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Modeling, Simulation and Measurements of Queuing Delay
under Long-tail Internet Traffic
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Torino, ltaly 10129 Ambherst, MA 01003
garetto@polito.it towsley@cs.umass.edu
ABSTRACT In this paper we present a simple analytical technique to

study the case of an uncongested link. This is the normal
operating condition for backbone links, that are generally
over-provisioned, so that utilization is below 50% even at
peak hours. However, this is not a limitation of our ap-
proach, just a simpler case that allows us to assume an
infinite buffer size. Our problem is that of predicting the
behavior of a FIFO queue fed by the traffic produced by a
large number of finite TCP flows, where the objects being
transferred are characterized by a long-tail length distribu-
tion. We assume that the following parameters are known:
(i) the traffic intensity; (ii) the flow size distribution; (iii)
the packet loss probability suffered by the flows on their
end-to-end path (it might be equal to zero). The solution
presented in this paper is open-loop, in the sense that we
require an estimate of the packet loss probability a priori.
Categories and Subject Descriptors Again, this is not a limitation of our approach: our model
can be incorporated into a closed-loop algorithm, such as a
Fixed Point Approximation (see for example [18]), requiring
no additional inputs other than physical system parameters.
In fact we have successfully extended our model to consider
the case of a congested link using the FPA technique, but
General Terms we do not present this extension here due to lack of space
Performance, Measurement, Theory (the interested reader is referred to [1]).

The main contributions of this paper can be summarized
as follows: (i) we identify the transport protocol (TCP) as

In this paper we describe an analytical approach for esti-
mating the queuing delay distribution on an Internet link
carrying realistic TCP traffic, such as that produced by
a large number of finite-size connections transferring files
whose sizes are taken from a long-tail distribution. The
analytical predictions are validated against detailed simula-
tion experiments and real network measurements. Despite
its simplicity, our model proves to be accurate and robust
under a variety of operating conditions, and offers novel in-
sights into the impact on the network of long-tail flow length
distributions. Our contribution is a performance evaluation
methodology that could be usefully employed in network
dimensioning and engineering.

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design— Packet-switching networks;
1.6.5 [Simulation and Modeling]: Model Development

Keywords primarily responsible for the queue behavior; (ii) we describe
Queueing Analysis, Markovian Models, TCP in detail a simple stochastic model of TCP that can quanti-
tatively characterize the burstiness produced by the traffic
sources; (iii) we introduce a novel queuing system to obtain
1. INTRODUCTION the queue length distribution; (iv) we offer original insights
Modeling the behavior of a queue loaded by Internet traf- into the effect of long-tail file size distributions on the net-
fic is a fundamental problem of network performance evalu- work; (v) we show how our approach can be successfully
ation for which satisfactory solutions are not yet available. applied to study more general network scenarios than those
Several Internet research topics relate directly or indirectly considered in this paper, proving that it could be an attrac-
to this problem: network design, capacity planning, Quality tive solution for network engineering.
of Service guarantees, end-to-end measurements, congestion Our model obtains surprisingly accurate results in terms
control, Active Queue Management. of queue length distribution (or, equivalently, queueing de-

lay distribution) according to ns-2simulations in a controlled
network environment. We have also validated analytical
predictions against actual delay measurements taken from
Permission to make digital or hard copies of all or part of this work for a real network scenario, although only qualitatively. This
personal or classroom use is granted without fee provided that copies are achievement is very important, since it allows one not only

not made or distributed for profit or commercial advantage and that copies t te th d . f th ing delay suf
bear this notice and the full citation on the first page. To copy otherwise, to 0 compute the mean and variance of the queuing delay suf-

republish, to post on servers or to redistribute to lists, requires prior specific fered by the flows traversing the link (which is part of their
permission and/or a fee. round trip times), but also to answer common questions that
SIGMETRICS’03, June 10~14, 2003, San Diego, California, USA. arise in network design and operation, such as (i) what is

Copyright 2003 ACM 1-58113-664-1/03/0006 ...$5.00.
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the probability that a packet experiences a queuing delay
higher than a certain value (think of Service Level Agree-
ments) 7 (ii) what is the probability of buffer overflow given
the maximum buffer size and the link utilization (think of
buffer dimensioning) ? Many network operators and Inter-
net Service Providers still dimension their networks through
trial and error, or in a completely ad-hoc manner leading to
considerably inefficient resource usage. The availability of
simple and robust analytical models is thus essential.

