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Abstract

Group studies involving large cohorts of subjects are important to draw general
conclusions about brain functional organization. However, the aggregation of data
coming from multiple subjects is challenging, since it requires accounting for
large variability in anatomy, functional topography and stimulus response across
individuals. Data modeling is especially hard for ecologically relevant conditions
such as movie watching, where the experimental setup does not imply well-defined
cognitive operations. We propose a novel MultiView Independent Component
Analysis (ICA) model for group studies, where data from each subject are modeled
as a linear combination of shared independent sources plus noise. Contrary to most
group-ICA procedures, the likelihood of the model is available in closed form.
We develop an alternate quasi-Newton method for maximizing the likelihood,
which is robust and converges quickly. We demonstrate the usefulness of our
approach first on fMRI data, where our model demonstrates improved sensitivity
in identifying common sources among subjects. Moreover, the sources recovered
by our model exhibit lower between-session variability than other methods. On
magnetoencephalography (MEG) data, our method yields more accurate source
localization on phantom data. Applied on 200 subjects from the Cam-CAN dataset
it reveals a clear sequence of evoked activity in sensor and source space.
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1 Introduction

The past decade has seen the emergence of two trends in neuroimaging: the collection of massive
neuroimaging datasets, containing data from hundreds of participants [66, 69, 64], and the use of
naturalistic stimuli to move closer to a real life experience with dynamic and multimodal stimuli [63].
Large scale datasets provide an unprecedented opportunity to assess the generality and validity of
neuroscientific findings across subjects, with the potential of offering novel insights on human brain
function and useful medical biomarkers. However, when using ecological conditions, such as movie
watching or simulated driving, stimulations are difficult to quantify. Consequently the statistical
analysis of the data using supervised regression-based approaches is difficult. This has motivated the
use of unsupervised learning methods that leverage the availability of data from multiple subjects
performing the same experiment; analysis on such large groups boosts statistical power.

Independent component analysis [42] (ICA) is a widely used unsupervised method for neuroimaging
studies. It is routinely applied on individual subject electroencephalography (EEG) [47], magne-
toencephalography (MEG) [71] or functional MRI (fMRI) [49] data. ICA models a set of signals
as the product of a mixing matrix and a source matrix containing independent components. The
identifiability theory of ICA states that having non-Gaussian independent sources is a strong enough
condition to recover the model parameters [22]. ICA therefore does not make assumptions about what
triggers brain activations in the stimuli, unlike confirmatory approaches like the general linear model
[29, 61]. This explains why, in fMRI processing, it is a model of choice when analysing resting state
data [5] or when subjects are exposed to natural [48, 4] or complex stimuli such as simulated driving
[15]. In M/EEG processing, it is widely used to isolate acquisitions artifacts from neural signal [43],
and to identify brain sources of interest [72, 25].

However, unlike with univariate methods, statistical inference about multiple subjects using ICA is
not straightforward: so-called group-ICA is the topic of various studies [41]. Several works assume
that the subjects share a common mixing matrix, but with different sources [57, 65]. Instead, we focus
on a model where the subjects share a common sources matrix, but have different mixing matrices.
When the subjects are exposed to the same stimuli, the common source matrix corresponds to the
group shared responses. Most methods proposed in this framework proceed in two steps [14, 38].
First, the data of individual subjects are aggregated into a single dataset, often resorting to dimension
reduction techniques like Principal Component Analysis (PCA). Then, off-the-shelf ICA is applied on
the aggregated dataset. This popular method has the advantage of being simple and straightforward
to implement since it resorts to customary single-subject ICA method. However, it is not grounded in
a principled probabilistic model of the problem, and does not have strong statistical guarantees like
asymptotic efficiency.

We propose a novel group ICA method called MultiView ICA. It models each subject’s dataset as
a linear combination of a common sources matrix with additive Gaussian noise. Importantly, we
consider that the noise is on the sources and not on the sensors. This greatly simplifies the likelihood
of the model which can even be written in closed-form. Despite its simplicity, our model allows for an
expressive representation of inter-subject variability through subject-specific functional topographies
(mixing matrices) and variability in the individual response (with noise in the source domain). To
the best of our knowledge, this is the first time that such a tractable likelihood is proposed for
multi-subject ICA. The likelihood formulation shares similarities with the usual ICA likelihood,
which allows us to develop a fast and robust alternate quasi-Newton method for its maximization.

Contribution In section 2, we introduce the MultiView ICA model, and show that it is identifiable.
We then write its likelihood in closed form, and maximize it using an alternate quasi-Newton method.
We also provide a sensitivity analysis for MultiView ICA, and show that the choice of the noise
parameter in the algorithm has little influence on the output. In section 3, we compare our approach to
other group ICA methods. Finally, in section 4, we empirically verify through extensive experiments
on fMRI and MEG data that it improves source identification with respect to competing methods,
suggesting that the expressiveness and robustness of our model make it a useful tool for multivariate
neural signal analysis.
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2 Multiview ICA for Shared response modelling

Notation The absolute value of the determinant of a matrix W is |W |. The ℓ2 norm of a vector s is

‖s‖. For a scalar valued function f and a vector s ∈ R
k, we write f(s) =

∑k
j=1 f(sj) and denote f ′

the gradient of f . All proofs are deferred to appendix C.

