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The model-based vision requires object appearances in the computer. How 8n object appears in 
the image is a result of interaction between the object properties and the sensor characteristics. 
Thus, in model-based vision, we ought to model the sensor as  well as modeling the object. In the 
past, however, the sensor model was not used in the model-based vision or, at least, was 
contained in the object model implicitly. 

This paper presents a framework between an object model and the object appearances. We 
consider two aspects of sensor characteristics: sensor detectability and sensor reliability. Sensor 
detectability specifies what kind of features can be detected and in what area the features are 
detected; sensor reliability specifies how reliable detected features are. Commonly available 
sensors are briefly examined in terms of their sensor characteristics. We define the configuration 
space to represent sensor characteristics. We propose a representation method of the sensor 
detectability in the configuration space. Sensor reliability distribution is also discussed in the 
configuration space. Under this framework. we characterize the photometric s t e m  and the light- 
smpe range finder as examples. 

1. INTRODUCTION 
The model-based vision requires object models in the computer. 
Various researchers propose many kinds of object models, ranging 
from generic models such as generalized cylinders [5,28.9,371. 
extended Gaussian images [38.19.18]. and super quadric 
models [35] to specific models such as aspect model [25. 11,201, 
region-relation model [4.34,6]. and smooth local symmetry [7,81. 

The object appearances, however, are determined by a product of an 
object model with a sensor model. Thus, in the model based vision, it 
is insufficient to consider only an object model; it is essential to 
exploit a sensor model as well. On the other hand, modeling sensors 
for model-based vision has attracted little attension; quite often, 
researchers who are familiar with the sensors they use tended to 
construct object appearances by implicitly incorporating their sensor 
behavior. This paper. in contrast. explores a general framework for 
explicitly incorporating sensor models which govern the relationship 
between object models and object appearances. 

A sensor model must be able to specify two important 
characteristics: sensor detectability and sensor ~eliabiility. Tk 
sensor detectability specifies what kind of featurn can be detected 
and in what condition the features are detected. The sensor 
reliability specifies how reliable the detected features are. This 
paper, thus. present a method for modeling sensors with sensor 
detectability and sensor reliability. Commonly available sensors are 
briefly ixamined in terms of their sensor characteristics. Then, 
representation techniques for sensor characteristics are explored. We 
define the configuration space to represent sensor characteristics. 
Finally, we consider two aspects of sensor characteristics: sensor 
detectability and sensor reliability. We propose a representation 

space on which a sensor's detectability is expressed in the uniform 
way. Sensor reliability analysis consists of reliability distribution 
and e m r  propagation from observed data to geometric features. 
Under this framework, we characterize the photometric stereo and 
the light-stripe range finder as examples. 

2. SENSORS IN THE MODEL BASED VISION 
This section gives a brief survey of commonly available sensors in 
the model-based vision. We include both passive and active sensors. 
The following sensors are often used: edge detector [36.27. 101. 
shape-from-shading [17.22]. binocular stereo [29, 14,3.33], time- 
of-flight range finder [24, 151. light-stripe range finder [ 1.341. 
trinocular stereo [32]. photorneuic stereo [40,21]. polarimetric light 
detector [26].and SAR (Synthetic Apermre Radar) [12,39.31]. 

Each sensor is a mapping function from object features to sensor 
features. Object features such as faces, edges, and veneces exist in 
the threedimensional object space. These object features in the 
object space are mapped to sensor features such as regions, lines, and 
points in the sensor space. Note that the sensor features has no 
meaningful interpretation in the sensor space. For example. a sensor 
feature such as a region should be considered as a collection of 
points which are not grouped as one meaningful unit by a sensor. 
The conversion process from sensor features to geometric featurns 
will group a collection of ponh into a geometric feature such as a 
region 

