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ABSTRACT OF DISSERTATION 

 

 

MODELING, SIMULATION AND ANALYSIS OF 

MULTI-BARGE FLOTILLAS IMPACTING BRIDGE PIERS 

 

The current design code governing bridge structure resistance to vessel impact 

loads in the U.S. is the American Association of State Highway and Transportation 

Officials’ (AASHTO) Guide Specification and Commentary for Vessel Collision Design 

of Highway Bridges.  The code stipulated method, based on Meir-Dornberg’s equivalent 

static load method, is usually not warranted because of insufficient data on the impact 

load histories and wide scatter of the impact force values.  The AASHTO load equations 

ignore certain fundamental factors that affect the determination of impact forces and 

bridge dynamic responses.  Some examples of factors that are omitted during standard 

impact force analysis are: impact duration, pier geometry, barge-barge and barge-pier 

interactions, and structural characteristics of bridges. 

The purpose of this research is to develop new methods and models for predicting 

barge impact forces on piers.  In order to generate research information and produce more 

realistic flotilla impact data, extensive finite element simulations are conducted.  A set of 

regression formulas to calculate the impact force and time duration are derived from the 



  

simulation results.  Also, a parametric study is performed systematically to reveal the 

dynamic features of barge-bridge collisions.  A method to determine the quasi upper 

bound of the average impact force under any given scenarios is proposed.  Based on the 

upper bounds of the average impact forces, an impact spectrum procedure to determine 

the dynamic response of piers is developed.  These analytical techniques transform the 

complex dynamics of barge-pier impact into simple problems that can be solved through 

hand calculations or design charts.  Furthermore, the dependency of the impact forces on 

barge-barge and barge-pier interactions are discussed in detail.  An elastoplastic model 

for the analysis of multi-barge flotillas impacting on bridge piers is presented.  The barge 

flotilla impact model generates impact force time-histories for various simulation cases in 

a matter of minutes.  The results from the proposed model are compatible with the 

respective impact time-histories produced by an exhaustive finite element simulation. 

All of the proposed methods and loading functions in this study are illustrated 

through design examples.  Accordingly, the research results may help engineers to 

enhance bridge resistance to barge impacts and also lead to economic savings in bridge 

protection design.  

 

KEYWORDS: Barge Modeling, Flotilla Impact Force, Bridge Pier, Finite Element 

Simulation, Dynamic Response 
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Chapter 1  Introduction 

1.1  General Remarks and Motivation for Research 

On 15 September 2001, a 4-barge tow collided into the Queen Isabella Causeway, 

Texas, as shown in Figure 1.1.  When the bridge collapsed, eight people perished and the 

lives of thousands were affected [1].  On 26 May 2002, a barge hit an I-40 highway 

bridge over the Arkansas River in Oklahoma, as shown in Figure 1.2 [2], collapsing the 

bridge and sending 15 vehicles into the water with people trapped inside [3].  These are 

only two examples of many accidents caused by barge collisions recently in the United 

States.  Although the I-40 bridge had pier protection cells inside the navigation channel, 

the accident occurred outside the navigation channel.  According to Peters [2], most 

bridges over navigable water can be struck either within or outside the regular navigation 

channel by barge tows and individual commercial vessels, thus increasing the complexity 

of appropriate bridge protection. 

 

Figure 1.1 Four loaded barges crashed into the Queen Isabella Causeway, Texas, 

September 15, 2001, destroying a 73.2m (240 ft) section of the bridge 
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Figure 1.2 Barge-Impacted I-40 Bridge, Oklahoma, May 26, 2002 

 

Approximately 26,000 dry cargo barges, 3,000 tanker barges, and 1,200 towboats 

operate today on 40234 km (25000 miles) inland waterways in the United States [4].  A 

barge tow (flotilla), consisting of one tug and fifteen attached barges, has a 22500-ton or 

800000-bushel capacity, the equivalent of 225 train cars or 870 semi trucks.  The 365.85 

m (1200 ft) long barge tow carries as much coal or grain as 4.4 km (2.75 miles) of trains 

or 34.5 miles of semi-trucks.  Inland barge flotillas, as shown in Figure 1.3, carry 

approximately 15 percent of the nation's freight [5].  

 

Figure 1.3 Inland barge tows 
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During the period from 1965 to 2002, an average of one catastrophic accident per 

year involving vessel-bridge collisions was recorded worldwide.  More than half of these 

occurred in the United States.  Between 1992 and 2001, there were 2692 incidents 

nationwide where barges collided with bridges, resulting in human deaths, injuries and 

economic losses, according to a U.S. Coast Guard and American Waterways Operators 

report [6].  In general, any bridge accessible by a barge tow is probably hit at least once 

during its service life [7].  Furthermore, barge tow traffic is expected to increase by 150 

percent in the next 50 years [5].  Protecting highway bridges from barge impact has 

become crucial due to the heavy barge traffic passing underneath. The high frequency 

and serious consequence of barge-bridge collisions necessitate the development of 

regulations and requirements for structural design and bridge evaluation.  

Although vessel-bridge collisions have drawn considerable attention in the past 

twenty years, no significant research has been committed toward multi-barge flotilla 

collisions.  Despite high frequencies of barge-bridge collisions, vessel impact studies 

published in technical literature focus more intensely on ship collisions.  However, while 

similar in many respects, barge vessels and ship vessels differ in some fundamental ways.  

Significant differences exist between the speeds, shapes, and structures of oceanic ship 

vessels and barge vessels using inland waterways [8].  

At present, design specifications used both domestically and internationally 

employ empirical equations as a part of codified procedures for computing equivalent 

static design loads due to vessel impacts.  The current design code for bridge structures to 

resist vessel impact loads in the United States is the American Association of State 

Highway and Transportation Officials’ (AASHTO) Guide Specification and Commentary 
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for Vessel Collision Design of Highway Bridges [9].  The empirical crush model provided 

by the AASHTO guide specifications represents the state-of-the art on the subject of 

barge-bridge collisions.  However, as indicated by the authors of the AASHTO guide 

specifications, the use of dynamic analysis for the design of barge-bridge collision 

protection is usually not warranted because of insufficient data on the impact load 

histories and wide scatter of the impact force values.  Moreover, the vessel impact design 

requirements have not been updated for more than a decade, although there have been 

damaging vessel collisions throughout this period. To date, neither the collision 

mechanics nor the prediction of impact forces between a barge and a bridge has been well 

established.  Many potential fallibilities of the code stipulated method remain 

uninvestigated.  Most practical questions revolve around the accuracy of the AASHTO 

formulas, local impact damage, multi-barge flotilla impact forces, and dynamic barge-

bridge interaction.  Recent studies at the Kentucky Transportation Center have shown 

that AASHTO considerably overestimates the multi-barge flotilla impact forces [10].  

Consequently, the cost of bridge substructures is unnecessarily high.  On one bridge 

alone, savings could reach millions of dollars if accurate prediction of flotilla forces can 

be made.  

Vessel impact is one of the most significant design considerations for bridges that 

span navigable waterways.  The quantification of barge impact loads, used for bridge 

protection design, is the motivation of this research. 
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1.2  Objectives of the Dissertation 

The overall goal of this research is to study the characteristics of barge-pier 

collisions and develop new methods for predicting the impact loads on bridge piers. 

Specifically, the major tasks to be undertaken in order to achieve these objectives are: 

1) Conduct a literature survey; 

2) Develop finite element (FE) models for typical barges; 

3) Perform dynamic simulations of single barges impacting bridge piers; 

4) Perform dynamic simulations of multi-barge flotillas impacting bridge piers; 

5) Propose new methods for calculating the barge impact loads on bridge piers; 

6) Demonstrate the developed methods for the analysis of bridges. 

1.3  Organization of the Dissertation 

The remainder of the dissertation is composed as follows.  

Chapter 2 presents a state of the art overview of the vessel-bridge collision topic 

and a concise sketch of prior developments on the subject. 

 In Chapter 3, descriptions of the methods used to model a hopper barge and 

bridge piers are given.  The chapter ends with a discussion of the assumptions and 

limitations associated with modeling barges.  

Chapter 4 consists of a systematic parametric study of single-barges impacting 

rigid piers.  The fundamental characteristics of barge-pier collisions are discussed in this 

chapter.  Also, a set of impact load functions are developed. 

Chapter 5 discusses the influence of pier flexibility on barge-pier impact 

dynamics.  Criteria are provided with regard to how rigidity affects the impact forces and 

dynamic response of bridge piers and when such effects become significant.  
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Chapter 6 describes simulations of collisions between multi-barge flotillas and 

bridge piers.  Time-histories of the impact forces caused by multi-barge flotillas are 

generated, and the dynamic interaction between barges in a flotilla is discussed.  This 

chapter concludes with the presentation of a set of load functions for a column of barges. 

Chapter 7 is comprised of a numerical and analytical study concerning the 

determination of single barge impact loads on bridges and the dynamic response of piers 

subjected to barge impact.  The upper bounds of the barge impact forces and a 

conservative method to predict barge impact loads, which accounts for pier shape and 

size, are provided.  

In Chapter 8, a formulation for dynamic system identification is addressed for a 

barge impacting a pier.  This system identification determines a simple mathematical 

representation that delineates the crushing behavior of a barge under a collision-loading 

environment.  A single-degree-of-freedom (SDOF) system to represent a crushed barge is 

developed in the displacement domain using the elastoplastic-collapse concept.  

Chapter 9 describes an elastoplastic spring-mass model to analyze multi-barge 

flotillas impacting bridge piers.  It accounts for the essential factors pertaining to such 

impacts, such as pier geometry, stiffness, and dynamic interaction.  

Chapter 10 demonstrates the application of the barge impact forces developed 

previously through case studies.  In addition, this chapter evaluates the dynamic response 

of two real bridges subjected to barge impact loads. 

Chapter 11, the final chapter, contains conclusions of this dissertation and 

recommendations for future study. 
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1.4  Units of the Dissertation 

Even though the barge weight, dimension, and velocity are traditionally in 

English units, and AAHSTO uses the English system of units, this dissertation will 

primarily use the International System of Units (SI).  However, both English and SI 

values will be provided when an English unit is necessary.  Table 1.1 shows some 

quantities typically used in this study in both English and SI units as well as conversion 

factors for transforming from English units to SI units. 

Table 1.1 System of units 

Quantity English system SI system Conversion factor 

Length 
foot  (ft) 

inch (in) 

meter (m) 

meter (m) 

0.3048 

0.0254 

Force kip (1000 lb) Newton (N) 4448.2 

Mass 
slug (lb-sec2/ft) 

short ton 

kilogram (kg) 

metric ton (t) 

14.59 

0.9072 

Velocity 
ft/sec 

knot 

m/s 

m/s 

0.3048 

0.51 

Energy kip-ft Joule (J) 1355.82 
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Chapter 2  Review of Literature 

A state of the art overview of barge-bridge collisions as well as the most 

important historical research that has been conducted in this area is discussed in this 

chapter.  It should be noted that the focus of this study is to develop improved methods 

for predicting barge impact forces on piers, more specifically; this study focuses on the 

contact forces generated during collision accidents.  Therefore, the following discussion 

does not include topics such as inland waterway traffic control and vessel-bridge collision 

probabilities although these topics are very important.  

2.1  The AASHTO Guide Specifications 

The most influential study regarding barge impact loads was performed by Meir-

Dornberg [11], and the equations prescribed in the AASHTO Guide Specifications [9] 

were created by him.  The experimental and theoretical studies performed by Meir-

Dornberg concerned the relationship between the crushing force and barge deformation 

when a barge collides with a lock entrance structure or a bridge pier.  Meir-Dornberg’s 

study included the dynamic loading of three 1:4.5 barge bottom models by means of a 

pendulum hammer, the static loading of a 1:6 bottom model, and numerical computations.  

No significant difference was found between the static and dynamic forces measured 

during his study.  The resulting relationship of the barge deformation and impacting 

loading is shown in Figure 2.1 [8].  Using the test data, Meir-Dornberg developed the 

following equations for the barge deformation and impact force during a collision event. 

3.1( 1 0.13 1)
B B

a E= + −                                            (2.1) 
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B B

B B

60a                       a 0.1

6+1.6a                  a 0.1
BP

<⎧
= ⎨ ≥⎩

           (2.2) 

where the barge deformation 
B

a is in meters; the initial kinetic energy of the barge EB is 

in MN m⋅ ; and the impact force PB is in MN. 

 

Figure 2.1 Barge impact force 
B

P and deformation energy 
B

E  versus damage length 
B

a  

for European barges Types II and IIa 

 

The AASHTO Guide Specifications adopted the above equations to calculate 

barge impact loads imparted to a given bridge pier.  By introducing two modification 

factors and converting the above equations into the U.S. customary units, AASHTO gives 

the following equations to calculate barge damage depth
B

a and barge impact force PB. 

1
10.2 1 1

5672

H B
B

B

C E
a

R

⎛ ⎞⋅
= + − ⋅⎜ ⎟

⎝ ⎠
                                         (2.3) 

( )
4112 ,                  0.34

1349 110 ,     0.34

B B B

B

B B B

a R  a
P

a R a

<⎧
= ⎨ + ≥⎩

                               (2.4) 

1

35
BR B=                  (2.5) 
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where EB is in k-ft;
B

a  is in ft; the barge width B is in ft; 
B

P is in kips;
B

R is a modification 

factor to correct the impact force for a barge whose width is not 10.7 m ( 35 ft ); 
H

C is a 

hydrodynamic mass coefficient to account for the surrounding water upon the moving 

vessel. 

The above equations provide a simple load determination method for barge-bridge 

collisions, but several important physical aspects of general barge impacts are not 

addressed.  First, the impact forces from Meir-Dornberg’s method are entirely 

independent of impacted bridge piers.  As pointed out by Pedersen et al. [12], in case of 

collision against a pier with limited width or with a step or recess, the collision load may 

need to be adjusted.  Consolazio et al. [13] also found that both pier shape and pier size 

affect the impact forces. Second, as an equivalent static method, the Meir-Dornberg 

method does not address dynamic effects of the impact loadings.  Under some 

circumstances, barge-pier collisions can induce a significant dynamic response of bridges.  

The term “equivalent static load” is not properly defined because of ignorance of bridge 

structural characteristics.  A dynamic analysis should always be carried out for important 

structures, in particular, if transient or permanent deflections or movements of the bridge 

structure and/or the fender or buffer system are introduced in the analysis [8].  Thirdly, 

the pendulum hammer used in Meir-Dornberg’s study acted as a rigid object as compared 

to the barge model, because his focus was on the reaction forces of the barge models and 

not the reaction forces of real bridge piers.  However, when a vessel collides with a 

deformable bridge pier, the impact may not be analogous to rigid body impact.  Energy 

dissipation arises due to the crushing of the impacting vessel, but also due to the 

deformation of the impacted bridge pier and displacement of the soil surrounding the 
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bridge foundation [13].  Eqs. (2.1) and (2.2) may predict much larger impact forces than 

those actually produced in barge collisions because of the assumption that barge-pier 

impact was idealized as rigid-body impact.  Finally, barges nearly always travel in a 

group (flotilla), not separately.  Therefore, it is more significant to quantify the impact 

force for a multi-barge flotilla than for a single barge.  According to Whitney and Harik 

[10], Eq. (2.4) overestimates the impact forces for multi-barge flotillas.  The flexibility of 

the cable connectivity between barges in a flotilla is incompatible with the assumption 

that the entire flotilla acts as a single rigid body on the pier.  A portion of the impact 

energy will be dissipated through the interaction among barges in the flotilla. 

Although the Meir-Dornberg method has a number of shortcomings, it forms an 

excellent beginning for the comprehension and quantification of barge impact forces. 

2.2  The Whitney and Harik Model 

Whitney and Harik [10] developed a statistical procedure to analyze and 

transform barge traffic data into a component of bridge design in conjunction with the 

current AASHTO specifications.  Aside from identifying typical flotilla velocities and 

elevations on the Ohio River, U.S.A., they derived barge-loading functions for bridge 

piers.  This is the only published work that can be found to include an analysis of multi-

barge flotillas impacting bridges.  Three basic assumptions are made in Whitney and 

Harik’s collision models: 

1) The dynamic stiffness of a barge during collision is described by Meir-

Dornberg’s impact force and crushing distance relationship, i.e., Eqs. (2.1) and 

(2.2). 
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2) The barge can be divided into a non-linear crushing zone and an elastic 

compression zone.  In addition, the mass of the crushed parts can be discarded. 

3) Only one column in a multi-barge flotilla produces the impact forces. 

The first assumption is critical to the described models because it simplifies the 

procedures for determining the interaction between the barge and the pier during impact.  

Consequently, this underlying assumption rests the models on Meir-Dornberg’s formulas. 

L

t=t1

L-un

L-un+1

t=tn

t=tn+1

m

mn

mn+1

un

un+1 Crushing zones

 

Figure 2.2 Simplified barge impact model by Whitney and Harik 

 

Based on the three assumptions, the momentum of a barge, as shown in Figure 2.2, 

at times tn and tn+1 can be expressed as, respectively 

              n n nI m x= ,                                                                                                        (2.6)       

              1 ( )( )n nI m dm x dx+ = − −                                                                                   (2.7)    

where 
n

m  is the uncrushed mass at time
n

t , dm is the crushed mass at time tn+1, and x is 

the velocity of the uncrushed mass at time
n

t . 

Thus, by Newton’s second law the barge impact force F can be written as  

dI
F

dt
=                                                                                                                (2.8)                       
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or        

n

dx dm dm
F m x dx

dt dt dt
= + − .                                                                   (2.9) 

The last term of Eq. (2.9) is small compared to other terms and thus it can be 

neglected, the equation becomes 

n

dx dm
F m x

dt dt
= +                                                                                    (2.10) 

Letting ( ) /
dm

d mL dt mx
dt

= =  and ( )n

dx
m f x

dt
= in Eq. (2.10), yields 

2( )F f x mx= +                                                                        (2.11) 

where m   is  the mass per unit length of the barge, f(x) is the barge impact force function 

given by Eq. (2.2), and x is the barge crushing distance.  

 

Figure 2.3 Multi-Barge non-linear lumped mass impact model by Whitney and Harik 

 

From Eq. (2.11), the impact forces for single barges can be obtained by 

integration with respect to time.  Figure 2.3 shows the multi-barge impact model where 

each barge is discretized into several elements.  The first element of each barge is the 

crushing element, which is assigned the ASSHTO bilinear load deformation relationship, 

Eq. (2.4).  The axial barge element stiffness of other elements was calculated from the 
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cross-sectional properties of a Jumbo Hopper (see section 3.1 for details). A computer 

program was written to evaluate the multi-barge impact loads. 

For a single barge, this model agrees with the AASHTO method very well.  In 

fact, this result can be expected from Eq. (2.11) since the second term of Eq. (2.11) is 

much smaller than the first one for single barges.  Regarding multi-barge flotilla impacts, 

the impact forces generated by the Whitney and Harik model are significantly smaller 

than those generated by the AASHTO method.  One apparent factor leading to this result 

is the interaction between barges in a flotilla.  

Based on past barge-bridge collision investigations, AASHTO suggests that only 

the barges in a single column of a multi-column flotilla be used to generate impact 

loading [10].  This recommendation is based on the assumption that the barges in 

adjacent columns are lashed together with ropes that will break during a collision event.  

However, whether the connections between barge columns are broken or not during a 

collision event, the initial impact forces are produced by the intact flotilla, not by a single 

column of barges.  Most probably, there is not enough time for the barges to separate 

before a large part of the kinetic impact energy is dissipated.  Therefore, it may be 

inappropriate to make such an assumption.  

Whitney and Harik concluded that it is conservative to neglect the effect that the 

pier flexibility has on the impact forces.  For a majority of cases, the determination of 

barge impact forces may be regarded as independent of pier stiffness. 

2.3  Finite Element Simulations 

The finite element (FE) method, in general, is based on the representation of a 

given structure as an assembly of small elements that produces an approximate numerical 
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solution.  In more and more engineering problems today, it is sufficient to obtain 

approximate numerical solutions to problems rather than exact closed form solutions. 

Currently, computers contain sufficient computational power to allow the use of a 

new generation of crash analysis codes to simulate the nonlinear, dynamic response of 

bridge structures subjected to barge impacts.  Popular FE simulation codes, such as LS-

DYNA [14] and MSC.Dytran [15], use an explicit solver that eliminates the need to 

repetitively decompose large global stiffness matrices as is required by implicit codes.  

The explicit finite element solution is advanced in time, without solving any equations, 

by the central difference method: 

1/ 2 1/ 2 1( )n n external T
u u t M F B dVσ+ − −= + Δ ⋅ − ∫       (2.12) 

1 1 1/ 2n n n
u u t u

+ − += + Δ ⋅          (2.13) 

where external
F  is the vector of applied forces associated with the boundary conditions and 

body forces, M is the diagonal mass matrix, B is the discrete gradient operator, and σ  is 

the stress.  

The explicit methodology is more suitable for the analysis of a collision accident 

involving high non-linearity, contact, friction, and rupture.  The required calculation 

efforts are fewer than those associated with the commonly used implicit methods. 

Furthermore, the convergence of calculations is much easier to realize when the explicit 

method is used.  The program LS-DYNA has been developed for analyzing the dynamic 

response of 3-D structures, and it possesses many features that are critical for efficient 

and accurate analysis of crashes [16].  LS-DYNA is based on the public domain DYNA-

3D code and is already widely used by industry. 
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The complexity of flotilla-bridge collisions inhibits the creation of reliable 

conclusions from small-scale model tests alone.  In addition, performing full-scale field-

testing is not economically feasible.  Since the 1990s, FE simulations, which accurately 

evaluate traditionally non-testable scenarios, have succeeded as a supplement to 

experimental testing in crashworthiness studies.  FE models can be built as accurately as 

the respective prototypes in the real world.  Nonlinear and large displacement FE 

simulation can produce detailed information that is difficult to observe or measure in 

physical experiments.  In addition, various collision scenarios, even non-testable 

scenarios, may be simulated.  

Recently, Consolazio et al. [13, 17, 18] used FE simulation techniques to analyze 

a single barge impacting a bridge pier.  In their studies, FE models of a JH and an 

existing bridge pier were developed using the program LS-DYNA.  The main concluding 

remarks of their published works are as follows: 

1) The loads predicted by the FE simulations for light to moderate impact 

conditions (barge deformation < 64 mm) are larger than those predicted by 

AASHTO.  Moreover, such loads act on the pier for a short time with 

significant oscillation.  

2) Under severe impact conditions (barge deformation > 64mm), the equivalent 

static load from the AASHTO method appears reasonable since the time-

varying load histories produced from impact simulations are sustained for a 

relatively longer duration.  However, the load values predicted by AASHTO 

are considerably larger than those from FE simulations. 
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3) The pier stiffness as well as the pier geometry has significant influence on the 

barge impact force. 

4) The FE simulations correlated with results from AASHTO design codes in 

barge deformations. 

The determination of the impact loads is intricate. It is not viable to solve this 

problem analytically with an exact mathematical model.  Presently, FE simulations are 

almost the only effective means for calculating the barge impact forces as the only 

feasible alternative to highly simplified formulas. 

Nevertheless, FE simulations are prohibitively expensive regarding the time 

required for both model generation and computation, and currently, are only employed in 

research purposes.  Challenges involved in analyzing such a non-linear problem include 

structural contact, criteria for the material’s rupture, and crack propagation.  For the time 

being, only a limited group of researchers have acquired the ability to solve such a 

problem. 

2.4  Barge Impact Experiments 

In April 2004, Florida engineers conducted the first-ever planned collision 

between a barge and a real bridge, the St. George Island Causeway Bridge spanning the 

bay from the small town of East Point to St. George’s Island (see Figure 2.4 [6,53]). The 

bridge and the barge were fitted with more than 150 sensors to provide a microsecond-

by-microsecond record of the impact load as the barge hit the bridge at increasingly faster 

speeds. The objectives of the experiment included: 
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1) To obtain experimental data about the magnitudes of loads generated, the 

durations of time over which these loads persist during an impact, and the 

manner in which the loads are shared by multiple piers, which are connected 

via the bridge deck (the roadway on top of the piers).  

2) To measure soil response during the impact test. 

 

 

(a) 

 

(b) 
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(c) 

Figure 2.4 Barge impact experiment: (a) St. George's Island Causeway Bridge, FL; (b) a 

bridge pier with impact blocks and data acquisition system installed; (c) push boat and 

test barge with payload 

 

According to Consolazio et al. [53], full-scale barge impact tests conducted on the 

stiffer pier generated a maximum impact load of approximately 4.7 MN (1056 kips) and 

significant levels of damage to the test barge.  Comparisons between measured barge 

deformation (as shown in Figure 2.5) and corresponding deformations predicted using the 

AASHTO barge impact design provisions indicated favorable agreement.  However, most 

of the dynamic impact loads measured during testing of this pier fell well below the 

equivalent static load values predicted by the AASHTO provisions.  Dynamic loads 

measured during barge impact tests were all bounded at the upper end by an apparent 

plastic load capacity of the barge bow.  This plastic load capacity was considerably less 

that that predicted by the AASHTO provisions.  Tests conducted on the more flexible 

pier were performed at lower impact speeds, used a smaller barge weight, and produced 

deformations of the barge bow that remained in the elastic range.  Comparisons between 

peak measured dynamic loads and corresponding AASHTO equivalent static loads 

demonstrated that the peak dynamic loads typically exceeded the AASHTO loads.  
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However, when a time averaging process was used to compute effective dynamic impact 

forces, the experimental data and AASHTO provisions were found to be in much better 

agreement. 

 

 

 

 

 

Figure 2.5  Barge bow deformation [53] 

 

While this physical test program yielded valuable impact data, interpretations of 

the results have limitations due to the pre-testing conditions of the piers impacted by the 

barges.  The bridge employed an old design that is no longer used by highway 

departments and its piers were different from the piers of most current bridges.  Such 

slender piers are not common in modern practice. 

In December 1999, the Army Corps of Engineers Waterways Experiment Station 

conducted an experiment of similar proportions by purposely crashing a barge flotilla into 

a lock chamber wall in order to measure barge impact loads [19].  The tests utilized a 

fifteen-barge tow impacting the lock wall structures at low velocities and various oblique 

angles.  The intent of the testing program was to determine the impact loading history 

imparted to the lock wall and the interaction between the individual barges in the tow 

during the impact.  An empirical correlation was derived that determines the maximum 

impact force (normal to the wall) as a function of the linear momentum normal to the 

wall:  
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max 0.435 sinF mv θ=                     (2.14) 

where θ  is the flotilla impacting angle with the lock wall shown in Figure 2.6, the flotilla 

mass m is in k-sec
2
/ft, the flotilla velocity v is in ft/sec, and the maximum force maxF is in 

kips. 