2.1 Model, likelihood and approximation

Given m subjects, we model the data x
i ∈ R

k of subject i as

x
i = Ai(s+ n

i), i = 1, . . . ,m (1)

where s = [s1, . . . , sk]
⊤ ∈ R

k are the shared independent sources, ni ∈ R
k is individual noise,

Ai ∈ R
k×k are the individual mixing matrices, assumed to be full-rank. We assume that samples

are observed i.i.d. For simplicity, we assume that the sources share the same density d, so that the

independence assumption is p(s) =
∏k

j=1 d(sj). Finally, we assume that the noise is Gaussian

decorrelated of variance σ2, ni ∼ N (0, σ2Ik), and that the noise is independent across subjects
and independent from the sources. The assumption of additive white noise on the sources models
individual deviations from the shared sources s. It is equivalent to having noise on the sensors with

covariance σ2Ai
(

Ai
)⊤

, i.e. a scaled version of the data covariance without noise.

Since the sources are shared by the subjects, there are many more observed variables than sources in
the model: there are k sources, while there are k ×m observations. Therefore, model (1) can be seen
as an instance of undercomplete ICA. The goal of multiview ICA is to recover the mixing matrices
Ai from observations of the x

i. The following proposition extends the standard idenfitiability theory
of ICA [22] to multiview ICA, and shows that recovering the sources/mixing matrices is a well-posed
problem up to scale and permutation.

Proposition 1 (Identifiability of MultiView ICA). Consider xi, i = 1 . . .m, generated from (1).
Assume that xi = A′i(s′ + n

′i) for some invertible matrices A′i ∈ R
k×k, independent non-Gaussian

sources s′ ∈ R
k and Gaussian noise n′i. Then, there exists a scale and permutation matrix P ∈ R

k×k

such that for all i, A′i = AiP .

We propose a maximum-likelihood approach to estimate the mixing matrices. We denote by W i =
(Ai)−1 the unmixing matrices, and view the likelihood as a function of W i rather than Ai. As shown
in Appendix A.1, the negative log-likelihood can be written by integrating over the sources

L(W 1, . . . ,Wm) = −
m
∑

i=1

log |W i| − log

(

∫

s

exp

(

−
1

2σ2

m
∑

i=1

‖W i
x
i − s‖2

)

p(s)ds

)

, (2)

up to additive constants. Since this integral factorizes, i.e. the integrand is a product of func-
tions of sj , we can perform the integration as shown in Appendix A.2. We define a smoothened
version of the logarithm of the source density d by convolution with a Gaussian kernel as
f(s) = log

(∫

exp(− m
2σ2 z

2)d(s− z)dz
)

and s̃ = 1
m

∑m
i=1 W

i
x
i the source estimate. The neg-

ative log-likelihood becomes

L(W 1, . . . ,Wm) = −
m
∑

i=1

log |W i|+
1

2σ2

m
∑

i=1

‖W i
x
i − s̃‖2 + f(s̃). (3)

Multiview ICA is then performed by minimizing L, and the estimated shared sources are s̃. The neg-
ative log-likelihood L is quite simple, and importantly, can be computed easily given the parameters
of the model and the data; it does not involve any intractable integral.

For one subject (m = 1), L(W 1) simplifies to the negative log-likelihood of ICA and we recover
Infomax [8, 16], where the source log-pdf is replaced with the smoothened f .

2.2 Alternate quasi-Newton method for MultiView ICA

The parameters of the model are estimated by minimizing L. We propose a combination of quasi-
Newton method and alternate minimization for this task. First, L is non-convex: it is only defined
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when the W i are invertible, which is a non-convex set. Therefore, we only look for local minima as
usual in ICA. We propose an alternate minimization scheme, where L is alternatively diminished
with respect to each W i. When all matrices W 1, . . . ,Wm are fixed but one, W i, L can be rewritten,
up to an additive constant

Li(W i) = − log |W i|+
1− 1/m

2σ2
‖W i

x
i −

m

m− 1
s̃
−i‖2 + f(

1

m
W i

x
i + s̃

−i), (4)

with s̃
−i = 1

m

∑

j 6=i W
j
x
j . This function has the same structure as the usual maximum-likelihood

ICA cost function: it is written Li(W i) = − log |W i| + g(W i
x
i), where g(y) =

∑k
j=1 f(

yj

m +

s̃
−i
j ) + 1−1/m

2σ2 (yj − m
m−1 s̃

−i
j )2. Fast quasi-Newton algorithms [75, 1] have been proposed for

minimizing such functions. We employ a similar technique as [75], which we now describe.

Quasi-Newton methods are based on approximations of the Hessian of Li. The relative gradient (resp.
Hessian) [3, 18] of Li is defined as the matrix Gi ∈ R

k×k (resp. tensor Hi ∈ R
k×k×k×k) such that

as the matrix E ∈ R
k×k goes to 0, we have Li((Ik + E)W i) ≃ Li(W i) + 〈Gi,W i〉+ 1

2 〈E,HiE〉.
Standard manipulations yield:

Gi =
1

m
f ′(s̃)(yi)⊤ +

1− 1/m

σ2
(yi −

m

m− 1
s̃
−i)(yi)⊤ − Ik, where y

i = W i
x
i (5)

Hi
abcd = δadδbc + δac

(

1

m2
f ′′(s̃a) +

1− 1/m

σ2

)

y
i
by

i
d, for a, b, c, d = 1 . . . k (6)

