the a’ﬁgle between tre viewer direction, V. and the light
sourcedirection,S. SeeFigure 6a.

Finally, we obtain
52208 B

z=_r59
cosatany

- NVEY) o
(NeS)V1-SeV

Figure 6b shows the reliability distribution over the detectable area.
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Figure Sc: angularerror over the detectablearea

Figure 5 Reliability of photometricstereo
the deteced data such as depth or surface orientation.
52:2{925%
ov;
Thus, we will examine the disturbance based on the G-source
direction.

In the light-stripe range finder, we will calculate f%_ directly from

the system analysis. The angular error in the mirror is propagated to
the observed error with the physical conversion process. The
propagation process can be divided into three parts: mirror error to
positional difference in the stripe, positional difference in the stripe
to image difference, and image difference to the converted distance
difference. The propagation process can be obtained analytically as
follows.

Let us denote the angular error as r88, where r is the distance fram
the light source to the physical point. At the physical place A the
laser light is intercepted. Then, due to the angular error, the physical
difference, 8y occurs.

o= co’sa o
where a is the angle between the light source, S, and the surface
normal. N. See Figure 6a.

This physical difference is observed from the TV camera, and the
image difference. 6i occurs.

Si=(cos B)dy.
where B is the angle between the surface normal, N. and the viewer
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Figure 6: Reliability distribution
of light-stripe range finder

5.2. Propagation of Reliability to Geometric Features
Usually raw data detected by a sensor is converted into geometric
features such as distance. area, ad inertia. This process propagates
errors into the geometric features due to two reasons: the
detectability distribution and the reliability distribution. Since this
conversion process depends on the detected data, we will concentrate
on faces as detected data, because most of the active sensors detect
faces as the primal features.



52.1. Error propagation from detetability distribution

Most active sensors detect physical patches as detected pixels.
Usually, these detected pixels will be grouped and converted into
isolated regions. If the sensor fails to find a detectable pixel, the
measured area will be reduced from the nominal area size given by a
model. This process can be modeled as follows:

Suppose the detectability probability is p over a region and the
nominal area size of the region is n. Under this condition, the
probability to observex pixels out of n pixels over the region is

Peo=(7)prem

Namely, this probability denotes that the system executes n trials and
succeeds to detect x pixels under that condition that success
probability is p and fail probability is g, where p+g=1. This process
is a binomial distribution; the mean and variance of this distribution
are
=n,
02=rﬁvq

This gives the error propagation (area reduction ratio) for the
detectability distribution.

Since both photometric stereo and a light-stripe range finder give
p=1, neither sensor causes an area reduction due to the detectability
distribution.

5.2.2. Error propagation from reliability distribution

The Next factors to be considered is the reliability of detected data.
We recover the geometric features such as distance, area. and inertia
from skewed raw data by an affine transform, based on the observed
surface orientation in either the photometric stereo or light-stripe
range finder. Thus, if the raw data are erroneous, the obtained
geometric features are also erroneous.

Let d be the real distance, and d+84 be the observed one. Then, the
physical system generates an observed distance dcos 8, while due to
the sensor error, we will measure this surface surface orientation as
cos(8+60), where 8 is the angle between the viewer and surface
normal. Thus, for 68 small, we get

d+8d = dcos 8/cos (0+58) = d(1+56tan 0).

In the area case,
a+8a = a(1+2301an ).

In the inertia case,
i+8{ =i(1+356tan ).

These formulas give error propagation from angular error to features
at each pixel. We will obtain geometric featuresfrom a region which
consists of n pixels. Thus, the system will execute n trials of
measuring 68, which is approximated as a Gaussian distribution.
N(0.5%), and observe the total £86. From the theorm of the
Gaussian distribution,38=Z,80 is a Gaussian distribution,N(0,n6?).

By using these formulas, we calculate error ratio of areas and inertia

for photometric stereo as shown in Table 6. Predicted results are
obtained based on the reliability of photometric stereo developed

previously and the formulas of section. We use n=70, 6=0.045.
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Observed results are obtained from the distribution of the real data
sampled five times. Similarresults are expected in the other sensors.

Table 6 Reliability of Geometric Features

Feature | Observed | Predicted
| Area | o002 | 0045 I
| Inertia | 005 | 0.067 |

6. CONCLUDING REMARKS

Thi's paper discussed modeling sensors for model-based vision. Qur
sensor model consists of two characteristics: sensor detectability and
sensor reliability.  Sensor detectability specifies under what
conditions a sensor can detect a feature, while sensor reliability
denotes how reliable the obtained measurement is over the detectable
area.

We have defined the configuration space which represents the
relationship between sensor coordinates and object coordinates. The
sensor detectability and the sensor reliability are expressed in this
configuration space. Constraints in the configuration space involved
in detecting features have been developed by using G-source
illuminated area and G-source illumination direction. We have
shown how to compute the sensor detectability distribution and the
sensor reliability distribution for photometric stereo and a light-stripe
range finder as examples.

In model based vision, expected values of various features can be
computed from 3D geometric model. Those values are, however,
nominal values that they should take in ideal cases or should be
sensed by ideal sensors. On the other hand, actually observed sensor
data contains noises and should be used accordingly. The sensor
model bridges the discrepancy between these two values by
modeling the distribution of the sensed value based on the
characteristics of a given sensor. In model-based vision, it is
possible to precompile a given 3D geometric model into a
recognition strategy (20]. This precompilation cannot generate an
optimal strategy without knowing each feature's reliability, because
the strategy should use the most stable features at each recognition
step. Thus, the sensor model is an essential component in model-
based vision. We have to explore more reliable sensor models for
this purpose.

We also have analyzed the error propagation mechanism from
detected data to the geometric features. This is imponant. because
quite often we are interested in geometric features derived from the
detected sensor features. Once we establish the error propagation
mechanism from detected sensor features to geometric features, we
can also assess the reliability of the geometric features,hence we can
construct a recognition system more systematically and reliably.
Further study is required in thisarea.

To calculate detectable features of an object under the constraints of
various Sensors is a tedious job when we use a conventional
geometric modeler. The better way is to interface a geometric
modeler with the sensor model proposed. We call this a sensor



modeler. The traditional geometric modeler only allows users to
generate a 3D object by combining primitive objects and to display
its views. In this sense. the traditional modeling system has only one
sensor model which is projection. The sensor modeler we propose
can generate various 2D representations under given sensor
specifications. Part of this facility is being implemented in our new
geometric/sensor modeler VANTAGE [ 16].
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