Table 1 gives the summary of detectable features in the object space 
by commonly available sensors. For example, an edge detector can 
detect some edges in the object space as lines in the sensor space. 
Since it does not need special light sources, it is classified as a 
passive sensor. 
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3. REPRESENTING SENSOR CONFIGURATION 
This section defines the sensor configuration space on which sensor 
detectablility and sensor reliability are specified. Sensor 
detectability and reliability depend on various factors: distance of an 
object, configuration of an object. reflectivity of an object. 
transparency of air, and background noise such as the sun’s 
brightness. In the model-based vision, since the target object and its 
rough distance is a prior known, mainly angular freedom of object 
affects on detectability and reliability. Thus, we will define a space 
to spacify the relationship between the sensor coordinate and the 
object coordinate. 

The relationship between the sensor coordinate and the object 
coordinate can be specified by three degrees of freedoms; two 
degrees of freedom in the sensor direction and one degree of freedom 

I Table 1 
Sensor 

ShaDe-from-shading 
S A R  
Time-of-Flight Range Finder 
Light-stripe Range Finder 
Binocular Stereo 
Trinocular Stereo 
Photometric Stereo 

Since the brightness change does not occur over any face, passive 
sensors have usually difficulty in detecting faces. An active sensor 
projects lights over the scene; stronger reflection can be obtained 
from faces; weaker or no reflection is given from edges and vertices. 
Thus, most active sensors are good in detecting faces, while they can 
detect neither edges nor venices. 
Sensor features in the sensor space are summarized in Table 2. In 
Table 2. a line means a line-shaped collection of detected points and 
a region means a region-shaped collection of detected points. For all 
sensors except SAR the correspondence between the object feature 
and the sensor feature is one-to-one. For example, an edge detector 
geenrates one line-shaped sensor feature corresponding to either one 
edge or one reflectance discontinuity line of a object feature in the 
object space. Photometric stereo generates a surface orientation 
distribution as sensor features which corresponds to one physical 
face in the object space. On the other hand, S A R  generates either 
line-shaped sensor feature or point sensor feature from one edge in 
the object space depending on the sensor configuration. A precise 
discussion of SAR will be found elsewhere [12.39.31]. 

I Table 2 Detected Sensor Features I 
I Sensor IVenex IEdge IFace I 
I Edge Detector 
I Shape-from-shading 

I Time-of-Flight Range Finder 

Trinocular Stereo 

Polarimetric light Detector 

While this summary tells in general what object features are 
detectable in what forms by various sensors, It is also important to 
characterize in what viewing conditions those features are actually 
detectable and how reliable the detected features are. For fha~, we 
need to develop a representation tool for relation between object 
coordinates and sensor coordinates. 

in the sensor rotation Since the relationship between two 
coordinates is dative. for the sake of convenience. we fix the sensor 
coordinate and discuss how to specify the object coordinate with 
respect to the sensor coordinate. 

We will depict an object coordinate as a point in the following 
sphere. The point direction from the center denotes the z axis of the 
object coordinate, (e,$), where 8 and $ specify the zenith angle and 
the azimuth angle of the z axis. The distance from the spherical 
surface to the point denotes the axis rotation around the z axis, w. 
On the spherical surface. we set points such that corresponding 
coordinates satisfy +t+w=O. The north pole of the sphere corresponds 
to the sensor coordinate. 

Due to the bias of z axis rotation, this sphere has no discontinuity 
around the north pole. Actually. this sphere is a three dimensional 
projection of four dimensional quaternion space. Precise discussion 
will be found [23]. We will refer to the sphere as the configuration 
space. 

\ ’  A-. I /  

Figure 1: The configuration space 
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4. DETECTABILITY OF SENSORS 
In the previous section, we have defined the way to represent the 
relationship between the sensor coordinate and the object coordinate. 
In this section, we will develop a constraint to determine whether an 
object feature can be detected at each point of the configuration 
space. 