Newton’s direction is then −
(

Hi
)−1

Gi. However, this Hessian is costly to compute (it has ≃ k3

non-zero coefficients) and invert (it can be seen as a big k2 × k2 matrix). Furthermore, to enforce
that Newton’s direction is a descent direction, the Hessian matrix should be regularized in order
to eliminate its negative eigenvalues [53], and Hi is not guaranteed to be positive definite. These
obstacles render the computation of Newton’s direction impractical. Luckily, if we assume that
the signals in y

i are independent, severall coefficients cancel, and the Hessian simplifies to the
approximation

Hi
abcd = δadδbc + δacδbdΓ

i
ab with Γi

ab =

(

1

m2
f ′′(s̃a) +

1− 1/m

σ2

)

(

y
i
b

)2
. (7)

This approximation is sparse: it only has k(2k−1) non-zero coefficients. In order to better understand

the structure of the approximation, we can compute the matrix
(

HiM
)

for M ∈ R
k×k. We find

(

HiM
)

ab
= Γi

abMab + Mba: HiMab only depends on Mab and Mba, indicating a simple block

diagonal structure of Hi. The tensor Hi is therefore easily regularized and inverted:
(

(Hi)−1M
)

ab
=

Γi
baMab−Mba

Γi
ab

Γi
ba

−1
. Finally, since this approximation is obtained by assuming that the y

i are independent,

the direction −
(

Hi
)−1

Gi is close to Newton’s direction when the y
i are close to independence,

leading to fast convergence. Algorithm 1 alternates one step of the quasi-Newton method for each
subject until convergence. A backtracking line-search is used to ensure that each iteration leads to a
decrease of Li. The algorithm is stopped when maximum norm of the gradients over one pass on
each subject is below some tolerance level, indicating that the algorithm is close to a stationary point.

Algorithm 1: Alternate quasi-Newton method for MultiView ICA

Input: Dataset (xi)mi=1, initial unmixing matrices W i, noise parameter σ, function f , tolerance ε

Set tol= +∞, s̃ = 1
m

∑k
i=1 W

i
x
i

while tol> ε do
tol = 0
for i = 1 . . .m do

Compute y
i = W i

x
i, s̃−i = s̃− 1

my
i, gradient Gi (eq. (5)) and Hessian Hi (eq. (7))

Compute the search direction D = −
(

Hi
)−1

Gi

Find a step size ρ such that Li((Ik + ρD)W i) < Li(W i) with line search
Update s̃ = s̃+ ρ

mDW i
x
i, W i = (Ik + ρD)W i, tol= max(tol, ‖Gi‖)

end

end

return Estimated unmixing matrices W i, estimated shared sources s̃
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2.3 Robustness to model misspecification

Algorithm 1 has two hyperparameters: σ and the function f . The latter is usual for an ICA algorithm,
but the former is not. We study the impact of these parameters on the separation capacity of the
algorithm, when these parameters do not correspond to those of the generative model (1).

Proposition 2. We consider the cost function L in eq. (3) with noise parameters σ and function f .
Assume sub-linear growth on f ′: |f ′(x)| ≤ c|x|α + d for some c, d > 0 and 0 < α < 1. Assume that
x
i is generated following model (1), with noise parameter σ′ and density of the source d′ which need

not be related to σ and f . Then, there exists a diagonal matrix Λ such that (Λ(A1)−1, . . . ,Λ(Am)−1)
is a stationary point of L, that is G1, . . . , Gm = 0 at this point.

The sub-linear growth of f ′ is a customary hypothesis in ICA which implies that d has heavier-tails
than a Gaussian, and in appendix C.2 we provide other conditions for the result to hold. In this setting,
the shared sources estimated by the algorithm are s̃ = Λ(s+ 1

m

∑m
i=1 n

i), which is a scaled version
of the best estimate of the shared sources under the Gaussian noise hypothesis.

This proposition shows that, up to scale, the true unmixing matrices are a stationary point for
Algorithm 1: if the algorithm starts at this point it will not move. The question of stability is also
interesting: if the algorithm is initialized close to the true unmixing matrices, will it converge to
the true unmixing matrix? In the appendix C.3, we provide an analysis similar to [17], and derive
sufficient numerical conditions for the unmixing matrices to be local minima of L. We also study the
practical impact of changing the hyperparameter σ on the accuracy of a machine learning pipeline
based on MultiviewICA on real fMRI data in the appendix Sec. E.5. As expected from the theoretical
study, the performance of the algorithm is barely affected by σ.

2.4 Dimensionality reduction

So far, we have assumed that the dimensionality of each view (subject) and that of the sources is
the same. This reflects the standard practice in ICA of having equal number of observations and
sources. In practice, however, we might want to estimate fewer sources than there are observations per
view; the original dimensionality of the data might in practice not be computationally tractable. The
problem of how to perform subject-wise dimensionality reduction in group studies is an interesting
one per se, and out of the main scope of this work. For our purposes, it can be considered as a
preprocessing step for which well-known various solutions can be applied. We discuss this further in
section 3 and in appendix F.

3 Related Work

Many methods for data-driven multivariate analysis of neuroimaging group studies have been pro-
posed. We summarize the characteristics of some of the most commonly used ones. A more thorough
description of these methods can be found in appendix F. For completeness, we start by describing
PCA. For a zero-mean data matrix X of size p× n with p ≤ n, we denote X = UDV ⊤ the singular
value decomposition of X where U ∈ R

p×p, V ∈ R
n×p are orthogonal and D the diagonal matrix

of singular values ordered in decreasing order. The PCA of X with k components is Y ∈ R
k×n

containing the first k rows of DV ⊤, and it does not hold in general that Y Y ⊤ = Ik: for the rest of
the paper, what we call PCA does not include whitening of the signals.