 

Figure 2.6 Plan view of the barge-wall collision tests conducted by the Army Corps of 

Engineers Waterways Experiment Station 

It should be noted that the majority of the impacts made by barge flotillas, while 

transiting such locks, do not result in damage to the barge structure or to the chamber 

walls.  This type of impact may be described as glancing with large oblique angles, as 

opposed to a direct impact.  Because both the barge corner and wall approximately act as 

rigid objects under low impact speed conditions, the tests are not appropriate for 

correlation to direct impacts with bridge piers.  Furthermore, the shallow impact angles 

used in the concrete lock wall tests are not representative of most barge collisions with 

concrete bridge piers in which maximum loads are typically generated at nearly head-on 

impact angles, not shallow oblique angles [53].  

2.5  Ship Collision Force on Piers 

An extensive amount of literature regarding ship-ship or ship-platform collisions 

exist in contrast to the scant amount of literature that may be complied from various 

barge-pier collision studies.  Most literature that pertains to vessel collision only 

examines the nature of forces involved in a head-on bow collision accident.  Various 
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analysis models have been derived for estimation of the global loads involved in head-on 

bow collision events.  The models have been based on: 

1) Investigation of ship/ship collision cases; 

2) Dynamic collision model tests; 

3) Quasi-static bow indentation model tests; 

4) Direct calculation of crushing resistance; 

5) Or, some combination of the above. 

2.6  The Minorsky Method 

Based on an investigation of twenty-six ship-ship collisions, Minorsky [20] 

proposed an empirical correlation between the resistance to penetration and the energy 

absorbed in ship-ship collision.  This approach has been widely used, and subsequently 

modified by many researchers.  The linear correlation between the damaged volume of 

ship structure and absorbed energy (see Figure 2.7 [22]) was found to be: 

47.2 32.7T TE R= +                                                                                       (2.15) 

where 
T

E  is the energy absorbed in collision (MJ), and 
T

R  is the damaged volume of 

ship structural steel (m
3
).  

Reardon and Sprung [21] revalidated Minorsky’s function Eq. (2.15) by 

separately investigating sixteen collisions. They proposed the following relationship: 

( )47.1 8.8 28.4T TE R= ± +          (2.16) 
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Figure 2.7 Minorsky’s original correlation 

 

 

Figure 2.8 Jones’ beam model 

 

As Reardon and Sprung stated, the intercept term of Minorsky’s correlation, 28.4 

MJ in Eq. (2.16), is the energy expended from puncturing and tearing through the shell of 

the struck ship.  However, this single value approach is not accurate in low-energy 

collisions without rupture of the side shell.  To correct the limitation under low energy 

conditions, a simplified procedure introduced by Jones [22] extended the Minorsky 

correlation by modeling the ship’s side shell as a clamped beam subjected to a 

concentrated load at mid span as shown in Figure 2.8.  It is also assumed that membrane 
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behavior occurs from the beginning of deformation.  This results in the following 

equations for predicting the low energy structural response. 

2

0.030288T y T

w
E R

L
σ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
               (2.17) 

2

144

e
T

LB t
R =                  (2.18) 

where
y

σ is the yielding strength of the beam (psi); w is the deformation of the beam at 

mid-span (in); L is one half of unsupported span of the beam (in); Be is the breadth of  

beam (in); and t is the thickness of the beam (in). 

Based on a study of McDermott, Van Mater [23] extended Jones’ analysis to off-

center striking (ref. Figure 2.9) and derived the maximum deflection of the side panel 

based on a rupture strain of 0.1. 

( , )a b CL

a
E E

b
=           (2.19) 

0.453
m

w a=           (2.20) 

where E(a,b) is the absorbed energy when the striking point is away from the mid-span 

(ton-knots
2
); ECL  is the absorbed energy derived by Jones (ton-knots

2
); a is the distance 

from the striking point to the close support (in); b is the distance from the striking point 

to the far support (in); 
m

w  is the maximum deformation of the side panel (in). 

 

Figure 2.9 Van Mater’s beam model 
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Based on measurements of lengthening of the broken side shell to the membrane 

stress, Woisin [24] also proposed an alternative to the intercept term in Minorsky’s 

correlation.  He suggested that the energy absorbed by the ruptured shell could be 

calculated as follows: 

20.5
s

b Ht= ∑          (2.21) 

where b is the absorbed energy by ruptured side shell and longitudinal bulkheads (MJ); H 

is the height of broken or heavily deformed side shell and bulkheads (m); ts is the 

thickness of the side shell and longitudinal bulkheads (cm). 

With these improvements, the Minorsky equation has been transformed into an 

effective method that estimates the extent of vessel average collision forces in a more 

general way.  There are several similar analysis schemes available today.  Each of them 

decomposes the struck structure into simple substructures or components, such as plates, 

stiffeners, web frames, and panels, etc.  The energy absorbed in each substructure during 

the collision process is calculated separately.  The total absorbed energy up to rupture of 

the ship boundary is obtained through the summation of the absorbed energy for all 

components. Nearly all of the calculation procedures developed by previous and current 

research in collision analysis determine the lost kinetic energy in an uncoupled solution 

of the external problem, and then calculate the deformation energy of the colliding 

structures with increasing penetration.  Finally, such procedures find the maximum 

penetration by matching the deformation energy to the lost kinetic energy.  This approach 

relies on the solution of final velocities of struck and striking ships by an external model.  

This general uncoupled solution procedure requires significant simplifying assumptions, 

and/or restrictions of the degrees of freedom of the system.  This form of analysis may 
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also be performed in a time domain with a fully coupled time-stepping solution similar to 

Hutchison [25] and Crake [26].  Starting with the initial external condition, impact forces 

are calculated based on internal structural mechanics at each time step and applied to the 

struck and striking ships in the external model until the residual energy equals to zero.  

2.7  The Woisin Method 

The AASHTO formulas [9] for ship collision forces on bridges were primarily 

developed from research conducted by Woisin [27] to generate collision data to protect 

reactors of nuclear powered ships with other impacting ships.  Accurate collision force-

time histories were not obtained in Woisin’s tests due to electronic measuring difficulties 

in the instrumentation and induced vibrations in the model test setup.  Woisin computed 

the average impact force P by dividing the kinetic energy loss by the bow damage depth.   

Based on theoretical and model test results, Woisin proposed the following relationship 

between the mean impact force averaged over time, ( )P t , and the mean impact force 

averaged over the damage depth, ( )P a : 

( ) 1.25 ( )P t P a=         (2.22) 

The major factors that affected the mean impact force arranged in order of 

decreasing importance by Woisin [8] were:  

1) Ship size (DWT); 

2) Type of ship; 

3) Shape and structure of the bow; 

4) Amount of ballast water in the bow; 
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5) Impact speed. 

Based on Woisin’s data, AASHTO proposed the following relationship for bulk 

carriers traveling at the speed of 8 to 16 knots. 

1/ 2220( )
27

s

V
P DWT

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                 (2.23) 

where DWT is the dead weight tonnage in metric tones, V is the vessel velocity in ft per 

second, and Ps is the mean impact force in kips.  

 

Figure 2.10 Schematic representations of impact force dynamics 

 

Two representative force-indentation relationship curves are shown in Figure 2.10, 

together with the corresponding force history curves [8].  The curves, designated A, 

indicate drastic fluctuation of the force during a very short (0.1 - 0.2 sec) initial phase of 

the collision event followed by a more or less constant force during the remaining time 

[28, 29].  The time duration of the maximum force, which has been estimated at twice the 

constant average force during the remaining collision time, is normally considered to be 

too brief to leave any influence on a relatively robust bridge structure.  The curves of 

Figure 2.10, designated B, indicate a gradually increasing impact force during the course 

of the collision accident.  This may not involve a higher average force, but the longer 
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duration of the relatively high force level during the last phase of the collision event 

implies that the maximum force rather than the average force should be used in design 

when based on static force analysis [30]. 

2.8  Other Empirical Formulas 

Based on the Minorsky relationship, Woisin et al. [28] developed an equation 

giving the average collision force for bridge design: 

2 / 3 2

0
1100

V L
P =                                                                                                  (2.24) 

where 0P is the average collision impact load in MN, V is the vessel velocity in m/sec, and 

L is the vessel’s length (m). 

Eq. (2.24) was used in the design of the Bahrain Causeway and Faroe Bridges [8].    

Based on studies performed for the newest Sunshine Skyway Bridge in Tampa Bay, 

Florida, Knott and Bonyun [31] proposed an alternative equation for a vessel traveling in 

a partially loaded, ballasted, or light (empty) condition as: 

1/32 /3
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0.88( )
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⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

                 (2.25) 

where  V is the vessel velocity at the time of impact (m/sec); Dact is the vessel 

displacement at the time of impact (tonnes); Dmax is the maximum (fully loaded) 

displacement of the vessel (tonnes). 

The Norwegian Public Roads Administration [32] prescribes the following vessel 

collision loads for bridges and ferry ramps in the public road system: 

( )1/ 2
0.5P DWT=         (2.26) 

where  P  is the static equivalent collision force (MN).  
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Detailed and comprehensive vessel collision load regulations have been 

established for the Great Belt Bridge project in Denmark in 1991 based on the work of 

Frandsen et al. [33] and Pedersen et al. [30].  These researches purported that the 

maximum impact forces rather than the average forces should be used as the design force 

for design on the basis of equivalent static analysis.  Maximum impact forces have been 

established for vessels between 500 DWT and 30,000 DWT.  Different impact speeds 

and loading conditions were considered.  The following equations are the result of this 

work. 

( ) 1/ 2
2 2.6210 5.0bowP EL L L⎡ ⎤= + −⎣ ⎦  for 2.6

E L≥                            (2.27) 

( )1/ 2
210 5.0

bow
P EL= for 2.6

E L<                              (2.28) 

275

pp
L

L =           (2.29) 

1425

impE
E =           (2.30) 

where Pbow is the maximum bow collision load (MN), Lpp is the length of the vessel (m), 

and Eimp is the kinetic energy of the vessel (MNm). 

Eqs. (2.27) through (2.30) account for the effect of strain rate, impact speed, 

vessel loading conditions, and vessel size.  For large vessels, the formulas produce higher 

impact forces for static design than others. 

2.9  Summary 

A review of the current state of practice in vessel-bridge collision engineering 

shows that no significant research has been committed toward multi-barge flotilla 

collision issues.  No current research has been found to focus on collisions between 
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multi-barge flotillas and bridges.  Despite high frequencies of barge-bridge collisions, 

vessel impact studies published in technical literature focus more intensively on ship 

collisions.  Despite many research efforts, as tabulated in Table 2.1, important questions 

remain to be answered about barge-bridge collisions. 
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Table 2.1. General information regarding past studies on vessel impact forces 

 

 

 

 

 

Research Approaches 

Experiment 
Statistic 

method 

Numerical 

simulation 

Analytical 

method 

Bridge 

Project 

Researchers Date Objectives 

 √    Minorsky [20] 1959 Ship-ship collisions 

  √   Amdahl [45] 1983 Ship-platform impacts 

√     Woisin [27] 1976 Ship impact forces on bridges 

√     Nagasawa [46] 1981 Small vessel - rigid pier collisions 

    √ Knott et al. [31] 1983 Ship impact forces on bridges  

√  √   Meir-Dornberg [11] 1983 Barge impact forces on bridges 

    √ Modjeski &Masters [42] 1985 Vessel impact forces on bridges 

√     Ohnishi [47] 1983 Tanker-pier collisions 

  √  √ Frandsen et al.[33] 1991 Ship-bridge impacts 

√   √  Pedersen et al. [12] 1993 Ship impact forces 

   √  Jagnannathan and Gray [48] 1995 Barge impact forces on walls 

 √  √  Whitney and Harik [10] 1996 Barge flotilla impact forces on bridges 

   √  Zhang [50] 1999 Vessel collision mechanics 

√  √   Consolazio et al. [17] 2003 Barge impact forces on bridges 

 √    Ghosn and Moss [49] 2003 Extreme loads on bridges 

√     Patev et al. [19] 2003 Barge flotilla impact forces on walls 
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Chapter 3  Development of Barge Finite Element Model 

This chapter discusses the development of a finite element (FE) model for a 

typical barge using the ANSYS Parametric Design Language (APDL) [34].  The APDL is 

particularly useful when FE simulations are to be performed for a wide range of scenarios.  

A correct and efficient FE model is critical to the generation of accurate, yet 

manageable, FE simulations.  In this context, “correct” means that the model accurately 

represents the objects in the real world; “efficient” signifies that the application of the 

model takes less computation time.  Since a typical time step for a collision simulation 

would be on the order of a microsecond, the simulation of a multi-barge flotilla colliding 

with a pier for several seconds could require several days of computer computation time.  

Therefore, a high-quality FE model is necessary for the feasible conduction of barge-pier 

collision studies. 

3.1  Barge Characteristics 

Barges of numerous designs are used for every imaginable purpose on inland 

waterways (rivers).  However, the Jumbo Hopper (JH) barge is the most common and 

standardized type of barge.  Also, the JH is one of the most versatile types of barges, as it 

can transport a wide range of products.  Barges are often towed or pushed in groups of 

two or more.  Therefore, the dimensions and drafts of barges tend to be standard in order 

to provide hydrodynamic efficiency.  In addition, standard barge dimensions facilitate the 

establishment of tow configurations through locks on river systems [9].  

JHs, as shown in Figure 3.1, are the baseline of the AASHTO Guide 

Specifications, and are the most widely used barges in the U.S.  The configurations of a 
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typical JH are shown in Figure 3.2 [9].  In this study, the development of a JH model is 

based on the respective blueprints and specifications provided by a barge manufacturer. 

The difference in dimensions between the AASHTO’s barge configurations and barge 

blueprints are presented in Table 3.1.  For the purpose of this study, these minute 

differences for such a huge structure are not significant and are therefore ignored.  

 

Figure 3.1 Jumbo hopper barges 

 

 

Figure 3.2 Characteristics of Jumbo Hoppers 
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Table 3.1. JH dimensions for present barge model 

Symbols ASSHTO (1991) This studya 

B
L  = length (ft) 195 200 

M
B = width (ft) 35 35 

L
R  = bow rake length (ft) 20 27.5 

B
D  = depth of bow (ft) 13 14 

V
D  = depth of vessel (ft) 12 12 

L
H  = head log height (ft) 2 - 3 2.25 

            Note: a. Barge plans from Jeffboat LLC, U.S.A. 

 

Jumbo Hoppers are constructed of mild steel in the form of standard structural 

shapes.  The skin of a JH, supported by trusses, is made from steel plates with thicknesses 

0.01 m to 0.013 m (3/8 to ½ in).  The raked bow and stern are comprised of fourteen and 

thirteen trusses at equal spaces, respectively.  Each side box has 24 trusses at a space of 2.06 

m (81 in).  To support the bottom there are 73 floor beams spaced at 0.69 m (2.25 ft) in the 

translational direction.  The beams and trusses of a JH are depicted in Figure 3.3.  

 

Figure 3.3 Beams and trusses in a Jumbo Hopper 

3.2  Barge Divisions 

The FE model of such a complicated object as a JH contains elements that vary 

greatly in sizes.  Also, elements are assigned different properties depending on their 
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respective location within the structure.  For modeling purposes, the barge is divided into 

three zones as shown in Figure 3.4:  the bow portion (Zone-1), the hopper portion (Zone-2), 

and the stern portion (Zone-3).  The zones are distinguished by using different elements and 

material models due to the differences in behavior exhibited during impact. 

 

Zone-2 Zone-1Zone-3

Bow
BodyStern  

Figure 3.4 Three zones of the barge model 

 

A head-on collision occurs when a barge-bow contacts a bridge pier directly.  In 

such an event, a major part of the kinetic impact energy is dissipated through the 

deformation of Zone-1.  Therefore, it is essential to model Zone-1 accurately so its 

structural characteristics can be correctly represented in the numerical model.  In the 

model, fine elements and nonlinear inelastic material models are assigned to the 

structural elements of Zone-1. 

The length of a barge is approximately 5.7 times as long as its width and the total 

mass of the barge is distributed longitudinally.  Because plastic deformation is not 

expected in the barge body during impact, Zone-2 is modeled in a relatively coarse 

fashion using larger elements and elastic material models. 

Zone-3 of the model may experience contact with other barges in a multi-barge 

flotilla.  Although no large deformation in this region, the contact structural members are 

modeled using smaller elements than those of Zone-2. 
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3.3  Element Types and Material Models 

The FE model of a JH consists of 4-node shell, 3-node beam, 2-node discrete 

spring, 2-node damper, 1-node point mass, 8-node brick, and 2-node link elements.  In 

addition, four types of material models are used in the numerical model.  The material 

and element descriptions included in the model are summarized in Table 3.2.  

Table 3.2. Summary of element types and material models used for the JH model 

 

The FE model of a JH and a pier is shown in Fig 3.4, which is composed of 

18,930 shell, 9,000 beam, and 2,300 brick elements.  During a preliminary modeling 

attempt, the barge was modeled using only shell elements. The consequential CPU time 

expense was too large to continue using a model composed entirely of shell elements.  It 

was determined that all of the internal truss members and stiffeners should be modeled 

using beam elements with angle or channel sections. The shell elements are only used for 

the skin of the barge model.  

Special care was taken to accurately represent the true stiffness of the barge. 

During the construction process for an actual hopper barge, the various steel plates that 

make up the head log, the bow, and the internal angles are placed together and welded to 

each other in an overlapping fashion.  This overlapping effectively increases the stiffness 

Object Part Element type (LS-DYNA) Material model 

Plate Shell (SHELL163) Piecewise linear plasticity 
Zone 1 

Truss Beam (BEAM161) Piecewise linear plasticity 

Plate Shell (SHELL163) Isotropic elastic 
Zone-2 & Zone-3 

Truss Beam (BEAM161) Isotropic elastic 

Pier Solid (SOLID164) Rigid 

Mass Point (MASS166) Isotropic elastic 

Spring Spring (COMBI165) Linear elastic 
Target 

Damper Spring (COMBI165) Linear viscosity 

Lashing cable Cable Cable (LINK167) Isotropic elastic 
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of the barge bow [13].  To achieve this effect in the finite element model, structural 

members are attached to each other using a type of constraint in LS-DYNA, 

*CONSTRAINED_SPOTWELD.  This constraint can represent a spot weld between two 

or more nodes.  The spot weld constraint is a modification of the nodal rigid body that 

incorporates the ability to impose a failure criterion to the weld.  Due to the small 

element size used in Zone-1, the use of spot weld constraints at each node would provide 

a good representation of a continuous weld.  The welds used in the model are specified to 

have infinite strength, thus no failure criterion was specified.   

 

Figure 3.5 FE model of a Jumbo Hopper 

 

3.3.1 Properties of Elements 

3.3.1.1 The Belytschko-Lin-Tsay Shell Element (SHELL163) 

The Belytschko-Lin-Tsay shell [16, 34] is a 4-node element with both bending 

and membrane capabilities.  Both in-plane and normal-to-plane loads are permitted.  The 

formulation of this element is based on the Mindlin-Reissner assumption, so transverse 

shear is included.  The formulation has a higher computational efficiency than the 

Hughes-Liu shell element which requires five times more mathematical operations to be 

computed relative to the Belytschko-Lin-Tsay element.  On the other hand, the 

Belytschko-Lin-Tsay shell element does not support warpage of the element since it is 
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based on a perfectly flat geometry.  To correct this problem in the present model, the 

Belytschko-Lin-Tsay shell element with Belytschko-Wong-Chiang improvement is 

adopted, but the efficiency is decreased by 25%.  The geometry of the element is shown 

in Figure 3.6.  

The element has six degrees of freedom at each node: translations in the nodal x, y, 

and z directions and rotations about the nodal x, y, and z-axes.  The nodes of the element 

are numbered counterclockwise, and the normal of the element is obtained by: 

3
3

3

ˆ
s

e
s

=              (3.1) 

3 31 42s r r= ×              (3.2) 

2 2 2

3 31 32 33s s s s= + +             (3.3) 

 
Figure 3.6 SHELL163 geometry 

It is important to know the orientation of a given element in problems involving 

contact, because the contact algorithms require the input of the orientation of such 

elements.  Two integration points are sufficient for linear elastic materials, while more 

points are required for nonlinear materials. 

3.3.1.2 The Hughes-Liu Beam Element (BEAM161) 

The Hughes-Liu beam [16] is computationally efficient and robust.  A cross-

section integration rule can be specified to model arbitrary cross-sections.  Since the 
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beam generates a constant moment along its length, the corresponding element meshes 

require reasonable fineness to achieve adequate accuracy.  The geometry of the element 

is shown in Figure 3.7.  

The element with 12 degrees of freedom is defined by nodes I and J in the global 

coordinate system.  The node K is used only to initially orient the element.   

 
 

Figure 3.7 BEAM161 geometry 

 

3.3.1.3 The SOLID164 Element 

The SOLID164 element [16] is an 8-node brick element with three translational 

degrees of freedom at each node.  By default, this element uses reduced (one point) 

integration and viscous hourglass control for faster element formulation.  One-point 

integration is advantageous because it requires a small amount of computer calculation 

time, while simultaneously it adds robustness to the model in cases of large deformations. 

A fully integrated solid formulation is also available, but it is approximately four times 

more costly in terms of CPU computation time.  

Wedge, pyramid, and tetrahedral shaped SOLID164 elements are simply 

degenerate bricks (i.e. some of the nodes are repeated).  These shapes are often too stiff 
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in bending and create various difficulties in certain cases.  Therefore, these degenerate 

shapes are avoided.  The geometry of the element is shown in Figure 3.8.  

 

 
Figure 3.8 SOLID164 geometry 

 

3.3.1.4 The Spring and Damper Element (COMBI165) 

The COMBI165 [16] is a 2-node, 1-D element.  It provides a variety of discrete 

element formulations that can be used individually or in combination to model complex 

force-displacement relations.  A COMBI165 element can be overlaid and attached to any 

of the other explicit elements.  The geometry of the element is shown in Figure 3.9.  

 
 

Figure 3.9 COMB165 geometry 
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Figure 3.10 LINK167 geometry 

 

3.3.1.5 The Cable Element (LINK167) 

The geometry of the LINK167 element [16, 34] is shown in Figure 3.10.  This 

element is defined by nodes I and J in the global coordinate system.  The node K is used 

only to initially orient the element.  The element has three translational degrees of 

freedom at each node.  The force, F, generated by the link is nonzero only if the link is in 

tension.  F is given by: 

 max( ,0)F k L= ⋅ Δ                                              (3.4) 

where LΔ is the change in length and k is the cable stiffness.  An initial tensile force is 

realized by using a positive offset for the cable.  

3.3.1.6 The MASS166 Element  

The MASS166 element [16, 34] is defined by a single node with concentrated 

mass components.  The geometry of the element is shown in Figure 3.11.  

 
Figure 3.11 MASS166 geometry 
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3.3.2 The Material Models 

A major advantage of the 3D finite element method of structural analysis is that it 

enables the incorporation of specialized models that accurately reflect material behavior. 

The program LS-DYNA accepts a wide range of material and equation of state models. 

Four material models are used in the present JH model. 

In the material formulation used in this study, the failure process is modeled by 

erosive elements.  When the effective plastic strain of an element reaches a critical strain 

value, this element is deleted from the calculation. 

3.3.2.1 The Piecewise Linear Plasticity Model 

The material used in the JH model is normal mild steel (A36).  The material-

hardening characteristics have a significant influence on the dynamic collapse 

mechanisms, so that approximations for the stress-strain relationship closely resemble the 

actual stress-strain curve.  In the crushing regions, the Piecewise Linear Isotropic 

Plasticity model is applied, which allows stress versus strain curve input and strain rate 

dependency.  

 

Figure 3.12 True stress vs. true strain curve for A36 structural steel 
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The parameters are determined from the tests conducted at the University of 

Florida on a standard 18-inch tension coupon [13].  A plot of the stress vs. strain curve 

used is shown in Figure 3.12.  The impact velocity and material stain-hardening 

properties also influence the transition conditions for dynamic progressive bucking or 

global bending collapse [35].  To account for the strain rate, the model makes use of the 

Cowper-Symonds law given by: 

1/ 5

y

1
40.4

σ ε
σ

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

                                                                 (3.5)                          

where σ is the dynamic yield stress; σy is the static yield stress; and ε  is the effective 

strain rate; 

Eq. (3.5) is a commonly used plasticity law, especially for steel. 

3.3.2.2 The Isotropic Elastic Model 

Except for the materials of Zone-1, the Isotropic Elastic Model [14] is applied. 

The properties of the A36 grade steel are presented in Table 3.3.  It should be noted that 

the material density of Zone-2 is adjusted by the following formula to match the real weight 

of a barge:  

( )1 3

2

b

adj s

M M M

M
ρ ρ

− +
=         (3.6) 

where
adj

ρ is the used density for Zone-2;
b

M is the self weight of barge; 1M , 2M and 

3M are the weights of Zone-1, Zone-2 and Zone-3, respectively; and 
s

ρ is the steel 

density. 
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Table 3.3. Mechanical properties of steel and reinforced concrete 

Material 
Density 

Kg/m3  (Sec2· lb/in4) 
Poisson’s ratio 

Elastic modulus 

Pa  (lb/in2) 

Yield stress 

Pa (lb/in2) 

A36 steel 

37.91 10×  

(
47.4 10−× ) 

0.33 

112.07 10×  

(
73.0 10× ) 

82.48 10×  

(
43.6 10× ) 

Reinforced concrete 

32.34 10×  

(
42.2 10−× ) 

0.20 

102.28 10×  

(
63.3 10× ) 

 

 

3.3.2.3 The Rigid Material Model 

A rigid material type (Type 20) in the LS-DYNA code is used to define the 

perfectly rigid body that remains so for the duration of the analysis [14].  Since the rigid 

elements are bypassed in the element processing and no storage is allocated for storing 

history variables, the material type is very efficient in terms of CPU computation time. 

Realistic values of Young's modulus and Poisson’s ratio are required to determine sliding 

interface parameters when the rigid body interacts in the context of contact.  Unrealistic 

values may contribute to numerical problems in contact analyses.  In the present model, 

the rigid material model is only applied to rigid piers, so the properties of reinforced 

concrete, which are also tabulated in Table 3.3, are used. 

3.4  Contact Definition 

Contact treatment is an integral part of crash research.  Accurate modeling of 

contact interfaces between bodies is crucial to a successful collision simulation.  The 

dynamic simulation software, LS-DYNA, is well equipped to handle contact problems.  