4.1. Constraints in Configuration Space for Feature 

Each sensor has two components: sources and detectors. For 
example, both a time-of-flight range finder and a light-stripe range 
finder have one source and on detector. Binocular stereo has one 
source and two detectors; photometric stereo has three sources and 

Detection 

one detector. 
detectors of each sensor. 

Table 3 summarizes the number of sources and 

Binocular Staoo  1 2 
Trinocular S t m  1 3 
Phoiomemc Svm 3 1 

One source only illuminates one part of an object; one detector only 
observes one part of the object. Each sensor which consists of 
sources and detectors, only detect one part of the object. Thus, in 
order to specify the detectable area of each sensors. we need to 
define each source’s illuminated area and each detector’s visible 
area. We also need to define a operation method on illuminated 
areas and visible areas. 

In the following discussion, we will consider both sources and 
detectors as generalized sources (G-sources). Each G-source has two 
properties: the illurnination direction and the illuminated area. In the 
source case, the illumination direction and the illuminated area an 
the same as the nominal meanings. In the case of detectors, the 
illumination direction corresponds to the line of sight of the detector, 
and the illuminated area corresponds to the visible area from the 
detector. 

In older to define the sensor detectability. we will use the 
configuration space previously defined. The illumination direction of 
a G-source is specified as a line in the configuration space; its 
illuminated area is specified as a volume in the configuration space. 
We will define two kinds of G-sources in terms of the distribution of 
illuminated areas: the uniform G-source and the directional G- 
source. A uniform G-source distributes its light evenly in all 
directions. An example of a uniform G-source is a usual light source 
whose illuminated area is located as a hemispherical corn of the 

Sensor space. The center direction of the corn cornsponds to the 
source direction. 

We specify a uniform G-source as 

The first argument, type, specifies what kind of feature the G-source 
illuminates. and takes one of the values;face, edge, and vertex. The 
second argument, direction, denotes the G-source illumination 
direction as a vector. The third argument, angle defines the 
illuminated area by specifying the spherical angle between the 
illumination direction and the surface normals associated with object 
features. If type is face, this angle defines the maximum allowable 
angle between the face surface normal and the illumination direction. 
If type is edge, this angle defines the maximum allowable angle of 
the smaller one of the two angles between the illumination direction 
and the two normals of incident surfaces to the edge. That is, if 
either or both faces are well illuminated. then the edge is considered 
to be illuminated. If type is vertex, we have to consider at least three 
faces incident to the vertex. This angle defines the maximum 
allowable angle of the smallest angle of those angles between the 
illumination diretion and the normals of incident surfaces. That is, if 
any of the incident faces of the vertex is illuminated. the venex is 
considered to be illuminated. 

(NS type direction angle) 

Another kind of G-source is a directional G-source which projects 
light depending on the rotation around the light source direction. We 
specify a directional G-source as 

The first argument, type. specifies one of the object features: verrex, 
edge, and facc. The second argument, direction, denotes the G- 
source illumination direction as a vector. The third argument. angle. 
defines the spherical angle of the illuminated area, as for the uniform 
G-source. The fourth argument, spec-direction defines the 
constraint direction to be used in the following argument The fifth 
argument, spec-ungle defines the maximum allowable angle 
between the constraint direction and the principal direction such as 
the surface normal of a face, the edge direction of an edge, and the 
average surface orientation around a vertex. 

An example of a directional source is a directional edge dctecror. As 
mentioned before, a detector is also considered as a source, and its 
illuminated area corresponds to the detectable area. Since the 
directional edge detector only detects edges with cenain orientations, 
it is regarded as a directional source. The illuminated area of a 
directional source becomes a thin slice of the configuration space. 

We can specify the sensor characteristic with AND and OR 
operations of these formal defmitions of all component G-sources of 
the sensors. Figure 2 shows feature detection constraints represented 
by this method for all sensors listed in table 3. 