Group ICA When datasets are high-dimensional, a three steps procedure is often used: first dimen-
sionality reduction is performed on data of each subject separately; then the reduced data are merged
into a common representation; finally, an ICA algorithm is applied for shared source extraction. The
merging of the reduced data is often done by PCA [13] or multi set CCA [70]. This is a popular
method for fMRI [14] and EEG [27] group studies. These methods directly recover only group level,
shared sources; when individual sources are needed, additional steps are required (back-projection
[13] or dual-regression [6]). In contrast, MultiView ICA finds individual and shared independent com-
ponents in a single step. Finally, in contrast to the methods described above, our method maximizes a
likelihood, which brings statistical guarantees like consistency or asymptotic efficiency. The SR-ICA
approach of [73] performs dimension reduction, merging and independent component estimation. It
is therefore similar to our method. However, they propose to modify the FastICA algorithm [40] in a
rather heuristic way, without specifying an optimization problem, let alone maximizing a likelihood.
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In the experiments on fMRI data in appendix E.4, we obtain better performance with MultiView ICA
than the reported performance of SR-ICA.

Likelihood-based models One can consider the more general model xi = Ai
s
i+n

i, where the noise
covariance can be learned from the data [34]. The likelihood for this model involves an intractable
high dimensional integral that is cumbersome to evaluate, and is then optimized with the Expectation-
Maximization (EM) algorithm, which is known to converge slowly and unreliably [10, 56]. Having
the simpler model (1) leads to a closed-form likelihood, that can then be optimized by more efficient
means than the EM algorithm. In model (1), the noise can be interpreted as individual variability
rather than sensor noise. In appendix I, we generate data following model xi = Ai

s
i + n

i and report
the reconstruction error. The difference in performance between algorithms is small.

Structured mixing matrices One strength of our model is that we only assume that the mixing
matrices are invertible and still enjoy identifiability whereas some other approaches impose additional
constraints. For instance tensorial methods [7] assume that the mixing matrices are the same up to
diagonal scaling. Other methods impose a common mixing matrix [23, 32, 12, 50]. Like PCA, the
Shared Response Model [20] (SRM) assumes orthogonality of the mixing matrices. While the model
defines a simple likelihood and provides an efficient way to reduce dimension, the SRM model is not
identifiable as shown in appendix D, and the orthogonal constraint may not be plausible.

Matching sources a posteriori A different path to multi-subject ICA is to extract independent
components with individual ICA in each subject and align them. We propose a simple baseline
approach to do so called PermICA. Inspired by the heuristic of the hyperalignment method [36]
we choose a reference subject and first match the sources of all other subjects to the sources of the
reference subject. The process is then repeated multiple times, using the average of previously aligned
sources as a reference. Finally, group sources are given by the average of all aligned sources. We use
the Hungarian algorithm to align pairs of mixing matrices [67]. Alternative approaches involving
clustering have also been developed [28, 11].

Deep Learning Deep Learning methods, such as convolutional auto-encoders (CAE), can also be used
to find the subject specific unmixing [21]. While these nonlinear extensions of the aforementioned
methods are interesting, these models are hard to train and interpret. In the experiments on fMRI data
in appendix E.4, we obtain better accuracy with MultiView ICA than that of CAE reported in [21].

Correlated component analysis Other methods can be used to recover the shared neural responses
such as the correlated component approach of Dmochowski [26]. We benchmark our method against
its probabilistic version [44] called BCorrCA in Figure 3. Our method yields much better results.

Autocorrelation Another way to perform ICA is to leverage spectral diversity of the sources rather
than non-Gaussianity. These methods are popular alternative to non-Gaussian ICA in the single-
subject setting [68, 9, 58] and they output significantly different sources than non-Gaussian ICA [25].
Extensions to multiview problems have been proposed [46, 24].

4 Experiments

All code for the experiments is written in Python. We use Matplotlib for plotting [37] , scikit-learn for
machine-learning pipelines [55], MNE for MEG processing [30], Nilearn for fMRI processing and
for its CanICA implementation [2], Brainiak [45] for its SRM implementation. In the following, the
noise parameter in MultiviewICA is always fixed to σ = 1. We use the function f(·) = log cosh(·),
giving the non-linearity f ′(·) = tanh(·). We use the Infomax cost function [8] with the same
non-linearity to perform standard ICA, with the Picard algorithm [1] for fast and robust minimization
of the cost function. Picard is applied with the default hyper-parameters. The code for MultiViewICA
is available online at https://github.com/hugorichard/multiviewica.

We compare the following methods to obtain k components: GroupPCA is PCA on spatially con-
catenated data. It corresponds to a transposed version of [62]. PermICA is described in the previous
section. SRM is the algorithm of [20]. GroupICA is ICA applied after GroupPCA. PCA+GroupICA
corresponds to GroupICA applied on subject data that have been first individually reduced by PCA
with k components. These two approaches correspond to transposed versions of [12], and are similar
to [27]. CanICA corresponds to PCA+GroupICA where the merging is done using multi set CCA
rather than PCA. The dimension reduction in MultiView ICA and PermICA is performed with SRM
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in fMRI experiments and subject-specific PCA in MEG experiments. Initialization is discussed in
appendix B. A summary of our quantitative results on real data is available in appendix J.
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Figure 1: Synthetic experiment: recon-
struction error of the algorithms on data
following model (1).

