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Abstract

Recent studies have employed simple linear dynamical systems to model trial-by-trial dynamics in
various sensorimotor learning tasks. Here we explore the theoretical and practical considerations that
arise when employing the general class of linear dynamical systems (LDS) as a model for
sensorimotor learning. In this framework, the state of the system is a set of parameters that define
the current sensorimotor transformation, i.e. the function that maps sensory inputs to motor outputs.
The class of LDS models provides a first-order approximation for any Markovian (state-dependent)
learning rule that specifies the changes in the sensorimotor transformation that result from sensory
feedback on each movement. We show that modeling the trial-by-trial dynamics of learning provides
a substantially enhanced picture of the process of adaptation compared to measurements of the steady
state of adaptation derived from more traditional blocked-exposure experiments. Specifically, these
models can be used to quantify sensory and performance biases, the extent to which learned changes
in the sensorimotor transformation decay over time, and the portion of motor variability due either
to learning or performance variability. We show that previous attempts to fit such model with linear
regression do not generally yield consistent parameter estimates. Instead, we present an expectation-
maximization (EM) algorithm for fitting LDS models to experimental data and describe the
difficulties inherent in estimating the parameters associated with feedback-driven learning. Finally,
we demonstrate the application of these methods in a simple sensorimotor learning experiment,
adaptation to shifted visual feedback during reaching.

I. INTRODUCTION

Sensorimotor learning is an adaptive change in motor behavior in response to sensory inputs.
Here, we explore a dynamical systems approach to modeling sensorimotor learning. In this
approach, the mapping from sensory inputs to motor outputs is described by a sensorimotor
transformation (Fig. 1, upper box), which constitutes the state of a dynamical system. The
evolution of this state is governed by the dynamics of the system (Fig. 1, lower box), which
may depend on both exogenous sensory inputs and on sensory feedback. The goal is to quantify
how these sensory signals drive trial-by-trial changes in the state of the sensorimotor
transformations underlying movement. To accomplish this goal, empirical data are fit with
linear dynamical systems (LDS), a general, parametric class of dynamical systems.

The approach is best illustrated with an example. Consider the case of prism adaptation of
visually guided reaching, a well-studied form of sensorimotor learning in which shifted visual
feedback drives rapid recalibration of visually guided reaching (von Helmholtz, 1867). Prism
adaptation has almost always been studied in a blocked experimental design, with exposure to
shifted visual feedback occurring over a block of reaching trials. Adaptation is then quantified
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by the “after-effect”, the change in the mean reach error across two blocks of no-feedback test
reaches, one before and one after the exposure block (Held and Gottlieb, 1958). This
experimental approach has had many successes, for example identifying different components
of adaptation (Hay and Pick, 1966; Welch et al., 1974) and the experimental factors that
influence the quality of adaptation (e.g., Baraduc and Wolpert, 2002; Norris et al., 2001;
Redding and Wallace, 1990). However, adaptation is a dynamical process, with behavioral and
neural changes in both the behavior and the underlying patterns of neural activity occurring on
every trial. Our goal is to describe how the state of the system, which in this case could be
modeled as the mean reach error, changes after each trial in response to error feedback (reach
errors, perceived visual-proprioceptive misalignment, etc.) on that trial. As we will describe,
a comparison of the performance before and after the training block is not sufficient to
characterize this process.

Only recently have investigations of sensorimotor learning from a dynamical systems
perspective begun to appear (Baddeley et al., 2003; Donchin et al., 2003; Scheidt et al.,
2001; Thoroughman and Shadmehr, 2000). While these investigations have all made use of
the LDS model class they primarily focused on the application of these methods. A number of
important algorithmic and statistical issues that arise when applying these methods remain
unaddressed.

Here we outline a general framework for modeling sensorimotor learning with LDS models,
discuss the key analytical properties of these models, and address the statistical issues that arise
when estimating model parameters from experimental data. We show how LDS can account
for performance bias and the decay of learning over time, observed properties of adaptation
that have not been included in previous studies. We show that the decay effect can be
confounded with the effects of sensory feedback and that it can be difficult to separate these
effects statistically. In contrast, the effects of exogenous inputs that are uncorrelated with the
state of the sensorimotor transformation are much easier to characterize. We describe a novel
resampling-based hypothesis test that can be used to identify the significance of such effects.

The estimation of the LDS model parameters requires an iterative, maximum likelihood, system
identification algorithm (Ghahramani and Hinton, 1996; Shumway and Stoffer, 1982), which
we present in a slightly modified form. This iterative algorithm is necessary because, as we
show, simple linear regression approaches are biased and/or ineffcient. The maximum-
likelihood model can be used to quantify characteristics of the dynamics of sensorimotor
learning and can make testable predictions for future experiments. Finally, we illustrate this
framework with an application to a modern variant of the prism adaptation experiment.

II. A LINEAR DYNAMICAL SYSTEMS MODEL FOR SENSORIMOTOR

LEARNING

A. General formulation of the model

Movement control can be described as a transformation of sensory signals into motor outputs.
This transformation is generally a continuous-time stochastic process that includes both
internal (“efference copy”) and sensory feedback loops. We will use the term “sensorimotor
transformation” to refer to the input-output mapping of this entire process, feedback loops and
all. This definition is useful in the case of discrete movements and other situations where
continuous time can be discretized in a manner that permits a concise description of the
feedback processes within each timestep. We assume that at any given movement trial or
discrete timestep, indexed by t, the motor output can be quantified by a vector yt. In general,
this output might depend on both a vector of inputs wt to the system and the “output noise”
γt, the combined effect of sensory, motor, and processing variability. As shown in the upper

Cheng and Sabes Page 2

Neural Comput. Author manuscript; available in PMC 2008 September 15.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



box of Fig. 1, the sensorimotor transformation can be formalized as a time-varying function
of these two variables,

(1a)

We next define “sensorimotor learning” as a change in the transformation Ft in response to the
sensorimotor experience of previous movements, as shown in the lower box of Fig. 1. We let
ut represent the vector of sensorimotor variables at timestep t that drive such learning. This
vector might include exogenous inputs rt and, since feedback typically plays a large role in
learning, the motor outputs yt. The input ut might have all, some or no components in common
with the inputs wt. Generally, learning after timestep t can depend on the complete history of
this variable, Ut ≡ {u1,…,ut}. Sensorimotor learning can then be modeled as a discrete-time
dynamical system whose state is the current sensorimotor transformation, Ft, and whose state-
update equation is the “learning rule” that specifies how F changes over time:

(1b)

where the noise term ηt includes sensory feedback noise as well as intrinsic variability in the
mechanisms of learning and will be referred to as “learning noise”.

Previous studies that have adopted a dynamical systems approach to studying sensorimotor
learning have only taken the output noise into account (Baddeley et al., 2003; Donchin et al.,
2003; Thoroughman and Shadmehr, 2000). However, it seems likely that variability exists both
in the sensorimotor output and in the process of sensorimotor learning. Attempts to fit empirical
data with parametric models of learning that do not account for learning noise may yield
incorrect results (see Section IV.D for an example). Aside from these practical concerns, it is
also of intrinsic interest to quantify the relative contributions of the output and learning noise
to performance variability.