(DS type direction angle spec-direction spec-angle) 

4.2. Use of Feature Detection Constraints 
The feature detection constraints are used together with a geometric 
modeler to predict how the object appears relative to the sensor. A 
geometric modeler generates possible attitudes of an object 
corresponding to each point in the configuration space. Then, 
detectability of each component face. edge, or vertex of the object 

279 



surface, the point is detectable. If the surface orientation on the point 
is contained in the illuminated area, the point is detectable. If the 
surface orientation is outside of the illuminated area, the point cannot 
be detected. Figure 3 illusvate the outline of this operation for the 
illumination direction and illuminated area using this constraint. 

Scnlor  

Edge Dclrctor 

(AND ( N S  hcm V d) 
(NS lam V d)) - (NS t . o V  d) 

Shape-fmn-shading 

(AND (NS lam V d) - (NS 1- V d) 
(NS  1 . o  V a) 

Figure 3: How to use the constraints 
Lisht-strip Range 
Finder 

(AND (NS fam Vi d) 
(NS l a m  V2 d)) W 4.3. Detectability Distribution 

The feature detection constraint gives the upper bound of the 
detectable areas in the configuration space. In some cases, however 
even though a object feature exists within the detectable area. the 
feature may be undetected due to noise. We define the detectability 
distribution such that a feature in the detectable area is actually 
detected. The probability is usually high in the central part and low 
in the peripheral part of the detectable area. 
The detectability distribution can be described by multiplication of 
detectability distributions of the component G-sources. Namely, each 
G-source has a detectability distribution defined over the illuminated 
area In the previous subsection, the constraint was either 
illuminated or non illuminated or either detectable or non-detectable. 
We will expand this idea to the continuous case. Namely, each G- 
source has its own continuous detectable distribution over its 
illuminated area defined in the configuration space. 

(AND (NS mdgm V1 dl) 
(OS mdgm VZ d2 VE 4.) 
(OS .dOm V3 43 VE dm) 

Binocular Stereo 

(AND (NS mdgo Vl dl)  
(DS mdgm V2 62 VE dm) 
(DS edgm m dz VE dm) 
(OS mdgm V1 dz VE dmj 

(AND (NS hcm V dl)  
(NS 1.a VI 62) 
(NS ha V2 dz) 
(NS  lam V3 dz)) 

(OR (AN0 (NS k m  V d) 

(AND (NS ha V d) 
(NS bo V l  d)) 

(NS bo V2 d)) 
. . .) 

W h . n  v . v I QLI 2d 

Since all sensors detect features based on a brightness distribution, 
the detectability distribution also depends on a brightness 
distribution which is detected and converted to sensor features. 
However, there are two types of sensors in terms of the conversion 
method; direct sensors and indirect sensors. The direct sensor 
measures the brightness value and converts it to sensor features. such 
as surface orientation, directly from the brightness value. The 
indirect sensor measures the brighmess value and positional 
information of the bright spot if the brightness value is greater than 
some threshold. The indirect sensor then converts the positional 
information to sensor features such as depth. Table 4 shows a 
classification of sensors based on this difference. 

Figure 2: Feature delection mnsmt~ 

under this attitude is determined using the constraint. The 
illumination direction constrains the surface shape to be detected, 
and the illuminated area constrains the surface orientation to be 
detected. 

More precisely. we can imagine puting the configuration space on 
each point of the object in order checked whether it can be detected 
by the sensor. If the illumination direction from that point intersects 
with any of the surfaces of the object, the point cannot be detected. 
If the illumination direction does not intersect with any of the 

Since a TV camera is a most typical input device, we will examine 
its performance before exploring the detectability distribution. Let 
P(xld)J'(&). and P(x) be the conditional probability of a real value x 
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Table 4 Measurement method 1 

S A R  

Time-of-Flight Range Finder 
Light-stripe Range Finder 

indirect 
indirect 
indirect 

~ 

Binocular Stereo I indirect 
Trinocular S t e m  I indirect 

lPhntnmetric stereo I direct I 
Polarimetric light detector I indirect 1 

under the observed value d. the conditional probability of the 
observed data d under a real value x. and the probability of x, 
respectively. Then. TV camera performance can be described using 
Bayes' theorem as 

If we assume that P(x) is constant, namely the brighmess distribution 
occurs randomly. 

