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Abstract

A one-boundary diffusion model was applied to the data from two experiments in which subjects

were performing a simple simulated driving task. In the first experiment, the same subjects were

tested on two driving tasks using a PC-based driving simulator and the psychomotor vigilance test

(PVT). The diffusion model fit the response time (RT) distributions for each task and individual

subject well. Model parameters were found to correlate across tasks which suggests common

component processes were being tapped in the three tasks. The model was also fit to a distracted

driving experiment of Cooper and Strayer (2008). Results showed that distraction altered

performance by affecting the rate of evidence accumulation (drift rate) and/or increasing the

boundary settings. This provides an interpretation of cognitive distraction whereby conversing on

a cell phone diverts attention from the normal accumulation of information in the driving

environment.

Diffusion decision models have been successful in dealing with simple two-choice decision

making tasks (Ratcliff, 1978; Ratcliff & McKoon, 2008; Wagenmakers, 2009). There have

been applications of these models in a variety of domains such as psychology, neuroscience

(Gold & Shadlen, 2001; Hanes & Schall, 1996; Philiastides, Ratcliff, & Sajda, 2006;

Ratcliff, Cherian, & Segraves, 2003; Schall et al., 2011; Smith & Ratcliff, 2004; Wong &

Wang, 2006), neuroeconomics and decision making (Roe, Busemeyer & Townsend, 2001;

Krajbich & Rangel, 2011) and various clinical domains (White, Ratcliff, Vasey, & McKoon,

2010), and with a variety of subject populations such as children (Ratcliff, Love, Thompson,

& Opfer, 2012), older adults (Ratcliff, Thapar, & Mckoon, 2010; 2011), aphasics (Ratcliff,

Perea, Colangelo, & Buchanan, 2004), children with ADHD (Mulder et al., 2010) and

dyslexia (Zeguers et al., 2011). In these models, evidence towards one or other of the

alternatives is assumed to accumulate over time.

Recently, a diffusion model for one-choice tasks has been developed and fit to data from

both the psychomotor vigilance test (PVT), a task used extensively in sleep deprivation

research, and data from a simple (one-choice) brightness detection task (Ratcliff & Van

Dongen, 2011). In the PVT, a millisecond timer is displayed on a computer screen and it

starts counting up at intervals between 2 and 12 s. after the subject's last response. The
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subject's task is to hit a key as quickly as possible to stop the timer. When the key is pressed,

the counter is stopped, and the RT in milliseconds is displayed for 1 s.

Ratcliff and Van Dongen (2011) presented fits of the model to data from the PVT. In one

analysis they fit RT distributions (including hazard functions) from experiments with over

2000 observations per RT distribution per subject. They also fit data in which the PVT was

tested every 2 hours for 36 hours of sleep deprivation. They found that drift rate was closely

related to an independent measure of alertness and this provided an external validation of the

model.

The aim of this article is to examine whether the single choice diffusion model can be used

to fit driving RT data. In one version, a subject is seated in front of a PC monitor with a

gaming steering wheel and foot pedals (accelerator and brake) and they follow

approximately 100 feet behind a lead vehicle at about 65 m.p.h.. There are two tasks, one is

to brake when the lead vehicle brakes which is signaled by the lead vehicle slowing and the

brake lights turning on. The second is to drive around the lead vehicle into an unoccupied

lane when the lead vehicle brakes.

Data from these two driving tasks and the PVT are used to test the one choice model. The

same subjects are tested on the three tasks and this allows us to examine individual

differences across the tasks to provide further validation for the models (model parameters

should correlate across similar tasks). It also allows us to determine which model

components are responsible for different RT performance levels. The one-choice model is

also applied to the data from a distracted driving experiment of Cooper and Strayer (2008).

This experiment used a high fidelity driving simulator with the braking task described

above. This allows us to determine which model components are affected by distracted

driving.