In the LS-DYNA program, contact is defined by identifying parts, part sets, segment sets, 

or node sets.  
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Since deformations are much larger in crash modeling, accurately modeling the 

stresses within a structure is not sufficient.  One must describe the inter-part contact 

between different parts of the model as well as intra-part contact when a part buckles in 

upon itself.  For a complicated model with many parts, such as a barge flotilla model, the 

automatic contact algorithm is preferred.  At the start of program execution, LS-DYNA 

checks the spacing between parts and activates contact between nearby neighbors.  As the 

structure collapses, the contact table is periodically updated.  If an expected contact is 

missed by the automatic routine, it can be set explicitly by the user. 

3.4.1 Contact between the Barge and the Pier 

Since Surface-to-Surface contact (STS) [14] is very efficient for bodies that 

experience large amounts of relative sliding with friction, such as a block sliding on a 

plane, STS is used to define the contact between the barge and pier.  The barge is treated 

as the slave surface, and the pier is treated as the master surface.  The resultant contact 

forces for the slave and master sides of each contact interface are output directly by LS-

DYNA in the global coordinate system.  

3.4.2 Contact inside the Barge 

In the barge-bridge collision analysis, the barge deformations may be very large, 

and predetermination of where and how contact takes place inside the barge bow may be 

difficult or even impossible.  Some elements in Zone-1 deflect enough to contact with 

one another, consequently increasing the secondary stiffness of the barge structure.  For 

this reason, automatic single surface contact (ASSC) [14] is adopted.  Unlike implicit 

modeling, where over-defining contact will significantly increase computation time, 

using single surface contact in an explicit analysis will cause only minor increases in 



 46

CPU computation time.  By implementing AASC, the slave surface is defined as a list of 

part IDs, and LS-DYNA automatically determines which surfaces within this list may 

come into contact.  Therefore, no contact or target surface definitions are required for 

ASSC.  

Large initial penetrations can cause the local stresses to exceed the material’s 

yield stress.  In these cases, the initial node positions must be readjusted manually.  Often 

this situation can be detected by running sub-models of each part in a static, load-free 

situation to see if the part breaks apart or exhibits large, spontaneous deformations. 

3.4.3 Contact between Barges in a Flotilla 

During a collision event, the barges in a multi-barge flotilla collide with one 

another.  These internal contacts between the barges are realized by defining ASSC [14]. 

Because the deformation can be expected to be very small without penetration, only the 

interfaces need to be included in the contact part list.  The problem is that no contact 

force data is written for single surface contacts as all of the contact forces originate from 

the slave side, and thus, the net contact forces are zero.  To obtain the resultant contact 

forces, appropriate force transducers are introduced into the mode via the 

*CONTACT_FORCE_TRANSDUCER_PENALTY command.  A force transducer 

measures contact forces produced by other contact interfaces defined in the model, and 

does not affect the results of the simulation.  By assigning a subset of the parts defined in 

a single surface contact to the slave side of a force transducer, the impact forces can be 

extracted for the subset of the parts. 
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3.4.4 Friction Definition 

During impact, a portion of the collision energy is dissipated by the sliding 

friction between the barge and pier.  More important, friction should be included in the 

simulation because it will stabilize the model.  In the LS-DYNA program, friction is 

invoked by inputting non-zero values for the static and dynamic friction coefficients, FS 

and FD, respectively. 

( ) relDC V

c
FD FS FD eμ − ⋅= + − ⋅           (3.7) 

where 
c

μ is the friction coefficient; DC is the exponential decay coefficient, and 
rel

V is 

relative velocity of the surfaces in contact.  

In practice, it is difficult to determine the parameters DC and
rel

V .  After checking 

the sensitivity of the parameters in Eq. (3.7), 0.35FD FS= = is used for steel to concrete, 

and 0.21FD FS= = for steel to steel. 

3.5  Other Considerations 

3.5.1 Mass Scaling 

For extensive simulations of multi-barge flotillas impacting bridge piers, the 

required computing time is an important matter.  As stated in Chapter 2, explicit methods 

are computationally fast and conditionally stable.  The maximum time step depends on 

the time that a wave needs to travel through an element in the shortest direction ( minl ) 

because, when the step is larger, it is possible for nonlinear phenomena to occur within 

this time step.  The time step 
cr

tΔ is determined using the Courant-Friedrich-Levy 

criterion as it applies to shell elements: 
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min
cr

l
t

c
Δ =             (3.8) 

2(1 )

E
c

ν ρ
=

−
           (3.9) 

where v is the Poisson’ ratio; ρ is the specific mass density; E is Young’s Modulus. 

In order to increase
cr

tΔ , an efficient approach is to use mass scaling.  In LS-

DYNA when mass scaling is requested, density 
i

ρ  of element i is adjusted to achieve a 

user specified time step size
spc

tΔ : 

2

2 2(1 )

spc

i

i

E t

l
ρ

ν
⋅ Δ

=
−

        (4.0) 

Note that mass scaling is applied only to elements with a calculated time step size 

cr
tΔ smaller in magnitude than

spc
tΔ .  Although proper use of mass scaling will add a 

small amount of mass to the model and slightly change the given structure's center of 

mass, the benefit of the computation time reduction achieved far outweighs the minor 

errors introduced.  The reduction in computer calculation time is greater than 50% for 

most cases, as compared to an analysis without mass scaling.  

Table 3.4. Examination of mass scaling 

 

Barge 
Simulation 

time (sec) 
cr

tΔ  

(
510−× sec) 

spc
tΔ  

(
510−× sec) 

CPU time 

(hours) 
Added mass (%) 

3.85 7 0 
Single barge 1.0 3.85 

5 2 2.1 

3.85 11 0 
Two-barge flotilla 1.0 3.85 

5 4 1.4 

 

For example, Table 3.4 compares four simulations with the identical input, except 

that two of the simulations contain mass scaling and two do not.  Test runs show that 
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mass scaling does not affect the results, and can be used safely.  To save time, mass 

scaling is applied in the simulations of this study.  

3.5.2 Hourglass Control 

In the preliminary FE simulations, it was observed that hourglass control can be 

ignored without significantly affecting the behavior of the model.  Because hourglass 

control prolongs a given simulation, in order to reduce CPU computation time hourglass 

control is applied only to the elements in Zone-1.  

3.5.3 Mesh Convergence 

It is well known that a finite element crash analysis is very sensitive to the size of 

the mesh.  Choice of mesh size must be balanced with the cost of computation time. 

Different meshes were created and examined to investigate mesh convergence in trial 

simulations.  The final mesh was chosen based upon solution convergence and CPU 

usage.  The present barge model behaves very well with respect to the two criteria. 

3.5.4 FE Simulation Simplifications  

The mechanisms involved in a barge-pier collision are complex and include both 

structural and hydrodynamic components.  The structural mechanisms undergone by the 

steel components comprising the vessel structure include bending, stretching, 

compression, scraping (friction), buckling, crushing, folding, fracture, and tearing.  The 

hydrodynamic mechanisms include rigid body motions with attendant changes in added 

mass.  Comprehensive modeling of a given collision is quite complex and involves the 

coupled effects of: 

1) the 3-D motion of the barge and the pier; 

2) hydrodynamic forces from the surrounding water; 
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3) friction between the contact surfaces; 

4) large plastic deformation of the involved structures; 

5) fracture and propagation of cracks in the structure. 

Depending on the level of detail, each of these effects may be too complex to 

model and predict theoretically.  It is common practice in FE analysis to make 

simplifying assumptions.  One can think of the real world as having all analysis “options” 

turned on all the time, but in FE analysis, these options must be activated one by one. 

Therefore, it is significant to carefully simplify the modeling as much as possible with 

due consideration to the desired level of accuracy.  

Water not only adds kinetic impact energy but also absorbs impact energy.  For 

simplicity, water involvement (such as viscosity and flow) is excluded in this study.  The 

neglect of water minimally influences the present work due to the short duration of barge-

pier collision processes.  Moreover, the water effect may be alternatively considered as 

an added mass to the barge to produce a conservative result. 

As stated in Chapter 2, the impact forces and ensuing damage during barge-pier 

impacts are maximized by considering head-on encounters.  Since a major concern of this 

study is the determination of impact loads on the isolated piers, only frontal impact 

scenarios will be examined herein.  Nevertheless, it should be noted that different impact 

angles are an important consideration in the study of bridge structure responses.  

For simplicity of analysis, it is assumed that the ship under consideration moves 

in the horizontal plane, with no pitching or heaving movements.  The dynamics of the 

whole barge vessel, therefore, is considered only in a simplified manner in this research. 
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3.6  Summary 

A FE model of a typical barge was developed using the APDL Language, which 

closely replicates all of the components of a JH according to the respective blueprints and 

specifications.  The model is applicable to a variety of FE simulation scenarios as either a 

single barge or a part of a multi-barge flotilla.  
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Chapter 4  Single Barge Impact Study 

Examining the topic of single-barge collisions with bridge piers is very valuable 

because the insight gained from such studies may be used to clarify the more general 

problem of flotilla-bridge collisions.  During barge-bridge collision events, a major part 

of the kinetic impact energy is dissipated through the deformation and damage of the 

barge contacting with the pier.  The impact force is tantamount to the crushing resistance 

of the bow structure.  In general, the collision problems brought about by multi-barge 

flotillas are merely an extension of the single-barge collision.  

In this chapter, several important factors involved in the determination of barge 

impact forces on bridge piers, such as the velocity, mass and kinetic energy of barges, 

and the geometry of piers, are systematically investigated.  Based on the numerical 

simulation results, loading functions to predict single-barge impact forces are developed.  

Pier flexibility tends to obscure the effect of other parameters influencing barge-

pier collisions.  Hence, in order to demonstrate how other important parameters affect 

barge-pier collision, the analysis presented in this chapter concentrates on rigid piers, and 

a more thorough exploration of pier flexibility is deferred to Chapter 5. 

4.1  Impact Velocity and Barge Mass 

Two important factors that affect barge impact forces are barge mass and velocity 

at impact.  Per AASHTO terminology, barge flotilla velocity is the speed a flotilla can 

achieve if the river velocity is zero.  Whitney et al. [10] compiled vast amounts of data in 

order produce comprehensive statistics regarding the traveling velocity of barge flotillas.  
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The average barge velocity on inland waters is 2.06 m/s (4 knots), and the maximum is 

3.09 m/s (6 knots).  As for the barge mass, it is defined in Chapter 3.  The empty 

displacement (self-weight) and loaded displacement (fully loaded) of a Jumbo Hopper 

(JH) are 200 short tons (181.4 metric tons) and 1900 short tons (1723.7 metric tons), 

respectively. 

4.2  Elasticity of Collision 

Elasticity is a measure of how much of the kinetic energy of the colliding objects 

before the collision remains as kinetic energy of the objects after the collision.  The 

coefficient of restitution is used as a measure of the elasticity of barge-bridge collisions. 

The restitution condition expresses the ratio between the velocities at which the 

contact objects approach and depart.  For head-on impacts on rigid piers, the coefficient 

of restitution is defined as: 

dt

i

V
e

V
=                       (4.1) 

where 
i

V and 
dt

V are the velocities of the barge before impact and after impact (the impact 

forces drop to zero), respectively.  

The value of e is equal to 1 and 0 for a perfectly elastic and a completely inelastic 

collision, respectively.  According to the impulse-momentum law, the global velocity of 

the barge at time t is given by: 

0

( )

( )

t

i

B

P t dt

V t V
m

= −
∫

                       (4.2) 

where 
B

m is the mass of barge, and ( )P t is the impact force function. 
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Substituting Eq. (4.1) into Eq (4.2) yields: 

 

0
( )

1

1 1

d

d

d

t

i

t

i

t

i

V
e

V

P t dt

I

A

I

=

= −

= − <

∫
                      (4.3) 

where 
dt

A is the area under the force curve ( )P t , and 
i B i

I m V= is the initial momentum of 

the barge.  

From Eq. (4.3), it can be seen that e cannot be greater than unity as this would 

reflect an increase in the mechanical energy of the bodies by effect of the impact.  

Several values of e, resulting from the FE simulations of barges impacting square and 

circular piers, are presented in Tables 4.1 and 4.2, respectively.  In general, the 

coefficient of restitution is small in high-energy impacts, and it approaches a relatively 

larger value in low-energy impacts.  Moreover, the coefficient of restitution is a stable 

indicator of impact extent because it varies only slightly with a change in the impact 

velocity or the pier size.  

Only circular and square piers are investigated herein because of the ubiquitous 

use of these pier-types in bridge construction.  To study the effect of pier sizes, the 

parameterα , barge to pier width ratio, is introduced here.  Essentially, α  describes the 

contact area between the barge and pier.  A flat wall ( 1.0α ≥ ) is merely a special case of 

square piers.  The conjunction of barge damage depth, 
B

a and the ratio,α , describes the 

damaged material volume of the bow structure.  As shown in Chapter 2, the Minorsky 
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approach [20] correlates the resistance and damaged volume of the ship structural steel in 

a collision event.  

From Tables 4.1 and 4.2, when the impact velocity 1.54
i

V ≥ m/s (3 knots), most 

of the coefficients 0.3e < .  The area under the pulse curve may be calculated by Eq. (4.3) 

as: 

(1 ) 0.7
dt i i

A e I I= − >             (4.4) 

thus, the average impact force over the impact time duration 
d

t is: 

0.7 0.7
i B i

d d

I m V
P

t t
> =                (4.5) 

The minimum value of e in Tables 4.1 and 4.2 is 0.15.  Hence, the average impact 

force is obtained as 

0.85 0.85i B i

d d

I m V
P

t t
< =              (4.6) 

combining Eqs. (4.5) with (4.6) yields: 

0.85 0.7
di t i

I I I≥ ≥   for 1.54
i

V ≥ m/s                (4.7) 

where
dt dI Pt= is the impulse caused by the collision. 

Eq. (4.7) is valid for most collision cases.  Regarding the cases that produce a 

large value of e, for example, when 0.5e > , the barge rebounds back from the pier with 

little plastic deformation.  The pulse shape of such cases (e is large) resembles a triangle 

and contains a sharp peak; whereas the pulse shape of cases with a small e contains an 

apparent plateau.  Corresponding to the plastic deformation, the resistance of the barge 

stays nearly constant. 
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Table 4.1. Coefficient of restitution for a single-barge impacting square piers 

Coefficient of restitution e mB  

(ton) i
V  (m/s) 

0.1α =  0.3α =  0.5α =  0.7α =  

0.51 0.34 0.32 0.51 0.57 

1.03 0.30 0.24 0.22 0.21 

1.54 0.23 0.24 0.24 0.18 

2.06 0.21 0.20 0.19 0.21 

2.57 0.18 0.17 0.15 0.15 

1723.7 

(fully loaded) 

3.09 0.17 0.17 0.15 0.15 

0.51 0.44 0.53 0.66 0.65 

1.03 0.29 0.28 0.23 0.43 

1.54 0.29 0.24 0.22 0.20 

2.06 0.25 0.27 0.24 0.19 

2.57 0.23 0.20 0.22 0.22 

861.8 

(half loaded) 

3.09 0.21 0.20 0.20 0.19 

0.51 0.53 0.67 0.68 0.67 

1.03 0.37 0.41 0.59 0.60 

1.54 0.30 0.27 0.24 0.42 

2.06 0.31 0.25 0.21 0.22 

2.57 0.27 0.26 0.21 0.18 

430.9 

(quarterly loaded) 

3.09 0.24 0.26 0.24 0.19 

 

Table 4.2. Coefficient of restitution for a single-barge impacting circular piers 

Coefficient of restitution e mB  

(ton) i
V (m/s) 

0.1α =  0.3α =  0.5α =  0.7α =  

0.51 0.35 0.35 0.34 0.35 

1.03 0.26 0.28 0.28 0.27 

1.54 0.22 0.24 0.24 0.24 

2.06 0.21 0.22 0.22 0.22 

2.57 0.20 0.20 0.19 0.20 

1723.7 

(fully loaded) 

3.09 0.19 0.19 0.19 0.19 

0.51 0.42 0.44 0.42 0.44 

1.03 0.30 0.29 0.29 0.29 

1.54 0.27 0.28 0.28 0.28 

2.06 0.24 0.25 0.25 0.26 

2.57 0.22 0.23 0.22 0.22 

861.8 

(half loaded) 

3.09 0.22 0.23 0.23 0.23 

0.51 0.50 0.54 0.51 0.55 

1.03 0.37 0.36 0.35 0.35 

1.54 0.30 0.30 0.29 0.30 

2.06 0.28 0.29 0.29 0.29 

2.57 0.27 0.26 0.26 0.28 

430.9 

(quarterly loaded) 

3.09 0.23 0.23 0.26 0.25 

 

 

The following regression formulas, which calculate coefficient e, are the result of 

more than 100 FE simulations. 

For 0.05 1.0α≤ ≤  square piers: 
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0.279 0.040 (0.081 0.042 ) ln
i

e Eα α= + − +         (4.8) 

and for 0.05 1.0α≤ ≤ circular piers:  

0.061 0.057 (0.155 0.008 ) ln
i

e Eα α= + − −  for 0 0.114
i

E< ≤      (4.9) 

0.273 0.005 (0.046 0.001 ) ln
i

e Eα α= + − +  for 0.114
i

E >     (4.10) 

where 
i

E is the initial kinetic energy of the barge in MJ; α is the pier to barge width ratio. 

4.3  Simulation of Pier Shape and Size 

The AASHTO method [9] assumes that barge-impact forces are independent of 

pier geometry.  However, pier shape and size are important design factors that ensure 

protection to bridges from vessel or wave impacts.  For example, after being destroyed by 

a freight ship, the Bowen Bridge [36] in Hobart, Australia, was rebuilt with pointed pier 

ends to deflect or tear impacting vessels.  Also, recent studies [13, 17] have shown that 

the impact forces are significantly dependent on pier geometry. 

4.3.1 Square Piers 

The time histories of the barge crushing distance ( )tδ and impact force ( )P t , as 

shown in Figure 4.1, are obtained by allowing a fully loaded barge, with an initial 

velocity 2.06
i

V = m/s (4 knots), to collide with a rigid square pier.  From Figure 4.1, it 

can be seen that the ratio α significantly affects the impact process.  A wider pier 

produces a larger impact force, shorter time duration, and smaller barge damage distance. 

This result is reasonable because the contact force between the barge and pier is roughly 

proportional to the width ratioα , and the deformation of a barge absorbs energy that is 

closely related to the volume of deformed steel in the crushed area [20].  



 58

Table 4.3 presents the simulation results for the scenarios that 1.8
i

V = m/s (3.5 

knots) andα = 0.1 to 1.0.  From this table, it is clear that the impact characteristics of a 

barge are strongly related to pier sizes.  As α increases, the maximum force maxP  

increases, and both the barge damage depth 
B

a  and impact duration 
d

t decrease. 

Although the ratios 1/ 2 max/P P and max/P P , and the coefficient of restitution e oscillate, the 

gaps are insignificant.  When α  is small, the yielding strength of the bow structure is 

overcome by the local crushing.  The larger α  becomes, the stiffer the barge, because 

more trusses in the bow take part in the resistance to crushing.  When 1.0α ≥ , the barge 

bow has no local crushing, but instead, it undergoes overall buckling. 
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Figure 4.1 Impact force and crushing distance time-histories for a fully loaded barge 

impacting a series of square piers with a velocity of Vi  = 2.06 m/s (4 knots) 
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By careful inspection of Table 4.3 several important conclusions may be made. 

For example, the impact duration,
d

t , is dependent on the pier size.  The impact duration 

can be calculated using the regression function, 1.433 1.168
d

t α≈ − , for the cases in the 

table.  As aforementioned, the time duration of impact 
d

t apparently decreases as 

α increases.  In addition, the dissipated energy is approximately equal for all of the 

impacts due to the nearly constant value of e, which fluctuates above and below 0.2.  It 

should be noted that the influence of α  upon impact forces is also velocity dependent. 

This assertion is made because α indicates how many structural members participate in 

crushing resistance directly, and 
i

V indicates how quickly the structure members act. 

Table 4.3. Summary of a fully loaded barge impacting square piers with a velocity of    

Vi  = 1.8 m/s (3.5 knots) 

Impact force (MN) Ratio 
α  

maxP  
1/ 2 max/P P

 

max/P P  

Coefficient of restitution  
e  

Duration 

d
t (s) 

Damage depth 

B
a (m) 

0.10 12.91 0.28 0.20 0.22 1.435 0.568 

0.20 19.19 0.21 0.15 0.21 1.295 0.473 

0.30 22.96 0.21 0.15 0.20 1.080 0.369 

0.40 26.14 0.23 0.16 0.22 0.875 0.280 

0.50 29.72 0.26 0.18 0.23 0.715 0.204 

0.60 33.25 0.27 0.19 0.23 0.615 0.166 

0.70 36.21 0.30 0.19 0.22 0.535 0.136 

0.80 38.83 0.32 0.19 0.19 0.505 0.102 

0.90 40.01 0.33 0.18 0.19 0.500 0.070 

1.00 40.52 0.39 0.25 0.16 0.355 0.000 

4.3.2 Circular Piers 

The circular shape is another common geometry used for bridge piers.  It has been 

found that the impact force patterns for circular piers and for square piers are not the 

same [17].  

The time histories of the barge crushing distance ( )tδ and the impact force ( )P t , 

as shown in Figure 4.2, are obtained by allowing a barge to collide into a rigid circular 
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pier with an initial velocity 2.06
i

V = m/s (4 knots).  All the curves in Figure 4.2 are very 

similar in shape for each value ofα .  Although the ratio, α , affects the impact force and 

barge crushing distance of circular piers, the influence is not as significant as that on 

square piers.  In addition, the maximum impact force of a circular pier is much smaller 

than that of a square pier with the sameα , due to a gradually increasing contact area for 

the circular pier. 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

2

4

6

8  α=0.1
 α=0.3
 α=0.5
 α=0.7

Time (sec)

Im
p

ac
t 

 F
o

rc
e 

(M
N

)
B

ar
g

e 
 C

ru
sh

in
g

  
D

is
ta

n
ce

 (
m

)

0.0

0.2

0.4

0.6

0.8

1.0
 

 

 
 

 

Figure 4.2 Impact force and crushing distance time-histories of a fully loaded barge 

impacting a series of circular piers with a velocity of Vi  = 2.06 m/s (4 knots) 

 

Tables 4.4 and 4.5 compare the impact cases with different barge velocities. 

When the impact velocity is low, the influence of ratio α becomes slightly larger due to 
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the higher elastic resistance involved.  The impact force time-history curves tend to 

approach the same values as the impact velocity increases.  Regarding the cases with a 

large impact velocity, the plastic deformation of the barge mainly controls the impact 

processes.  As for the cases that have apparent plateaus in impact force time histories, the 

average impact forces over the first quarter of the impact period, 1/ 2P , may be used as an 

indicator of the impact force level.  Moreover, the damage depths of barges for circular 

piers correlate with the damage depths calculated by AASHTO methods, but the impact 

forces are smaller than those predicted by the AASHTO analysis. 

Table 4.4. Summary of a fully loaded barge impacting circular piers with a velocity of    

Vi  = 1.54 m/s (3.0 knots) 

Impact Force (MN) Ratio 
α  

maxP  1/ 2 max/P P
 

max/P P  

Coefficient of restitution 
e  

Duration 

d
t (s) 

Damage depth 

B
a (m) 

0.10 6.10 0.62 0.52 0.22 1.02 0.42 

0.20 6.37 0.62 0.52 0.22 0.98 0.41 

0.30 6.93 0.50 0.41 0.24 1.15 0.42 

0.40 8.00 0.51 0.43 0.24 0.96 0.38 

0.50 8.79 0.46 0.39 0.24 0.96 0.36 

0.60 7.22 0.50 0.41 0.24 1.10 0.38 

0.70 7.16 0.51 0.42 0.24 1.08 0.37 

0.80 7.41 0.59 0.50 0.24 0.89 0.35 

0.90 8.01 0.46 0.39 0.24 1.06 0.37 

1.00 8.48 0.44 0.37 0.24 1.06 0.36 

 

Table 4.5. Summary of a fully loaded barge impacting circular piers with a velocity of   

Vi   = 2.57 m/s (5.0 knots) 

Impact force (MN)  Ratio 
α  

maxP  1/ 2 max/P P
 

max/P P  

Coefficient of restitution  
e  

Duration 

d
t (s) 

Damage depth 

B
a (m) 

0.10 6.68 0.58 0.49 0.20 1.63 1.18 

0.20 7.99 0.52 0.44 0.20 1.52 1.14 

0.30 9.48 0.47 0.39 0.20 1.43 1.13 

0.40 9.80 0.44 0.36 0.20 1.49 1.10 

0.50 10.25 0.41 0.33 0.19 1.56 1.08 

0.60 9.21 0.47 0.38 0.20 1.50 1.11 

0.70 9.55 0.46 0.38 0.20 1.45 1.11 

0.80 9.32 0.46 0.38 0.20 1.51 1.07 

0.90 9.64 0.48 0.39 0.20 1.42 1.06 

1.00 10.13 0.50 0.40 0.19 1.30 0.92 
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4.4  Energy Dissipation 

Neither the momentum nor the energy of the barge is conserved during a collision 

event.  In addition to the deformation and resisting force time-history, it is important to 

know how the kinetic impact energy dissipates during an impact.  The kinetic energy of 

the barge at time t is given by: 

21
( ) ( )

2
E t mV t=           (4.11) 

and the work at deformation by: 

 

0

( ) ( )

t

W t P t dδ= ∫           (4.12) 

Due to other energy dissipation mechanisms such as damping and friction, the kinetic 

energy of the barge at time t is: 

( ) ( ) ( )
i a

E t E W t E t= − −         (4.13) 

where 20.5i B iE m V= is the initial kinetic impact energy of barge, and
a

E is the energy 

dissipated due to other factors. 

The coefficient of restitution is usually used as a measure of the mechanical 

energy lost during the collision process.  The kinetic energy lost during impact is 

expressed in terms of e as: 

( )2( ) ( ) 1i iE t E E t e EΔ = − = −       (4.14) 

thus, the energy dissipation efficiency can be written as: 

2( )
1d

i

E t
e

E
ξ Δ

= = −         (4.15) 

where 
d

t is the impact duration.  
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Therefore, the amount of the kinetic energy left at the instant of 
d

t is: 

(1 )
dt i

E Eξ= −              (4.16) 

From the discussion in the previous section, for 0.15 0.7e≤ ≤ , and for initial 

velocities 
i

V ≥ 1.54 m/s (3 knots), the total energy loss ( )
d

E tΔ is in the following range: 

0.51 ( ) 0.98
i d i

E E t E≤ Δ ≤        (4.17) 

i.e.,  

0.51 0.98ξ≤ ≤         (4.18) 

Figures 4.3.a and 4.3.b demonstrate the relationships between ( )E t , ( )W t , 

and ( )
a

E t for 
i

V = 0.26 m/s (0.5 knots) and 1.8 m/s ( 3.5knots), respectively.  It can be 

seen from the two figures that ( )
a

E t occupies a relatively large portion of the total kinetic 

impact energy for the low energy impact (Figure 4.3.a) and a very small portion of the 

total kinetic impact energy for the high energy impact (Figure 4.4.b).  Therefore, it may 

be assumed that the work done by the impact force against the barge crushing distance 

equals the energy losses during impact if the impact energy is not very small, namely: 

( ) ( )
i

E t E W tΔ ≈ −         (4.19) 

Substituting Eq. (4.11) and Eq. (4.12) into Eq. (4.19) yields: 

B iP a Eξ⋅ ≈           (4.20) 

where 
B

a is the final damage depth of the barge. 