B. The class of LDS models

The model class defined in Eqn. 1 provides a general framework for thinking about
sensorimotor learning, but it is too general to be of practical use. Here we outline a series of
assumptions that lead us from the general formulation to the specific class of LDS models,
which can be a practical yet powerful tool for interpreting sensorimotor learning experiments.

1. Stationarity: On the time scale that it takes to collect a typical dataset the learning rule
L does not explicitly depend on time.

2. Parameterization: Ft can be written in parametric form with a finite number of
parameters, xt ∈ Rm. This is not a serious restriction, as many finite basis functions
sets can describe large classes of functions. The parameter vector xt now represents
the state of the dynamical system at time t, and Xt is the history of these states. The
full model, consisting of the learning rule L and sensorimotor transformation F, is
now given by

(2a)

(2b)

1. Markov Property: The evolution of the system depends only on the current state and
inputs, not on the full history:

(3a)

(3b)
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In other words, we assume “online” or “incremental” learning, as opposed to “batch”
learning, a standard assumption for models of biological learning.

2. Linear Approximation and Gaussian Noise: The functions F and L can be linearized
about some equilibrium values for the states (xe), inputs (ue and we), and outputs
(ye):

(4a)

(4b)

Thus, if the system were initially set-up in equilibrium, the dynamics would be solely
driven by random fluctuations about that equilibrium. The linear approximation is not
unreasonable for many experimental contexts in which the magnitude of the
experimental manipulation, i.e., the inputs, are small, since in these cases the
deviations from equilibrium of the state and the output are small.

3. The combined effect of the constant equilibrium terms in Eqn. 4 can be lumped into
a single constant “bias” term for each equation:

(5a)

(5b)

We will show in Section III.B that it is possible to remove the effects of the bias terms
bx and by from the LDS. In anticipation of that result, we will drop the bias terms in
the following discussion.

With the additional assumption that ηt and γt are zero-mean, Gaussian white noise
processes, we arrive at the LDS model class we use below:

(6a)

(6b)

with

(6c)

In principle, signal-dependent motor noise (Clamann, 1969; Harris and Wolpert,
1998; Matthews, 1996; Todorov and Jordan, 2002) could be incorporated into this
model by allowing the output variance R to vary with t. In practice, this would
complicate parameter estimation. In the case where the data consists of a set of discrete
movements with similar kinematics (e.g. repeated reaches with only modest variation
in start and end locations), the modulation of R with t would be negligible. We will
restrict our consideration to the case of stationary R.

Among the LDS models defined in Eqn. 6 there are distinct subclasses that are functionally
equivalent. The parameters of two equivalent models are related to each other by a similarity
transformation of the states xt

(7)

where P is an invertible matrix. This equivalence exists because the state cannot be directly
observed, but must be inferred from the outputs yt. An LDS from one subclass of equivalent
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models cannot be transformed into an LDS of another subclass via Eqn. 7. In particular, a
similarity transformation of an LDS with A = I always yields another LDS with A = I since

(8)

Therefore, it is restrictive to assume that A = I, i.e. that there is no “decay” of input-driven state
changes over time.

The equivalence under similarity transformation can be useful if one wishes to place certain
constraints on the LDS parameters. For instance, if one wishes to identify state components
that evolve independently in the absence of sensory inputs, then the matrix A has to be diagonal.
In many cases1 this constraint can be met by performing unconstrained parameter estimation
and then transforming the parameters with P = [υ1…υn]−1, where vi are the eigenvectors of the
estimate of A. The transformed matrix A′= PAP−1 is a diagonal matrix composed of the
eigenvalues of A. As another example, the relationship between the state and the output might
be known, i.e. C = C0. If both C0 and the estimated value of C are invertible, this constraint is

achieved by transforming the estimated LDS with .

C. Feedback in LDS models

In the LDS model of Eqn. 6, learning is driven by an input vector ut. In an experimental setting,
the exact nature of this signal will depend on the details of the task and is likely to be unknown.
In general, it can include sensory feedback of the previous movement as well as exogenous
sensory inputs. When we consider the problem of parameter estimation in Section IV, we will
show that the parameters corresponding to these two components of the input have different

statistical properties. Therefore, we will explicitly write the input vector as , where
the vector rt contains the exogenous input signals. We will similarly partition the input
parameter, B = [G H]. This yields the form of the LDS model that will be used in the subsequent
discussion:

(9a)

(9b)

(9c)

The decomposition of ut specified above is not overly restrictive, since any feedback signal
can be divided into a component that is uncorrelated with the output (rt above) and a component
that is a linear transformation of the output. Furthermore, Eqn. 9 can capture a variety of
common feedback models. To illustrate this point, we consider three forms of “error corrective”
learning.

In the first case, learning is driven by the previous performance error, , where  is

the target output. As an example,  could be a visual reach target and ut could be the visually

perceived reach error. If we let  and G = H, then Eqn. 9a acts as a feedback controller
designed to reduce performance error.

As a second form of error corrective learning, consider the case where learning is driven by
the unexpected motor output, ut = yt – y^t, where y^t = Cxt + Dwt is the predicted motor output.
This learning rule would be used if the goal of the learner were to accurately predict the output

1This transformation only exists if there are n linearly independent eigenvectors, where n is the dimensionality of the state.
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of the system given the inputs ut and wt, i.e. to learn a “forward model” of the physical plant
y^(ut, wt, xt) (Jordan and Rumelhart, 1992). Writing this learning rule in the LDS form of Eqn.
6a, we obtain

Thus, this scheme can be expressed in the form of Eqn. 9a, with rt = wt and parameters A′, G
′, and H′.

Finally, learning could be driven by the predicted performance error,  (e.g., Donchin
et al., 2003; Jordan and Rumelhart, 1992). This scheme would be useful if the learner already
had access to an accurate forward model. Using the predicted performance to estimate
movement error would eliminate the effects that motor variability and feedback sensor noise
have on learning. Also, in the context of continuous time systems, learning from the predicted
performance error minimizes the effects of delays in the feedback loop. Putting this learning
rule into the form of Eqn. 6a, we obtain

Again, this scheme is consistent with Eqn. 9a, with the inputs rt and parameters A′ and G′ and
H = 0.

D. Example Applications

LDS models can be applied to a wide range of sensorimotor learning tasks, but there are some
restrictions. The true dynamics of learning must be consistent with the assumptions underlying
the LDS framework, as discussed in Section II.B. Most notably, both the learning dynamics
and motor output have to be approximately linear within the range of states and inputs
experienced. In addition, LDS models can only be fit to experimental data if the inputs ut and
outputs yt are well-defined and can be measured by the experimenter. Identifying inputs
amounts to defining the error signals that could potentially drive learning. While the true inputs
will typically not be known a priori, it is often the case that several candidate input signals are
available. Hypothesis testing can then be used to determine which signals contribute
significantly to the dynamics of learning, as discussed below in Section IV.B. The outputs yt
must be causally related to the state of the sensorimotor system, since it functions as a noisy
read-out of the state. Several illustrative examples are described here.