Modeling Driver Distraction

There are many sources of driver distraction including talking to passengers, eating,

drinking, lighting a cigarette, shaving, applying make-up, and listening to the radio (Stutts et

al., 2003). However, the last decade has seen an explosion of nomadic devices that have

made their way into the automobile enabling a host of new sources of driver distraction

(e.g., sending and receiving e-mail or text messages, communicating via cellular devices,

using the internet etc.). In many cases these new sources of distraction have the potential to

be more impairing because they are more cognitively engaging and because they are often

performed over more sustained periods of time. What compounds the risk to public safety is

that at any daylight hour it is estimated that over 10% of drivers on US roadways are talking

on their cellphone (Glassbrenner, 2005).

Cellphones are thought to induce a form of inattention-blindness whereby attention is

diverted from the processing of information necessary to safely operate a motor vehicle

(Strayer & Johnston, 2001; Strayer, Drews & Johnston, 2003; Strayer & Drews, 2007). In a

series of studies, these authors examined how cellphone conversations affect the driver's

recognition memory for objects that were encountered while driving. Even when a driver's

eyes were directed at objects in the driving environment they were half as likely to
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subsequently recognize the objects if they were conversing on a cellphone. In addition, the

real-time brain activity associated with reacting to brake lights in a lead vehicle was

suppressed when drivers were talking on a cellphone. Thus, cellphone drivers fail to see

information in the driving scene because they do not encode it as well as they do when they

are not distracted. In situations where the driver is required to react with alacrity, drivers

using a cellphone are less able to do so.

Prior research has demonstrated that conversing on a cellphone increases brake reaction time

(Alm & Nilsson, 1995; Briem & Hedman, 1995; Brookhuis, De Vries, & De Waard, 1991;

Lamble, et al., 1999; Lee, et al., 2002; Levy, Pashler, & Boer, 2006; McKnight &

McKnight, 1993; Radeborg, Briem, & Hedman, 1999; Strayer & Johnston, 2001; Strayer,

Drews, & Johnston, 2003). Importantly, Brown, Lee, & McGehee, (2001) found that

increases in brake reaction time such as those produced by cellphone conversations increase

both the likelihood and severity of motor vehicle collisions. The data from the recognition

memory studies reported above are consistent with an interpretation that the delayed brake

reactions are due to a decrease in the rate of evidence accumulation. However, other

parameters of driving performance suggest that drivers may adopt a more cautious/

conservative driving style when they converse on a cellphone. For example, the above-

referenced studies also found that drivers tend to increase their following distance when they

are talking on a cellphone. This Brake RT-Following Distance tradeoff complicates any

simple interpretation of changes in RT when drivers converse on a cellphone. Formal

modeling of the RT data may help explain why braking reactions are slowed when drivers

talk on a cell phone.

One Choice Diffusion Model

In single choice decision making tasks, the data are a distribution of RTs for hitting the

response key. The one-choice diffusion model (Ratcliff & Van Dongen, 2011) assumes the

evidence begins accumulating on presentation of a stimulus until a decision criterion is hit,

upon which, a response is initiated (Figure 1 illustrates the model). In the model, drift rate is

assumed to vary from trial to trial (drift rate is normally distributed with mean ν and SD η).

This relates it to the standard two-choice model which makes this assumption to fit the

relative speeds of correct and error responses. In application of the one-choice model to

sleep deprivation data, across trial variability in drift rate was needed to produce the long

tails observed in the RT distributions.

The hazard function provides a way of describing the RT distribution and especially the

behavior of the right tail. The hazard function is defined as h(t)=f(t)/(1-F(t)), where f(t) is the

probability density function and F(t) is the cumulative density function. It represents the

likelihood that the process will terminate in the next unit of time, given that it has not

terminated to that point. Burbeck and Luce (1982) showed that a standard diffusion model

(the inverse Gaussian or Wald distribution) produced hazard functions that increase and then

level off in the right tail, or decrease a little to a high constant asymptote. In the few cases

hazard functions in two choice data have been examined, the distributions are consistent

with the diffusion model predictions (Ratcliff, Van Zandt, & McKoon, 1999). But in simple

RT under sleep deprivation, the hazard functions fall to a low asymptote (see also Green &
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Smith, 1982). Ratcliff and Van Dongen (2011) introduced variability in drift rate across

trials in the one-choice model by analogy with the two-choice diffusion model. Adding

across trial variability in drift rate produces hazard functions that can increase to asymptote,

or increase and then fall to a low asymptote, or patterns in between. The effect of sleep

deprivation on the PVT was mainly to reduce drift rates, which resulted in hazard functions

with lower asymptotes than conditions with no sleep deprivation.