Acknowledging that 0.51 0.98ξ≤ ≤ when the barge velocity 
i

V ≥ 1.54 m/s (3 

knots), the average impact force during a barge-bridge collision event may be estimated 

by: 



 64

20.98
i B i

B B

E m V
P

a a
ξ≈ ⋅ ≤        (4.21) 

and 

20.51
i B i

B B

E m V
P

a a
ξ≈ ⋅ ≥        (4.22) 

Because most of the barges in the United States travel at speeds between 1.54 m/s 

(3.0 knots) and 2.57 m/s (6.0 knots), Eqs. (4.21) and (4.22) may be used to investigate 

barge-bridge collision accidents when the damage depth 
B

a is known.  Eqs. (4.5), (4.6), 

(4.21), and (4.22) bound the average impact forces in terms of the impact time duration 

d
t  or the barge damage depth 

B
a .  
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         (b) 

Figure 4.3 Energy vs. time for a fully loaded barge impacting a rigid square pier: (a) low 

impact energy; (b) high impact energy 

4.5  Impact Force versus Kinetic Impact Energy 

As discussed in Chapter 2, Meir-Dornberg developed the following equations: 

21

2
i B iE m V=            (4.23) 
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( )3.1 1 0.13 1
B i

a E= + −          (4.24) 

B

B

60             a 0.1

6 1.6       a 0.1

B

B

a
P

a

<⎧
= ⎨ + ≥⎩

                                 (4.25) 

where the barge damage length 
B

a is in meters, the initial kinetic energy of the barge 
i

E is 

in MJ, and the impact force P  is in MN. 

Substituting Eq. (4.24) into Eq. (4.25), the equation of impact force, Eq. (4.25), 

can be rewritten as: 

 
( )186 1 0.13 1           0.5

1.04 4.96 1 0.13         0.5

i i

i i

E E
P

E E

⎧ + − <⎪= ⎨
+ + ≥⎪⎩

      (4.26) 

 

where the impact force P is in MN, and the initial kinetic energy
i

E is in MJ.  

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

 α=0.1
 α=0.3
 α=0.5
 α=0.7
 α=0.9
 α=1.0
 ΑΑSΗΤΟ

Ei (MNm)

P
 (
M

N
)

a
B
 (
c
m

)

120

80

40

0
 

 

 

Figure 4.4 Maximum impact force maxP and barge crushing depth 
B

a vs. initial kinetic 

energy 
i

E  for a fully loaded barge impacting square piers with different sizes 
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Eq. (4.26) is a two-segment function with a separating value of 0.5
i

E = MJ, 

which is a pivotal point that divides two forms of barge crushing.  The elastic behavior 

dominates the crushing process until the kinetic impact energy is larger than this value. 

The threshold value 0.5
i

E = MJ has also been verified by multiple FE simulations, as 

shown in Figure 4.4.  Prior to the aforementioned turning point, the impact force 

increases rapidly as the impact energy increases.  After the turning point, the slope of the 

( )
i

P E curves become less steep.  For a fully-loaded barge (1900 tons) and a half-loaded 

barge (950 tons), 0.5
i

E = MJ corresponds to a barge velocity of 1.5 knots and 2.1 knots, 

respectively.  Therefore, the kinetic impact energy of a single barge or a multi-barge 

flotilla is larger than 0.5MJ for most cases.  It should be noted that the separating energy 

value is smaller than 0.5 MJ for circular piers, as shown in Figure 4.5.  For that reason, 

the value 0.5 MJ may be used to distinguish different types of barge impacts in general. 

As shown in Figure 4.6, the pattern of impact forces is related to the magnitude of 

impact energy
i

E .  For example, when 0.26
i

V =  m/s (0.5 knots), the impact force curve 

appears to be a triangle, containing a sharp peak with steep sides.  The barge deformation 

is not only small, but also elastic.  Plastic deformation develops as the velocity becomes 

larger.  For example, when 1.9
i

V = m/s (3.5 knots), the kinetic energy of the barge 

exceeds the maximum elastic strain energy that can be absorbed by the bow structure, 

and the maximum impact forces decrease quickly as the pier entry deepens.  Moreover, 

the impact force curve of this case has an apparent plateau. 

A further increase of the impact energy causes more structural members to be 

damaged at the beginning of impact.  Figure 4.7 compares the maximum impact forces 

generated by the same barge and pier with different velocities.  As shown in Figure 4.7, 
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the larger the impact energy, the faster the maximum force plummets.  This is because 

more structural members are damaged instantaneously, which causes the elastic 

resistance of the barge to diminish.  
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Figure 4.5 Maximum impact force maxP and barge crushing depth 
B

a vs. initial impact 

energy
i

E for a fully load barge impacting circular piers with different sizes 
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Figure 4.6 Impact force time histories generated by a fully loaded barge impacting a 

square pier ( 0.1α = ) with different initial velocities 
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In most cases, the longitudinal truss fails, and the top and bottom plate bulges and 

folds in front of the intruding pier.  During this stage, the resistance force remains more 

or less constant after reaching the maximum value, which allows a large amount of 

energy absorption during the pier penetration.  Finally, as the motion of the barge begins 

to changes directions (retreat), the crushing depth reaches its ultimate value and then the 

impact force begins to decrease. 
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Figure 4.7 Comparison between maximum impact forces generated by a fully loaded 

barge impacting a square pier ( 0.1α = ) 

4.6  Impact Loading Function 

The maximum impact force maxP is sensitive to the sampling rate in both numerical 

analyses and experiments.  During Woisin’s ship collision experiments, the exact values 

of maxP were difficult to obtain due to electronic measuring difficulties [27].  Woisin 

estimated that the maximum magnitude was, roughly, twice the mean value of the impact 
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force.  In the FE simulations of this study, the sampling frequency is 200 Hz.  Figure 4.8 

compares the force time-histories generated by different data filters of the program 

Taurus [37]. 
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Figure 4.8 The impact forces obtained using different data sampling rate 

 

As mentioned in the previous section, barge flotillas usually travel at a speed 

between 1.03 and 3.09 m/s (2.0 to 6.0 knots).  Within the practical velocity range, the 

equations of the maximum force, average impact force and impact time duration for 

square piers, developed by means of multivariable polynomial regressions, are: 

2

max 5.04 52.78 23.59 2.71 3.33
i i

P I Vα α= − + − + +      (4.27) 

24.57 5.15 3.12 0.57 0.24i iP I Vα α= + + − −       (4.28) 

0.332 0.586 0.216
d i

t Iα= − +         (4.29) 

 

For circular piers, the corresponding regression formulas are:    

 
2

max 2.85 4.30 2.60 0.51 1.09
i i

P I Vα α= + − + +      (4.30) 

max (0.543 0.063 0.028 )
i

P P Iα= − −         (4.31) 

0.118 0.048 0.323
d i

t Iα= − +         (4.32) 
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where the initial momentum 
i

I  is in MN, the approaching velocity of barge 
i

V  is in m/s 

and the pier to barge width ratio 0.1 1.0α = − . 

The above equations correlate very well with the FE simulations.  They may be 

used for a rapid estimation of the impact force generated by a single barge.  Finally, the 

impact duration 
d

t is satisfied with: 

2 2
i B i i B i

d

I m V I m V
t

P P P P
= ≤ ≤ = .                (4.33) 

4.7  Comparison between Different Methods 

According to Woisin’s study [27], the average impact force P is equal to max0.5P . 

Based on the FE simulations, it may be asserted that max0.5P P≈  and max0.7P for square 

and circular piers, respectively.  

Compared to the FE simulations, the AASHTO formulas generate a larger 

damage depth but a smaller impact force for wide square piers ( 0.3α ≥ ).  Regarding 

circular piers, the FE simulations and the AASHTO method agree well in prediction of 

barge damage depth, but the AASHTO method overestimates the impact forces.  

4.8  Summary 

In this chapter, the common characteristics of barge-pier collisions were identified. 

Both the pier size and shape, which are ignored by the AASHTO specifications, greatly 

affect barge-pier impact processes.  The influence of α is more significant on square 

piers than on circular piers.  Since the kinetic impact energy of barges is greater than 0.5 

MJ for most cases, the impact force drops to a much smaller level in a short time interval, 

and therefore, a major part of the impact energy is dissipated through the plastic 
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deformation of the barge bow structure.  This feature indicates that the impact forces do 

not increase infinitely as the kinetic impact energy increases.  In fact, the average impact 

forces vary only in a narrow range, which will be further exhibited in the following 

chapters. 

A set of regression formulas have been developed to predict the maximum impact 

forces, the average impact forces, and the impact time duration for single barges.  All of 

the analytical derivations correlate well with the FE simulations.  In chapter 7, an 

analytical method for predicting the average impact forces of single barges is provided. 
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Chapter 5  Influence of Pier Flexibility 

Chapter 4 discussed the impact forces generated by barges impacting rigid piers. 

While infinite rigidity cannot be achieved in practice, such assumptions are justified in 

many instances.  However, there is little guidance provided in technical literature 

concerning the effects of rigidity on the impact forces and dynamic response of bridge 

piers.  There is not a practical method to justify the assumption of infinite rigidity for a 

given pier.  Also, no such guidance exists that establishes the stage(s) of impact at which 

such effects become significant.  

This chapter delineates the influence of pier flexibility on barge-pier collisions, 

and special emphasis is placed on the effects that pier flexibility has upon the impact 

force and energy dissipation.  The main objective of this research is to provide design 

techniques to ensure that the barge fails rather than the bridge pier during a collision 

event.  Therefore, the events in which a barge breaks the bridge piers are not considered 

herein. 

5.1  Energy Distribution in a Simple Mass-Spring System 

Other variations of the general barge-pier collision model, which are discussed 

later in this chapter, provide insight into the overall characteristics of barge-pier 

collisions.  For example, a 2-DOF spring-mass system, as shown in Figure 5.1, is studied 

without considering the energy loss.  This highly idealized model provides a simplified 

medium for observing the nature of the energy distribution of the barge-pier impact 

system.  Although the 2-DOF spring-mass system is not consistent with the impact 
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mechanics between barges and piers, it is useful for obtaining insight into the energy 

distribution during a barge-pier collision event. 

Suppose the spring-mass system of Figure 5.1 has two rigid masses 1m and 2m , 

and two weightless springs with stiffness coefficients 1k and 2k , respectively.  The two 

generalized coordinates that completely define the motion of the system are 1x and 2x . 

Therefore, there will be two Lagrangian equations: 

0e e e

i i i

d k k p

dt x x x

⎛ ⎞∂ ∂ ∂
− + =⎜ ⎟∂ ∂ ∂⎝ ⎠

,  1,2i =            (5.1) 

 2 2

1 1 2 2

1 1

2 2
ek m x m x= +           (5.2)  

( )2 2

1 1 2 2 2

1 1

2 2
ep k x x k x= − +          (5.3) 

where 
e

k and 
e

p  are the kinetic energy and the potential energy of the system, 

respectively. 

m2
m1

x1 x2
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k2 Displacement

Resistance

x1
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Figure 5.1 2-DOF system with linear springs 

 

The equation of motion for the independent variables 1x and 2x are obtained by 

substituting the expressions given by Eqs. (5.2) and (5.3) into Eq. (5.1) results in: 

1 1 1 1 1

2 2 1 1 2 2

0
0

0

m x k k x

m x k k k x

−⎧ ⎫ ⎧ ⎫⎛ ⎞ ⎛ ⎞
+ =⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟− +⎩ ⎭ ⎩ ⎭⎝ ⎠ ⎝ ⎠

     (5.4) 
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It follows that the characteristic determinant is given by: 

 

1 1 1

1 1 2 2

0
k m k

k k k m

λ
λ

− −
=

− + −
,       (5.5) 

or 

( )2

1 2 1 1 2 2 1 1 2 0m m m k k m k k kλ λ− + + + =⎡ ⎤⎣ ⎦ .     (5.6) 

Thus, the roots (eigenvalues) are given by: 

 

[ ]2

1 1 2 2 1 1 1 2 2 1 1 2 1 2

1,2

1 2

( ) ( ) 4

2

m k k m k m k k m k m m k k

m m
λ

+ + + + −
=

∓
             (5.7) 

Corresponding to each eigenvalue 
i

λ is an eigenvector{ }
i

A , representing the 

displacement configuration of the system for the thi mode.  However only one 

eigenvector is of interest herein, such that 1 2/ 0x x > , and: 

1 1

2 1 1 1

A k

A k m λ
=

−
          (5.8) 

 

Letting 1 2/k kξ = and 1 2/m mη = , the expansion of Eq. (5.8) yields: 

1

2
2

2

1 1
1 1 1 1 4

A

A ηη η
ξ ξ ξ

=
⎡ ⎤⎛ ⎞ ⎛ ⎞

− + + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

       (5.9) 

The ratio of the net displacements of the two masses is given by: 

1 1 2

2
2 2

2
1

1 1
1 1 1 1 4

A A

A ηη η
ξ ξ ξ

Δ −
= = −

Δ ⎡ ⎤⎛ ⎞ ⎛ ⎞
− + + + − +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

   (5.10) 

and the ratio of the energy stored by the two springs is given by: 
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2

2

1 1 1

2 2
2 2 1

2
1

1 1
1 1 1 1 4

E k

E k
ζ

ηη η
ξ ξ ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥Δ

= = −⎢ ⎥
Δ ⎢ ⎥⎡ ⎤⎛ ⎞ ⎛ ⎞

− + + + − +⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦

  (5.11) 

Figure 5.2 contains the plots of the ratios defined in Eqs. (5.10) and (5.11) as 

functions of the mass ratio η  and stiffness ratio ξ .  It is apparent that the mass ratio η  is 

not as influential as the stiffness ratio ξ , and the difference between the curves, primarily 

due toη , is negligible when 5η > .  The energy-partitioning pattern heavily depends on 

the stiffness coefficients rather than the masses.  Most of the kinetic energy is absorbed 

by the weaker spring if the stiffness ratio 0.1ξ ≤ , and the corresponding oscillator has a 

much larger deformation.  In practice, piers of highway bridges are much stiffer than steel 

barges, and the respective stiffness ratios ξ are usually less than 1/10 (barge / bridge).  

 
               (a) 

 
       (b) 

 

Figure 5.2 Displacement ratio and energy partition ratio vs. stiffness ratioξ for the 2-D 

system: (a) displacement; (b) energy partition 
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Through experimentation, Meir-Dornberg [11] derived the following force-

displacement relationship for barges: 

60 , 0.1
( )

6 1.6 , 0.1

B B

B

B B

a             a <
P a =

a       a

⎧
⎨ + ≥⎩

      (5.12)     

where the barge damage length 
B

a is in meters, and the impact force P  is in MN. 

In order to describe a more general barge crushing problem, the spring stiffness 

1k in Fig 5.1 is replaced with Meir-Dornberg’s bilinear equation Eq. (5.12).  That is, the 

system response can be viewed as linear in different stages.  

The energy absorbed by the barge during impact can be expressed as: 

0

( )
Ba

W P x dx= ∫          (5.13) 

Assuming the barge damage depth 0.1
B

a ≥ m and substituting Eq. (5.12) into Eq. 

(5.13) results in the following expression: 

26 0.8 0.578
B B

W a a= + −        (5.14) 

where W is in MJ, and 
B

a is in meters. 

According to Hooke’s law, the displacement of spring 2 (pier stiffness) is given 

by: 

2

2

( )P
x

k

Δ
=          (5.15) 

so that, the energy absorbed by spring 2 is: 

2

2

2

1 ( )

2

P
E

k

Δ
=          (5.16) 

Dividing Eq. (5.14) by Eq. (5.16), the energy ratio can be expressed as: 
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( )

2
6

22

2

12 1.6 1.156
10

1 1.6

B B

B

W a a
k

E a

−+ −
= ×

+
      (5.17) 

where the ratio 2/W E is dimensionless, the barge damage depth 
B

a is in meters, and the 

spring stiffness 2k is in N/m.  

For further physical interpretation of the above results, consider an example of 

barge-pier collisions. 

Example: An actual reinforced concrete pier is idealized as a vertical beam with 

three different support conditions, as shown in Figure 5.3.  The values of stiffness k are 

presented in Table 5.1.  

 

Figure 5.3 Idealized  pier models with different boundatry conditions 

 

Table 5.1. Pier dimensions and stiffness coefficients corresponding to the boundary 

conditions shown in Figure 5.3 

L1 

(m) 

L2 

(m) 

b 

(m) 

h 

(m) 
Pier type 2k  

(N/m) 

(a) 89.77 10×  

(b) 91.50 10×  14 16 2 6 

(c) 93.89 10×  

 



 78

Solution: Substitution of the known parameters into Eq. (5.17) results in a plot of 

the energy ratio 2/W E versus the barge damage length 
B

a , as shown in Figure 5.4.  

Compared with piers in reality, the piers in this example are only moderately stiff. 

Figure 5.4 confirms that most of the impact energy is dissipated by the barge in all three 

cases.  Therefore, barges may be regarded as absorbing all of the impact energy during a 

barge-pier collision event unless the impacted pier is very slender. 
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Figure 5.4 Energy distribution ratio vs. barge damage depth for the ideal piers 

 

5.2  Impact Force Dependency on Pier Stiffness 

In this section, the influence of pier flexibility on impact forces is investigated 

using FE simulations.  The deformation of the pier shown in Figure 5.5 may be regarded 

as being composed of three parts: displacements of the contact point, pier-top, and pier-

foundation. The structural interaction between the soil and the pier is not addressed in 

detail in this chapter, but Chapter 10 provides an example that includes the soil properties. 
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Figure 5.5 Deformation shape of a pier subjected to barge impact 

 

Because the interaction between a barge and a pier during impact occurs only at 

the contact area, the relative stiffness of the pier affects the impact force as well as the 

time duration of the impact.  In order to simplify the discussion, an idealized barge-pier 

collision system is used.  As shown in Figure 5.6, the system consists of a fully loaded 

barge and an impacting body with a spring.  The simulations have only two variables: 

barge velocity 
i

V and spring constant k .  For brevity, the pier width is assumed as a 

constant, 1.07 m ( 0.1α = ).  As pointed out in Chapter 4, the size of the contact area 

affects the impact forces during a barge-pier collision event.  A detailed discussion of the 

barge stiffness is deferred to Chapter 7. 

k
Vi

 
 

Figure 5.6 Simplified barge-pier collision model 

 

The impact simulation results are presented in Table 5.2.  It can be seen from this 

table that the stiffness of the pier is ineffectual to the impact forces unless k is very small 

(this case is shaded in the table).  From static calculations, the elastic stiffness of barge 

bows is approximately 70 MN/m corresponding to the pier to barge width ratio 0.1α = . 
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Therefore, the influence of pier stiffness on the impact forces may be ignored if the pier 

is stiffer than the barge bow, namely 
p cr

k k≥ , where 
p

k is the pier stiffness corresponding 

to the translational displacement of the collision point, and 
cr

k is given by: 

246 6465 2701crk α α= + −  for rectangular piers    (5.18) 

2473 453 160crk α α= + −    for circular piers     (5.19) 

where α = 0.05~1.0 is the pier to barge width ratio; 
p

k is in MN.  

 

 Eqs. (5.18) and (5.19) originate from extensive FE simulations.  If 
p cr

k k< , the 

influence of the pier stiffness should be taken into account in the determination of the 

impact forces and the impact time duration.  Otherwise, the pier can be assumed to be 

rigid.  

Table 5.2.  Summary of a fully loaded barge impacting a square body ( 0.1α = ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Impact force (MN)  

i
V  

(m/s) 

 

k  

(MN/m) 
maxP  

max

P

P
 

Duration 

d
t (s) 

Pier max 

displacement 

maxΔ (cm) 

Damage depth 

B
a (cm) 

70.06 10.28 0.45 0.61 9.8 7.92 

350.26 10.28 0.36 0.61 8.7 11.81 

1571.28 10.30 0.37 0.60 8.4 11.96 
2 

2802.04 10.31 0.37 0.60 2.4 11.98 

70.06 13.80 0.23 1.43 2.3 72.44 

350.26 13.80 0.22 1.43 2.3 75.13 

1571.28 13.80 0.22 1.40 0.6 75.52 
4 

2802.04 13.80 0.22 1.40 0.6 75.80 

70.06 15.30 0.32 1.28 0.6 146.76 

350.26 15.30 0.31 1.29 0.4 145.26 

1571.28 15.30 0.32 1.28 0.4 145.49 
6 

2802.04 15.30 0.32 1.28 0.4 144.63 
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Figure 5.7 Impact force time-histories generated by a fully loaded barge impacting piers 

with different stiffness 

 

Figure 5.7 shows the impact force time-histories of piers with various stiffness, 

which is generated by a fully loaded barge ( 2.06
i

V = m/s) impacting a pier ( 0.1α = ). 

From this figure, it can be seen that the variations of the pier stiffness affect the 

maximum impact forces in a short period (< 0.25 seconds).  The impact force curves 

approach the same value as time increases due to the greatly decreased resistance of the 

barge as the pier entry deepens. 

5.3  Summary 

In general, the structural response to impact can be divided into two stages: a very 

brief contact stage followed by a global structural deformation stage.  The first stage 

begins with a severe velocity discontinuity in the contact region, and is characterized by a 

local velocity change together with local contact dissipation.  In the second stage, a 
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restoring instant exists at which the behavior of the stiffer structure transforms from an 

energy dissipation state to a non-dissipation state, and the total energy dissipated by this 

structure is termed the restoring energy.  The remaining kinetic energy after this restoring 

instant will be completely dissipated by the weaker structure, if the weaker structure 

exhibits no deformation-hardening.  For a structure with constant load-carrying capacity 

during its large plastic deformation, the initial velocity will not affect the energy 

partitioning.  However, an increase of the relative mass of the impinging structure will 

cause the energy-partitioning pattern to approach an elementary static condition, that is, 

the structure with lower strength will dissipate all the input energy. 

The analytical and numerical results show that the influence of pier flexibility on 

impact forces is not significant when the translational stiffness coefficient at the collision 

point of the pier is large enough.  In addition, most of the kinetic impact energy is 

dissipated by the barge (weaker structure) as long as the pier is more than five times 

stiffer than the barge.  Unless a pier is very flexible, it consumes a small portion of 

impact energy and may be assumed to be infinitely rigid as well as infinitely massive.  

Moreover, the initial impact velocity does not affect the energy partitioning.  

For most practical cases, the impact forces are not sensitive to pier stiffness 

variations as long as the stiffness is within the normal range.  Generally, the impact 

energy dissipation is dominated by the deformation of the barge structure instead of the 

pier.  The effect of pier flexibility may be conservatively neglected for design purposes 

[10].  Whenever possible, it is preferable to use rigid piers for dynamic simulations 

because such elements are invariably more efficient in terms of CPU calculation time.  

Therefore, all of the piers in this study are assumed to be rigid unless otherwise specified. 
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Chapter 6  Multi-Barge Flotilla Impact Simulations 

In Chapter 4, FE simulations of single barges impacting bridge piers are discussed.  

In reality, the organized inland-water cargo movement is by means of flotillas, in which a 

number of barges are tied together and moved as one unit.  For that reason, the study of 

impact forces generated by multi-barge flotillas is more significant than the study of 

impact forces generated from single-barge collisions.  According to Whitney [10], the 

AASHTO method [9] is not adequate for barge flotillas.  Until now few technical 

publications have discussed the flotilla-bridge collision problems.   

To investigate the impact forces generated by multi-barge flotillas, this chapter 

describes a series of crash simulations that were conducted using the program LS-DYNA 

[14].  Due to the large computation time needed to simulate multi-barge collisions with 

piers, only a string (column) of barges is considered herein.  This chapter focuses on 

some fundamental features of barge flotilla to pier impacts.  An analytical model for 

multi-barge flotillas is addressed in Chapter 9. 

6.1  Flotilla Configurations                                                                          

A rake barge, built with one end sloped or raked at a sharp angle to form a bow, is 

shown in Figure 3.1.  The slanted bow of this type of barge allows easier movement 

through water as compared to square-ended, box hopper barges.  Rake barges are used 

primarily as lead barges in a flotilla and are also placed in the back of flotillas to permit 

towboat pilots to slow and turn the tow more quickly.  As shown in Figure 6.1, box 

barges, 61 m (200 ft) long and 10.7 m (35 ft) wide, are more difficult to push.  As 

opposed to filling the role of lead barges, box barges, are often used to connect rake 
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barges in a flotilla.  Barge tows (flotillas) often include a mixture of both kinds of barges.  

This configuration takes advantage of both the storage capacity of box hopper barges and 

the fuel efficiency of raked hopper barges.  

  

 

 

 

 

 

             

 (a) 

 

 
 

             (b) 

              

Figure 6.1 Box barge: (a) an actual box barge; (b) the FE model of box barges 

 

Figure 6.2 shows a 12-barge tow traveling on the Ohio River in the United States. 

A typical 15-barge flotilla is built with three rakes abreast facing forward and leading 

each column, and three rakes abreast facing rearward at the stern of each string when 

loaded.  If one column contains only two barges, two loaded rakes are placed back to 

back (box ends together) to form a unit; otherwise box barges are often put between the 

rake barges, creating a multi-piece unit.  Although barge flotillas are not entirely 

composed of one barge size or type, the vast majority of barges in a given flotilla 

generally consist of mostly the same barge size and type.  The standardized JH, 10.7 m 

(35 ft) wide and 61 m (200ft) long, is the most widely used barge type in the U.S. for 

inland waterway barge operations [10].  Figure 6.3 is a sketch of a typical 15-barge tow.  