Consider first the case where t represents discrete movements. Two example tasks would be
goal directed reaching and hammering. A reasonable choice of state variable for these tasks
would be the average positional error at the end of the movement. In this case, yt would be the
error on each trial. In the hammering task, one might also include task-relevant dynamic
information such as the magnitude and direction of the impact force. In some circumstances,
these endpoint-specific variables might be affected too much by online feedback to serve as a
readout of the sensorimotor state. In such a case, one may choose to focus on variables from
earlier in the movement (e.g., Donchin et al., 2003; Thoroughman and Shadmehr, 2000).
Indeed, a more complete description of the sensorimotor state might be obtained by augmenting
the output vector by multiple kinematic or dynamic parameters of the movement and similarly
increasing the dimensionality of the state. In the reaching task, for example, yt could contain
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the position and velocity at several time-points during the reach. Similarly, the output for the
hammering task might contain snapshots of the kinematics of the hammer or the forces exerted
on the hammer by the hand. If learning is thought to occur independently in different
components of the movement, then state and output variables for each component should be
handled by separate LDS models in order to reduce the overall model complexity.

Next, consider the example of gain adaptation in the vestibular ocular reflex (VOR). The VOR
stabilizes gaze direction during head rotation. The state of the VOR can be characterized by
its “gain”, the ratio of the angular speed of the eye response over the speed of the rotation
stimulus. When magnifying or minimizing lenses are used to alter the relationship between
head rotation and visual motion, VOR gain adaptation is observed (Miles and Fuller, 1974).
An LDS could be used to model this form of sensorimotor learning with the VOR gain as the
state of the system. If the output is chosen to be the empirical ratio of eye and head velocity,
then a linear equation relating output to state is reasonable. The input to the LDS could be the
speed of visual motion or the ratio of that speed to the speed of head rotation. On average, such
input would be zero if the VOR had perfect gain. A more elaborate model could include separate
input, state, and output variables for movement about the horizontal and vertical axes. The
dynamics of VOR adaptation could be modeled across discrete trials, consisting, for example,
of several cycles of sinusoidal head rotations about some axis. The variables yt and ut could
then be time averages over trial t of the respective variables. On the other hand, VOR gain
adaptation is more accurately described as a continuous learning process. This view can also
be incorporated into the LDS framework. Time is discretized into timesteps indexed by t, and
the variables yt and ut represent averages over each timestep.

In the examples described so far, the input and output error signals are explicitly defined with
respect to some task-relevant goal. It is important to note, however, that the movement goal
need not be explicitly specified or directly measurable. There are many examples where
sensorimotor learning occurs without an explicit task goal: when auditory feedback of vowel
production is pitch-shifted, subjects alter their speech output to compensate for the shift (Houde
and Jordan, 1998); when reaching movements are performed in a rotating room, subjects adapt
to the Coriolis forces to produce nearly straight arm trajectories even without visual feedback
(Lackner and Dizio, 1994); when the visually perceived curvature of reach trajectories are
artificially shifted, subjects adapt their true arm trajectories to compensate for the apparent
curvature (Flanagan and Rao, 1995; Wolpert et al., 1995). What is common to these examples
is an apparent implicit movement goal that subjects are trying to achieve. The LDS approach
can still be applied in this common experimental scenario. In this case, a measure of the trial-
by-trial deviation from a baseline (pre-exposure) movement can serve as a measure of the state
of sensorimotor adaptation or as an error feedback signal. This approach has been applied
successfully in the study of reach adaptation to force perturbations (Donchin et al., 2003;
Thoroughman and Shadmehr, 2000).

III. CHARACTERISTICS OF LDS MODELS

We now describe how the LDS parameters relate to two important characteristics of
sensorimotor learning, the steady state behavior of the learner and the effects of performance
“bias”.

A. Dynamics vs. steady state

Most experiments of sensorimotor learning have focused on the “after-effect” of learning,
measured as the change in motor output following a block of repeated exposure trials. The LDS
can be used to model such blocked exposure designs. An LDS with constant exogenous inputs
(rt = r, wt = w) will, after many trials, approach a steady state in which the state and output are
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constant except for fluctuations due to noise. The after-effect is essentially the expected value
of the steady state output,

(10)

An expression for the steady state x∞= limt→∞ E (xt) is obtained by taking the expectation value
and then the limit of Eqn. 9a, yielding

(11)

Combining Eqns. 10 and 11, the steady state is given by the solution of

(12)

A unique solution to Eqn. 12 exists only if A + HC − I is invertible. One sufficient condition
for this is asymptotic stability of the system, which means that the state converges to zero as
t → ∞ in the absence of any inputs or noise. This follows from the fact that a system is
asymptotically stable if and only if all of the eigenvalues of A + HC have magnitude less than
unity (Kailath, 1980). When a unique solution exists, it is given by

(13)

and the steady-state output is

(14)

This last expression can be broken down into the effective “gains” for the inputs r and w, i.e.
the coefficients C(A + HC − I)−1G and C(A+HC−I)−1HD+D, respectively. While these two
gains can be estimated from the steady-state output in a blocked-exposure experiment, they
are insufficient to determine the full system dynamics. In fact, none of the parameters of the
LDS model in Eqn. 9 can be directly estimated from these two gains.

The difference between studying the dynamics and the steady state is best illustrated with
examples. We consider the performance of two specific LDS models. For simplicity, we place
several constraints on the LDS: C = I, meaning the state x represents the mean motor output;
D = 0, meaning the exogenous input has no direct effect on the current movement; and G and
H are invertible, meaning that no dimensions of the input r or feedback yt are ignored during
learning. In the first example, we consider the case where A = I. This is a system with no
intrinsic “decay” of the learned state. From Eqn. 14, we see that the steady-state output in this
case converges to the value

(15)

If this is a simple error corrective learning algorithm as in the first example of Section II.C,
then G = H and the output converges to a completely adaptive response in the steady-state,
y∞ = −r. In such a case, the steady-state output is independent of the value of H, and so
experiments that measure only the steady-state performance will miss the dynamical effects
due to the structure of H. Such effects are illustrated in Fig. 2, which shows the simulated
evolution of the state of the system when the learning rate along the x-direction (H11) is 40%
smaller than in the y-direction (H22). Such spatial anisotropies in the dynamics of learning
provide important clues about the underlying mechanisms of learning. For example,
anisotropies could be used to identify differences in the learning and control of specific spatial
components of movement (Favilla et al., 1989;Krakauer et al., 2000;Pine et al., 1996).
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In the second example, we consider a learning rule that does not achieve complete adaptation,
a more typical outcome in experimental settings. Unlike in the last example, we assume that
the system is isotropic, i.e. A = aI, G = −gI, and H = −hI, where a, g, and h are positive scalars.
In this case the steady-state output is

(16)

A system with a = 1 and g = h will exhibit complete adaptation, i.e., y∞ = −r. However,
incomplete adaptation, |y∞| < |r|, could be due either to state decay (a < 1) or to a greater
weighting of the feedback signal compared to the exogenous shift (h > g). Measurements of
the steady state are not sufficient to distinguish between these two qualitatively different
scenarios. These examples illustrate that knowing the steady-state output does not fully
constrain the important features of the underlying mechanisms of adaptation.