There are five parameters of the decision process that are estimated in fitting the model to

data: The drift rate, or strength of the stimulus, SD in drift rate across trials, mean

nondecision time, the range across trials in a uniform distribution of nondecision time, and

the distance to the decision boundary. However, there is an issue of identifiability in model

parameters in this one-choice model (Ratcliff & Van Dongen, 2011). Only two parameters

out of drift rate, across trial SD in drift rate, or boundary setting can be uniquely determined.

So absolute sizes of some of the parameters are not unique, but ratios are. Compounding this

issue is that, in the experiments presented in this article, we have relatively low numbers of

observations per experiment. This means that the model parameters are not estimated

particularly accurately (across trial variability in drift rate is less accurately estimated than

the other model parameters). This issue is taken up in Monte Carlo simulations presented in

Experiment 1.

The one choice model is related to the earlier model of Smith (1995). Smith's model

assumed sustained and transient channel inputs that were time varying, and either a single

decision process that pooled evidence from the two inputs or two racing diffusion processes.

These decision processes were OU diffusion processes. Although there are more parameters

for the one-choice model used here, Smith's model was applied to parametric manipulations

that constrained the model and the parallel channels model was favored over the pooling

model.

In this article, we present data from two experiments, one that has subjects perform three

tasks, two simple driving tasks using a PC based driving simulator, and the PVT task. The

second experiment fits data from a study by Cooper and Strayer (2008) on distracted

driving. The aim of the first experiment is to determine whether the single choice diffusion

model fits the data and to examine individual differences in model parameters across the two

driving tasks and the PVT. The aim of the modeling of the second experiment is to

determine the locus of distracted driving within this modeling framework.

Experiment 1

The experiment of Cooper and Strayer (2008) had subjects performing a simulated driving

task in a high quality driving simulator. In the task, they were to drive behind a car and

when brake lights on it were turned on and it slowed, the subject was to slow. We

implemented this task as the first of our two driving tasks, but in our version, subjects were

driving at full speed, not varying their speed. We noticed that in this task, there were

sometimes long delays before the next trial began because subjects had to slow down, then

catch up to the car in front to begin the next trial. To collect more data per unit time, we

implemented a second task in which the subject was driving behind a car in the right lane of
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a two lane highway and when the brake light turned on, they had to drive round the car in

front. When they rounded the car in front, there was another car directly in front again and

when they approached it, the next trial began. The third task was the PVT. If this modeling

approach is to be of practical use, no more than one hour of testing in an experiment could

be reasonably conducted and our choice was to test more subjects on fewer sessions as

opposed to fewer subjects on more sessions. By testing the same subjects on three tasks, we

can examine individual differences across tasks using correlations in model parameters

across tasks. This allows us to see if the individual differences are consistent across tasks

and also provides verification that the model is extracting meaningful measures of individual

performance.

Method

Apparatus—For the two driving tasks, we used a PC screen to display the driving

simulation, and a standard driving game steering wheel and footpedals were used to control

driving (Logitech Driving Force GT Wheel with Force Feedback). The software used was

the STISIM Drive software and events were sampled at a 16 ms rate.

Figure 2 shows screenshots of the PC screen for the two driving tasks as viewed by the

subject. In the top panel, a lead car has its brakelights off and the bottom panel has it a little

closer to the driver with its brakelights on.

PVT task—A box with edges composed of 9 dashes and 3 vertical lines (“|”) was on the

screen at all times. After a response was made, there was a 2-12 s. delay and then a counter

started counting ms on the screen with numbers appearing in the middle of the box. Because

the sampling rate is 16 ms, the counter was not exact, but it presents a different number each

display frame (the number is read from the internal ms timer). As soon as the counter started

counting, the subject was to hit a button to stop it.