Synthetic experiment We validate our method on syn-
thetic data generated according to the model in equa-
tion (1). The sources are generated i.i.d. from a Laplace
density d(x) = 1

2 exp(−|x|). The mixing matrices

A1, · · · , Am are generated with i.i.d. entries following a
normal law. Each compared algorithm returns a sequence
of estimated unmixing matrices W 1, . . . ,Wm. The perfor-
mance of an algorithm is measured by the reconstruction
error between the estimated sources and the true sources.
We use m = 10 datasets, k = 15 sources and n = 1000
samples. Each experiment is repeated with 100 random
seeds. We vary the noise level in the data generation from
10−2 to 10.

Multiview ICA has uniformly better performance than the
other algorithms, which illustrates the strength of maximum-likelihood based methods. In accordance
with results of section 2, it is able to separate the sources even with misspecified noise parameter and
source density.

fMRI data and preprocessing We evaluate the performance of our approach on four different fMRI
datasets. The sherlock dataset [19] contains recordings of 16 subjects watching an episode of the
BBC TV show "Sherlock" (50 mins). The forrest dataset [35] was collected while 19 subjects
were listening to an auditory version of the film "Forrest Gump" (110 mins). The clips dataset [59]
was collected while 12 participants were exposed to short video clips (130 mins). The raiders
dataset [59] was collected while 11 participants were watching the movie "Raiders of the Lost Ark"
(110 mins). The raiders-full dataset [59] is an extension of the raiders dataset where the first two
scenes of the movie are shown twice (130 mins). Like [73], we used full brain data. The rest of the
preprocessing is identical to [19]. See E.1 for a detailed description of the datasets and preprocessing
steps. Unless stated otherwise we use spatially unsmoothed data, except for the sherlock dataset,
for which the available data are already preprocessed with a 6 mm spatial smoothing. All datasets
are built from successive acquisitions called runs that typically last 10 minutes each. We define the
chance level as the performance of an algorithm that computes unmixing matrices and projections to
lower dimensional space by sampling random numbers from a standard normal distribution.

Reconstructing the BOLD signal of missing subjects We want to show that once unmixing matrices
have been learned, they can be used to predict evoked responses across subjects, which can be useful
to perform transfer learning [74]. We split the data into three groups. First, we randomly choose 80%
of all runs from all subjects to form the training set. Then, we randomly choose 80% of subjects
and take the remaining 20% runs as testing set. The left-out runs of the remaining 20% subjects
form the validation set. The compared algorithms are run on the training set and evaluated using
the testing and validation sets. After an algorithm is run on training data, it defines for each subject
a forward operator that maps individual data to the source space and a backward operator that
maps the source space to individual data. For instance in ICA the forward operator is the product
of the dimensionality reduction projection and unmixing matrix. We estimate the shared responses
on the testing set by applying the forward operators on the testing data and averaging. Finally, we
reconstruct the individual data from subjects in the validation set by applying the backward operators
to the shared responses. We measure the difference between the true signal and the reconstructed
one using voxel-wise R2 score. The R2 score between two series x ∈ R

n and y ∈ R
n is defined

as R2(x,y) = 1 − 1
nVar(y)

∑n
t=1(xt − yt)

2, where Var(y) = 1
n

∑n
t=1(yt −

1
n

∑n
t′=1 yt′)

2 is the

empirical variance of y. The R2 score is always smaller than 1, and equals 1 when x = y. The
experiment is repeated 25 times with random splits to obtain error bars.

In this experiment we apply a 6 mm spatial smoothing to all datasets. The R2 score per voxel depends
heavily on which voxel is considered. For example voxels in the visual cortex are better reconstructed
in the sherlock dataset than in the forrest dataset (see Figure 4 in appendix E.2). In Figure 2 (top) we
plot the mean R2 score inside a region of interest (ROI) in order to leave out regions where there
is no useful information. ROIs are chosen based on the performance of GroupICA (more details
in appendix E.2). MultiView ICA has similar or better performance than the other methods on all
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Figure 2: Top: Reconstructing the BOLD signal of missing subjects. Mean R2 score between re-
constructed data and true data (higher is better). Bottom: Between subjects time-segment matching.
Mean classification accuracy. Error bars represent a 95 % confidence interval over cross validation
splits.

datasets. This demonstrates its ability to capture inter-subject variability, making it a candidate of
choice to handle missing data or perform transfer learning.

Between subjects time-segment matching We reproduce the time-segment matching experiment of
[20]. We split the runs into a train and test set. After fitting the model on the training set, we apply
the forward operator of each subject on the test set yielding individual sources matrices. We estimate
the shared responses by averaging the individual sources of each subjects but one. We select a target
time-segment (9 consecutive timeframes) in the shared responses and try to localize the corresponding
time segment in the sources of the left-out subject using a maximum-correlation classifier. This is a
standard evaluation of SRM-like methods also used in [20], [33], [51] or [73]. The time-segment is
said to be correctly classified if the correlation between the sample and target time-segment is higher
than with any other time-segment (partially overlapping time windows are excluded). We use 5-Fold
cross-validation across runs: the training set contains 80% of the runs and the test set 20%, and
repeat the experiment using all possible choices for left-out subjects. The mean accuracy is reported
in Figure 2 (bottom). MultiView ICA yields a consistent and substantial improvement in accuracy
compared to other methods on the four datasets. We see a marked improvement on the datasets
sherlock and forrest. A possible explanation lies in the preprocessing pipeline. Sherlock data undergo
a 6 mm spatial smoothing and Forrest data are acquired at a higher resolution (7T vs 3T for other data).
This affects the signal to noise ratio. In appendix E.5, we compute the accuracy of MultiviewICA on
the sherlock dataset with 10 components when the noise parameter varies. MultiviewICA performs
consistently well for a wide range of noise parameter values, and only breaks at very high values. It
supports the theoretical claim of Prop 2 that the noise parameter is of little importance.