B. Modeling sensorimotor bias

The presence of systematic errors in human motor performance is well documented (e.g.,
Gordon et al., 1994; Soechting and Flanders, 1989; Weber and Daroff, 1971). Such
“sensorimotor biases” could arise from a combination of sensory, motor, and processing errors.
While bias has not been considered in previous studies using LDS models, failing to account
for it can lead to poor estimates of model parameters. Here, we show how sensorimotor bias
can be incorporated into the LDS model and how the effects of bias on parameter estimation
can be avoided.

It might seem that the simplest way to account for sensorimotor bias would be to add a bias
vector by to the output equation (Eqn. 9):

(17a)

(17b)

However, in a stable feedback system, feedback-dependent learning will effectively adapt away
the bias. This can be seen by examining the steady state of Eqn. 17,

Considering the case where A = I, and C and H are invertible, the steady state compensates for
the bias, x∞ = −C−1(H−1Gr + Dw + by), and so the bias term vanishes entirely from the
asymptotic output: y∞ = −H−1Gr.

The simplest way to capture a stationary sensorimotor bias in an LDS model is to incorporate
it into the learning equation. For reasons that will become clear below, we add a bias term
−Hbx,

(18a)

(18b)

Now the bias carries through to the sensorimotor output:
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Again assuming that A = I, and C and H are invertible, the stationary output becomes y∞ =
−H−1Gr + bx, which is the unbiased steady-state output plus the bias vector bx.

As described in Section II, the sensorimotor biases defined above are closely related to the
equilibrium terms xe, ye, etc., in Eqn. 4. If Eqn. 18 were fit to experimental data, the bias term
bx would capture the combined effects of all the equilibrium terms in Eqn. 4a. Similarly, a bias
term by in the output equation would account for the equilibrium terms in Eqn. 4b. However,
adding these bias parameters to the model would increase the model complexity with little
benefit, as it would be very difficult to interpret these composite terms. Here we show how
bias can be removed from the data so that these model parameters can be safely ignored.

With T being the total number of trials or timesteps, let  and ū, w̄, and ȳ defined
accordingly. Averaging Eqn. 5 over t, we get

With the approximations  and

, which are quite good for large T, we get

Subtracting these equations from Eqn. 5 leads to

(19)

(20)

Therefore, the mean-subtracted values of the empirical input and output variables obey the
same dynamics as the raw data, but without the bias terms. This justifies using Eqn. 6 to model
experimental data, as long as the inputs and outputs are understood to be the mean-subtracted
values.

IV. PARAMETER ESTIMATION

Ultimately, LDS models of sensorimotor learning are only useful if they can be fit to
experimental data. The process of selecting the LDS model that best accounts for a sequence
of inputs and outputs is called “system identification” (Ljung, 1999). Here we take a maximum-
likelihood approach to system identification. Given a sequence (or sequences) of input and
output data, we wish to determine the model parameters for Eqn. 9 for which the dataset has
the highest likelihood, i.e., we want the maximum likelihood estimates (MLE) of the model
parameters. Since no analytical solution exists in this case, we employ the expectation-
maximization (EM) algorithm to calculate the MLE numerically (Dempster et al., 1977). A
review of the EM algorithm for LDS (Ghahramani and Hinton, 1996; Shumway and Stoffer,
1982) is presented in the Appendix, with one algorithmic refinement. A Matlab implementation
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of this EM algorithm is freely available online at http://keck.ucsf.edu/~sabes/software/. Here
we discuss several issues that commonly arise when trying to fit LDS models that include
sensory feedback.

A. Correlation between parameter estimates

Generally, identification of a system operating under closed-loop (i.e. where the output is fed
back to the learning rule) is more difficult than if the same system were operating in open loop
(no feedback). This is partly because the closed loop makes the system less sensitive to external
input (Ljung, 1999). In addition, and perhaps more importantly for our application, since the
output directly affects the state, these two quantities tend to be correlated. This makes it difficult
to distinguish their effects on learning, i.e. to fit the parameters A and H.

To determine the conditions that give rise to this difficulty consider two hypothetical LDS
models

(21)

(22)

which are related to each other by A′ = A – δC and H′ = H + δ. These models differ in how
much the current state affects the subsequent state directly (A) or through output feedback
(H), and the difference is controlled by d. However, the total effect of the current state is the
same in both models, i.e., A + HC = A′+ H′C. Distinguishing these two models is thus equivalent
to separating the effects of the current state and the feedback on learning. To determine when
this distinction is possible we rewrite the second LDS in terms of A and H:

(23)

where the last step uses Eqn. 9b. Comparing Eqns. 21 and 23, we see that the two models are
easily distinguished if the contribution of the δDwt term is large. However, in many
experimental settings the exogenous input has little affect on the ongoing motor output (e.g.,
in the terminal feedback paradigm described in Section V), implying that Dwt is negligible. In
this case, the main difference between these two models is the noise term δγt, and the ability
to distinguish between the models depends on the relative magnitudes of the variances of the
output and learning noise terms, R = Var(γt) and Q = Var(ηt). For |R| ≫ |Q|, separation will be
relatively easy. In other cases, the signal due to δγt may be lost in the learning noise.

We next fit a one-dimensional LDS to simulated data in order to confirm the correlation
between the estimates for A and H and to investigate other potential correlations among
parameter estimates. In these simulations, the inputs rt and the learning noise ηt were both zero-
mean, Gaussian white noise processes. Both variables had unity variance, determining the scale

for the other parameters values, which are listed in Fig. 3. Three different values for  and
two dataset lengths T were used. Note that the input affects learning via the product Gr, and
so the standard deviation of this product quantifies the input effect. Here and below we use |

Gr| to refer to this standard deviation. For each pair of values for  and T we simulated
1000 datasets and estimated the LDS parameters with the EM algorithm. We then calculated
the correlations between the various parameter estimates across simulated datasets (Fig. 3).
With sufficiently large datasets the MLE are consistent and exhibit little variability (Fig. 3,
bottom row). If the datasets are relatively small, two different effects can be seen, depending
on the relative magnitudes of R and Q. As predicted above, when R < Q there is large variability
in the estimates Â and Ĥ and they are negatively correlated (Fig. 3, top-left panel). In separate
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simulations (data not shown), we confirmed that this correlation disappears when there are
substantial feedthrough inputs, i.e., when |Dw| is large. In contrast, when the output noise has
large variance, R > Q, the estimate R̂ covaries with the other model parameters (Fig. 3, top-
right panel). This effect has an intuitive explanation: when the estimated output variance is
larger than the true value, even structured variability in the output is counted as noise. In other
words, a large R̂ masks the effects of the other parameters, which are thus estimated to be closer
to zero.