Braking task—In this task, the subject pressed the accelerator to the floor until the car was

traveling at maximum speed, the lead car slowed down from some distance ahead and then it

matched the driver's speed at a certain distance (around about 100 feet). After a variable

amount of time (between 2 and 10 seconds in 2 second steps) the lead car braked, the driver

removed the foot from the accelerator and pressed the brake to avoid a rear-end collision.

After about 2 seconds of braking the lead car zoomed away, the subject pressed the

accelerator to the floor again, and a new lead car decelerated into position and matched the

speed ready for the next trial.

Driving-around task—The driver floored the accelerator and stayed in the right-hand

lane of the 2-lane highway. As the driver approached the lead car, the lead car matched the

driver's speed. Then after a variable time (between 2 and 10 seconds in 2 second steps), the

lead car braked, and the driver steered into the left-hand lane and allowed the lead car to

slow down and fall behind. Once that car had receded to the rear, the driver steered back into

the right-hand lane, and approached the next lead car.

To measure the time at which the driver starts to drive around the lead car, the sideways

velocity is recorded and linear interpolation is used to estimate the time at which the car
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starts to move sideways. The sideways velocity starts to increase and then becomes

approximately constant for a short while as the car drives to the left around the lead car. This

relatively constant velocity provides a estimator of when the car begins to turn that is

consistent across responses by the subject.

Subjects—34 undergraduates participated for 2 one hour sessions for course credit. Two

others were eliminated from the study because they did not have driving experience (or a

valid license).

Procedure—Subjects took part in the three tasks in two one-hour sessions. On day one,

they performed about 25 minutes of the PVT followed by about 25 minutes of the braking

task. On day two, the subjects performed about 25 minutes of the braking task followed by

about 25 minutes of the driving-around task. This resulted in, on average, 22 minutes of the

PVT, 52 minutes of the braking task, and about 29 minutes of the driving-around task. This

resulted in the following mean number of observations per task: 206 in the PVT, 150 in the

braking task, and 111 in the driving-around task.

Results

For the PVT, driving-around, and braking tasks, RTs less than 100, 300, and 350 ms,

respectively, were eliminated from the analysis and RTs greater than 560, 1000, and 1200

ms, respectively, were eliminated. For the PVT, less than 3% of the responses were

eliminated with almost none shorter than 100 ms. For the driving-around task, 2.2% of the

fast responses were eliminated (the mean of these was 167 ms which suggests that they were

anticipations) and 2.3% of the long responses were eliminated. For the braking task, less

than 1% of the fast responses and 3% long responses were eliminated. The mean RTs for the

three tasks were: 321 ms for the PVT, 563 ms for the driving around task, and 789 ms for

the braking task (see Table 1). The PVT produced much shorter RTs than the other two

tasks, and the braking task had longer RTs than the driving-around task. The driving-around

task required the steering wheel to be turned, whereas the braking task required the foot to

be moved from the accelerator to the brake and responses were timed from when the brake

pedal was pushed.

After an initial set of analyses, we found erratic behavior of correlations in model

components across tasks. Mean RT correlated quite highly (around .6) but model parameters

correlated around .3, but with some near zero. However, because the model divides response

times into two components, the decision process and nondecision time, both of which are

noisy estimates, and because the number of observations is relatively small, we expect

attenuation in the correlations in model parameters relative to those for mean RT.

The bottom left panels of Figure 6 show plots of mean RT for the pairs of the three tasks for

individual subjects and the top right panels show the corresponding correlations. The

diagonal panels show the histograms of mean RT across subjects. Figure 7 shows similar

plots of the nondecision time and drift rate parameters for individual subjects for the three

pairs of the three tasks. The mean correlation for the three tasks for mean RT is .64, the

mean correlation for nondecision time is .42, and the mean correlation for drift rate is .44.
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These results show healthy individual differences that are captured in the model. The

correlations in model parameters and mean RTs across subjects show that the 3 tasks seem

to be tapping into the same processes. We found that refitting the data starting with the .1

quantile instead of the .05 quantile produced much better patterns of correlations among

model parameters (in the .4 to .5 range). This means that in the first set of model fits, the

model parameters were being determined by the behavior of the .05 quantile RT, which can

possibly be partly determined by fast outliers. In the refits using the .1 quantile as the first

quantile, the proportion of responses between 0 and the .05 and between the .05 and .1

quantiles were grouped so no data were ignored.