The conditional probability of observed data d under the real value x 
is assumed as the Gaussian distribution whose mean value is x and 
standard deviation is (3, 

P(Xld)=P(dcr). 

We can obtain (T from experiments. Our S O W  CCD camera has 
0 = 3 ,  which roughly coincides with a result elsewhere [Z]. 

Since the detectability distribution depends on sensing methods. we 
will develop the distributions for the photometric stereo as a 
representative case of the direct sensor, and for the light-stripe range 
finder as a representative case of the indirect sensor. 

43.1. Detectability distribution of photometric stereo 
An direct sensor such as photometric stereo can be modeled as 

where x is the input brighmess. p is the output feature values. andfis 
the conversion function. Suppose X' is the definition area of the 
function$ ie. the direct sensor outputs a feature value y from any xi 
if xi€ X'. Then, the detectability distribution can be determined as 
the probability that the input brightness, x+6x. disturbed by 6x. is 
still contained in the definition area, X'. In order to be the problem 
more specific. we will examine the definition area of photometric 
stereo. 

Y=XX) 

Photometric stereo determines the surface orientation from three 
images taken from the same position under different lighting 
directions. 

I,=S,*N 
12=S,*N 
13=S3*N, 

where Ii.Si,N are the brightness value under light source i, the i th 
light source direction vector, and the surface normal vector, 
respectively. Thus, expressing the brighmess as a vector, I, and the 

light source as a matrix, S. 
I=SN. 

Applying S1 to both sides, we obtain an explicit expression of N. 

This is the basic idea of photometric s t e m  [40]. 
N=s-~I. 

Working photometric stereo has, however, two modification [21] to 
this theory. 

1.S' is determined from calibration and stored in a 
lookup table rather than calculated from the ideal case. 

2. Brightness values are normalized UIl so that we can 
cancel the albedo effect. 

We will obtain the detectability distribution of the photometric 
stereo. At first. we consider light source 1 ' s  detectability 
distribution. Assume a brighmess value moves from i ,  to il+6i, due 
to sensor error. The normalization gives 
f,+&*,=(i,+6eI)/(i1+6il+iZ+i3). However, the normalized intensity 
(f,+6i,,f2,f3) exists on the same plane f,+&*I+i'2+i'3=1. Since a 
continuous area on the plane is the solution area for photometric 
stereo, we can obtain the solution from the new triple t+,+6i'l,iz,i3. 
Than is. we will always succeed to obtain the feature values, ie. we 
will have a unit detectability distribution for the light source 1. 
(Though of course the resultant value may be less reliable as will be 
discussed in the reliability section.) The same discussion is 
applicable to light source 2 and light source 3. Since the total 
detectability distribution is given as the multiple of all three 
detectability distributions of sources. the detectability distribution is 
a constant distribution over the detectable area in the configuration 
space. This analysis reveals that the normalization makes the 
detectability to be a unit value, and thus, helps to detect features in a 
stable manner. 

43.2. Detectability distribution of a light-stripe range finder 
An indirect sensor projects light on the scene and determines the 
positional features from the observed image or signal. Thus, the 
detectability distribution depends on whether a sensor can detect the 
returned light or not. Usually, to avoid the conhrsion of the returned 
value with background noise. threshold operations are applied. such 
as 

i is detected 
i is not detected otherwise. 

ifi 2 io 

Let us consider the light-stripe range finder as an example. A light- 
Stripe range finder projects light stripes on the scene and recovers the 
depth at a point from the distance between two adjacent light stripes. 
Thus, the detectability function depends on whether the TV camera 
observes the light stripes or not 