Next, we isolate and quantify in more detail the correlation between the estimates Â and Ĥ.
We computed the MLE for simulated data under two different constraint conditions. In the first
case, only Ĥ was fit to the data, while all other parameters were fixed at their true values (H
unknown, A known). In the second case, the sum A + HC and all parameters other than A and
H were fixed to their true values (A and H unknown, A + HC known). In this case, Â and Ĥ
were constrained to be A − δC and H + δ, respectively, and the value of δ was fit to the data.
This condition tests directly whether the maximum likelihood approach can distinguish the
effects of the current state and the feedback on learning. Under both of these conditions there
is only a single free parameter, and so a simple line search algorithm was used to find the MLE
of the parameter from simulated data.

Data were simulated with the same parameters as in Fig. 3 while three quantities were varied:

, |Gr|, and T (see Fig. 4). For a given set of parameter values we simulated 1000 datasets
and found the MLE Ĥ for each. The 95%-confidence interval (CI) for Ĥ was computed as the
symmetric interval around the true H containing 95% of the fit values Ĥ.

The results for the first constraint case (H unknown) are shown on the left side of Fig. 4.
Uncertainty in Ĥ is largely invariant to the magnitude of the output noise or the exogenous
input signal, |Gr|, although there is a small interaction between the two at high input levels.
For later comparison, we note that with T = 1000, we obtain a 95%-CI of ±0.05.

The results are very different when A + HC is fixed but A and H are unknown (right side of

Fig. 4). While the uncertainty in Ĥ is independent of the input magnitude, it is highly dependent

on the magnitude of the output noise. As predicted, when R is small relative to Q, there is much

greater uncertainty in Ĥ compared to the first constraint condition. For example, if

 (comparable to the empirical results shown in Fig. 8C below) several thousands of

trials would needed to reach a 95%-CI of ±0.05. In order to match the precision of Ĥ obtained

in the first constraint condition with T = 1000,  is needed.

B. Hypothesis testing

One important goal in studying sensorimotor learning is to identify which sensory signal, or

signals, drive learning. Consider the case of a k-dimensional vector of potential input signals,

rt. We wish to determine whether the ith component of this input has a significant effect on the

evolution of the state, i.e. whether Gi, the ith column of G, is significantly different from zero.

Specifically, we would like to test the hypothesis H1: Gi ≠ 0 against the null hypothesis H0:

Gi = 0. Given the framework of maximum likelihood estimation, we could use a generic

likelihood ratio test in order to assess the significance of the parameters Gi (Draper and Smith,

1998). However, the likelihood ratio test is only valid in the limit of large datasets. Given the

complexity of these models, that limit may not be achieved in typical experimental settings.

Instead, we propose the use of a permutation test, a simple class of non-parametric, resampling-

based hypothesis tests (Good, 2000). Consider again the null hypothesis H0: Gi = 0, which

implies that , the ith component of the exogenous input rt, does not influence the evolution

system. If H0 were true, then randomly permuting the values of  across t should not affect the

Cheng and Sabes Page 12

Neural Comput. Author manuscript; available in PMC 2008 September 15.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



quality of the fit — in any case we expect Gi to be near zero. This suggests the following
permutation test. We randomly permute the ith component of the exogenous input, determine
the MLE parameters of the LDS model from the permuted data, and compute a statistic
representing the goodness-of-fit of the MLE, in our case the log likelihood of the permuted
data given the MLE, Lperm. This process is repeated many times. The null hypothesis is then
rejected at the (1 − α)-level if the fraction of Lperm that exceed the value of L computed from
the original dataset is below α. Alternatively, the magnitude of Gi itself could be used as the
test statistic, since Gi is expected to be near zero for the permuted datasets.

To evaluate the usefulness of the permutation test outlined above, we performed a power
analysis on datasets simulated from the one-dimensional LDS described in Fig. 5. For each
combination of parameters we simulated 100 datasets. For each of these datasets, we
determined the significance of the scalar G using the permutation test described above with
k = i = 1, α = 0.05, and 500 permutations of rt. The fraction of datasets for which the null
hypothesis was (correctly) rejected represents the power of the permutation test for those
parameter values.

The top panel of Fig. 5 shows the power as a function of the input magnitude and trial length

T, given . The lower panel shows the magnitude of the input required to obtain a power

of 80%, as a function of  and T. Plots such as these should be used during experimental
design. However, since neither G nor the output and learning noise magnitudes are typically

known, heuristic values must be used. With  and , approximately 1600
trials are needed to obtain 80% power. Note, however, that the exogenous input signal is often
under experimental control. In this case, the same power could be achieved with about 400
trials if the magnitude of that signal were doubled. In general, increasing the amplitude of the
input signal will allow the experimenter to achieve any desired statistical power for this test.
Practically, however, the size of a perturbative input signal is usually limited by several factors,
including physical constraints or a requirement that subjects remain unaware of the
manipulation. Therefore, large numbers of trials may often be required to achieve sufficient
power.

C. Combining multiple datasets

A practical approach to collecting larger datasets is to perform repeated experiments, either
during multiple sessions with a single subject or with multiple subjects. In either case, accurate
model fitting requires that the learning rule is stationary (i.e., constant LDS parameters) across
sessions or subjects. There are two possible approaches to combining N datasets of length T.
First, the data from different sessions can be concatenated to form a “super dataset” of length
NT. The system identification procedure outlined in the Appendix can be directly applied to
the super dataset with the caveat that the initial state xt=1 has to be reset at the beginning of
each dataset.

A second approach can be taken when nominally identical experiments are repeated across
sessions, i.e. when the input sequences rt and wt are the same in each session. In this approach
the inputs and outputs are averaged across sessions, yielding a single “average dataset” with
inputs r ̃t and w̃t, and outputs ỹt. The dynamics underlying this average dataset are obtained by
averaging the learning and output equations for each t (Eqn. 9) across datasets:

(24a)

(24b)
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Note that the only difference between this model and that describing the individual datasets is
that the noise variances have been scaled: Var(η̃t) = Q/N and Var(γ̃t) = R/N. Therefore, the EM
algorithm (see Appendix) can be directly applied to average datasets as well.

Since both approaches to combining multiple datasets are valid, we ran simulated experiments
to determine which approach produces better parameter estimates, i.e., tighter confidence
intervals. Simulations were performed with the model described in Fig. 6, varying R and Q

while maintaining a fixed ratio .