The one-choice diffusion model was fit to the RT distributions for the three tasks. In general,

the model produces fits to the data that closely match the data. The mean chi-square values

shown in Table 1 are a little higher than the median values of chi square with 14 df. Out of

the fits for the 34 subjects, 2 values showed a significant misfit (greater than 23.7) for the

PVT, 3 were significant for the driving-around task, and 1 was significant for the braking

task. Cumulative distributions for the model fits and data for the individual subjects are

shown in Figures 3, 4, and 5. These show the good correspondence between theory and data

as shown numerically by the chi-square values.

Model parameters are also shown in Table 1. Nondecision times change in a similar way to

the mean RT across tasks. Drift rates are different in the three tasks, but drift rate divided by

boundary size are relatively close together (between 8.3 and 10).

One of the ways of validating the model is to examine individual differences in model

parameters. The diffusion model essentially divides the mean RT into a nondecision time

and a decision time that is a distance (boundary setting) divided by speed (drift rate). This

division is constrained by the requirement that the model fits the RT distributions. We can

compute the correlations in mean RT across subjects for each pair of tasks and then the

correlations in model parameters.

Power Calculations using Monte Carlo Simulations

We performed a Monte Carlo simulation to see if the observed correlations in model

parameters (in the .4-.5 range) would be expected given the observed SDs in model

parameters if the true correlation between the model parameters for the two tasks was high.

There are two sources of variability in the model parameters: one that comes from the

combinations of the fitting method and low numbers of observations, and the other from

individual differences. We generated 50 sets of simulated data with 100 observations per

data set and fit the model to these sets. These gave SDs in model parameters from this

source of variability. Then we assumed a high correlation (.75) across subjects in model

parameters and found SDs in model parameters across subjects to obtain observed

correlations (.4-.45). For correlations of .75, for nondecision time, SDs across subjects were

30 and 65 ms for driving around and braking tasks and for drift rates, SDs across subjects

were .4 and .5 for driving around and braking tasks.

Also, we performed the correlation simulation 100 times, the means are .42 and .45 with

SDs .14 and .14. These SDs illustrate the range of correlations that we might observe
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because of the relatively low power of the experiments. This suggests that the .2 correlation

for nondecision time between the driving around task and the PVT is something we might

expect to occur by chance with even a high correlation across subjects.

Our results show that our observed correlations were consistent with correlations across

subjects in both drift rate and nondecision time of around .7-.8. Therefore, even for this few

observations per subject, reliable individual differences are found across tasks both in mean

RT and in diffusion model parameters.

Experiment 2

We present a model-based analysis of the experiment of Cooper and Strayer (2008). In this

experiment, subjects took part in the braking task in a high quality driving simulator and the

manipulation of interest was whether the subjects were distracted by talking on a cell phone

or not.

Experiment 2 used the simple diffusion model to examine the impact of conversing on a

hands-free cell phone on brake RT. Concurrent cell phone use has been shown to increase

mean RT and following distance (Strayer, Drews, & Crouch, 2006; Strayer, Drews, &

Johnston, 2003). Cell phone use has also been shown to decrease detection rates for targets

and potential hazards on the roadway (Strayer & Drews, 2007; Strayer & Johnston, 2001).

The increase in following distance observed among cell phone users would mean that they

have longer to respond to a lead vehicle braking. Thus, the increase in brake RT among cell

phone user could be the result of deliberate caution as evidenced by their longer distance

headway. The increase in RT could also be the result of impoverished sampling of the

driving environment and the decreased detection rate for targets and potential hazards is

consistent with this interpretation. Fitting the brake RT data using the single diffusion model

is important because it will help to examine the source of cognitive distraction from cell

phone in terms of diffusion model parameters.