Assuming that the surface is lambertian. the brightness of the stripe 
is determined by the angle between the surface normal, N, and the 
light source direction, s. Then, the brighmess i is given by NOS. 
while the disturbance factor 6i is given by a Gaussian distribution, 
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Tabk 5 Main facta of unrrlisbiliry 

S e n s a  1 Facta 
Eddrc Dclscmr I G-uuroc brinhimr cTV urnen) 

In almost al l  illuminated areas. NOS-&= > 3u holds, and the 
viewer direction does not affect the observed brightness. Thus. the 
detectability distribution is constant over the most part of illuminated 
area of the light source. In the peripheral area, however, 

see Figure 4. 

.*. .a. 

Figure 4: Detectability distribution 
of a light-stripe range finder 

5. RELIABILITY OF SENSORS 
Once a sensor feature is detected, then the next question is how 
reliable the sensor feature is. This section discusses two issues of 
sensor reliability. The first issue is the reliability of the detected 
sensor feature; data detected by a sensor always contains 
measurement error. To determine the bound of the error is important 
for model based vision. For example, suppose there is a sensor 
feature which the geometric model takes two nominal value 100 and 
90 for two distinct situations or anitudes. If a sensor has an error 
range of plus/minus 1 for the sensor feature. we can use the feature 
from that sensor as one of reliable discriminators in the recognition 
stage. On the other hand, if a sensor has an error range of plus/minus 
20, we cannot use the feature from that sensor. 

The second issue is propagation of error from sensor features to 
geometric features, hence the resulting reliability of those geometric 
features. In some cases, a detected sensor feature from a sensor is 
used directly as a feature; in most cases. however, geometric features 
are derived from sensor features and are used as features in model 
based vision. Thus, it is necessary to determine the error propagation 
mechanism. 

5.1. Reliability Distribution of Sensor Feature 
Table 5 shows the main sources that affect reliability of sensor 
features. In addition to these, various digitization such as phase 
digitization in a time-of-flight range finder and spatial digitization in 
binocular s t e k  must be considered but are omitted for the time 
being. 

orientation N. 
N=S-'I'. 

Let us denote the brighmess disturbance distribution as N(O,u*). 
Then the normalized brightness distribution is denoted as N(l.(uf)*). 
wheref is the first derivative off. Figure Sa shows the distribution 
off over the detectable area. Although it is possible to approximate 
the distribution with polynomial, we assume it is constant (0.004) 
over the detectable area for simplicity. Since 0=3, 2@=0.03. This 
value corresponds to a 1.5 mesh in the lookup table. 

We determine S1 from the real data, because S-l is represented as a 
lookup table. Figure 5b shows the angular distance in terms of mesh 
number. Namely, the figure shows angular differences between two 
adjacent surface normals in the lookup table. By using this result 
and a 1.5 mesh error from the brightness distribution, the total error 
becomes 5 degrees over the detectable m a .  This agrees with the 
As shown in Table 5. the main error comes from G-source brightness 
in a direct sensor and from G-source direction in a indirect sensor. 
Thus. we will analyze the reliability of photometric stereo and the 
light-stripe range fmder as representatives of the direct and indirect 
sensors, respectively. 

5.1.1. Reliability distribution of photometric stereo 
For the direct sensor, y=f(x). the disturbance of 6x is propagated via 
f. Namely, the disturbance of the detccted value, Sy is 

Sy=f (x)Sx 

Our photometric stereo can be described as two step processes. First 
a original brighmess triple is converted to a normalized brightness 
triple. 

Then. the normalized brighmess triple is converted to a surface 
observation from the experiment, which has plushinus 5 degrees 
error in determining surface orientations over the range of detectable 
surface orientations. See Figure 5c. 