The preferred approach for combining datasets depends on which parameter one is trying to
estimate. CIs for the exogenous input parameter Ĝ are shown in Fig. 6. Variability depends
strongly on the number of trials but even more so on the noise variances. For example, with
200 trials, R = 1, and Q = 1/2, the 95%-CI is ±0.145. Multiplying the number of trials by 4

results in a 41% improvement in CI, yet dividing the noise variances by 4 yields a 76%

improvement. Therefore, for estimating G it is best to average the datasets. It should be noted,

however, that the advantage is somewhat weaker for larger input variances (Fig. 6 was

generated with unit input variance; other data not shown). By contrast, the variability of the

MLE for H only mildly depends on the noise variances (data not shown), if at all. Therefore,

increasing the dataset length by concatenation produces better estimates for H than decreasing

the noise variances by averaging.

D. Linear regression

As noted above, there is no analytic solution for the maximum likelihood estimators of the

LDS parameters, so the EM algorithm is used (Ghahramani and Hinton, 1996; Shumway and

Stoffer, 1982). While EM has many attractive properties (Dempster et al., 1977), it is a

computationally expensive, iterative algorithm and it can get caught in local minima. The

computation time becomes particularly problematic when system identification is used in

conjunction with resampling schemes for statistical analyses such as bootstrapping (Efron and

Tibshirani, 1993) or the permutation tests described above. It is therefore tempting to

circumvent the inefficiencies of the EM algorithm by converting the problem into one that can

be solved analytically. Specifically, there have been attempts to fit a subclass of LDS models

using linear regression (e.g., Donchin et al., 2003). It is, in fact, possible to find a regression

equation for the input parameters G, H, and D if we assume that A = I, a fairly strict constraint

implying no state decay. There are then two possible approaches to transforming system

identification into a linear regression problem. As we describe here, however, both approaches

can lead to inefficient, or worse, inconsistent estimates.

First we consider the “subtraction approach”. If A = I, the following expression for the trial-

by-trial change in output can be derived from the LDS in Eqn. 6 (i.e., the form without explicit

feedback),

(25)

This equation suggests that the trial-by-trial changes in yt can be regressed on inputs ut and

wt in order to determine the parameters CB and D. Obtaining an estimate of B requires knowing

C, however that is not a significant constraint due to the existence of the similarity classes

described in Eqn. 7. One complication with this approach is that the noise terms in Eqn. 25,

γt+1 − γt + Cηt are correlated across trials. Such colored noise can be accommodated in linear

regression (Draper and Smith, 1998), however the ratio of R and Q would have to be known

in order to construct an appropriate covariance matrix for the noise. A more serious problem

with the regression model in Eqn. 25 arises in feedback systems, in which But = Grt + Hyt. In

this case, the RHS of equation Eqn. 25 contains the same term, yt, as the LHS. This correlation

between the dependent variables yt and the independent variables yt+1 – yt leads to a biased
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estimates for H. As an example, consider a sequence yt that is generated by a pure, white-noise
process with no feedback dynamics. If the regression model of equation Eqn. 25 were applied
to this sequence, with C = 1 and no exogenous inputs, the expected value of the regression
parameter would be Ĥ = −1, compared to the true value H = 0. Application of the regression
model in Eqn. 25 to simulated data confirms this pattern of bias in Ĥ (Fig. 7, black line). In the
general multivariate case, Ĥ will be biased towards −I as long as the output noise is large
compared to the learning noise.

The bias described above arises from the fact that the term yt occurs on both sides of the
regression equation. This problem can be circumvented by deriving a simple expression for
the output as a linear function of the initial state and all inputs up to, but not including, the
current timestep:

(26)

This expression suggests the “summation approach” to system identification by linear
regression. The set of Eqns. 26 for each t can be combined into the standard matrix regression
equation Y = Xβ+noise:

(27)

For a given value of C, regression would produce estimates for x1, G, H, and D. One pitfall
with this approach is that the variance of the noise terms grows linearly with the trial count t:

(28)

This problem is negligible if |Q| ≪ |R|. Otherwise, as the trial count increases the accumulated
learning noise will dominate all other correlations and the estimated parameter values will
approach zero. This effect can be seen for our simulated datasets in Fig. 7, gray line. Of course,
this problem could be addressed by modeling the full covariance matrix of the noise terms and
including them in the regression (Eqn. 28 gives the diagonal terms of the matrix). However,
this requires knowing Q and R in advance. Also, the linear growth in variance means that later
terms will be heavily discounted, forfeiting the benefit of large datasets.

V. EXAMPLE: REACHING WITH SHIFTED VISUAL FEEDBACK

Here we present an application of the LDS framework using a well-studied form of feedback
error learning: reach adaptation due to shifted visual feedback. In this experiment, subjects
made reaching movements in a virtual environment with artificially shifted visual feedback of
the hand. The goal is to determine whether a dynamically changing feedback shift drives reach
adaptation and, if so, what the dynamics of learning are.

Subjects were seated with their unseen right arm resting on a table. At the beginning of each
trial, the index fingertip was positioned at a fixed start location, a virtual visual target was
displayed at location gt, and after a short delay an audible go signal instructed subjects to reach
to the visual target. The movement began with no visual feedback, but just before the end of
the movement (determined online from fingertip velocity) a white disk indicating the fingertip
position appeared (“terminal feedback”). The feedback disk tracked the location of the
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fingertip, offset from the finger by a vector rt. The fingertip position at the end of the movement
is represented by ft.

Each subject performed 200 reach trials. The sequence of visual shifts rt was a random walk
in 2-dimensional space. The two components of each step, rt+1 − rt, were drawn independently
from a zero-mean normal distribution with a standard deviation of 10mm and with the step
magnitude limited to 20mm. In addition, each component of rt was limited to the ±60mm range,

with reflective boundaries. These limitations were chosen to ensure that subjects did not

become aware of the visual shift.

In order to model this learning process with an LDS, we need to define its inputs and outputs.

Reach adaptation is traditionally quantified with the “after-effect”, i.e. the reach error yt = ft –
gt measured in a no-feedback test reach (Held and Gottlieb, 1958). In our case, the terminal

feedback appeared sufficiently late to preclude feedback-driven movement corrections.

Therefore, the error on each movement, yt, is a trial-by-trial measure of the state of adaptation.

We will also define the state of the system xt to be the mean reach error at a given trial, i.e.,

the average yt that would be measured across repeated reaches if learning were frozen at trial

t. This definition is consistent with the output equation of the LDS model, Eqn. 9b, if two

constraints are placed on the LDS: D = 0 and C = I. The first constraint is valid because of the

late onset of the visual feedback. The second constraint resolves the ambiguity of the remaining

LDS parameters, as discussed in Section II.B.

We will also assume that the input to the LDS is the visually perceived error, ut = yt + rt. Thus,

we are modeling reach adaptation as error corrective learning, with a target output  (see

Section II.C). Note that with this input variable, But = Hyt + Grt if B = H = G. Using the EM

algorithm, the sequence of visually perceived errors (inputs) and reach errors (outputs) from

each subject were used to estimate the LDS parameters A, B, Q, and R. The parameter fits from

four subjects’ data are shown in Fig. 8A. The decay parameter Â is nearly diagonal for all

subjects, implying that the two components of the state do not mix and thus evolve

independently. Also, the diagonal terms of Â are close to 1, which means there is little decay

of the adaptive state from one trial to the next.