Method

Subjects—Nineteen undergraduates from the University of Utah participated in the

research (see Cooper and Strayer, 2008 for additional details). All had normal or corrected-

to-normal visual acuity and a valid driver's license.

Stimuli and Apparatus—A PatrolSim fixed-base driving simulator was used in the

study. Two driving scenarios were developed using a freeway database, each differed in

terms of direction of travel, location of braking events and vehicle models. In each scenario,

a pace car, programmed to travel in the right-hand lane, braked at random times 40 times

throughout the scenario. Distractor vehicles were programmed to drive somewhat faster or

slower than the pace car in the left lane, providing the impression of a steady flow of traffic.

If the participant failed to depress the brake, they would eventually collide with the pace car.

Each scenario was approximately 18 minutes in duration.

Procedure—The experiment was conducted over four days. On the first day, participants

completed a questionnaire assessing their interest in potential topics of cell phone
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conversation. Subjects were then familiarized with the driving simulator, using a

standardized 20-minute adaptation sequence.

Sessions 1 and 4 included both single and dual-task driving conditions while sessions 2 and

3 consisted exclusively of dual-task driving. The dual-task condition involved naturalistic

conversation on a hands-free cell phone with a confederate. The driver and confederate

discussed topics that were identified in the pre-experimental questionnaire as being of

interest to the driver. Once initiated, conversation was allowed to progress and develop

naturally. To avoid any possible interference from manual components of cell phone use,

participants used a hands-free cell phone that was positioned before driving began.

Results

We eliminated RTs less than 450 ms and greater than 4000 ms. This resulted in 2.5% of the

data being eliminated, of which almost all (2.4%) was from fast responses (anticipations)

with mean 240 ms. The mean RT for driving normally was 1060 ms and for driving while

using a cell phone, mean RT was 1194 ms. Even though the difference between these two

means does not seem too large, the main problem with distracted driving is not from

responses in the center of the distribution or the fastest responses, but in the slowest

responses in the tail of the distribution. The .1 quantile RTs (leading edge) were 725 and 766

ms for normal and distracted driving and the .9 quantile RTs (the tail of the distribution)

were 1552 and 1804 ms for nondistracted and distracted driving respectively. Serious

problems can occur when a slow decision coincides with a dangerous driving situation.

We fit the one-choice diffusion model to the data from the two conditions, normal and

distracted driving. The model parameters are shown in Table 2. The mean number of

observations per subject for the nondistracted condition was 107.1 and for distracted driving

was 510.5. The number of degrees of freedom in the data was 19 (one bin before the .1

quantile and .05 bins between each of the others and above the .95 quantile. The number of

parameters was 4 and so the number of degrees of freedom was 14. The critical chi-square

value was 23.7 and for both conditions, only 3 out of 38 were significant. This shows good

correspondence between the model and data. The fits of the model to the cumulative RT

distributions are shown in Figure 8 and these show generally good visual correspondence

between the theory and data.

The model parameters show that the effect of distraction is on both nondecision time and

drift rate. About 30 ms of the difference is due to differences in mean RT (which is close to

the 40 ms difference in the leading edge of the RT distributions) and the other 100 ms is due

to a reduced drift rate. This model-based analysis suggests that the majority of slowing in

the distracted driving condition occurs because of reduced uptake of evidence from the

brake light stimulus in this task. Because the same subjects were tested in the two

conditions, we can see if model parameters correlate between the distracted and

nondistracted conditions. The correlation for nondecision time was .65 and the correlation

for drift rate was .56. The correlation in mean RT was .80. Thus, reliable individual

differences are obtained both in the model parameters and in the data just as in Experiment

1. However, because the model parameters are identifiable as ratios (i.e., a/ν and ν/η),
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boundary settings may also contribute to the effect. This is taken up in the general

discussion.