The barge number in a flotilla is restricted due to narrow channels and limited due 

to lengths and widths allowed inside of lock chambers.  The U.S. Army Corps of 

Engineers operates 275 lock chambers, which are generally 33.5 m (110 ft) wide, and 

either 182.9 m (600 ft) or 365.8 m (1200 ft) long [4].  The most typical tow size through 



 85

these locks is three barges wide and five long.  The smaller tributaries, such as the 

Alabama River, contain locks that are 25.6 m (84 ft) wide and 182.9 m (600 ft) long, 

which can support tows of two-barge width and length.  A tow of fifteen JHs that are 

lashed together, three wide and five long, is the maximum configuration that is presented 

in this study.  

 

Figure 6.2 A 12-barge flotilla traveling on the Ohio River 

 
3 Barge Columns

Tow Boat

35'x195' Barge

 
 

Figure 6.3 A typical 15-barge flotilla layout 

 

The connection between barges is conventionally comprised of steel wire ropes as 

shown in Figures 6.4 and 6.5.  The mechanical properties of the wire ropes are available 
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in most steel handbooks.  Some common wire ropes used for lashing barges are presented 

in Table 6.1 [38].  The FE models of flotillas, an extension of the JH model, are 

comprised of single-barge models that are tied together using the cable elements 

described in Chapter 3. 

 

 

Figure 6.4 Wire ropes connecting barges in a multi-barge flotilla 

 

 

Figure 6.5 Barge connection methods 

 

Table 6.1. Stainless steel wire ropes used for lashing barges 

 Cable diameter Minimum breaking strength (kips) 

1/2"  (0.013 m) 20.5 (91.2 KN) 

3/4"  (0.019 m) 49.6 (220.6 KN) 

1"    (0.025 m) 89.8  (339.5 KN) 

As previously mentioned, FE simulations of multi-barge flotillas impacting 

bridges are prohibitively expensive with respect to both model generation and 

computation time.  For example, one simulation of a 4-barge flotilla impact requires more 

STERN

BOW

STERN STERN

BOW BOW

FORE & AFT WIRES FORE & AFT JOCKEY WIRES BREAST WIRES
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than one-hundred hours.  Hence, this chapter only pertains to a single-column flotilla, and 

multi-column flotillas are discussed in Chapter 9.  

For convenience of discussion, an n-barge column flotilla will be designated as 

FLn. For example, FL3 denotes a 3-barge column.  

6.2  Simulation of a 2-Barge Column 

As shown in Figure 6.6, the FL2 model consists of two raked barges, oriented 

back to back.  Crash simulations of a FL2 impinging perpendicularly upon a series of 

square and circular piers with different sizes ( 0.1 1.1α = − ) were conducted using the 

program LS-DYNA970.  Both the mass and velocity of FL2 vary within the respective 

practical ranges: 
i

V = 0.51 to 3.09 m/s (1 to 6 knots), and 861.8 to 3447.3
B

m = metric 

tons.  

 
 

Figure 6.6 FE model of a 2-barge column (FL2) 

 

Figure 6.7 shows the time–histories for a fully loaded FL2 (3447.3 metric tons) 

impacting a square pier ( 0.1α = ) under several different velocities.  From this figure, it 

can be seen that the maximum impact forces sharply decrease within 0.1 seconds 

regardless of their initial magnitudes.  Then, the impact forces range between 3 MN and 6 

MN for most of the remaining event.  The impact time duration 
d

t  is dependent on, but 
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not simply proportional to, the initial impact velocity.  A larger velocity prolongs the 

whole impact process.  Moreover, the impact time 
d

t increases at an accelerating rate as 

i
V approaches 1.54 m/s (3.0 knots), and 

d
t increases at a decelerating rate as 

i
V becomes 

greater and greater, relative to 1.54 m/s.  This phenomenon signifies that the average 

impact forces vary with the impact velocities.  Similar to single barge impacts, large 

plastic deformations occur as the impact velocity 1.54
i

V ≥  m/s due to the accompanying 

high impact energy.  Under these circumstances, the plastic deformation of the barge bow 

dominates the impact process. 

According to the impulse-momentum law, the impulse of the system is: 

0

( ) ( ) (0)
dt

dP t dt I t I= −∫          (6.1) 

or  

( )
2

1

( )d B j d i

j

Pt m V t V
=

= −∑          (6.2) 

where P is the average impact force, 
B

m is the mass of a single barge, 
d

t is the impact 

duration, 
i

V is the initial velocity of the flotilla, and ( )
j d

V t is the velocity of the jth barge 

after impact. 

From Eq (6.2) and Figure 6.7, it is apparent that the barges within the FL2 have 

different velocities after impact.  Consequently, the two barges experience certain 

interactions between one another during the impact.  The coefficient of restitution, used 

as an indicator of single-barge impacts in Chapter 4, is not appropriate for describing 

multi-barge flotilla impacts. 
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Figure 6.7 Time histories of the impact force and barge damage depth caused by a fully 

loaded FL2 impacting a square pier ( 0.1α = ) with different initial velocities 

 

Table 6.2. Summary of the simulations of a fully loaded FL2 impacting a square rigid 

pier ( 0.1α = ) 

Impact force (MN) 
Velocity 

i
V (knot) 

Momentum 

i
I (MNs) 

maxP  
1/ 2

max

P

P

 

max

P

P
 

Impact 

Duration 

d
t (s) 

Damage depth 

B
a (m) 

1.0 1.77 7.36 0.56 0.39 0.77 0.06 

2.0 3.55 8.91 0.37 0.29 1.58 0.42 

3.0 5.32 10.58 0.29 0.24 2.43 1.03 

4.0 7.09 11.52 0.31 0.26 2.69 1.68 

5.0 8.87 11.83 0.34 0.30 2.79 2.38 

Note:   (a) 1 knot = 0.514 m/s. 

            (b) 1/ 2P = the average impact force during the first 0.5
d

t . 

                           (c) P = the average impact force during
d

t . 
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Table 6.2 compares some important results of the simulations.  The impact force 

plateaus in Figure 6.7 are approximately equal to the corresponding mean force 

1/ 2P ( max0.3 ~ 0.4P= ) in Table 6.1.  The upper bound of the plateaus is 6 MN, which is the 

same with the constant in the AASHTO formulas [9].  Additionally, the average force 

values, 1/ 2P and P , are very close except for the case with a very small velocity 

( 1.0
i

V = knot).  
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Figure 6.8 Time histories of the impact force and barge crushing depth generated by a 

fully loaded FL2 impacting a set of square piers with an initial velocity Vi=3.5 knots 

Similar to single-barges, the impact force of multi-barge flotillas is also dependent 

on the pier shape and size.  Figure 6.8 presents the time histories of a fully loaded FL2 
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impacting different square piers (α = 0.1 to 0.5) with an initial velocity of 1.8
i

V = m/s 

(3.5 knots).  As indicated by Figure 6.8, an increase inα is conducive to an increase in the 

maximum impact force maxP .  Since the resistance of a barge becomes stable after the 

plastic deformation develops, the width of the impacted pier does not significantly affect 

the resulting force plateaus as long as the initial impact energy is large enough. 

Using the data obtained from 200 FE simulations of a FL2 impacting square and 

circular piers, the following regression formulas were derived.  These formulas, 

applicable to FL2s, calculate the maximum impact force, average impact force, and 

impact time duration, respectively. 

For square piers: 

2

max 7.274 45.233 21.029 0.798 7.052
i i

P I Vα α= − + − + +         (6.3) 

22.480 6.003 0.147 0.209 0.088i iP I Vα α= + − − +         (6.4) 

20.650 1.468 0.491 0.236 0.060
d i i

t I Vα α= − + + +         (6.5) 

and for circular piers: 

2

max 2.074 4.343 2.798 0.234 0.511
i i

P I Vα α= + − + +                    (6.6) 

21.529 1.204 0.582 0.165 0.148i iP I Vα α= + − + +         (6.7) 

20.602 0.711 0.372 0.290 0.006
d i i

t I Vα α= − + + −         (6.8) 

where the initial momentum
i

I  and velocity 
i

V of a FL2 are in MN and m/s, respectively; 

and the barge to pier width ratio α is in the range from 0.1 to 1.0. 

The correlations between the regression formulas and the FE simulations are good 

when the initial velocity 
i

V  is between 0.77 m/s (1.5 knots) and 3.09 m/s (6.0 knots). 
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6.3  Simulation of a 3-Barge Column 

A FL3, shown in Figure 6.9, consists of two raked barges and one box barge.  The 

total length of a FL3 is 182.9 m (600 ft).  The global response of the FL3 in a collision 

would be delayed to some extent due to the great length of the flotilla structure as well as 

the gaps between barges in the column.  As an important characteristic of flotilla-pier 

impacts in general, the global-response delay, results in a decrease of the maximum 

impact forces that usually occur in the very beginning of collisions.  

 
Figure 6.9 FE model of a 3-barge column (FL3) 
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Figure 6.10 Time histories of the impact force and barge crushing depth generated by a 

fully loaded FL3 impacting a square pier ( 0.1α = ) with different initial velocities 
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Figure 6.10 shows the time-histories of the barge crushing depth and impact force 

generated by a fully loaded FL3 (5171 metric tons) impacting a square pier ( 0.1α = ) 

under different velocities.  A comparison of Figures 6.7 and 6.10 shows that the impact 

forces do not increase proportionally to the number of barges in a given flotilla.  The 

average impact forces for both FL2 and FL3 are close to 5 MN.  However, the impact 

duration increases as the impact energy increases. 

A long flotilla, such as a FL3 with distributed mass, acts as a “capacitor” that 

stores energy through elastic deformation, and as an energy dissipater that absorbs impact 

energy through plastic deformation.  Figure 6.11 shows the deformation time histories of 

the lead barge and the whole FL3, which impacts a rigid square pier ( 0.2α = ) with an 

initial velocity of 2.06
i

V = m/s (4 knots).  As shown in Figure 6.11, the difference 

between the overall deformation 2x and the barge crushing distance 1x becomes larger as 

time increases. At the end of the impact, the relative difference, 2 1 1( ) /x x x− , is as large as 

19.8%.  The energy dissipated through the deformation of the barge bow can be roughly 

calculated as: 

1 ( )

1
0

( ) 9.04
dx t

E P t dx= =∫ MJ                     (6.9)  

and the total energy loss is 

2 ( )

2
0

( ) 10.84
dx t

E P t dx= =∫ MJ       (6.10) 

so that, 

1

2

83.4%
E

E
=          (6.11) 

 Therefore, the barge bow that contacts the pier and the other components of the 
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flotilla dissipate the kinetic impact energy together.  However, the bow consumes a large 

part of the total impact energy.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 Barge deformation time histories of a fully loaded FL3 impacting a square 

pier ( 0.2α = ) with an initial velocity 2.06
i

V = m/s (4 knots) 

 

 

 

Figure 6.12 Relative vertical motion of barges during impact (magnification factor = 20) 
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Another interesting finding from the simulations of the FL3-pier collisions is that 

a relative vertical motion between barges, as shown in Figure 6.12, occurs in addition to 

longitudinal motions during impact.  Note that the displacement magnification factor in 

Figure 6.12 has a magnitude of twenty.  Since the impact process of a multi-barge flotilla 

lasts several seconds, the vertical displacements of barges would affect impact forces 

notably as water translates barges up and down in a real collision event.  This 

phenomenon is another important feature of the multi-barge flotilla impacts.  In general, 

this behavior of flotillas acts to decrease the impact intensity on piers. 

Using the data from 200 FE simulations of a FL3 impacting square and circular 

piers, the following regression formulas are derived to calculate the maximum impact 

force, average impact force, and impact time duration for FL3s, respectively. 

For square piers: 

2

max 6.952 43.934 20.393 0.951 5.019
i i

P I Vα α= − + − + +    (6.12) 

22.560 5.075 0.270 0.0344 0.386
i i

P I Vα α= + − + −     (6.13) 

20.993 2.106 0.819 0.211 0.0465d i it I Vα α= − + + +     (6.14) 

and for circular piers: 

2

max 1.734 4.371 2.543 0.268 0.351
i i

P I Vα α= + − + +     (6.15) 

21.276 1.479 0.698 0.197 0.082
i i

P I Vα α= + − + +     (6.16) 

21.045 1.158 0.606 0.249 0.116d i it I Vα α= − + + −     (6.17) 

 

where the initial momentum
i

I  and velocity 
i

V of a FL3 are in MN and m/s, respectively; 

the barge to pier width ratio α is in the range from 0.1 to 1.0. 
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The correlations between the regression formulas and the FE simulations are good 

if the initial velocity 
i

V is in the range between 0.77 m/s (1.5 knots) and 3.09 m/s (6.0 

knots). 

6.4  Simulation of 4-Barge and 5-Barge Columns 

The regression formulas for FL4s and FL5s, and a comparison of the impact 

characteristics between different flotillas, are presented in this section. 

 

Figure 6.13 FE models for FL4s and FL5s 

Figure 6.13 shows the FE models for FL4s and FL5s.  Using the data from 200 FE 

simulations, the following regression formulas are developed for FL4s: 

For square piers: 

2

max 6.951 43.933 20.394 0.713 5.02
i i

P I Vα α= − + − + +    (6.18) 

22.073 4.284 0.159 0.095 0.201
i i

P I Vα α= + + + −     (6.19) 

21.358 2.577 0.999 0.184 0.0436d i it I Vα α= − + + +     (6.20) 

FL4

FL5
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and for circular piers: 

2

max 1.194 4.2401 1.934 0.274 0.473
i i

P I Vα α= + − + +    (6.21) 

20.970 1.659 0.627 0.180 0.221i iP I Vα α= + − + +     (6.22) 

21.478 1.515 0.721 0.195 0.050d i it I Vα α= − + + − .    (6.23) 

From the results of 200 FE simulations, the following regression formulas are 

developed for FL5s. 

For square piers: 

2

max 5.215 43.514 17.301 0.404 4.791
i i

P I Vα α= − + − + +    (6.24) 

21.233 5.022 0.675 0.118 0.0753
i i

P I Vα α= + − + +     (6.25) 

22.041 3.126 1.061 0.171 0.136d i it I Vα α= − + + −     (6.26) 

and for circular piers: 

2

max 0.718 3.875 1.25 0.290 0.559
i i

P I Vα α= + − + +     (6.27) 

20.644 1.967 0.764 0.171 0.345
i i

P I Vα α= + − + +     (6.28) 

21.913 1.935 0.963 0.171 0.106d i it I Vα α= − + + −     (6.29) 

where the initial momentum
i

I  and velocity 
i

V are in MN and m/s, respectively; the barge 

to pier width ratio α is in the range from 0.1 to 1.0. 

The correlations between the regression formulas and the FE simulations are good 

if the initial velocity 
i

V is within the range of 0.77 m/s (1.5 knots) to 3.09 m/s (6.0 knots). 

The configuration of a given flotilla affects the dynamic behavior of the system 

during impact.  The main difference between different barge columns impacting the same 

pier with the same velocity resides in the maximum impact force and, to an even greater 
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event, the impact time duration.  Figure 6.14 compares the time histories of the impact 

forces generated by different barge columns with the same pier and the same initial 

velocity.  From Figure 6.14, it can be seen that impact force curves of the barge flotillas 

are similar excepting the maximum impact force and the impact time duration.  The lead 

barge in a column provides the resistance to pier crushing directly; however, other barges 

provide boundary conditions that constrain the motion of the first barge.  Therefore, 

impact forces on piers are mostly dependent on the strength of the barge bow structure. 

This is the primary reason that impact forces do not increase proportionally with an 

increasing number of barges in a flotilla.  Similar to a non-hardening plastic spring, the 

bow absorbs impact energy through deformation while its resisting force remains at a 

relatively constant level. 
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Figure 6.14 Comparison of the impact force time-histories generated by different barge 

columns impacting a rigid square pier ( 0.1α = ) with a velocity of 2.06
i

V = m/s (4 knots) 

In order to verify the influence of barge interactions, Table 6.3 compares the 

results from FL2 and FL1 impacts, where the initial kinetic impact energy is the same. 
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Obviously, the FL2 produces greater impact duration and crushing depth, but 

simultaneously, a smaller maximum impact force and average force. 

The average impact forces of the barge columns versus the impact kinetic energy 

are plotted in Figure 6.15, which shows that the pier to barge width ratio α is important 

in the determination of flotilla impact forces.  As α increases, the impact forces increase. 

When α is large enough, for example 0.3α ≥ , the average impact force curves of the 

flotillas tend to converge.  The behavior of FL1s (single barges) is different from other 

configurations (multi-barge flotillas), as indicated by the gaps between the curves in the 

figures.  The crushing speed of the bow also affects the interaction of barges. 

Table 6.3 Comparison between a fully loaded FL1 and a half loaded FL2 impacting a 

square pier ( 0.1α = ) 

 

 

 

 

 

 

 
     

 

      

                   Note:   (a) 1 knot = 0.514 m/s. 

  (b) 1/ 2P = the average impact force during the first 0.5
d

t . 

  (c) P = the average impact force in 
d

t . 

  (d) The shaded lines are for the single barge. 

 

For wider piers, the AASHTO method may underestimate the impact forces of 

multi-barge flotillas within the low impact energy range, and overestimate the impact 

Impact force (MN) 
Velocity 

i
V  (knot) 

maxP  
1/ 2

max

P

P

 

max

P

P
 

Duration 

d
t (s) 

Damage depth 

B
a (m) 

1 6.93 0.61 0.36 0.46 0.02 

1 8.48 0.63 0.40 0.35 0.03 

2 8.81 0.40 0.29 0.85 0.18 

2 10.59 0.50 0.36 0.59 0.12 

3 10.54 0.31 0.25 1.27 0.48 

3 12.39 0.31 0.23 1.17 0.39 

4 11.50 0.26 0.21 1.81 0.92 

4 13.88 0.28 0.22 1.38 0.75 

5 11.83 0.30 0.25 1.77 1.36 

5 14.04 0.34 0.29 1.30 1.05 
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forces within the higher impact energy range.  For narrow piers, the AASHTO method 

overestimates the impact forces regardless of the kinetic energy.  

Because the impact force curves in Figure 6.15 are similar, envelopes may be 

used to conservatively estimate the corresponding impact forces.  It is interesting to note 

that the average impact force curves for circular piers are similar to the curve of a  
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(c) 

Figure 6.15 Average impact force P versus impact energy Ei for square pier: (a) 0.1α = ; 

(b) 0.5α = ; (c) 0.9α =  
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rectangular pier with 0.1α = .  The following functions are used to describe the upper 

bounds of the average impact forces in the energy domain for square piers:  

0.1

1.515 for 1.65

1.963 0.325 for 1.65 7.8

4.094 0.52 for 7.8 27

i i

i i

i i

E E

P E E

E E

α =

≤⎧
⎪= + < ≤⎨
⎪ + < ≤⎩

    (6.30) 

0.5

30 for 0.22

6.752 0.693 for 0.22 3.7

3.807 0.103 for 3.7 27

i i

i i

i i

E E

P E E

E E

α =

≤⎧
⎪= − < ≤⎨
⎪ + < ≤⎩

    (6.31) 

0.9

25 for 0.42

10.89 0.928 for 0.42 4.3

6.502 0.093 for 4.3 27

i i

i i

i i

E E

P E E

E E

α =

≤⎧
⎪= − < ≤⎨
⎪ + < ≤⎩

    (6.32) 

where the upper bound of the average impact forces for square piers , Pα , is in MN, and 

the initial kinetic energy of barge columns (2 - 5 barges), 
i

E ,is in MJ.  

6.5  Summary 

The most important features of multi-barge flotilla impacts have been discussed in 

this chapter.  The interactions between barges in a multi-barge flotilla influence the 

impact process and the dynamic loadings on piers.  Approximately 10% of the kinetic 

impact energy is dissipated through the interactions among the barges.  More important, 

the impact forces are not proportional to the number of barges in a flotilla.  The structural 

strength of the barge bow that contacts the pier is the key factor in determining the 

resulting impact forces.  Moreover, the impact duration apparently increases as the 

number of barges increases, partly due to barge interactions. 

Based on the FE simulations, the regression formulas to calculate the maximum 

impact force, average impact force, and impact duration have been developed for the 
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barge columns impacting a rigid pier.  In addition, the upper bounds of the average 

impact forces in the impact energy domain are provided, which can be used to estimate 

the impact intensity of a barge column.  

Finally, the results from the FE simulations were compared with those from the 

AASHTO formulas.  Since many important factors are ignored by the AASHTO method, 

it overestimates the impact forces when the impact energy is not very small.  Likewise, at 

times, the AASHTO method underestimates the impact forces when the impact energy is 

small. 
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Chapter 7  Upper Bounds of Barge Impact Forces 

In the previous chapters, extensive finite element (FE) simulations were 

conducted.  FE simulations are very costly with respect to both model generation and 

computational time.  It is not currently practical to run a supercomputer analysis to check 

a bridge pier design.  The objective of this chapter is to find methods that are both 

rational in mechanics and simple in mathematics to predict impact loads of barges and 

dynamic response of piers in an acceptable, conservative manner. 

This chapter presents a numerical study and an analytical derivation of empirical 

formulas to determinate the barge impact loads on bridge piers.  The new impact loading 

functions account for pier shape and size.  In addition, an impact spectrum procedure to 

determine the dynamic response of piers is proposed.  The analytical techniques 

presented herein transform the complex dynamics of barge-pier impacts into simple 

problems that can be solved through hand calculations or design charts.  The proposed 

methods are illustrated through the analysis of an actual pier.  

7.1  Barge Bow Resistance to Crushing 

Since barge-bridge collisions are very complex phenomena, many factors 

influence the exact calculation of the impact forces.  However, quasi upper bounds of the 

impact forces may be ascertained by excluding some factors that do not significantly 

contribute to bridge capacity or only lessen impact intensity on piers.  The determination 

of the upper bounds of impact forces is very helpful for establishing permissible load 

limits or evaluating the extreme capacity of bridges.  



 104

Extensive FE simulations conducted in both Chapter 4 and Chapter 6 verify that 

barge impact forces are mostly dependent on the structural strength of the barge bow. 

This section details the force-deformation relationship of the barge bow structure for 

impacts.  As shown in Figure 7.1, the bow (of a JH) under examination is fixed on a rigid 

wall, which is to be crushed by rigid columns with different velocities.  For each crash 

simulation, both the pier geometry and the crushing speed are invariable.  The motion of 

the columns is controlled by increasing the crushing distance at a constant rate and is 

only allowed along the symmetrical axis of the bow.  There are only three variables in the 

specified simulations, the pier size, shape, and velocity.  The difference between the 

force-displacement curves obtained in this way is due only to these three factors. 

Apparently, the simulation results are similar to those from static analyses when the 

columns move very slowly. 

 

Figure 7.1 Barge bows crushed by circular and rectangular piers at a constant rate 

 

According to Whitney et al. [10], the average traveling velocity of inland barges 

is 2.06 m/s (4 knots) and the maximum is 3.09 m/s (6 knots).  Therefore, barge-bridge 

collisions are not high-speed impact events.  As indicated in Chapter 5, a bow structural 
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response to an impact can be divided into two stages: a very brief collision stage, 

followed by a global structural deformation stage.  However, the time duration of the 

maximum contact force (0.05 - 0.1 seconds) is too brief to significantly damage most 

bridge structures except for those that are very slender. This is true even though the peak 

force is much larger than the average force in most cases [9].  During barge-bridge 

collision events, a major part of the kinetic impact energy is dissipated through the 

deformation and damage of the barge bow. The above dynamic features lead to two 

assertions: 1. the contact forces at the initial stage are not significantly detrimental to 

bridge structural stability and therefore can be ignored; 2. the static force-deformation 

curve of the barge bow is the “skeleton” of various impact force-deformation curves. 

Since the barge bow in Figure 7.1 can neither rebound nor avoid the continuous 

crushing, both the barge body and pier are rigid, only the bow dissipates the impact 

energy, and the crushing velocity is a non-decreasing constant value.  The obtained force-

displacement curve should be the upper bound of the bow resistance under the given 

conditions.  In reality, the striking barge moves in a 3-D space and the structural 

configuration of the bow varies between given JHs.  Therefore, real impact forces may 

locally fluctuate around one upper bound curve.  The upper bounds may be more 

accurately described as envelopes of the average impact forces in the displacement 

domain.  

As shown in Figures 7.2 and 7.3, four sets of force-deformation curves for square 

and circular piers have been developed, where the crushing velocities are 1.27 m/s (2.5 

knots) and 3.09 m/s (6 knots), and the pier to barge width ratio α vary in the range 

between 0.1 and 1.1.  
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(b) 

Figure 7.2 Impact force 
B

P versus damage depth 
B

a for a JH bow crushed at a velocity of 

1.27 m/s (2.5 knots): (a) square piers (b) circular piers 
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(b) 

Figure 7.3 Impact force 
B

P versus damage depth 
B

a for a JH bow crushed at a velocity of 

3.06 m/s (6 knots): (a) square piers (b) circular piers 

The following conclusions may be made from the FE simulations.  First, the 

crushing speed does not significantly affect the resistance of the bow except for the 

contact forces at the very beginning of impact.  Second, dynamic effects do not play a 

significant role as the plastic deformation develops.  These conclusions comply with 

Meir-Dornberg’s observations [11].  However, before plastic deformation develops, the 

resistance of the bow is much larger than his predictions.  Both pier shape and size, which 

is ignored by Meir-Dornberg, have great influence on the bow resistance. 
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Based on the discussion above, the respective curves in Figure 7.3 may be treated 

as the upper bounds of the impact forces for a single barge and a multi-barge flotilla 

when the pier geometry is given. 

7.2  Average Impact Force 

Current AASHTO design specifications use average impact forces to describe 

vessel impact loadings.  Although this approach is not accurate, it eases bridge design. 

The average impact forces P  against the crushing path for the curves in Figure 7.3 

are given by 

0

( , )

( , )

Ba

B

B

B

P d

P a
a

δ α δ
α =

∫
       (7.1) 

where 
B

a  is the damage depth of the barge bow (referring to Figure 7.4). 

PB

0
Ba

α

δ
 

Figure 7.4 Schematic diagram of the impact force-deformation relationship 

 

From Eq. (7.1), the mean force P versus the damage depth 
B

a is presented in 

Figure 7.5.  A set of regression equations for 0.05α ≥ to fit the curves in Figure 7.5 are 

derived as follows. 