The individual components of the input parameter B ̂ are considerably more variable across

subjects. A useful quantity to consider is the square root of the determinant of the estimated

input matrix, , which is the geometric mean of the magnitudes of the eigenvalues of

B̂. This value, shown in Fig. 8B, is a scalar measure of the incremental state correction due to

the visually perceived error on each trial. To determine whether these responses are statistically

significant, we performed the permutation test described in Section IV.B on the value of

. The null hypothesis was H0 : det B = 0. 2 Figure 8B shows that H0 can be rejected

with 95% confidence for all four subjects, and so we conclude that the visually perceived error

significantly contributes to the dynamics of reach adaptation.

As discussed in Section IV, the statistical properties of the MLE parameters depend to a large

degree on the ratio of the learning and output noise terms. In the present example, the covariance

matrices are two-dimensional, and so we quantify the magnitude of the noise terms by the

square-root of the their determinants,  and , respectively. The ratio of standard

deviations is thus (det R̂/det Q ̂)1/4. The experimental value of this ratio ranges from 1.2 to 3.7

with a mean of 2.5 (Fig. 8C). These novel findings suggest that learning noise might contribute

almost as much to behavioral variability as motor performance noise.

Cheng and Sabes Page 16

Neural Comput. Author manuscript; available in PMC 2008 September 15.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



The results presented in Fig. 8 depend on the assumption that the visually perceived error ut
drives learning. This guess was based on the fact that ut is visually accessible to the subject
and is a direct measure of the subject’s visually perceived task performance. However, several
alternatives inputs exist, even if we restrict consideration to the variables already discussed.
Note again that the input term But can be expanded to Hyt + Grt. The hypothesis that the visually
perceived error drives learning is thus equivalent to the claim that H = G. However the true
reach error yt and the visual shift rt could effect learning independently. These variables are
not accessible from visual feedback alone, but they could be estimated from comparisons of
visual and proprioceptive signals or the predictions of internal forward models. While these
estimates might be noisier than those derived directly from vision, this sensory variability is
included in the learning noise term, as discussed in Section II.A.

Note that an incorrect choice of input variable ut means that the LDS model cannot capture the
true learning dynamics, and so the resulting estimate of learning noise should be high. Indeed,
one explanation for the large Q in the model fits above is that an important input signal was
missing from the model. The LDS framework itself can be used to address such issues. In this
case, we can test the alternative H ≠ G against the null hypothesis H = G by asking whether a
significantly better fit is obtained with two inputs, [ut, rt], compared to the single input ut. The
permutation test, with permuted rt, would be used. We showed in Section IV.A, however, that
such comparisons require more than the 200 trials per subject collected here.

VI. DISCUSSION

Quantitative models, even very simple ones, can be extremely powerful tools for studying
behavior. They are often used to clarify difficult concepts, quantitatively test intuitive ideas,
and rapidly test alternative hypothesis with “virtual experiments”. However, successful
application of such models depends on understanding the properties of the model class being
used. The class of LDS models is an increasingly popular tool for studying study sensorimotor
learning. We have therefore studied the properties of this model class and identified the key
issues that arise in their application.

We explored the steady-state behavior of LDS models and related that behavior to the
traditional measures of learning in blocked-exposure experimental designs. These results
demonstrate why the dynamical systems approach provides a clearer picture of the mechanisms
of sensorimotor learning.

We described the EM-algorithm for system identification and discussed some of the details
and difficulties involved in estimating model parameters from empirical data. Most
importantly, in closed-loop systems it is difficult to separate the effects of state decay (A) and
feedback (H) on the dynamics of learning. Note that this limitation is an example of a more
general difficulty with all linear models. If any two variables in either the learning or output
equations are correlated, then it will be difficult to independently estimate the coefficients of
those variables. For example, if the exogenous learning signal rt and feedthrough input wt are
correlated in a feedback system, then it is difficult to distinguish the exogenous and feedback
learning parameters G and H. As a second example, if the exogenous input vector rt is
autocorrelated with a time scale longer than that of learning, then the input and the state will
be correlated across trials. In this case, it would be difficult to distinguish A and G. Such is
likely to be the case in experiments that include blocks of constant input, giving a compelling
argument for experimental designs with random manipulations.

One attractive feature of LDS models is that they contain two sources of variability, an output
or performance noise and a learning noise. Both sources of variability will contribute to the
overall variance in any measure of performance. We know of no prior attempts to quantify
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these variables independently, despite the fact that they are conceptually quite different. In
addition, the ratio of the two noise contributions has a large effect on the statistical properties
of LDS model fits.

We motivated the LDS model class as a linearization of the true dynamics about equilibrium
values for the state and inputs. Linearization is justifiable for modeling a set of movements
with similar kinematics (e.g. repeated reaches with small variations in start and end locations)
and small driving signals. However many experiments consist of a set of distinct trial types
that are quite different from each other, e.g., a task with K different reach targets. It is a
straightforward extension of the LDS model presented here to include separate parameters and
state variables for each of K trial types. In this case, the effect of the input variables (feedback
and exogenous) on a given trial will be different for each of the K state variables (i.e., for the
future performance of each trial type). The parameters Gij and Hij that describe these cross-
condition effects (the effects of a type-i trial on the j-th state variable) are essentially measures
of generalization across the trial types (Donchin et al., 2003; Thoroughman and Shadmehr,
2000). In addition, each trial type could be associated with a different learning noise variance
Qi and output noise variance Ri to account for signal-dependent noise. All of the practical issues
raised in this paper apply, except that additional parameters (whose number goes as K2) will
require more data for equivalent power.

Finally, we note that if the output is known to be highly non-linear, it is fairly straightforward
to replace the linear output equation Eqn. 6b with a known, non-linear model of the state-
dependent output, Eqn. 2b. In that case, the Kalman smoother in the E-step of the EM algorithm
would have to be replaced by the extended Kalman smoother and the closed form solution of
the M-step would likely have to be replaced with an iterative optimization routine.
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APPENDIX A: Maximum likelihood estimation

We take a maximum likelihood approach to system identification. The maximum likelihood
estimator (MLE) for the LDS parameters is given by:

(A1)

where Θ ≡ {A, B, C, D, R, Q} is the complete set of parameters of the model in Eqn. 6. In the
following, we will suppress the explicit dependence on the inputs, u1,…, uT and w1,…, wt, and
use the notation Xt = {x1,…, xt} and Yt = {y1, …, yt}. Generally, Eqn. A1 cannot be solved
analytically, and numerical optimization is needed.