General Discussion

The main result from this study is that the one-choice diffusion model for simple RT can be

applied to these driving tasks. The three tasks studied were the PVT, to which the model has

been successfully applied (Ratcliff & Van Dongen, 2011), the braking task that was used by

Cooper and Strayer (2008), and a variant of that task in which the subject drives around the

lead car when it brakes. Results show that the model successfully fit the data from the three

tasks by fitting the RT distributions with chi-square values that were mostly non-significant.

Furthermore, the model extracted significant individual differences in model parameters

showing common processing in the three tasks.

The results also show that reliable individual differences can be obtained with tasks that can

be completed in a little over half an hour with 100-150 trials per subject per session.

However, the parameter estimates will be more reliable with more observations.

The one-choice diffusion model divides response time in a one-choice task into nondecision

time and decision time (with both varying from trial to trial). The decision process is driven

by a drift rate that represents the quality of evidence from the stimulus. This provides a

somewhat different perspective on processing. If the RT measure alone is used, the focus is

on the temporal aspects, but if drift rate is used, the focus is on the quality of information

from the stimulus driving the decision process.

One way to view decision time is in terms of distance, velocity, and time. Decision time is

obtained in an analogous way to determining time from distance (boundary setting) divided

by velocity (drift rate) as in the relationship: velocity=distance/time. Velocity represents

drift rate which represents the quality of evidence used in making the decision. But the

relationship is not a good approximation to the decision process because of variability within

a trial and across trial variability in drift rate. The tradeoff between model parameters

discussed in the introduction says that it is possible to get the same decision time with

different drift rates and boundary settings so long as the ratio is constant. However, because

of variability in drift rate and the need to fit the whole distribution of response times, it turns

out that the tradeoff also includes nondecision time. What this means is that absolute values

of the model parameters are not unambiguously interpretable. But individual differences and

differences among conditions are interpretable.

To go one step further, if all we have are ratios, namely a/ν and ν/η, then it is possible that

ν (drift rate) is the same for normal and distracted driving, but a (the boundary) differs. The

one-boundary diffusion model shows that the ν/η ratio is not altered by distraction and the

a/ν ratio is higher when the driver is distracted; however, without additional constraints the

one-boundary diffusion model, by itself, cannot differentiate between drift and boundary

interpretations. Fortunately, this ambiguity in the interpretation of the parameters can be

resolved by a) using a two-choice diffusion model (e.g., Ratcliff & Tuerlinckx, 2002),

and/or b) using converging evidence from other methodologies.
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Implications for Cell Phone Use

Hands-free cell phone use has been characterized as a relatively “pure” form of cognitive

distraction. That is, the driver's eyes are on the road and the hands are on the wheel, so there

is no direct contribution from visual or manual sources of interference. Compared to normal

driving, brake RT was longer when participants were talking on the cell phone. The

lengthening of RT could be due to increased caution or to impaired sampling of the driving

environment. The diffusion modeling indicates that the increased RT associated with

concurrent cell phone use was either due to a reduction in the drift rate or an increase in

boundary setting (or a combination). This pattern indicates that the cell phone conversation

impaired the accumulation of traffic-related information.

Application of the diffusion model provides important insight on why drivers using a cell

phone are more likely to be involved in accidents. It is noteworthy that the biggest

difference between normal and distracted driving was in the right tail of the distribution.

That is, there was a 41 ms difference between conditions at the .1 quantile and a 252 ms

difference between conditions at the .9 quantile, indicating that some braking events are

more disrupted than others. Elsewhere, the increase in brake RT observed in Experiment 2

has been shown to increase both the likelihood and severity of accidents (Brown, Lee, and