5.12. Reliability distribution of a light-stripe range finder 
In thc cast of indirect sensors. the main source of unreliability comes 
not from the G-source brightness but from the G-source direction 
The indirect sensor can be modeled as 

vi denotes the ith G-source direction. and y denotes the conversion 
function from G-source directions to the positional information. 
while f denotes the conversion function from the positional 
information such as a bright spot to the observed data. and z specifies 

I'=uIII. 

%*(vpvp.vJ,. 
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direction, V. 

The third step is the propagation from the image plane to the 
distance. For the simplicity, we will assume that the camera model 
be orthographic projection. Then, the horizontal difference. 6i. is 
propagated into the distance error 6z as 

where y, is the angle between the viewer direction, V. and the light 
source direction, S. See Figure 6a. 

6i sr- 
mv’ Figure Sa: Distribution off 

angular 
difference 
between 
two adjacent 
cells 

angle) Figure 5b: angular distance in terms of mesh ;. .. , 
; 7% 

Figure Sc: angular error over the detectable area 

Figure 5 Reliability of photometric stereo 

the deteced data such as depth or surface orientation. 

Thus, we will examine the disturbance based on the G-source 
direction. 

In the light-stripe range finder, we will calculateJ2 directly from 

the system analysis. The angular error in the mirror is propagated to 
the observed error with the physical conversion process. The 
propagation process can be divided into three parts: mirror e m r  to 
positional difference in the stripe, positional difference in the stripe 
to image difference, and image difference to the converted distance 
difference. The propagation process can be obtained anal)dCdy as 
follows. 

Let us denote the angular error as r68, where r is the distance from 
the light source to the physical point. At the physical place A. the 
laser light is intercepted. Then, due to the angular error, the physical 
difference, 6y occurs. 

hi 

s r a e ,  
cos a 

where a is the angle between the light source, S, and the surface 
normal. N. See Figure 6a. 

This physical difference is observed from the TV camera, and the 
image difference. 6i occurs. 

where p is the angle between the surface normal, N. and the viewer 
6i=(cos p,sy. 

F i y ,  we obtain 

62- wsp r68 
cosatan7 

- (N*V)(S*V) 

(N.S)* 
Figure 6b shows the reliability distribution over the detectable area. 

directional plane 

imaoe plane 

Figure 6a 

Figure 6b 

Figure 6: Reliability distribution 
of light-stripe range finder 

5.2. Propagation of Reliability to Geometric Features 
Usually raw data detected by a sensor is converted into geometric 
features such as distance. area, and inertia. This process propagates 
emrs  into the geometric features due to two reasons: the 
detectability distribution and the reliability distribution. Since this 
conversion process depends on the detected data, we will concentrate 
on faces as detected data, because most of the active sensors detect 
faces as the primal features. 
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52.1. Error propagation from detetability distribution 
Most active sensors detect physical patches as detected pixels. 
Usually, these detected pixels will be grouped and converted into 
isolated regions. If the sensor fails to find a detectable pixel. the 
measured area will be reduced from the nominal area size given by a 
model. This process can be modeled as follows: 

Suppose the detectability probability is p over a region and the 
nominal area size of the region is n. Under this condition, the 
probability to observe x pixels out of n pixels over the region is 

Table 6 Reliability of Geometric Features 

Feature Observed I Predicted 

Namely, this probability denotes that the system executes n trials and 
succeeds to detect x pixels under that condition that success 
probability is p and fail probability is 9. where p+q=l. This process 
is a binomial distribution; the mean and variance of this distribution 
are 

m=np 
&npq 

This gives the error propagation (area reduction ratio) for the 
detectability distribution. 

1 

Since both photometric stereo and a light-stripe range finder give 
p=l. neither sensor causes an area reduction due to the detectability 
distribution. 

52.2. Error propagation from reliability distribution 
The Next factors to be considered is the reliability of detected data. 
We recover the geometric features such as distance, area. and inertia 
from skewed raw data by an affine transform, based on the observed 
surface orientation in either the photometric stereo or light-stripe 
range finder. Thus, if the raw data are erroneous, the obtained 
geometric features are also erroneous. 