For square piers: 
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    ( )2( , ) 4.53 646.06 270.53B BP a aα α α= + −  for 0 0.1
B

a≤ ≤        (7.2) 

   
( )

( ) ( )

2 2

2 2 2

( , ) 4.53 1.78 6.27 1.08 16.66 3.61

1.72 28.11 9.18 ln( ) 0.05 1.02

B B

B B

P a a

a a

α α α α α

α α α α

= − − − − − +

− + − + +
for 0.1

B
a >        (7.3) 

For circular piers: 

  ( )2( , ) 47.99 45.43 16.28
B B

P a aα α α= + −  for  0 0.1
B

a≤ ≤            (7.4) 

   

( )
( )
( )

2 2

2

2 2

( , ) 4.85 2.84 4.62 1.23 6.46 6.90

0.03 2.93 2.42 ln( )

0.27 0.98 1.45

B B

B

B

P a a

a

a

α α α α α

α α

α α

= − + − − +

− + −

+ − +

for 1.0 0.1
B

a≥ >    (7.5) 

where the average impact force P is in MN, and the bow damage depth 
B

a is in meters.  
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        (b) 

Figure 7.5 Average impact force P versus barge damage depth 
B

a : (a) square piers; (b) 

circular piers 

 

Note the following relationship exists for rectangular piers 

( 1.0, ) ( 1.0, )
B B

P a P aα α> = = .             (7.6) 

Figure 7.5 also indicates that the AASHTO method overestimates the average 

impact forces for circular piers and underestimates the average impact forces for 

rectangular piers with 0.3α ≥ .  However, these comparisons may not be applicable when 
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extended to pier dynamic responses due to the time-varying nature of the impact loads 

and occurrence of inertia forces.  

7.3  Barge Damage Depth and Impact Duration 

Except for barge impact on very slender bridge piers, which are rare, most of the 

impact energy is absorbed by the barge, and the pier flexibility does not significantly 

affect the average impact forces.  As shown in Chapter 5, the rigid-pier assumption 

results in a conservative estimation of the barge impact forces. 

For head-on impacts on rigid piers, the coefficient of restitution (COR) is defined 

as 

dt

i

V
e

V
=                  (7.7) 

where 
i

V is the barge initial velocity, and 
dt

V is the barge velocity following the impact 

and at the moment the impact force reduces to zero. 

From Chapter 4, the following equations can be used to calculate the COR for 

single barges. 

For square piers with 0.05 1.0α≤ ≤ : 

0.28 0.04 (0.08 0.04 ) ln
k

e Eα α= + − +           (7.8) 

For circular piers with 0.05 1.0α≤ ≤ :  

0.06 0.06 (0.16 0.01 ) ln
k

e Eα α= + − −  for 0 0.114
k

E< ≤          (7.9) 

0.27 0.01 0.05ln
k

e Eα= + −  for 0.114
k

E >          (7.10) 

where the kinetic impact energy 
k

E is in MJ. 
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The losses of the kinetic impact energy during a collision event can be determined 

From Eq. (7.7) as 

2(1 )
k i

E e EΔ = −            (7.11) 

or        2 21
(1 )

2
k B iE e m VΔ = −              (7.12) 

where 
B

m is the total mass of the barge. 

The work done by the pier during impact is given by  

0

( , ) ( , )
Ba

B BW P x dx P a aα α= = ⋅∫        (7.13) 

Based on the discussion in section 4.4, comparing Eq. (7.12) with Eq. (7.13) yields 

2 21
(1 ) ( , )

2
B i B Be m V P a aα− = ⋅        (7.14) 

Eq. (7.14) is a nonlinear equation of variable 
B

a when the pier shape and size, and 

the barge mass 
B

m and velocity 
i

V  are assigned.  This expression contributes to the 

determination of the barge damage depth 
B

a .  Thus, the average impact force P  can be 

determined by substituting the solution of Eq. (7.14) into Eqs. (7.12) through (7.15).  For 

convenience, the relationships between
k

E , 
B

a , and P are presented in Figure 7.6.  

According to the impulse-momentum law [40], the time duration of impact is 

given by 

1

( , )
d i

B

e
t I

P aα
+

=          (7.15) 

where 
i B i

I m V= is the initial momentum of the barge. 

Since 0 1e≤ ≤ , the impact duration 
d

t is satisfied with the following relationship: 



 111

2i i
d

I I
t

P P
≤ ≤ .          (7.16) 
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(b) 

Figure 7.6 Impact force 
B

P  and barge damage length 
B

a  in relation to the kinetic impact 

energy
k

E  : (a) square piers; (b) circular piers 

 

In addition to the general discussion of barge impact loads with respect to 

magnitude, impact intensity is briefly discussed below.  The intensity of a collision is 
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given by the impulse 
0

( )
dt

P t dt∫ , which is the combination of the collision force ( )P t  and 

the impact duration 
d

t .  Since the average impact force P  is based on the upper bound of 

barge resistance, the impact force prediction is conservative. Consequently, the impact 

duration 
d

t is shorter than that found in the actual event due to the conservation of 

momentum.  Finally, an equivalent rectangular load can be constructed when the force P  

and duration 
d

t are known. 

7.4  Comparison to the Frieze Method 

Frieze [44], with the assistance of Woisin, gathered previous research and test 

results concerning vessel bow damage from impacts with bridge piers.  He proposed the 

following equation to calculate the absorbed energy by the damaged bow:  

2(60.5 ) 3.0d

y

W t l
σ
σ

= Ω +         (7.17)  

' -1

' ' -1

' ' -1

1 for 0.001s

1.393 0.131log for 0.001 1s

1.393 0.393log for 1s

d

y

ε
σ ε ε
σ

ε ε

⎧ <
⎪= + ≤ <⎨
⎪ + ≥⎩

     (7.18) 

where the absorbed energy W is in MJ; the damaged (not torn) volume of steel Ω is in 

3
m ; t  is the thickness of plating in meters; and l is the length of the tear in meters. 

 In Eq. (7.17), the term 60.5Ω  represents the work done statically in bending, 

stretching, compressing, scraping (friction), buckling, crushing, and folding; the term 

23.0t l represents tearing effects ( 6.0 for double-sided tearing); and the term 

/
d y

σ σ represents the dynamic effects.  For a slow barge impacting with a pier, Eq. (7.17) 

may be simplified as: 
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60.5W = Ω          (7.19) 

The incremental procedure to apply the Frieze method is presented in Figure 7.7, 

and the corresponding program in MathCAD [45] can be found in Appendix A. 

Figure 7.8 compares Eqs (7.2) and (7.3) with the Frieze equations for barges 

impacting rigid square piers.  The impact forces obtained from both the proposed method 

and the Frieze method are the average impact force over the barge crushing distance. 

Considering the complexity of barge-pier impact problems, the two methods agree well. 

In contrast to the AASHTO load equations, both the proposed equations and the Frieze 

equations correlate the absorbed energy with the damaged material volume.  Nonetheless, 

the proposed equations account for not only the damaged material volume but also the 

coordinated resistance of the material, while the Frieze method simply proportions the 

absorbed energy to the damaged material.  That is the reason why the gap between the 

two Frieze curves in Figure 7.8 is larger than the gap between the proposed curves. 

Specifically, the proposed loading equations accounts for the pier shape in addition to its 

size.  As a result, the proposed loading equations may be considered more accurate for 

predicting barge impact loads.  However, the Frieze equations were derived from over 50 

model tests and are suitable for many kinds of vessels and a wide range of impacting 

velocities.  Hence, the impact force calculated by the Frieze method can be considered as 

an approximation to the one calculated by the proposed method.  In particular, the Frieze 

method is very useful when the actual collision situation is different from the scenario 

used in the deduction of the proposed equations, for example, if the vessel is not a JH or 

the velocity is very large. 
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Figure 7.7 Flow chart of the Frieze algorithm 
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Figure 7.8 Comparison between the Frieze method, the proposed method, and the 

AASHTO method for square piers 

7.5  Response of Bridge Piers Subjected to Barge Impact 

One of the attractive aspects of the AASHTO equivalent static design 

methodology [9] is its simplicity of integration into the design process. In order for a new 

revised design methodology to be of practical benefit, simple hand solutions of typical 

impact problems must be feasible.  

7.5.1 Response Spectrum Analysis 

The impact response of a pier may be determined using a modal response 

spectrum analysis similar to the analysis procedures used in earthquake designs.  The 

response spectrum is a convenient means of encapsulating the maximum response of a 

system to a specified excitation force over a wide range of natural frequencies or periods. 

In many practical situations, the design engineer is primarily interested in the maximum 
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response of the system to a specified input.  In such circumstances, a response spectrum 

analysis is quite useful.  

The maximum modal response for the rth mode of a MDOF system to a specified 

input, expressed in physical coordinates, is given by: 

max{ } { }
r r r r

x DMF= Φ Γ           (7.20) 

2

{ } { }

{ } [ ]{ }

T

r
r T

r r r

P

mω
Φ

Γ =
Φ Φ

             (7.21) 

where the subscript r identifies the mode of vibration, max{ }rx  is the maximum response, 

{ }
r

Φ is the modal vector, 
r

Γ is the modal participation factor, 
r

DMF is the dynamic 

magnification factor determined from the appropriate response spectrum, [m] is the mass 

matrix of the system, and { }P is the force vector. 

The dynamic magnification factor for a rectangular pulse is given by 

 

d d

d

πt t
2sin , 0 <0.5

T T

t
2.0, 0.5

T

DMF

⎧ ⎛ ⎞ ≤⎜ ⎟⎪⎪ ⎝ ⎠= ⎨
⎪ ≥⎪⎩

      (7.22) 

where T is the natural period of the undamped oscillator representing the bridge pier, and 

d
t is the time duration of the force.  Using Eq. (7.22), a plot of DMF versus the 

dimensionless frequency parameter /
d

t T can be generated as an impact spectrum for the 

rectangular pulse force. 

A popular method for combining modal maxima, known as the square root of the 

sum of the squares (SRSS), is expressed as 

 ( )
1/ 2

2max

1

{ } { }
n

r r r

r

x DMF
=

⎡ ⎤= Φ Γ⎣ ⎦∑       (7.23) 
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where max{ }x is the maximum displacement vector. 

7.5.2 Dynamic Response of Piers 

In lieu of exact methods, common bridge piers may be idealized as a 4-DOF 

column carrying two lumped masses, 1M and 2M , as shown in Figure7.9.  The lumped 

masses are written as 

1 1 20.5( ) 0.5M L L Lm= + =        (7.24) 

2 20.5
s

M m L m= +         (7.25) 

where m is the mass per unit length of the pier, ms is the sum of other masses supported 

by the simplified pier, 1L  identifies the location of the collision point, 2L is the distance 

from the collision point to the pier top, and L is the total length of the pier. 

 

Figure 7.9 Idealized pier model for dynamic analysis 

Application of the static condensation technique to the stiffness matrix eliminates 

the 2-DOF associated with rotation.  The two translational natural frequencies 

corresponding to translational vibrations of the pier are 
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( )
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     (7.26) 

in which  

 
1

L

L
λ = , 1

2

M

M
μ = , 

3

2

12

L k

EI
κ = , 

2

1 1 2 2

3

(3 4 )

EI
R

M L L L
=

+
.    

Since 1,2 1,22 /T π ω= , the dynamic magnification factors 1,2DMF  can be determined 

from Eq. (7.22).  To obtain the dynamic response, the modal matrix is constructed in 

terms of the modal vectors as 

{ } 1 2

1 2

1 1
[{ },{ }]

φ φ
⎡ ⎤

Φ = Φ Φ = ⎢ ⎥
⎣ ⎦

       (7.27) 

2 3

1,2

1,2

4

2 (1 3 )

R

R

ω λ
φ

λ
− ⋅

=
⋅ −

            (7.28) 

Expressed in terms of 1φ  and 2φ directly, Eq. (7.20) becomes 

( ) ( )

2 2

max 1 2
1 2 2 2 2

1 1 1 2 2

P DMF DMF
x

M

μ
ω μ φ ω μ φ

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥

+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
     (7.29) 

( ) ( )

2 2

max 1 1 2 2
2 2 2 2 2

1 1 1 2 2

P DMF DMF
x

M

μ φ φ
ω μ φ ω μ φ

⎡ ⎤ ⎡ ⎤⋅ ⋅
= +⎢ ⎥ ⎢ ⎥

+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
     (7.30) 

where max

1x and max

2x correspond to the maximum displacements of the collision point and 

pier top, respectively. 

For ordinary applications, the variation of the mass ratio η  ranging from 0.01 to 

0.14 does not significantly affect the maximum displacements max

1x and max

2x , and 
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DMF=2.0 because most impact durations 
d

t are larger than 0.5T . The maximum 

displacement curves, plotted on a semi-log graph, are represented in Figure 7.10.  These 

curves may be conveniently employed to evaluate the dynamic response of piers 

subjected to barge impacts for the majority of cases. 

It should be noted that the shear force might contribute partially to the 

displacements of the pier with a height to depth ratio less than 10, which is ignored by the 

proposed method.  In addition, the material plasticity and geometric non-linearity of 

bridge piers are not considered in the proposed method. 
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Figure 7.10 Design chart for maximum displacements max

1x and max

2x at the collision point 

and top of the idealized pier, respectively 

Loss of spans due to insufficient seat width on the impacted bridge pier cap is 

probably the most common mode of bridge failure.  For a multi-span bridge, it is at 

expansion joints where this failure mode is most likely.  To avoid loss of span, sufficient 

seat width should be provided at the top of the pier.  In the interest of focusing on the 

maximum displacement at the pier top when a barge tow collides with a pier, the pier 
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may be modeled as a single-degree-of- freedom system as shown in Figure 7.11.  It is 

conservative to ignore pier self-weight, and such ignorance does not hurt the accuracy of 

results much [50].  The equation of motion of the pier can be expressed as  

2 22 2 21 1 0
s

m x k x k x+ + =        (7.31) 

12 2 11 1 B
k x k x P+ =         (7.32) 

where 
s

m is the topside mass of the pier; c is the viscous damping coefficient; 11k , 22k , 

and 21k (= 12k ) are the stiffness coefficients of the pier; 1x and 2x are the displacements at 

the collision point and top of the pier, respectively. 

m
s
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B

x
1

x
2

1

2

H

 

Figure 7.11 Simplified pier model 

Substituting Eq. (7.32) into Eq. (7.31) and rearranging items results in   

2

22 11 12 12
2 2

22 22

s B

k k k k
m x x P

k k

−
+ = −      (7.33) 

The natural frequency of the pier system is expressed as  

2

22 11 12

22

b

s

k k k

m k
ω −

=        (7.34) 

Thus, the amplitude of the steady-state response, max

2x , is equal to the equivalent 

static deflection multiplied by the dynamic magnification factor DMF given by Eq. 7.22. 

That is, the maximum displacement of the pier top is  
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max 21
1 2

11 22 21

( )Pk DMF
x

k k k
=

−
        (7.35) 

Note that Eq. (7.35) is more general than Eq. (7.29) with respect to the variation 

of pier geometry because only the generalized stiffness coefficients are related to the 

given bridges.  A comparison between these formulas is presented in Table 7.2. 

7.6  Application 

The following example illustrates the application of the previously developed 

methods.  Then, a comparison between the different methods is conducted. 

 Example: A fully loaded JH with a mass 61.724 10
b

m = × kg (1900 short tons) 

and an initial velocity 3.087V = m/s (6 knots) collides head-on with the pier shown in 

Figure 7.12.  Determine (a) the equivalent rectangular load on the pier and (b) the 

maximum displacements at the collision point and top of the pier, respectively.  

Solution: For brevity, the process to solve problems (a) and (b) is tabulated in 

Tables. 7.1.  Alternatively, the same results can be obtained directly from the design 

charts, Figures 7.6(a) and 7.10. 

Figure 7.13 shows the equivalent rectangular load developed in this example, 

which compares with the impact force time-history from the FE simulation using the 

program LS-DYNA970.  A comparison between different methods is presented in Table 

7.1.  The proposed methods agree with the detailed FE analysis.  Moreover, the pier top 

displacement generated by the AASHTO equivalent static load is 2 0.04x =  m, which is 

the smallest displacement in comparison to its counterparts in Table 7.2.  Hence, the 

AASHTO method underestimates the dynamic response of the pier in this case, although 
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the resulting impact force is much larger than the impact forces predicted by other 

methods. 

 

Figure 7.12 Pier frame of the example 
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Figure 7.13 Comparison between the force time-history generated by the FE simulation 

and the equivalent rectangular load developed by the proposed method 

 



 123

Table 7.1 Solutions to problems (a) and (b) of the example 
Problem Step Parameter Value Note 

1 Width ratio α  0.2 /
c

b Bα =  

2 Initial kinetic energy 
k

E  8.21 MJ 
20.5

k b i
E m V=  

3 Initial momentum 
i

I  5.32 MN sec⋅  i b i
I m V=  

4 Coefficient of restitution e  0.10 Eq. (7.8) 

5 Average impact force P  5.53 MN Eq. (7.5) or Figure 7.6(a) 

6 Barge damage depth 
B

a  1.50 m 
Eq. (7.14) or Figure 

7.6(a) 

(a) 

7 Impact time duration
d

t  1.08 sec Eq. (7.15) 

1 Stiffness coefficient k  74.35 10 N/m×  

Since the equivalent  

spring constant for the  

simplified pier is  

between the cantilever  

and fixed-fixed cases, it  

is estimated by 

3

3 12
2

2

EI
k

L

+⎛ ⎞= × ⎜ ⎟
⎝ ⎠

. 

2 Lumped masses M1, M2                

51.34 10 kg×  

62.09 10 kg×  
From Eqs. (22) and (23) 

3 λ ,κ , μ  2.165,    0.195,   0.064 Constants 

4 R 63.23 sec-2  Constant 

5 Natural frequencies 1ω , 2ω        4.98 Hz, 50.78 Hz From Eq. (7.26) 

6 
Dynamic Magnification Factors 

DMF1,2 
2.0,  2.0 

1 0.85 0.5
2

dtω
π

= >  

From Eq. (7.22) 

(b) 

7 

Maximum displacements at the 

collision point and pier top, 
max

1x and 
max

2x  

0.03 m, 0.05 m 
From Eqs. (7.29) and 

(7.30) or Figure 7.10 

 

Table 7.2 Comparison between different methods 

  
 Note:    a. Hand computation time: 10 minutes. 

              b. PC computation time: 36 hours.   

              c. Static analysis using SAP2000.                                        

d. Computation time (including data preparation): 

8 hours.              

e. Using Eq. (7.35).

 

Item 

 

Proposed 

methoda 
AASHTO 

method 

LS-DYNA  

simulationb 
Frieze 

Methodd SAP2000 
Simple 

Methode 

Average force P (MN)  5.43 8.17 4.83 8.08 NA 5.43 

Impact duration 
d

t (sec) 1.08 NA 1.30 0.77 NA 1.08 

Barge damage depth 
B

a (m) 1.50 1.36 1.29 1.19 NA 1.50 

Max displacement 
max

1x (m) 0.03 0.04c 0.03 NA 0.04 0.04 

Max displacement 
max

2x (m)  0.05 0.04c 0.06 NA 0.05 NA 
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7.7  Empirical Formulas 

From the numerical evaluation of the lengthy formulas in section 7.2, it is possible, after 

approximating the coefficients, to propose empirical formulas to estimate the impact 

forces. 

To uncouple the equations, the relationships between the average impact force and the 

barge damage depth may be altered to take the following forms.   

For rectangular piers: 

24.5 646.1 270.5sψ α α= + −       (7.36) 

1.68

for 0 0.1

0.022 0.11  for 0.1B

B B

a

s B B

a aP

a e aψ −

≤ ≤⎧⎪= ⎨
+ >⎪⎩

        (7.37) 

For circular piers: 

 248.0 45.4 16.3
r

ψ α α= + −          (7.38) 

0.851

for 0 0.1

0.0287 0.1058 for 0.1B

B B

a

B Br

a aP

a e aψ −

≤ ≤⎧
= ⎨ + >⎩

        (7.39) 

where the average impact force P is in MN, and the barge damage depth 
B

a is in meters. 

The above simplified formulas are reasonably accurate for common cases, except Eq. 

(7.37) is about 25% less than Eq. (7.3) when the width ratio 0.15α < .  Assuming that the 

kinetic impact energy is completely absorbed by the barge bow, Eq. (7.12) can be 

rewritten as 

i B
E P a= ⋅                  (7.40) 

By substituting Eqs (7.37) and (7.39) into Eq. (7.40), respectively, the 

relationships between the initial kinetic energy 
i

E  and the barge damage depth 
B

a are 
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obtained for rectangular and circular piers, respectively, as shown in Figure 7.14.  The 

dependence of the barge damage depth 
B

a on the kinetic energy 
i

E is analyzed by 

regression analysis.  Comparisons between the numerical and analytical results are also 

presented in Figure 7.14. 

          

 (a)                (b) 

Figure 7.14 Approximate formulation of the barge damage depth 
B

a as a function of the  

kinetic impact energy
i

E : (a) for rectangular piers; (b) for circular piers 

 

For rectangular piers, the barge damage depth is expressed as 

2

29 35i i
B

s s

E E
a

ψ ψ
⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

      (7.41) 

For circular piers, the barge damage depth is 

 
2

16 19i i
B

r r

E E
a

ψ ψ
⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

      (7.42) 

Where the kinetic impact energy 
i

E is in MJ, and the barge damaged depth 
B

a is in 

meters. 
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Although these formulas postulated herein are not highly accurate, especially 

when the kinetic energy is small, they can be used to estimate the impact force 

conveniently for common cases.  More important, these decoupled formulas reveal the 

fundamental influence of the involved parameters.  From Eqs. (7.37) and (7.39), it is 

known that the average impact force tend to be constant when the impact energy is great 

enough, for example, 3
i

E > MJ and 8
i

E >  for rectangular and circular piers, respectively.  

For convenience, kinetic impact energy benchmarks are presented in Table 7.3. 

Table 7.3 Kinetic impact energy benchmarks 

Kinetic energy (MJ) 
Barge Mass 

2 knots 4 knots 6 knots 

Single JH 1900 tons 0.9 3.7 8.3 

 

7.8  Summary 

The methods described in this chapter are intended to improve the analysis of 

bridges susceptible to single-barge impacts.  Both impact load generation of barges and 

the dynamic response of bridges are discussed.  Analytical expressions are developed to 

predict the average impact forces.  Comparisons of the results with finite element 

calculations are favorable.  Since the maximum transient forces occur for a very short 

duration, during which the pier does not have time to respond, the equivalent dynamic 

force is computed as a simple measure of the design structural demand.  A comparison 

between the forces and displacements generated from different methods indicate that the 

derived functions are dependable over a wide range of barge-pier collision problems.  In 

addition, the proposed methods are very easy to employ in bridge design. 

The AASHTO method contains limitations regarding the prediction of barge 

impact loads on bridges due to a lack of consideration of many important factors.  From 
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Meir-Dornberg’s perspective [11], the “equivalent static force” means that the barge 

impact forces obtained in his dynamic experiments are similar to those found in the static 

experiments.  It does not mean that the barge impact forces from his formulas are the 

equivalent static load on bridges.  The dynamic response of bridges is not only dependent 

on impact forces, but also the structural characteristics of bridges.  However, the term 

“equivalent static load” of AASHTO is often misused in technical literature because 

AASHTO provides little information about the dynamic characteristics of barge impacts. 
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Chapter 8  Dynamic System Identification 

It is known from the foregoing chapters that the progressive dynamic collapse of a 

barge bow consists of a series of elastic, elastoplastic hardening, and softening behaviors.  

In this chapter, the formulation of the dynamic system identification of a barge crushed 

by a pier is presented.  This dynamic system identification establishes a simple 

mathematical representation that describes the crushing behavior of a barge under a 

collision-loading environment.  A representation of the resisting force of a single-degree-

of-freedom (SDOF) system is developed in the displacement domain using the 

elastoplastic-collapse concept.  The crushed barge is simplified as a SDOF lumped-mass 

system that contains a set of resistance elements that become active or inactive at 

different displacement stages.  The resistance versus crushing depth curve is interpreted 

as the elastoplastic-collapse or crushing behavior of the barge.  In the proposed 

formulation, the resistant elements will be simply referred to as “elements”. 

8.1  Elatoplastic-Collapse Elements 

Nonlinear springs can be used to describe complicated structural behaviors.  A 

general equation between the force f and the relative displacement δ for nonlinear springs 

is  

2 3

1 2 3

1

...
N

i

i

i

f k x k x k x k x
=

= + + + = ∑                          (8.1) 

where 
i

k is the spring stiffness, and N is the highest degree of the approximating 

polynomial.  
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Because of the magnitudes and signs of the constants 
i

k special cases emerge.  For 

instance, a stiffening spring can be represented by the following equation: 

3

1 3f k x k x= +              (8.2) 

Because the associated mathematical description is usually complicated, nonlinear 

springs are often linearized for analysis purposes.  Springs with stops, as shown in Figure 

8.1, are represented by the following equation: 

( )
( )

1 2

1 1 1

2 2 2

for

for

for

kx x x x

f kx k x x x x

kx k x x x x

< <⎧
⎪= + − <⎨
⎪ + − <⎩

                        (8.3) 

Eq. (8.3) may be considered as the linearization of the non-linear spring described 

by Eq. (8.2).  In the following, a mathematical representation with linear springs that 

describes the complicated crushing behavior of a barge during a collision event is 

developed.  

x1

x2

k

k+k2

k+k1

x

f

kk2

kk1

 
 

Figure 8.1 Springs with stops 

When a barge collides with a bridge pier, the pier is subjected to impact loads 

produced by the moving barge.  Concurrently, the pier exerts an equal but oppositely 

directed force on the barge. To generate the resisting forces of a barge, the moving barge 

may be modeled as a lumped mass with a set of parallel force elements that become 

active or inactive in a sequential order, as shown in Figure 8.2.  Each element works only 
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in its displacement domain.  The first element acts in the first displacement domain, and 

then it becomes inactive.  The second element becomes active after the first displacement 

domain, and then the third element after the second displacement domain, and so on. 

Consequently, a series of such elements covers the entire crushing process.  As such, the 

springs capture the dynamic plastic collapse behavior of the barge. 

k
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k
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k
3

mB

x

 
 

Figure 8.2 Schematic diagram of an undamped SDOF system 
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Figure 8.3 A typical force-deformation curve of a bow structure during impact 

 

Figure 8.3 shows a typical force-displacement curve for a barge crushed by a pier. 

It can be seen that the barge bow initially undergoes elastic deformation, shown in range 

a, followed by plastic deformation, shown in range b.  In range c, the barge bow 

experiences plastic collapse, as displacement increases with decreasing forces.  The 
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unloading process (range j) begins when the barge bow reaches its maximum 

displacement.  Because of the distinct behavior exhibited between each range, each of the 

failure modes may be modeled using one element to represent one range of the resistance 

curve. 