In appendix E.3, we present a variation of this experiment. We measure the ability of each algorithm
to extract meaningful shared sources that correlate more when they correspond to the same stimulus
than when they correspond to distinct stimuli and show the improved performance of MultiView
ICA. In appendix H, we plot the average forward operator across subjects of MultiView ICA and
GroupICA with 5 components on the forrest, sherlock, raiders and clips datasets.

Phantom MEG data We demonstrate the usefulness of our approach on MEG data. The first
experiment uses data collected with a realistic head phantom, which is a plastic device mimicking
real electrical brain sources. Eight current dipoles positioned at different locations can be switched
on or off. We view each dipole as a subject and therefore have m = 8. We only consider the 102
magnetometers. An epoch corresponds to 3 s of MEG signals where a dipole is switched on for 0.4 s
with an oscillation at 20 Hz and a peak-to-peak amplitude of 200 nAm. This yields a matrix of size
p× n where p = 102 is the number of sensors, and n is the number of time samples. We have access
to 100 epochs per dipole. For each dipole, we chose Ne = 2, . . . , 16 epochs at random among our set
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Figure 3: Left: Experiment on MEG Phantom data. Reconstruction error is the norm of the
difference between the estimated and true source. Localization error is the distance between the
estimated and true dipole. Right: Experiment on 200 subjects from the CAM-can dataset Top:
Time course of 11 shared sources (one color per source). We recover clean evoked potentials. Bottom:
Associated brain maps, obtained by averaging source estimates registered to a common reference.

of 100 epochs and concatenate them in the temporal dimension. We then apply algorithms on these
data to extract k = 20 shared sources. As we know the true source (the timecourse of the dipole), we
can compute the reconstruction error of each source as the squared norm of the difference between
the estimated source and the true source, after normalization to unit variance and fixing the sign. We
only retain the source of minimal error. We also estimate for each forward operator the localization of
the source by performing dipole fitting using its column corresponding to the source of minimal error.
We then compute the distance of the estimated dipole to the true dipole. These metrics are reported
in figure 3 when the number of epochs considered Ne varies. We also compare our method to the
Bayesian Canonical Correlation Analysis (BCorrCA) of [44]. On this task, BCorrCA is outperformed
by ICA methods. MultiView ICA requires fewer epochs to correctly reconstruct and localize the true
source.

Experiment on Cam-CAN dataset Finally, we apply MultiView ICA on the Cam-CAN dataset [66].
We use the magnetometer data from the MEG of 200 subjects. Each subject is repeatedly presented
an audio-visual stimulus. The MEG signal corresponding to these trials are then time-averaged to
isolate the evoked response, yielding individual data. The MultiView ICA algorithm is then applied
to extract 20 shared sources. 9 sources were found to correspond to noise by visual inspection, and
the 11 remaining are displayed in figure 3. We observe that MultiView ICA recovers a very clean
sequence of evoked potentials with sharp peaks for early components and slower responses for late
components. In order to visualize their localization, we perform source localization for each subject
by solving the inverse problem using sLORETA [54], providing a source estimate for each source.
Then, we register each source estimate to a common reference brain. Finally, the source estimates are
averaged, and thresholded maps are displayed in figure 3. Individual maps corresponding to each
source are displayed in appendix G. The figure highlights both early auditory and visual cortices, also
suggesting a propagation of the activity towards the ventral regions and higher level visual areas.

5 Conclusion

We have proposed a novel unsupervised algorithm that reveals latent sources observed through
different views. Using an independence assumption, we have demonstrated that the model is
identifiable. In contrast to previous approaches, the proposed model leads to a closed-form likelihood,
which we then optimize efficiently using a dedicated alternate quasi-Newton approach. Our approach
enjoys the statistical guarantees of maximum-likelihood theory, while still being tractable. We
demonstrated the usefulness of MultiView ICA for neuroimaging group studies both on fMRI and
MEG data, where it outperforms other methods. In the experiments on fMRI data, we used temporal
ICA in order to make use of the fact that subjects were exposed to the same stimuli. However,
applying MultiViewICA on transposed data would carry out spatial ICA. Therefore MultiViewICA
can be readily used to analyse different kind of neuroimaging data such as resting state data. Our
method is not specific to neuroimaging data and could be relevant to other observational sciences like
genomics or astrophysics where ICA is already widely used.
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Broader Impact

We develop a novel unsupervised learning method for Independent Component Analysis of a group
of subjects sharing commmon sources. Our method is not limited to a particular type of data, and
could hence be employed in observational sciences where ICA is relevant: neurosciences, genomics,
astrophysics, finance or computer vision for instance. ICA is widely used in these fields as a tool
among data processing pipelines, and therefore inherits from all the ethical questions of the fields
above. In particular, data collection bias will result in biased outputs. Our algorithm is based on
individual linear transforms and therefore decisions based on its application are easier to interpret
than more complex models such as deep learning methods: in most applications, the set of parameters
has a natural interpretation. For instance in EEG, MEG and fMRI processing, the coefficients of the
linear operator can be interpreted as topographic brain maps.