McGehee, 2001). The increased crash risk is most acute for the braking events associated

with the right tail of the distribution. All other things being equal, these slow responses will

have a greater delta-V at the point of rear-end collision (i.e., longer brake RTs increase the

likelihood and severity of accidents). A more alarming version of this impairment occurs

when drivers conversing on a cell phone miss important events in the driving environment,

such as traffic lights or pedestrians. For example, Strayer and Drews (2007) found that

recognition memory for objects that were looked at by the driver was impaired when they

conversed on a cell phone. Moreover, event-related brain potentials (ERPs) time-locked to

the onset of braking events are also suppressed by cell phone conversations. Here we use

diffusion modeling of the brake RT data to establish that the cell-phone induced inattention

blindness is due to retarded evidence accumulation, resulting in a delay in responding to the

imperative events that are detected by the driver. Taken together, a clear pattern of cognitive

distraction emerges whereby conversing on a cell phone diverts attention from the normal

accumulation of information in the driving environment. Here we used the diffusion

modeling of the brake RT data to establish that distraction alters the evidence accumulation

process resulting in a delay in responding to imperative events that are detected by the

driver.
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Appendix: Fitting the model

For the one-choice diffusion model, there is no explicit mathematical solution for a RT

distribution with negative drift rate. Negative drift rates are produced from the left tail of the

across-trial distribution of drift rates (e.g., the area below zero in the distribution of drift

rates in Figure 1). The model was therefore implemented as a simulation using a random
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walk approximation to the diffusion process with 20,000 iterations per distribution at 0.5-ms

step size (Tuerlinckx et al., 2001). To fit the model to data, the 0.05, 0.10, …, 0.95 quantiles

of the RT distribution were generated from the data. These quantile RTs were used to find

the proportion of responses in the RT distribution from the model laying between the data

quantiles and these were multiplied by the number of observations to give the expected

values (E). The proportions of responses between the data quantiles were 0.05 and these

were multiplied by the number of observations to give the observed values (O). In the

simulations, if a process had not terminated by this time, it was stopped and 3,500 ms was

assigned as the RT (this happened rarely for these data sets). A chi-square statistic Σ(O-

E)2/E was computed, and the parameters of the model were adjusted by a simplex

minimization routine to minimize the chi-square value. A Markov chain Monte Carlo

algorithm was used to obtain starting values for the simplex minimization routine to produce

robustness to local minima. Then a simplex minimization method was used to produce the

best fitting model to the data. The simplex minimization routine was restarted 18 times with

a wide simplex around the parameters estimated from the prior fit. Because of the issue of

parameter identifiability, on each run of the fitting routine, boundary separation was fixed at

a value we felt appropriate for the data set. In fitting the model, 2000 simulated RTs were

generated for each evaluation of the model as in Ratcliff and Van Dongen (2011). The

model was fit to the data for each individual subject, which allowed individual difference

analyses.
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Figure 1.
An illustration of the one-choice diffusion model. Evidence is accumulated at a drift rate ν
with SD across trials η, until a decision criterion at a is reached after time Td. Additional

processing times include stimulus encoding time Ta and response output time Tb; these sum

to nondecision time Ter. Nondecision time is assumed to be uniformly distributed with mean

Ter and range st .
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Figure 2.
Screen shots of driving views in the two driving tasks from Experiment 1. The top panel

shows the lead car without the brake lights on and the bottom panel shows the lead car with

brake lights on with the driver closing on the lead car.
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Figure 3.
Cumulative RT distributions for the 34 subjects in the PVT task. The x′s are the data and the

solid line is the model prediction.
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Figure 4.
Cumulative RT distributions for the 34 subjects in the driving around task. The x′s are the

data and the solid line is the model prediction. The order of subjects is the same as in Figure

3.
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Figure 5.
Cumulative RT distributions for the 34 subjects in the braking task. The x′s are the data and

the solid line is the model prediction. The order of subjects is the same as in Figures 3 and 4.
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Figure 6.
Plots of model parameters, histograms of values, and correlations for the three tasks for

nondecision time and drift rate for each individual subject. The lines in the scatter plots are

from a LOWESS smoother which uses locally-weighted polynomial regression.
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Figure 7.
Plots of model parameters, histograms of values, and correlations for the three tasks for

mean RT for each individual subject.
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Figure 8.
Cumulative RT distributions for the 19 subjects in Experiment 2. The x′s are the data and

the solid line is the model prediction. “S” refers to the subject number, “Non” refers to non-

distracted driving.
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