Here we discuss the application of the expectation-maximization (EM) algorithm (Dempster
et al., 1977) to system identification of the LDS model defined in Eqn. 6. The EM-algorithm
is chosen for its attractive numerical and computational properties. In most practical cases it
is numerically stable, i.e., every iteration increases the log likelihood monotonically:

(A2)

where Θ ^i is the parameter estimate in the i-th iteration, and convergence to a stationary point
of the log likelihood is guaranteed (Dempster et al., 1977). In addition, the two iterative steps
of EM-algorithm are often easy to implement. The E-step consists of calculating the expected

value of the “complete” log likelihood, , as a function of T, given the current
parameter estimate Θ ^i:

(A3)

In the M-step, the parameters that maximize the expected log likelihood are found:

(A4)

The starting point in the formulation of the EM algorithm is the derivation of the complete
likelihood function, which is generally straightforward if the likelihood factorizes. Thus, we
begin by asking whether the likelihood of an LDS model factorizes, even when there are
feedback loops (c.f. Eqn. 9). From the graphical model in Fig. 9, it is evident that yt and xt+1

are conditionally independent of all other previous states and inputs, given xt. The mutual
probability of yt and xt+1, given by Bayes’ Theorem, is

The complete likelihood function is thus

(A5)

This factorization means that, for the purposes of this algorithm, we can regard the feedback
as just another input variable. This view corresponds to the direct approach to closed-loop
system identification (Ljung, 1999).

The two steps of the EM algorithm for identifying the LDS model in Eqn. 6, when B = D = 0
and C is known, were first reported by Shumway and Stoffer (1982). A more general version,
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which included estimation of C, was presented by Ghahramani and Hinton (1996). The EM
algorithm for the general LDS of Eqn. 6 is a straightforward extension, and we present it here
without derivation.

1. E-step

The E-step consists of calculating the following expectations and covariances:

(A6a)

(A6b)

(A6c)

These are computed by Kalman smoothing (Anderson and Moore, 1979), which consists of
two passes through the sequence of trials. The forward pass is specified by

(A7a)

(A7b)

(A7c)

(A7d)

(A7e)

This pass is initialized with  and , where π is the estimate for the initial state and
Σ is its variance. If there are multiple datasets all initial state estimates are set to π with variance
Σ. In fact, these parameters are included in Θ and will be estimated in the M-step.

The backward pass is initialized with  and  from the last iteration of the forward pass, and
is given by

(A8a)

(A8b)

(A8c)

The only quantity that remains to be computed is the covariance Vt+1,t, for which we present
a closed form expression:

(A8d)

It is simple to show that this expression is equivalent to the recursive equation given by
Shumway and Stoffer (1982) and Ghahramani and Hinton (1996).

With the previous estimates of the parameters, Θ^i, and the state estimates from the E-step, it
is possible to compute the value of the incomplete log likelihood function using the
“innovations form” (Shumway and Stoffer, 1982):
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(A9)

where  are the innovations,  their variances, and m is the
dimensionality of the output vectors yt.

2. M-step

The quantities computed in the E-step are used in the M-step to determine the argmax of the

complete log likelihood Λ (Θ, Θ^i). Using the definitions  and 
the solution to the M-step is given by

(A10a)

(A10b)

(A10c)

(A10d)

(A10e)

(A10f)

where  in Eqn. A10c and  in Eqn. A10d. The parameters A and B in Eqn.
A10e are the current best estimates computed from Eqn. A10c, and C and D in Eqn. A10f are
the solutions from Eqn. A10d.

The above equations, except for Eqn. A10a and Eqn. A10b, generalize to multiple datasets.
The sums are then understood to extend over all the datasets. For multiple datasets Eqn. A10a
is replaced by an average over the estimates of the initial state, x̂1(i), across the N datasets:

(A11a)

Its variance includes the variances of the initial state estimates as well as variations of the initial
state across the datasets:

(A11b)
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FIG. 1.

Sensorimotor learning modeled as a dynamic system in the space of sensorimotor
transformations. For definitions of variables see Section II.A.
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FIG. 2.

Illustration of the difference between trial-by-trial state of adaptation (connected arrows) and
steady-state of adaptation (open circles) in a simple simulation of error corrective learning.
The data were simulated with no noise and with diagonal matrices G = H. The learning rate in
the x-direction, H11, was 40% smaller than in the y-direction, H22. Four different input vectors

 were used, as shown in the inset in the corresponding shade of gray.
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FIG. 3.

Correlations between LDS parameter estimates across 1000 simulated datasets. Each panel

corresponds to a particular value for T and . Simulations used an LDS with parameters
A = 0.8, |Gr| = 0.5, H = −0.2, C = 1, D = 0, Q = 1, and zero-mean, white noise inputs rt with
unit variance.
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FIG. 4.

Uncertainty in the feedback parameter Ĥ in two different constraint conditions. All data were
simulated with parameters A = 0.8, H = −0.2, C = 1, D = 0. Q sets the scale. A: Variability of
Ĥ as a function of the output noise magnitude, when all other parameters, in particular A, are
known (T = 400 trials). Lines correspond to different values of the magnitude of the exogenous
input signal. B: Variability of Ĥ as a function of dataset length, T, for |Gr| = 0 (no exogenous
input). Lines correspond to different levels of output noise. C and D: Variability of Ĥ when
both H and A are unknown, but A + HC, as well as all other parameters, are known; otherwise
as in A and B, respectively.
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FIG. 5.

Power analysis of the permutation test for the significance of G. Simulation parameters: A =

0.8, H = −0.2, C = 1, and D = 0. Q sets the scale. A: Statistical power when . B: Input

magnitude required to achieve 80% power, as a ratio of . In both panels, α = 0.05 and line
type indicates the dataset length T.
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FIG. 6.

95%-confidence intervals for the MLE of the input parameter G, computed from 1000

simulated datasets. All simulations were run with  and Gaussian white noise inputs
with zero-mean and unit variance. A = 0.8, G = −0.3, H = −0.2, C = 1, and D = 0.
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FIG. 7.

Bias in Ĥ using two different linear regression fits of simulated data. The datasets were
simulated with no exogenous inputs and the LDS model parameters A = 1, G = 0, H = −0.2,
C = 1, and D = 0. Q sets the scale. The lower (black) data points represent the average Ĥ over
1000 simulated datasets using the subtraction approach. The upper (gray) data points are for
the summation approach. The true value of H is shown as the dotted line. Error-bars represent
standard deviations.
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FIG. 8.

A: Estimated LDS parameters Â , B̂, Q ̂, and R̂ for four subjects. Labels on the x-axis indicate
the components of each matrix. Each bar shading corresponds to a different subject (S1–S4).
B: Results of permutation test for the input parameter B for each subject. The square marks

 and the errorbars show the 95% confidence interval for that value given H0 : det B =
0, generated from 1000 permuted datasets. C: Estimate of ratio of output to learning noise
standard deviation.
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FIG. 9.

Graphical model of the statistical relationship between the states and the outputs of the closed-
loop system. The dependence on the deterministic inputs has been suppressed for clarity.
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