Figure 8.4 shows a schematic diagram of the elastoplastic elements that form a 

piecewise linear function that expresses the crushing force in terms of the crushing 

distance.  This representation makes it possible to obtain an analytical solution of the 

equation of motion that governs the simplified model for the barge.  Each linear function 

can have a positive slope, negative slope or no slope.  A constant slope defines the 

stiffness for the subdomain.  If the function has a positive slope, then the behavior of the 

structure may be classified as elastic.  Collapse behavior occurs when the function has a 

negative slope.  If the function has a negative slope, then it represents the collapse 

behavior.  When the function exhibits no slope, or “zero” slope, it is interpreted as perfect 

plastic behavior.  However, any displacement subdomains presented in Fig 8.3 may 

contain several elements.  If the functions defined in one subdomain have two different 

positive slopes, the phenomenon is interpreted as an elastoplastic behavior, i.e., a 

hardening or a softening behavior.  The determination of a piecewise linear function for 

the resisting forces is formulated as an optimization problem for system identification. 
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Figure 8.4 Schematic diagram of the elastoplastic elements 
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8.2  Equation of Motion 

As shown in Figure 8.2, the simplified SDOF system for the barge is governed by 

the following equation of motion: 

( ) [ ( )] 0
b

m x t f x t+ =                          (8.4) 

(0) 0x = and (0)
i

x V=                       (8.5) 

where 
B

m  and 
i

V is the mass and initial velocity of the barge, respectively. The restoring 

force ( )f δ  is defined by a series of elements as 

( )
1

1

1

( ) ( )
i

i i j j j

j

f x k x x k x x
−

+
=

= − + −∑  for 1i i
x x x+ > ≥ , 1i ≥ , and 1 0x =       (8.6) 

1

1

i i
i

i i

f f
k

x x

+

+

−
=

−
                               (8.7) 

where x and ( )f x  are the crushing distance and resisting force, respectively, and (
i

x , 
i

f ) 

is the stating point of the ith element. 

Alternatively, the restoring force in the ith subdomain can be written as 

( )
i i

f x k x b= −  for 1 1i i
x x x− +≤ <                     (8.8) 

i i i i
b k x f= −                                  (8.9) 

where both 
i

k and 
i

b are constants in the ith subdomain. 

Substituting Eq. (8.8) into Eq. (8.4) yields 

, 1
i i

mx k x b i N+ = = …                               (8.10) 

where N is the total number of the elastoplastic elements of the system. 
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Once the values of
i

x ,
i

f , 1i
x + , and 1i

f +  are known, the equation of motion in Eq. 

(8.10) has a closed form solution.  Denoting /
i i

k mλ = , the solution of the equation is 

given as follows. 

1 2

1 2

2

for 0

( ) for 0

sin cos for 0

i it t i
i

i

i

i
i i i

i

b
c e c e

k

x t c c t

b
t c t

k

λ λ λ

λ

λ λ λ

− − −⎧ + + <⎪
⎪⎪= + =⎨
⎪
⎪ + + >
⎪⎩

              (8.11) 

where the arbitrary constants 1c and 2c are evaluated by the initial conditions or the 

boundary conditions. 

Using the analytical solution in Eq. (8.11), an optimization problem may be 

defined for the dynamic system identification.  The optimization problem minimizes the 

error function defined between the given system quantity from numerical simulations and 

the quantity computed from the analytical solution.  Thus, the obtained mathematical 

representation for the force-displacement curve identifies the simplified model for the 

barge. 

8.3  Optimization Formulation for System Identification 

To formulate the identification problem, assume N elements, and let
i

x , 1i =  to N 

denote all the displacement break points for the entire domain.  Also, let 
i

f  represent the 

corresponding force values.  Then the unknowns of the identification problem can be 

collectively represented in the vector q as 

1 2 1 1 2 1[ , , , , , ]T

N Nq x x x f f f+ +=       (8.12) 
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The system identification problem is to reduce the error between the given data 

and its analytical representation.  Using the 2L  norm, the error function is defined as  

Minimize
1

2

1

( ) [ ( ) ( , )]
i

i

tN

i t

E q f x mx q t dt
+

=

= −∑ ∫                (8.13) 

Subject to 1i i
x x+ >  

     1 0x = , 1 0f = , 1 maxN
x x+ =  

     0 max[ ( )]
i

f f x≤ ≤  

where ( )f x is the given impact force data from the FE simulations, and ( , )x q t is 

available from Eq. (8.11). 

The total number of optimization variables is 2 1N − because 1x , 1f , and 1N
x +  are 

known.  To solve the constrained nonlinear optimization problem, a program has been 

written using the Sequential Quadratic Programming (SQP) method in MATLAB 6.5 

[40].  

8.4  Numerical Example 

The impact force time-history of a fully loaded barge impacting a square pier 

( 1.0α = ) with a velocity of 1.8 m/s (3.5 knots) has been simulated using the program 

LS-DYNA.  The crushing resistance of the barge is identified with eight elements, as 

shown in Figure 8.5.  Since the resisting force is obtained as a piecewise linear function 

of the displacement, the slope of the force curve in a displacement subdomain indicates 

transient stiffness for that domain.  The stiffness of each element is presented in Table 8.1.  

 From Table 8.1, it can be seen that most of the elements are collapse elements 

with negative stiffness coefficients.  The first element is the stiffest and the second 
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element deflects at the greatest rate due to the damage of the structural members during 

the activity of element 2.  After these processes, even though the collapse process 

continues, the impact force remains relatively stable.  Elements 7 and 8 have positive 

stiffness coefficients because the bow structure is strong enough to resist the impact 

forces while these elements are active.  
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Figure 8.5 Impact force vs. crushing depth from a fully loaded barge impacting a square 

pier at a velocity of 1.8 m/s 

 

Table 8.1. Identified stiffness coefficients for a barge impacting a square pier (α =0.1) 

with a velocity of 1.8 m/s 

Element 

i 

Stiffness 
i

k  

(MN/m) 

1 1034.47 

2 -254.49 

3 -25.43 

4 -6.88 

5 -5.83 

6 -3.60 

7 0.29 

8 0.27 
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Figure 8.6 Impact time histories reproduced using the identified parameters for a fully 

loaded barge impacting a square pier at a velocity of 1.8 m/s 

Various structural configurations that are used in practice cause the FE results to 

fluctuate.  Since this study pertains to general collision cases, the individual barge 

configuration may be ignored.  Although a greater number of force elements increase the 

accuracy of the approximation, eight elements efficiently represent the dynamic strength 

of the bow structure.  

Once a barge-pier collision problem is identified, the time variation of the impact 

force, crushing distance, and so on, can be easily reproduced using Eq. (8.11).  As for the 

example presented in this section, the corresponding relationships are shown in Figure 

8.6.  The results from the simple SDOF system correlate well with those from the FE 

simulation.  Containing several elements, this particular representation of the nonlinear 

force-deformation relationship greatly simplifies the subsequent analyses.  The 
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significance of the system identification is far more than a mere simplification of the 

force-deformation representation, but that topic is beyond the scope of this dissertation. 

8.5  Identification of a Damped System 

As demonstrated in Chapters 4 and 7, the impact velocity affects the impact 

process.  In order to account for the influence of velocity, the forgoing formulation for 

the undamped SDOF system should be extended to a damped SDOF system shown in 

Figure 8.7.  With damping added, the system’s free vibration is described by the 

differential equation of motion: 

( ) ( )
B i i i

m x t c x k x t b+ + =        (8.14) 

where 
i

c is the damping coefficient of the ith element.  

Assume that the damping is coupled with the displacement, and takes the form: 

,1 ,2i i i
c C C x= +         (8.15) 

where ,1i
C and ,2i

C are the constants to be determined.  

k
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3

mB

x
vi

 
Figure 8.7 Schematic diagram of a damped SDOF system 

In order to solve the second order non-homogeneous Eq. (8.15), a series of 

approximation or numerical solutions is necessary.  The vector q is also altered to include 

the damping parameters: 
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1 2 1 1 2 1 1,1 1,2 1,1 1,2[ , , , , , , , , , ]T

N N N N
q x x x f f f C C C C+ + + +=             (8.16) 

The cost function remains the same as Eq. (8.13) except for the addition of one 

more constraint 1,1 0C = .  The optimization algorithm was implemented in MATLAB6.5. 

Eight elements were used to identify the same impact problem as in the previous section. 

The identified parameters are presented in Table 8.2.  

The element parameters in Table 8.2 can be used to predict a different impact 

scenario than the original.  As a second example, consider a case where the initial 

velocity is 1.29
i

V = m/s (2.5 knots) instead of 1.8
i

V =  m/s (3.5 knots), and the barge 

mass 
B

m remains the same as in the first example.  Using the identified parameters in 

Table 8.2, Eq. (8.11) gives the time histories of the impact force, barge damage depth, 

and barge velocity, which are shown in Figure 8.8.  The difference between the analytical 

solution and results from the FE simulation is minor.  

Table 8.2. Damped-SDOF-System elements identified for a barge impacting a square 

pier (α =0.1) with a velocity of 1.8 m/s 

Element 

i i
X (m) 

i
Y  (KN) ,1i

C ( KN×s/m ) 
,2i

C (
2KN×s/m ) 

0.000 0.000 
1 0.000 491.563 

0.007 7161.978 

2 2748.088 758.287 

0.034 4319.111 

3 1445.618 102.556 

0.132 3216.159 

4 939.499 967.296 

0.282 2577.714 

5 820.015 230.319 

0.428 2206.101 

6 727.262 259.994 

0.516 2143.522 

7 786.610 429.005 

0.619 1971.833 

8 
0.696 2466.894 

906.312 808.525 
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Figure 8.8 Impact time histories predicted using the identified parameters for a fully 

loaded barge impacting a square pier ( 0.1α = ) at a velocity of 1.8 m/s 

8.6  Summary 

In this chapter, a representation for the crushing force of barges is developed in 

the displacement domain with the elastoplastic-collapse elements.  The elastoplastic-

collapse concept introduced here allows physical interpretation of the force-deformation 

or force-time curves.  Moreover, using the developed formulations, the transformation 

from the force-deformation history to the force-time history can be performed, and vice 

versa.  When the force-time or force-deformation histories are specified, they can be used 

to construct a SDOF oscillation system, which provides the fundamental features of barge 

impact loadings.  In addition, the formulation makes it possible to describe the 

progressive dynamic collapse of a barge during impact with a piecewise linear function. 

Application of the procedures to model the dynamic stiffness of barge bows is presented 

in Chapter 9.  
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Chapter 9  Spring-Mass Model for Barge Flotillas 

Impacting Bridge Piers 

This chapter introduces an elastoplastic spring-mass model to analyze multi-barge 

flotillas colliding with bridge piers.  The model accounts for the essential factors 

pertaining to barge-flotilla impacts, such as the pier geometry, stiffness, and dynamic 

interactions between barges.  Nonlinear spring elements are used in this model.  Although 

a one-dimensional (1-D) multi-degree of freedom (MDOF) model is presented in this 

chapter, it can be converted into a two-dimensional (2-D) MDOF model if required.  The 

proposed model generates impact force time-histories for numerous simulation cases in a 

matter of minutes, which is especially valuable in probabilistic analysis which requires 

many collision simulations.  Furthermore, the results from the proposed model are 

compatible with the respective impact time-histories produced by exhaustive finite 

element simulation.  Analysis of a bridge pier subjected to a 15-barge flotilla impact is 

included as an example. 

9.1  Stiffness of Barge Body 

In Chapter 7, the barge bow stiffness was discussed in detail.  However, it is also 

important to know the barge body stiffness in investigating the interactions between 

barges in a multi-barge flotilla during an impact event.  Prior to developing a flotilla 

model, the stiffness of the barge body must to be identified.  Similar to the method used 

in Chapter 7, the stiffness of individual barge bodies contained in a flotilla is obtained 

through FE simulations.  Figure 9.1 shows the FE model of JH bodies.  The barge body is 

fixed on one end and pressed by a rigid wall from the other end.  
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The force-deformation relationship of the barge body is presented in Figure 9.2. 

Since barge bodies are very stiff and remain elastic for most cases, a bilinear model based 

on the envelope of the dynamic stiffness is used to describe the barge-body resistance to 

compression, which is given by: 

31.2 10 for 0.125 
( )

147.8 17.6 for 0.125 

B B

B B

B B

f
δ δ

δ
δ δ

⎧ × ≤
= ⎨

+ >⎩
                               (9.1) 

where the barge resisting force ( )
B B

f δ  and barge body deformation 
B

δ are in MN and m, 

respectively.  

Fixed

Crushing

Fixed

 
 

Figure 9.1 FE simulation of JH body stiffness by compressing the body structure with a 

rigid wall 
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Figure 9.2 Force-Deformation relationships for JH bodies under different deformation 

rates 
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Note that Eq. (9.1) is only valid for longitudinally symmetric compression.  It is 

consistent with this study that discriminating between impact angles is not important for 

predicting the maximum impact forces on bridge piers. 

9.2  Stiffness of Barge Bows and Lashing Cables 

As demonstrated in Chapter 8, the complex nonlinear behavior of the crushed 

barge bow during impact can be represented with the piecewise linear spring elements.  

The resisting force of the ith element is expressed as 

( )
1

, , , , 1 ,

1

( ) ( )
i

b b b i b b i b j b j b j

j

f k kδ δ δ δ δ
−

+
=

= − + −∑  for 
, 1 ,b i b b i

δ δ δ+ > ≥ , 1i ≥ , and 
,1 0

b
δ =     (9.2) 

, 1 ,

,

, 1 ,

b i b i

b i

b i b i

f f
k

δ δ
+

+

−
=

−
                             (9.3) 

where 
b

δ and ( )
b b

f δ  are the crushing distance and resisting force of the barge bow, 

respectively, and ( ,b i
δ , ,b i

f ) is the stating point of the ith element. 

The connection method between barges is described in Chapter 6.  For brevity 

only, the following material model for the steel cables is adopted. 

31.2 10 for 0.125 
( )

147.8 17.6 for 0.125 

B B

B B

B B

f
δ δ

δ
δ δ

⎧ × ≤
= ⎨

+ >⎩
                             (9.4) 

where the barge resisting force ( )
B B

f δ  and body deformation 
B

δ are in MN and m, 

respectively.  

9.3  Resistance-Displacement Relationships of the Connections 

For a MDOF system exhibiting elastoplastic behavior, expressions for the 

restoring forces can be written and incorporated into the time integration algorithms. 
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These expressions depend on the magnitude of the restoring force as well as on whether 

the relative displacements between masses in the system are increasing or decreasing.  In 

the multi-barge flotilla model, three types of nonlinear springs are used to represent the 

force-displacement relationships for a barge flotilla. 

The force-displacement relationship for the barge bow in contact with the pier is 

schematically shown in Figure 9.3(a).  The resisting forces F at time t  for each stage are 

given by 

Loading: ( ) [ ( )]
b

F t f tδ=                   (9.5) 

Unloading: 

( )[ ( ) ]
for ( )

( )

0 for ( )

b
f t

t
F t

t

β α
α

β α

α

δ δ δ
δ δ

δ δ

δ δ

−⎧
>⎪ −= ⎨

⎪ ≤⎩

                          (9.6) 

Reloading: 

[ ( )] for ( )

( )[ ( ) ]
( ) for ( )

0 for ( )

b

b

f t t

f t
F t t

t

β

β α
β

β α

α

δ δ δ
δ δ δ

δ δ
δ δ

δ δ

⎧ >
⎪

−⎪= ≤⎨ −⎪
⎪ <⎩

                             (9.7) 

where αδ and βδ , determined by the relative displacement 1( ) ( ) ( )
i M

t x t x tδ = − , identify 

the beginning of separation and unloading processes, respectively; ( )
i

x t is the 

displacement of the barge contacting with the pier. 

The adjacent barges in the same column have two interaction modes: push and 

pull.  A mixed spring element is used to describe this type of interaction.  In addition, 

gaps between the barges and the relaxation of lashing cables should be considered.  

Referring to Figure 9.3(b), the resisting forces F at time t  for each stage are given by 
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Loading: 

0 for ( )

[ ( )] for ( )( )

[ ( )] for ( )

b c

d b

c c

d t d

f t t dF t

f t t d

δ
δ δ
δ δ

≥ ≥⎧
⎪ ≥= ⎨
⎪ ≤⎩

                   (9.8)

 Unloading: 

1 1

1

1 1

2 1

2 2

2

2 2

( )[ ( ) ]
for ( )

( ) 0 for ( )

( )[ ( ) ]
for ( )

d

c

f t
t

F t t

f t
t

β α
α

β α

α α

β α
α

β α

δ δ δ
δ δ

δ δ

δ δ δ
δ δ δ

δ δ
δ δ

−⎧
≥⎪ −⎪⎪= ≤ ≤⎨

⎪ −
⎪ <

−⎪⎩

           (9.10) 

Reloading:

2 1

1 1

1 1

1 1

2 2

2 2

2 2

1

2
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( )[ ( ) ]
for ( )

( )[ ( ) ]( )
for ( )

[ ( )] for ( )
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c

d

c

t

f t
t

f tF t
t

f t t

f t t

α α

β α
β α

β α

β α
β α

β α

β

β

δ δ δ
δ δ δ

δ δ δ
δ δ

δ δ δ
δ δ δ

δ δ

δ δ δ
δ δ δ

≤ ≤⎧
⎪ −⎪ ≥ >
⎪ −
⎪

−= ⎨ ≤ <⎪ −
⎪
⎪ >
⎪ <⎩

                      (9.11) 

where 1αδ , 1βδ , 2αδ , and 2βδ are breakpoints determined by the relative displacements 

( ) ( ) ( )
i j

t x t x tδ = − ; ( )
i

x t  and ( )
j

x t  are the displacements of the two adjacent barges in 

the same column, respectively; 
b

d  and 
c

d are the gaps between the barges for 

compression and tension, respectively. 

A tension-only spring element, as shown in Figure 9.3(c), is used to describe the 

connections between barge columns.  The resisting forces F at time t  for each stage are 

given by 

Loading : 
0 for ( )

( )
[ ( )] for ( )

c

c c

t d
F t

f t t d

δ
δ δ

≤⎧
= ⎨ >⎩

       (9.12) 

Unloading: 

( )[ ( ) ]
for ( )

( )

0 for ( )

cf t
t

F t

t

β α
α

β α

α

δ δ δ
δ δ

δ δ

δ δ

−⎧
≥⎪ −= ⎨

⎪ <⎩

             (9.13) 
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Figure 9.3 Force vs. relative displacement model formulation: (a) barge-pier interaction; 

(b) barge-barge interaction in the same column; (c) barge-barge interaction between 

adjacent columns 

Reloading: 
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where αδ and βδ are breakpoints determined by the relative displacement 

( ) ( ) ( )
i j

t x t x tδ = − ; ( )
i

x t  and ( )
j

x t  are the displacements of the two adjacent barges in 

the same row, respectively; 
c

d is the gap for cable tension.   

9.4  Dynamic Response of the Pier 

As shown in Figure 9.4, a common bridge pier may be idealized as a cantilever 

column with four degrees of freedom (DOF): two translational, 1M
x  and 2M

x , and two 

rotational, 1M
θ  and 2M

θ .  Two lumped masses, 1M  and 2M , are associated with the pier 

displacements at the top and collision point, respectively, and are written as  

( )1 1 20.5M L L m= +                    (9.15) 

2 20.5
s

M m L m= +                    (9.16) 

where 1L is the collision  position on the pier; 2L is the distance between the collision 

point and the pier top; m is the mass per unit length of the column; ms is the sum of the 

other masses attributed to the pier.  

 

Figure 9.4 Idealized pier model for the dynamic analysis 
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The static force-displacement relationship for this structure, as expressed through 

the stiffness matrix, can be written as 

3 3 3 2 2 2

1 2 2 1 2 2

1

3 3 2 2

2 2 2 2 2

1

2 2 2

1 2 2 1 2 2 2

2 2

2 2 2 2

12 12 12 6 6 6

( )12 12 6 6

0

6 6 6 4 4 2 0

0

6 6 2 4

M Ix

M

M

M

L L L L L L

x F tk

L L EI L L x
EI

L L L L L L

k

L L L L EI

θ

θ
θ

⎡ ⎤+ − − −⎢ ⎥
⎢ ⎥

⎧ ⎫ ⎧ ⎫⎢ ⎥− + ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎪ ⎪ ⎪ ⎪− +⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭⎢ ⎥
⎢ ⎥− +⎢ ⎥
⎣ ⎦

     (9.17) 

where EI, 
x

k and kθ are the flexural rigidity of the pier, translational and rotational 

stiffness coefficients of mass M1, respectively; ( )
I

F t is the flotilla impact force on the 

pier. 

Since the kinetic energy component associated with rotational DOF is negligible 

in comparison to that corresponding to the translational DOF, static condensation can be 

used on the stiffness matrix ( 4 4× ) to eliminate the two rotational DOF ( 1M
θ and 2M

θ ).  

The expression for the condensed stiffness matrix is thus given by: 

11 12

2 2 1 2 21 22
2 1 2

3
[ ]

( )
3 4

k k
k

k L L L k k
L L L

EI
θ

⎡ ⎤
= ⎢ ⎥+⎡ ⎤ ⎣ ⎦+ +⎢ ⎥⎣ ⎦

    (9.18) 

in which 

( )
3

2
11 1 2

1

1 4
L

k EI L L k
L

θ
⎛ ⎞

= + + +⎡ ⎤⎜ ⎟ ⎣ ⎦
⎝ ⎠

, 

( ) ( )2 3 1 2
22 1 2 2 1 2 2

( )
4 4 3 4

3 3

x xk L L k k
k EI L L k L L L L

EI

θ
θ

+
= + + + + + , 
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( )2 2
12 21 1 2

1 1

3 3
2 2 1

L L
k k EI L L k

L L
θ

⎛ ⎞ ⎛ ⎞
= = − + − + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

Subsequently, the equation of motion can be written in matrix form as 

}{ }{ }{ }{[ ] [ ] [ ] ( )m x c x k x f t+ + =                (9.19) 

where  

1

2

0
[ ]

0

M
m

M

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
,  

1

2

0
[ ]

0

c
c

c

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
,  }{ ( )

( )
0

IF t
f t

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
,  

and 1c and 2c are the viscous damping coefficients. 

9.5  Modeling of a Multi-Barge Flotilla Impacting a Bridge Pier  

The general matrix formulation of the equations of motion for an MDOF 

elastoplastic system is given by: 

}{ } }{{[ ] [ ] ( ) 0m x c x f x+ + =               (9.20) 

where [ ]m and [ ]c are the n n× mass and damping matrices, respectively; { }x and { }x are 

the 1n × velocity and acceleration vectors (in physical coordinates), respectively; }{ ( )f x  

is the 1n × restoring force vector.  

In a uniform way, Eq. (9.20) can be determined using Lagrangian equations given 

by 

*

z

z z

d L L
Q

dt x x

⎡ ⎤∂ ∂
− =⎢ ⎥∂ ∂⎣ ⎦

                    (9.21) 

where L is the Lagrangian, 
z

x ( 1z n= … ) are the generalized coordinates, and *

z
Q are the 

generalized forces. 
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However, the direct stiffness method is more convenient to assemble the 

equations of motion for the barge-pier system.  To clarify the discussion, consider a 6-

barge flotilla impacting on a pier with the initial velocity 0V , as schematically shown in 

Figure 9.5.  The system has eight DOF (including 1M
x  and 2M

x ) and eight spring 

elements.  The barge mass and damping matrices are written in a standard way and are 

not provided herein.  The restoring force vector at time t is given by 

}{

11,12 11,21

11,21 21,22

11,12 12,13 12,22

12,22 22,23 21,22

12,13 13,23

22,23 13,23

1

2

[ ( )]

I

M

M

F F

F F

F F F F

F F F
f x t

F F

F F

F

F

−⎧ ⎫
⎪ ⎪+⎪ ⎪
⎪ − + − ⎪
⎪ ⎪+ −⎪ ⎪= ⎨ ⎬− −⎪ ⎪
⎪ ⎪− +
⎪ ⎪
⎪ ⎪
⎪ ⎪⎭⎩

     (9.22) 

1 1

2 2

[ ]
0

M M I

M M

F x F
k

F x

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= −⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭⎩ ⎭ ⎩ ⎭
       (9.23) 

where the interaction force of the barge at the ith row and jth column and the barge at the 

rth row and sth column, ,ij rs
F , is dependent on the relative displacement 

, ( ) ( ) ( )
ij rs ij rs

t x t x tδ = − ; 1M
F  and 2M

F are the restoring forces corresponding to the lumped 

masses 1M and 2M , respectively. 

Finally, the total kinetic energy of a flotilla with Nr rows and Nc columns at time t 

can be expressed as 

 2

1 1

1
( )

2

cr NN

k ij ij

i j

E t m x
= =

= ∑∑           (9.24) 
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 where 
ij

m and ( )
ij

x t are the mass and velocity of the barge at the ith row and jth column, 

respectively. 
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Figure 9.5 Layout of a 6-barge flotilla impacting a rigid pier 

9.6  Numerical Evaluation  

Since the equilibrium relation in Eq. (9.20) is a set of simultaneous ordinary 

differential equations with constant coefficients, any finite difference expressions to 

approximate the accelerations and velocities in terms of displacement can be used.  The 

central difference method is utilized herein.  A stable solution can be obtained only by 

selecting a time step 
cr

t tΔ ≤ Δ [41], given by 

n
cr

T
t

π
Δ =               (9.25) 

where 
n

T is the smallest natural period of the MDOF system.  

The step-by-step central difference algorithm for the MDOF system is as follows. 

(1) Initial calculations 

1

0 0 0{ } [ ] [{ } [ ]{ } ]x m f c x
−= − +       (9.26) 

0 2

1

( )
a

t
=

Δ
, 1

1

2
a

t
=

Δ
, 2 02a a= , 3

2

1
a

a
=     (9.27) 
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0 0 3 0{ } { } { } { }
t

x x t x a x−Δ = − Δ +      (9.28) 

0 1
ˆ[ ] [ ] [ ]m a m a c= +         (9.29) 

(2) For each time step 

 2
ˆ ˆ{ } { } [ ]{ } { }

t t t t t
F f a m x m x −Δ= − + +      (9.30) 

1 ˆˆ{ } [ ] { }
t t t

x m F−
+Δ =        (9.31) 

 The force vectors { }f in Eqs. (9.26) and (9.30) are determined from Eqs. (9.22) 

and (9.23), depending on the resistance stage. 

9.7  Model Validation 

Figure 9.6 shows the 3-barge column FE model developed in Chapter 6, which 

consists of six element types and approximately 76,810 elements.  Given an initial 

velocity 0 2.06V = m/s (4 knots), the collision between the fully loaded 3-barge flotilla 

( 65.17 10× kg) and a rigid pier (cross section: 22.134 2.134 m× ) was simulated using the 

programs ANSYS8.0 and LS-DYNA970.  The impact force time history is presented in 

Figure 9.7, which is the raw data filtered through a Butterworth filter at 100 Hz [37].  