Acknowledgement and funding disclosure

This work was supported in part by the French government under management of Agence Nationale
de la Recherche as part of the “Investissements d’avenir” program, references ANR19-P3IA-0001
(PRAIRIE 3IA Institute) and ANR17-CONV-0003 (DataIA Institute). It has also received funding
from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under
the Specific Grant Agreement No. 945539 (Human Brain Project SGA3), the KARAIB AI chair
(ANR-20-CHIA-0025-01) and the European Research Council grant ERC-SLAB-StG-676943. L.G.
was hosted for part of this project by the Parietal team at Inria, Saclay, while on an ELLIS exchange.
A.H. was additionally supported by CIFAR as a Fellow.

References

[1] Pierre Ablin, Jean-François Cardoso, and Alexandre Gramfort. Faster independent compo-
nent analysis by preconditioning with Hessian approximations. IEEE Transactions on Signal
Processing, 66(15):4040–4049, 2018.

[2] Alexandre Abraham, Fabian Pedregosa, Michael Eickenberg, Philippe Gervais, Andreas Mueller,
Jean Kossaifi, Alexandre Gramfort, Bertrand Thirion, and Gaël Varoquaux. Machine learning
for neuroimaging with scikit-learn. Frontiers in neuroinformatics, 8:14, 2014.

[3] Shun-ichi Amari, Andrzej Cichocki, and Howard H Yang. A new learning algorithm for blind
signal separation. In Advances in neural information processing systems, pages 757–763, 1996.

[4] Andreas Bartels and Semir Zeki. Brain dynamics during natural viewing conditions—a new
guide for mapping connectivity in vivo. Neuroimage, 24(2):339–349, 2005.

[5] Christian F Beckmann, Marilena DeLuca, Joseph T Devlin, and Stephen M Smith. Investi-
gations into resting-state connectivity using independent component analysis. Philosophical
Transactions of the Royal Society B: Biological Sciences, 360(1457):1001–1013, 2005.

[6] Christian F Beckmann, Clare E Mackay, Nicola Filippini, and Stephen M Smith. Group
comparison of resting-state fMRI data using multi-subject ICA and dual regression. Neuroimage,
47(Suppl 1):S148, 2009.

[7] Christian F Beckmann and Stephen M Smith. Tensorial extensions of independent component
analysis for multisubject fMRI analysis. Neuroimage, 25(1):294–311, 2005.

[8] Anthony J Bell and Terrence J Sejnowski. An information-maximization approach to blind
separation and blind deconvolution. Neural computation, 7(6):1129–1159, 1995.

[9] Adel Belouchrani, Karim Abed-Meraim, J-F Cardoso, and Eric Moulines. A blind source
separation technique using second-order statistics. IEEE Transactions on signal processing,
45(2):434–444, 1997.

[10] Olivier Bermond and Jean-François Cardoso. Approximate likelihood for noisy mixtures. In
Proc. ICA, volume 99, pages 325–330. Citeseer, 1999.

10



[11] Nima Bigdely-Shamlo, Tim Mullen, Kenneth Kreutz-Delgado, and Scott Makeig. Measure
projection analysis: a probabilistic approach to EEG source comparison and multi-subject
inference. Neuroimage, 72:287–303, 2013.

[12] Vince D Calhoun, Tülay Adali, Vince B McGinty, James J Pekar, Todd D Watson, and Godfrey D
Pearlson. fMRI activation in a visual-perception task: network of areas detected using the
general linear model and independent components analysis. NeuroImage, 14(5):1080–1088,
2001.

[13] Vince D Calhoun, Tülay Adali, Godfrey D Pearlson, and James J Pekar. A method for making
group inferences from functional MRI data using independent component analysis. Human
brain mapping, 14(3):140–151, 2001.

[14] Vince D Calhoun, Jingyu Liu, and Tülay Adalı. A review of group ICA for fMRI data and ICA
for joint inference of imaging, genetic, and erp data. Neuroimage, 45(1):S163–S172, 2009.

[15] Vince D Calhoun, James J Pekar, Vince B McGinty, Tülay Adali, Todd D Watson, and Godfrey D
Pearlson. Different activation dynamics in multiple neural systems during simulated driving.
Human brain mapping, 16(3):158–167, 2002.

[16] Jean-François Cardoso. Infomax and maximum likelihood for blind source separation. IEEE
Signal processing letters, 4(4):112–114, 1997.

[17] Jean-François Cardoso. Blind signal separation: statistical principles. Proceedings of the IEEE,
86(10):2009–2025, 1998.

[18] Jean-François Cardoso and Beate H Laheld. Equivariant adaptive source separation. IEEE
Transactions on signal processing, 44(12):3017–3030, 1996.

[19] Janice Chen, Yuan C Leong, Christopher J Honey, Chung H Yong, Kenneth A Norman, and Uri
Hasson. Shared memories reveal shared structure in neural activity across individuals. Nature
neuroscience, 20(1):115–125, 2017.

[20] Po-Hsuan Chen, Janice Chen, Yaara Yeshurun, Uri Hasson, James Haxby, and Peter J Ra-
madge. A reduced-dimension fMRI shared response model. In Advances in Neural Information
Processing Systems, pages 460–468, 2015.

[21] Po-Hsuan Chen, Xia Zhu, Hejia Zhang, Javier S Turek, Janice Chen, Theodore L Willke,
Uri Hasson, and Peter J Ramadge. A convolutional autoencoder for multi-subject fMRI data
aggregation. arXiv preprint arXiv:1608.04846, 2016.

[22] Pierre Comon. Independent component analysis, a new concept? Signal processing, 36(3):287–
314, 1994.