Let d be the real distance, and d+6d be the observed one. Then, the 
physical system generates an observed distance dcos8. while due to 
the sensor error, we will measure this surface surface orientation as 
cos(8+60), where 8 is the angle between the viewer and surface 
normal. Thus, for 68 small, we get 

d+M= dcosB/cos(8+68) = d(l+&anO). 

In the area case, 
a+& = a ( i + 2 x m e ) .  

In the inertia case, 
i+6i = i(1+368tan8). 

These formulas give error propagation from angular error to features 
at each pixel. We will obtain geometric features from a region which 
consists of n pixels. Thus, the system will execute n trials of 
measuring 68, which is approximated as a Gaussian distribution. 
N(0.02). and observe the total Z,&. From the theorm of the 
Gaussian distribution, 60=Zi68 is a Gaussian distribution, N(O,r~no~). 

By using these formulas, we calculate error ratio of areas and inertia 
for photometric stereo as shown in Table 6. FYedicted results are 
obtained based on the reliability of photometric stereo developed 
previously and the formulas of section. We use n=70. 04.045. 

Observed results are obtained from the distribution of the real data 
sampled five times. Similar results are expected in the other sensors. 

I Area I 0.02 I 0.045 I 
I Inertia I 0.05 I 0.067 I 

6. CONCLUDING REMARKS 
This paper discussed modeling sensors for model-based vision. Our 
sensor model consists of two characteristics: sensor detectability and 
sensor reliability. Sensor detectability specifies under what 
conditions a sensor can detect a feature, while sensor reliability 
denotes how reliable the obtained measurement is over the detectable 
area. 

We have defined the configuration space which represents the 
relationship between sensor coordinates and object coordinates. The 
sensor detectability and the sensor reliability are expressed in this 
configuration space. Constraints in the configuration space involved 
in detecting features have been developed by using G-source 
illuminated area and G-source illumination direction. We have 
shown how to compute the Sensor detectability distribution and the 
sensor reliability distribution for photometric stereo and a light-stripe 
range finder as examples. 

In model based vision, expected values of various features can be 
computed from 3D geometric model. Those values are. however, 
nominal values that they should take in ideal cases or should be 
sensed by ideal sensors. On the other hand, actually observed sensor 

The sensor 
model bridges the discrepancy between these two values by 
modeling the distribution of the sensed value based on the 
characteristics of a given sensor. In model-based vision, it is 
possible to precompile a given 3D geometric model into a 
recognition strategy [20]. This precompilation cannot generate an 
optimal strategy without knowing each feature's reliability, because 
the strategy should use the most stable features at each recognition 
step. Thus, the sensor model is an essential component in model- 
based vision. We have to explore more reliable sensor models for 

data contains noises and should be used accordingly. 1 

this purpose. 

We also have analyzed the error propagation mechanism from 
detected data to the geometric features. This is imponant. bccause 
quite often we are interested in geometric features derived from the 
detected sensor features. Once we establish the error propagation 
mechanism from detected sensor features to geometric features, we 
can also assess the reliability of the geometric features, hence we can 
construct a recognition system more systematically and reliably. 
Funher study is required in this area. 

To calculate detectable features of an object under the constraints of 
various sensors is a tedious job when we use a conventional 
geometric modeler. The better way is to interface a geometric 
modeler with the sensor model proposed. We call this a sensor 
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modeler. The traditional geomeuic modeler only allows users to 
generate a 3D object by combining primitive objects and to display 
its views. In this sense. the traditional modeling system has only one 
sensor model which is projection. The sensor modeler we propose 
can generate various 2D representations under given sensor 
specifications. Part of this facility is being implemented in our new 
geornetric/sensor modeler VANTAGE [ 16). 
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