 
 

 

Figure 9.6 Detailed FE model of the 3-barge column developed using the program 

ANSYS8.0 
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The same problem was also solved by the proposed model.  As indicated in 

Figure 9.7 and Table 9.1, a comparison of the two models shows excellent agreement. 

Both methods not only demonstrated correlation between the impact force and crushed 

distance but also reflect a similar dynamic response as well.  By comparison, the 

AASHTO and Modjest & Masters design loads [42] considerably overestimate the 

impact force.  However, the AASHTO method and the proposed model predict very 

similar values for the barge damage depth.  
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Figure 9.7 Comparison between the impact force time-histories for the 3-barge column 

impacting a rigid rectangular pier 

 

 

Table 9.1. Comparison between the methods predicting barge impact forces 

Method 
Average impact 

force (MN) 

Barge damage 

depth (m) 
Impact duration (s) 

Proposed method 4.6 1.8 2.7 

LS-DYNA FE simulation 4.0 2.0 2.9 

AASHTO method 8.8 1.7 NA 

Modjest & Masters method 14.0 NA  NA 
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9.8  Example 

A reinforced concrete bridge pier shown in Figure 9.8(a) is subject to the impact 

of a 15-barge flotilla (see Figure9.8 (b)), which has a total mass of 615 1.72 10× × kg and 

an initial velocity of 1.54 m/s (3.0 knots).  The superstructure mass is 58.5 10
s

m = × kg, 

the damping coefficients of the pier are 53.408 10c = × kg/s , the stiffness coefficients are 

81.430 10xk = ×  N/m and  101.533 10kθ = ×  N, and the flexural rigidity is 

103.309 10EI = × m
2
N.  The material plasticity of the pier is not considered. 

20m

8m

2

1
FI

m
s

2m

Section A-A

2m
A A

 
(a) 

 

Pier

1

12345

2

3

6

11

12

13

21

22

23

31

32

33

41

42

43

51

52

53

62

Towboat

Six rows

 
 

(b) 

 

Figure 9.8 Example conditions: (a) layout of the pier frame; (b) layout of the 15-barge 

flotilla including a towboat 

 

The pier was analyzed using the proposed model.  The results are presented in 

Figure 9.9.  From Figure 9.9(a), it is evident that the assumption of the AASHTO method 
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that the entire mass of the flotilla acts as a single rigid body produces very conservative 

results.  From Figure 9.9(b), it can be seen that approximately 95% of the initial kinetic 

energy is dissipated during the collision.  The kinetic energy decay is a non-monotonous 

function of time due to the interactions between barges.  Aside from the flexibility of the 

connectivity of one barge to another, the delayed response of barges also plays an 

important role in the impact due to gaps.  In addition, the barges loosen, or gain relative 

distance between one another at the end of the impact. 

 

   (a)        (b) 

 

Figure 9.9 Time histories of the example: (a) pier displacements and impact force; (b) 

individual barge displacements and flotilla kinetic energy 

9.9  Summary 

Rarely, if ever, is it possible to model all sources of nonlinearity and portray the 

actual behavior of practical structures in all of its detail.  Normally, the problem is one of 
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selecting a method that falls short of the ideal in one way or another but that does 

provides adequate analytical simulation of the case at hand.  To reveal the fundamental 

characteristics of structural impact/collisions with reduced complexity, a simple mass-

spring system has been utilized, in which the complicated geometric analysis is no longer 

required while the two most essential factors for the structural dynamics – inertia and 

stiffness – are incorporated.  The simplified mass-spring colliding system is found to be 

equivalent to the solution of flotilla-pier collisions, and therefore the system bears clear 

physical meaning.  

It has been shown that the simplified flotilla model derived in this chapter is 

applicable to the analysis of bridges subjected to barge flotilla impact.  All the results 

generated by the proposed model correlate well with the results from FE simulations.  

FE simulations are considered more realistic than the simplified model, but the 

prohibitive numerical cost inhibits the feasibility of FE simulations in a non-research 

setting.  A full FE model for the collision simulation of a 15-barge flotilla may require 

500,000 elements in addition to a computer processing time of several weeks on a 

powerful computer.  In contrast, the proposed simple model for the same flotilla requires 

mere seventeen elements and a couple of minutes on a common personal computer. 

Despite the short running time, the simplified approach can answer most of the questions 

encountered in bridge design.  Besides, this method is capable of analyzing the nonlinear 

response of a pier as long as an appropriate material model is defined.  

Since the proposed 1-D MDOF model is constructed to aid bridge designs, it is 

only suitable for analyzing symmetric impact scenarios.  To account for non-symmetrical 

loading cases, modifications should be made to transform the 1-D MDOF model into a 2-
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D MDOF model by adding springs in the transverse direction.  With the 2-D capacity, the 

method could be easily incorporated into a probability-based framework to assess 

structural performance for a variety of collision scenarios. 
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Chapter 10   Applications 

The foregoing chapters focused on the determination of barge impact forces on 

piers.  Through three examples, this chapter investigates the dynamic response of real 

bridge structures subjected to barge impact loadings. 

The first example, which uses the LS-DYNA970 code, simulates a single-barge 

impacting a reinforced concrete frame to determine the impact force and dynamic 

response of the frame.  The frame is relatively slender and is assumed to rest on a flexible 

foundation.  This example further reveals the dynamic nature of the barge-pier collision 

problem. The second example employs the impact force time-histories, developed 

previously, to analyze the dynamic response of a steel truss-bridge, which is modeled in 

the program SAP2000.  The third example utilizes the program ANSYS8.0 and the 

previously developed impact force time-history to analyze a modern cable–stayed bridge 

impacted by a 15-barge flotilla.  

Today, vessel impact is one of the most significant design considerations for 

bridges that span navigable waterways.  Until twenty-five years ago, vessel impact 

loading was not even a consideration when designing bridges.  The immediate objectives 

of the latter two examples are: characterize the global dynamic response of real bridges 

during barge impacts, evaluate the influence of barge loads on the stability of a whole 

bridge, and compare the differences between the static analysis and dynamic analysis. 
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10.1  Simulation of a Barge Impacting a Slender Pier 

The reinforced concrete bridge pier in Figure 10.1 is to be analyzed for impact by 

a JH traveling at a velocity of 2.06
i

V = m/s (4 knots).  The barge is fully loaded with a 

mass of 1723.65
B

m = metric tons.  The example pier consists of four concrete pile 

columns that are rigidly connected to the concrete cap.  A detailed description of the 

structural member properties and dimensions is given in Figure 10.2.  The soil is 

comprised of five layers of clayey sands which are modeled using 3-D solid elements. 

The soil properties are presented in Table 10.1.  The pier cap, including the 

superstructure mass supported by it, has a combined mass of 350 metric tons. 

Table 10.1. Soil properties of the first example 

 

 
Figure 10.1 3-D view of a barge impacting a concrete pier at a velocity of 2.06 m/s (4 

knots) 

Layer 
Thickness 

(m) 

Modulus of elasticity 

(MPa) 

Density 

(
3 310 /kg m× ) 

1 2.3 48.3 1.80 

2 1.8 82.7 1.84 

3 2.8 124.1 1.91 

4 5.1 44.8 1.88 

5 6.6 124.1 1.95 
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Figure 10.2 Cross-section of the reinforced concrete pier 

 

The simulation of the barge impacting the pier is implemented in the program LS-

DYNA970.  The time histories of the pier deformation shape, the impact force, and the 

displacements at the collision point and pier top are presented in Figures 10.3, 10.4, and 

10.5, respectively.  Figure 10.3 clearly indicates that the static analysis of the pier is not 

appropriate in this case due to the time-varying nature of the excitation (impact loads) 

and the dynamic response of the pier.  The patterns of the impact force time-histories 

shown in Figure 10.4 vary, especially at the beginning of impact.  The maximum impact 

force for this flexible pier is much smaller than that for the rigid pier.  As proven in 

Chapter 5, slender piers cannot be assumed to be rigid for the generation of barge impact 

loadings.  Consequently, the interaction between the impacting barge and pier cannot be 

ignored in the determination of the impact load and dynamic response of the pier.  For 

such cases, computationally intensive FE simulations may be the only current, feasible 
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method to determine the maximum impact forces.  Fortunately, modern highway bridges 

that cross inland waterways rarely contain slender piers. 

It is also found that the foundation of the pier experiences large deformation.  

Thus, bridge foundations subjected to barge impacts must withstand large lateral dynamic 

forces, which may largely control the components of bridge design.  Moreover, a larger 

cross-section is required for the pier to resist the shear forces and local damage caused by 

barge impact. 

 
 

Figure 10.3 Deformation shape of the pier during impact 
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Figure 10.4 Impact force time-history of the pier impacted by a fully loaded JH at a 

velocity of 4 knots 
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From Figure 10.5, it can be seen that the pier structure vibrates at a frequency of 

3Hz.  Both the pier top and the collision point have a very large displacement.  Concrete 

piers cannot endure such a large deformation without serious damage.  Therefore, a 

slender pier is not suitable for resisting barge impacts despite a corresponding reduction 

in impact forces due to the interaction between the slender pier and the barge. 
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Figure 10.5 Time-histories of the pier displacements and barge crushing distance 

 

Table 10.2. Comparison between the FE simulation, simple model, and AASHTO static 

analysis for the pier-top displacement 

 

The AASHTO method does not approximate this type of collision with sufficient 

accuracy because the analysis method prescribed by AASHTO neglects the pier stiffness. 

The AASHTO method overestimates the impact force but underestimates the dynamic 

response of the pier. The results from the AASHTO method and the simple model in 

Chapter 9 are compared with those from the FE simulation in Table 10.2, which shows 

Displacement of the pier top 
FE simulation 

(mm) 

Simple model 

(mm) 

AASHTO 

(mm) 

Max(
x

Δ ) 171 193 140 
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that the AASHTO method and the simplified flotilla model predict a smaller and a larger 

pier displacement, respectively.  This example also indicates that the simplified model is 

not accurate for analyzing very slender piers. 

10.2  Analysis of a Steel Truss Bridge Subjected to Barge Impact 

Steel truss bridges are a traditional form of bridge superstructures.  A large 

portion of these bridges contain no provisions that were specifically constructed to resist 

the forces generated by barge impacts.  This example presents the barge flotilla impact 

evaluation of the US 41 Southbound Bridge over the Ohio River, as shown in Figure 10.6, 

which connects Evansville, Indiana and Henderson, Kentucky.  

 
 

Figure 10.6 Side view of the US41 Bridge over the Ohio River 

 

10.2.1 FE Model of the Bridge 

The main bridge is a four-span cantilever through-truss type, a bridge type 

commonly employed for spans of 183 m (600 ft) to 457 m (1,500 ft) in the mid 1970s.  

The length of the four-span main bridge is 669 m (2,293 ft).  The superstructure truss 

members are made of structural steel, and the substructure piers are made of reinforced 

concrete.  
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As shown in Figure 10.7, a 3-D FE model of the main bridge has been developed 

in the program SAP2000 for impact response analyses.  All truss members of the 

superstructure and piers are modeled using two-node frame elements with three 

translational DOF and three rotational DOF at each node.  The superstructure bearings 

are represented by a set of spring elements that simulate the behavior of real bearings. 

The soil reaction is taken into account as springs at the joints in the bridge piers located 

below the ground line. 

 
 

 

Figure 10.7 3-D view of the FE model of the US41 Southbound Bridge 

 

10.2.2 Impact Load Time History 

The impact force time-histories for the 3-, 9-, and 15-barge flotillas, as shown in 

Figure 10.8, are obtained using the methods described in Chapter 9.  The impact loads are 

applied to the center pier of the main bridge at angles 60 and 90 degrees with the x-axis, 

respectively.  The impact force components for the case with the 60-degree impact angle 

are computed from the 90-degree impact load, using the following relationship: 
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( ) ( )
x y

f t f tμ=          (10.1) 

0( ) ( )sin(60 )
y

f t F t=         (10.2) 

where ( )F t is the impact force time-history for the head-on collision; 0.35μ = is the 

friction coefficient; ( )
x

f t  and ( )
y

f t are the impact force components in the global x- and 

y-direction, respectively. 
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Figure 10.8 Impact loads for the US41 Southbound Bridge (head-on collision, 090θ = ) 

 

Apparently, the impact force time-histories generated from Eqs. (10.1) and (10.2) 

are only an approximation of the real impact forces. 

10.2.3 Dynamic Response of the Bridge 

Regarding the head-on impact case ( 090θ = ), the displacements of the points P1, 

P2, and P3 in both the global x- and z-direction are too small to be considered in the 

analysis.  Therefore, only the displacement components in the y-direction are presented in 

Figure 10.9.  The displacements of P1, P2, and P3 in the three directions for the oblique 

impact case ( 060θ = ) are presented in Figure 10.10. 
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From the comparison between the two cases with different impact angles, two 

observations are made: 

1) Although head-on collisions generally produce a larger impact force as 

compared to other forms of collision, head-on collisions may not be the worst 

loading case with respect to the dynamic response of the pier.  The dynamic 

response of piers depends on the associated structural characteristics in 

addition to the loading.  It is important to consider impact angles in bridge 

design. 

2) Static analyses using AASHTO’s impact loads may underestimate or 

overestimate the maximum response of the pier.  
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Figure 10.9 Displacements of P1, P2, and P3 in the global y-direction produced by the 

impact loads ( 090θ = ) 
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Figure 10.10 (a) 
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Figure 10.10 (b) 
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Figure 10.10 (c) 

 

Figure 10.10 Displacements of P1, P2, and P3 produced by the impact loads ( 060θ = ): 

(a) in x-direction; (b) in y-direction; (c) in z-direction 

 

As shown in Figures 10.9 and 10.10, all the displacements are in the magnitude of 

millimeters, which should not be regarded as entirely accurate despite the two digit 

accuracy implied in the figures.  However, the results indicate that the US41 Southbound 

Bridge can withstand a barge flotilla impact without experiencing major structural 

damage or loss-of-span.  This example suggests that barge impact loadings are not a 

significant threat to large bridges due to the required strength of the piers and foundations 

in anticipation of other loads, such as earthquake and wind.  Nevertheless, foundations 

should be securely placed in the surrounding soil as mentioned in the previous example. 
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10.3  Analysis of a Cable-Stayed Bridge Subjected to Barge 
Impact 

Cable-stayed bridges are gaining popularity throughout the world because of their 

aesthetic appeal.  The objective of this example is to investigate the dynamic response of 

a cable-stayed bridge using the impact force time-history developed in this study.  

 

Figure 10.11 Aerial view of the Maysville Cable-Stayed Bridge 

 

10.3.1 Bridge description 

The Maysville Bridge is a cable-stayed bridge linking Maysville, Kentucky, and 

Aberdeen, Ohio.  Figure 10.11 is an aerial view of the bridge.  It was officially opened to 

traffic on January 12, 2001.  The bridge is 640.1 m (2100 ft) long and 17.7 m (58 ft) wide, 

and has two 101.2 m (332 ft) high towers that are supported on drilled concrete shafts.  

The cable-stayed superstructure consists of a concrete deck supported by two 1.5 to 2.1 m 

(5 to 7 ft) deep steel plate girders, with floor beams spaced at 0.2 to 0.4 m (0.66 ft to 1.33 

ft).  The steel stay cables consist of a two-plane semi harped system with stays spaced at 

15.2 m (50 ft) intervals along each edge of the deck.  
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10.3.2 Bridge Modeling 

The FE model of the Maysville Cable-Stayed Bridge has been developed using 

the programs ANSYS8.1.  The cable-stayed bridge model shown in Figure 10.12 consists 

of 1,319 finite elements with 5,160 active degrees of freedom.  The initial strain is an 

important attribute of the cables, and it is accounted for in the analysis.  The bases of the 

towers of the bridge are treated as fixed for all degrees-of-freedom.  The north and south 

ends of the deck are connected to the piers by a tension-link mechanism that permits the 

end of the deck to rotate freely about the vertical (y) and transverse (z) axes.  Rotation 

about the longitudinal axis (x) and all three translational degrees of freedom are modeled 

as fixed at each end of the deck.  To connect the deck to the piers, the girder linkages are 

modeled using two rigid vertical links.  

10.3.3 Transient Dynamic Analysis  

The impact load has been obtained by means of the multi-barge flotilla model of 

Chapter 9 for a fully loaded 15-barge flotilla at a velocity of 2.57 m/s (5 knots).  The 

multi-barge flotilla impacts the pier head-on, as shown in Figure 10.12.  The time history 

of the impact force is shown in Figure 10.13.  The impact load is applied in the z-

direction. 

The transient dynamic equilibrium equation of the bridge is expressed as follows. 

 

[ ]{ } [ ]{ } [ ]{ } { }M u C u K u F+ + =       (10.3) 

 

where [M] is the structural mass matrix; [C] is the structural damping matrix; {u } is the 

nodal acceleration vector; [K] is the structural stiffness matrix; { u } is the  nodal velocity 

vector; {u} is the  nodal displacement vector; and {F} is the applied load vector. 
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Figure 10.12 FE model of the Maysville Cable-Stayed Bridge 

In the transient analysis, the Newton-Raphson method is employed along with the 

Newmark assumptions.  Static load steps are performed prior to the transient time 

integration.  A time step of 1/1000 seconds is the largest interval used in the temporal 

integration. 
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Figure 10.13 Impact force time-history generated by a fully loaded 15-barge flotilla at a 

velocity of 2.57 m/s 
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The displacements of the impacted-pier top are recorded, and their time histories 

are shown in Figure 10.14.  It is observed that a unidirectional impact can excite the 

vibration of the entire bridge due to the coupled modes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.14 Time histories of the pier-top displacements resulting from the impact of a 

fully loaded 15-barge flotilla 

Table 10.3 compares the displacements resulting from the dynamic analysis using 

the time history of the impact force with the static analysis using the AASHTO 

equivalent static load.  The results clearly show that AASHTO underestimates the 

magnitude of the maximum displacements, especially in the directions normal to that of 

the impact force.  The results show that there is a large difference in the displacements 

predicted by the dynamic analysis and the ASSHTO static analysis.  

Regardless, the absolute values of the displacements calculated by this analysis 

are too small to cause any significant problems to the bridge.  In fact, the bridge was 

designed to meet the criteria of impact from a fully loaded flotilla (3 barges wide by 5 
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barges long).  Diamond-shape towers increase the superstructure's stiffness and add 

stability against dynamic loads.  

Table 10.3. Comparison between the FE dynamic analysis and the AASHTO static 

analysis for the Maysville Cable-Stayed Bridge 

 

10.4  Summary 

The three examples presented in this chapter are intended to improve the analysis 

of bridges susceptible to barge flotilla impact.  It has been shown that there is a 

considerable difference between the responses calculated using the current AASHTO 

equivalent static method and the time-history analysis given in this study 

Although time-history analysis in earthquake design is not new by any means, 

time history analysis of bridges susceptible to barge impact is rare.  Such analyses are 

made possible by utilizing the impact force time-histories developed in this study. 

Generally, an impact time-history analysis of a bridge would be required only for 

extremely important bridges.  However, a time-history analysis of small bridges that have 

a high probability of barge impact may, in some cases, be warranted.  It is not advisable 

for designers to rely solely on the equivalent static loads for barge protection design. 

 

Displacement 
FE analysis 

(mm) 

AASHTO 

(mm) 
FE /AASHTO 

Max(
x

Δ ) 0.36 0.08 4.5 

Max(
y

Δ ) 0.24 0.11 2.2 

Max(
z

Δ ) 9.14 5.71 1.8 
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Chapter 11   Conclusions and Future Study 

The objective of this study has been to determine the dynamic forces on bridge 

piers resulting from multi-barge flotilla impact.  All the tasks listed in Chapter 1 have 

been successfully completed.  

11.1  Contributions 

Current specifications for highway bridge design provide empirical relationships 

for computing lateral impact loads generated during barge collisions.  However, these 

relationships are based on limited experimental data.  To better understand and 

characterize such loads, especially multi-barge flotilla loads, dynamic finite element 

analysis techniques have been employed in this study to simulate barge-pier collisions.  

Impact simulation results, including time histories of impact loads and barge 

deformations, are presented and compared to the data generated using current bridge 

design specifications.  In addition to the extensive FE simulations, many analytical 

methods have been developed.  Analysis and design procedures using the proposed 

methods are described in detail, and these procedures are suitable for adoption in practice. 

The primary contributions of this dissertation are divided into two categories, 

scientific contributions and engineering contributions.  The scientific contributions are 

the fundamental theoretical results and findings of this research while the engineering 

contributions are the applications or implementations of these results. Scientific 

contributions include: 

1) revealing the fundamental characteristics of barge-pier collisions; 

2) indicating the limitations of the AASHTO design specifications; 
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3) establishing the upper bound of barge-pier impact forces; 

4) determining the influence of the pier geometry and stiffness on impact forces; 

and 

5) developing the multi-barge flotilla impact model. 

Engineering contributions include: 

1) developing a hand-calculation method to predict the impact forces and impact 

duration for single barges; 

2) developing a hand-calculation method to predict the dynamic response of piers; 

3) deriving a set of regression formulas to predict barge impact loads; 

4) developing a series of numerical barge-flotilla models, which can be used to 

study barge-bridge collisions for various purposes; and 

5) generating more than 2,000 impact force time-histories for multi-barge flotilla 

impacting piers. 

In summary, the tools developed, along with the results and insights obtained by 

the present study should be useful for more rational design of bridges against barge 

collisions and for more accurate evaluation of existing bridges menaced by barge impacts.  

11.2  Conclusions 

Through this study the following conclusions are made:  

1) Barge-pier impact forces are mostly dependent on the barge crushing 

resistance, i.e., the impact forces are approximately limited to the plastic load-

carrying capacity of the barge bow.  This conclusion has been verified by the 

barge impact experiments [51].  Therefore, the static force-deformation 

relationship of the barge bow is the baseline of the impact forces generated by 
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barges unless the pier is very slender.  Most of the impact energy is dissipated 

through the deformation of the bow structure.  Meir-Dornberg’s equations [11] 

reflect these facts to some extent.  

2) The stiffness of ordinary piers has little effect on the mean impact force. 

However, the maximum impact forces (contact forces at the initial stage of 

impact) are very sensitive to the stiffness variation of weaker piers.  Also, pier 

stiffness affects the impact time duration.  For most cases, it is conservative to 

determine the impact forces by assuming that the pier is rigid.  

3) The greatest challenge for bridge design that accounts for barge impact is the 

huge lateral impact forces exerted on the pier and foundation.  Pier failures are 

likely to be of the shear type causing excessive damage.  In addition, the pier 

top may displace excessively in the event of an impact due to its less stiffness. 

This may cause loss of a span because of insufficient seat width on bridge pier 

cap.  For a multi-span bridge, the expansion joint is where this loss of span is 

probable.  Thus, increasing pier stiffness improves collision performance of 

piers.  The use of stiffer piers to resist barge impact is advantageous because 

stiffer piers inherently possess other benefits, such as the ability to resist 

dynamic earthquake and wind loads. 

4) Two types of barge response to impact are distinguished by a threshold value 

of the kinetic impact energy.  This conclusion is in agreement with AASHTO’s 

current methodology.  For the first type of response, a large part of the barge 

deformation is elastic, while a large part of the barge deformation is plastic for 



 176

the second type.  In reality, most cases can be classified as the second type of 

response. 

5) After onset of barge bow collapse, the impact force remains relatively constant.  

Therefore, increasing the number of barges in a flotilla does not proportionally 

increase the average impact force, but an increased number of barges in a 

flotilla may increase the impact duration.  The notion that the impact forces 

increase proportionally to the number of barges in a flotilla may be common, 

but it is generally incorrect. 

6) Pier geometry has a strong influence on the impact process, which is ignored 

by the current design code.  Increasing the pier width results in an increase of 

impact forces.  Under the same conditions, square piers usually produce a 

larger impact force than circular piers.  Moreover, the size influence of square 

piers is more apparent than that of circular piers. 

7) Application of the AASHTO method may either underestimate or overestimate 

the barge impact forces.  In general, the AASHTO method overestimates the 

impact forces generated by multi-barge flotillas and underestimates the impact 

forces of single barges on wider square piers.  More important, the equivalent 

static loads of ASSHTO may underestimate the dynamic response of bridges.  

It is not advisable for barge-pier impact force generation to rely solely on the 

equivalent static load for analysis and design, especially for important bridges 

that are essential components of the United States infrastructure.  

8) The assumption that the steel wire ropes lashing barges in adjacent rows will 

break during a collision is conditional.  It is not appropriate to generate the 
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multi-barge flotilla impact forces only by one barge column.  Conservatively, 

the impact force of a multi-barge flotilla should be generated by its whole mass 

and kinetic energy. 

9) The impact time duration, mostly dependent on the kinetic impact energy and 

pier geometry, ranges from 0.3 to 8 seconds.  The maximum forces occur at the 

very beginning of impact and usually last 0.1 to 0.3 seconds.  The intensity of 

the barge impact on piers depends on both the impact forces and impact 

duration.  A collision with small kinetic impact energy may produce a larger 

impact force peak value than a collision with large impact energy.  However, a 

collision with small kinetic energy corresponds to shorter time duration. 

In summary, through this research a better understanding of impact mechanics has 

been achieved.  Although physical barge-pier impact tests are not carried out to verify the 

accuracy of the simulations, a variety of exercises have been conducted to provide 

confidence in the analysis results.  These exercises included mesh refinement studies, 

energy balance audits, impulse/momentum conservation checks, monitoring of hourglass 

control energy during the simulations, and comparison of pertinent results to data from 

actual ship-ship collision tests.  

11.3  Future Work 

Future research needs may be classified into two broad categories: loading time 

history and the bridge dynamic response.  The following suggestions for future research 

are presented in order of importance: 

1) More parametric studies and validations are required.  Although computer 

simulation has proven to be a useful research tool, it cannot replace the impact 
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testing.  At present, little actual collision data of sufficient detail is available 

for method validation.  

2) In order to ensure that all bridge elements exposed to barge collision are 

designed to certain strength and robustness, local point or area loadings, and 

localized yielding or cracking of structures should be investigated.  

3) Studies of arbitrary angle impacts are necessary.  Since a small change in 

collision angle may cause a dramatic difference in barge penetration and 

impact forces, a comprehensive 3-D analytical model is needed to accurately 

predict the impact forces for some circumstances. 

4) Hydrodynamic forces generated by the surrounding water deserve further 

investigation. 

5) Dynamic vessel-pier-soil interaction during a barge collision event is also an 

important topic, since seventy percent or more of vessel impact loading is 

transferred directly to the foundation (not superstructure) [52].  Specifically, 

the load transfer to the piles and the surrounding soil mass is deserves further 

study. 
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