[23] Fengyu Cong, Zhaoshui He, Jarmo Hämäläinen, Paavo HT Leppänen, Heikki Lyytinen, Andrzej
Cichocki, and Tapani Ristaniemi. Validating rationale of group-level component analysis based
on estimating number of sources in EEG through model order selection. Journal of neuroscience
methods, 212(1):165–172, 2013.

[24] Marco Congedo, Roy E John, Dirk De Ridder, and Leslie Prichep. Group independent com-
ponent analysis of resting state eeg in large normative samples. International Journal of
Psychophysiology, 78(2):89–99, 2010.

[25] Arnaud Delorme, Jason Palmer, Julie Onton, Robert Oostenveld, and Scott Makeig. Independent
EEG sources are dipolar. PloS one, 7(2), 2012.

[26] Jacek P Dmochowski, Paul Sajda, Joao Dias, and Lucas C Parra. Correlated components of
ongoing eeg point to emotionally laden attention–a possible marker of engagement? Frontiers
in human neuroscience, 6:112, 2012.

[27] Tom Eichele, Srinivas Rachakonda, Brage Brakedal, Rune Eikeland, and Vince D Calhoun.
EEGIFT: group independent component analysis for event-related EEG data. Computational
intelligence and neuroscience, 2011, 2011.

11



[28] Fabrizio Esposito, Tommaso Scarabino, Aapo Hyvärinen, Johan Himberg, Elia Formisano,
Silvia Comani, Gioacchino Tedeschi, Rainer Goebel, Erich Seifritz, and Francesco Di Salle. In-
dependent component analysis of fMRI group studies by self-organizing clustering. Neuroimage,
25(1):193–205, 2005.

[29] Karl J Friston, Andrew P Holmes, Keith J Worsley, J-P Poline, Chris D Frith, and Richard SJ
Frackowiak. Statistical parametric maps in functional imaging: a general linear approach.
Human brain mapping, 2(4):189–210, 1994.

[30] Alexandre Gramfort, Martin Luessi, Eric Larson, Denis A Engemann, Daniel Strohmeier,
Christian Brodbeck, Roman Goj, Mainak Jas, Teon Brooks, Lauri Parkkonen, et al. MEG and
EEG data analysis with MNE-Python. Frontiers in neuroscience, 7:267, 2013.

[31] Luigi Gresele, Paul K. Rubenstein, Arash Mehrjou, Francesco Locatello, and Bernhard
Schölkopf. The incomplete rosetta stone problem: Identifiability results for multi-view nonlinear
ICA. In Amir Globerson and Ricardo Silva, editors, Proceedings of the Thirty-Fifth Conference
on Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019, page 53.
AUAI Press, 2019.

[32] Vera A Grin-Yatsenko, Ineke Baas, Valery A Ponomarev, and Juri D Kropotov. Independent
component approach to the analysis of EEG recordings at early stages of depressive disorders.
Clinical Neurophysiology, 121(3):281–289, 2010.

[33] J Swaroop Guntupalli, Ma Feilong, and James V Haxby. A computational model of shared
fine-scale structure in the human connectome. PLoS computational biology, 14(4):e1006120,
2018.

[34] Ying Guo and Giuseppe Pagnoni. A unified framework for group independent component
analysis for multi-subject fMRI data. NeuroImage, 42(3):1078–1093, 2008.

[35] Michael Hanke, Florian J Baumgartner, Pierre Ibe, Falko R Kaule, Stefan Pollmann, Oliver
Speck, Wolf Zinke, and Jörg Stadler. A high-resolution 7-Tesla fMRI dataset from complex
natural stimulation with an audio movie. Scientific data, 1:140003, 2014.

[36] James V Haxby, J Swaroop Guntupalli, Andrew C Connolly, Yaroslav O Halchenko, Bryan R
Conroy, M Ida Gobbini, Michael Hanke, and Peter J Ramadge. A common, high-dimensional
model of the representational space in human ventral temporal cortex. Neuron, 72(2):404–416,
2011.

[37] John D Hunter. Matplotlib: A 2d graphics environment. Computing in science & engineering,
9(3):90–95, 2007.

[38] Rene Huster, Sergey M Plis, and Vince D Calhoun. Group-level component analyses of EEG:
validation and evaluation. Frontiers in neuroscience, 9:254, 2015.

[39] Alexander G Huth, Shinji Nishimoto, An T Vu, and Jack L Gallant. A continuous semantic
space describes the representation of thousands of object and action categories across the human
brain. Neuron, 76(6):1210–1224, 2012.

[40] Aapo Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis.
IEEE transactions on Neural Networks, 10(3):626–634, 1999.

[41] Aapo Hyvärinen. Independent component analysis: recent advances. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1984):20110534,
2013.

[42] Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and applications.
Neural networks, 13(4-5):411–430, 2000.

[43] Tzyy-Ping Jung, Colin Humphries, Te-Won Lee, Scott Makeig, Martin J McKeown, Vicente
Iragui, and Terrence J Sejnowski. Extended ica removes artifacts from electroencephalographic
recordings. In Advances in neural information processing systems, pages 894–900, 1998.

12



[44] Simon Kamronn, Andreas Trier Poulsen, and Lars Kai Hansen. Multiview bayesian correlated
component analysis. Neural computation, 27(10):2207–2230, 2015.

[45] Manoj Kumar, Cameron T Ellis, Qihong Lu, Hejia Zhang, Mihai Capotă, Theodore L Willke,
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