The literature related to our work is quite vast, so that
it is impossible to provide here a comprehensive overview of
previous contributions. Since the failure of Poisson model-
ing [4] was pointed out [4], many efforts have been devoted
to study characteristics of Internet traffic such as long range
dependence, self-similarity, and multi-fractal scaling [6-8].
The complexity of the packet arrival process has appeared
to be intractable using traditional approaches [3], and it has
even been suggested that an entirely new theory is neces-
sary to develop traffic engineering tools [5]. To our knowl-
edge, no study has yet attempted to predict the entire queue
length distribution on an Internet link carrying realistic traf-
fic such as that produced by finite TCP flows transferring
an amount of data characterized by a long-tail length dis-
tribution. The behavior of finite-size TCP connections has
been studied in [14-16]. The impact of packet-level charac-
teristics of Internet traffic on queue behavior has been con-
sidered in [10-13]. Multifractal behavior as a manifestation
of the burstiness induced by TCP congestion control has
been suggested in [9]. Measurements of one-hop delay on an
operational backbone network have been reported in [21].

The paper is organized as follows: in Section 2 we clarify
the problem that we face by means of a numerical example.
We describe our model in detail in section 3. In Section 4 we
report on an extensive study with ns-2intended to assess the
robustness of the model under different parameter settings,
focusing on the impact of long-tail flow length distributions
and discussing the applicability of our model to general net-
work topologies. In Section 5 we provide an example of how
our modeling technique was successfully employed to study
a real network scenario. Finally, we conclude in Section 6.

2. OVERVIEW

We start with a simple example that illustrates much of
the problem complexity. Consider the topology depicted in
Figure 1. This example will be revisited several times in the
rest of the paper. Its physical parameters have been chosen
to represent the real network scenario considered in Section
5, which is the access link of a campus network.

The bottleneck link capacity is Cr, = 28 Mbps, with a
propagation delay of 0.5 ms. There are No = N; = 100
peripheral links at both sides, of capacity C1 = C> = Cr.
The propagation delay at the transmitters’ side is uniformly
distributed between Dy,in = 10 ms and Dpar = 50 ms.
The propagation delay at the receivers’ side is uniformly
distributed between 0.4 ms and 0.6 ms.

We assume that new connections open according to a time
invariant Poisson process, so that the average link utilization
is constant over time. This is not true over a long time scale
in a real network (think of typical daily variations) but can
be considered acceptable over small time scales (say for a
few minutes). The connection establishment dynamics is as
follows: when a new connection opens, it chooses randomly a
transmitter node and a receiver node. A connection consists
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Figure 1: Simple topology for an access link

of a single data transfer whose size S, expressed in a number
of full-size packets, is taken from a geometric distribution
with an average S = 20. We ignore the three-way-handshake
and connection termination. The packet size P is assumed
constant, equal to 8000 bits. The packet transmission time
over the link is 7 = P/Cr. The maximum window size is 32
packets and the TCP version is New-Reno, implemented as
in the ns-2simulator.

We are interested in the behavior of queue @ of router
Rs. We obtained from simulation the distribution of the
total number of packets in the queue (both queued packets
and the packet being transmitted) in order to compare the
results from what can be obtained from standard queuing
theory. For now we consider an infinite capacity drop-tail
queue, so that no packets are lost traversing the access link.

For this particular example, we artificially introduced iid
losses on each of the Ny links with probability p = 0.01. The
arrival rate of new connections is denoted by A. We define
as link utilization p the quantity:

_ASP
p= CL

(1)

Because of the way losses are introduced in the network in
our simulation experiments (this will be explained in Section
3-A.1) we are able to say that p is the actual utilization of
the link, equal to what is referred to in queueing theory as
utilization factor or traffic intensity. This comes from the
property that, in our simulations, each packet traverses the
link exactly once. In the case p = 0.8 the results of this
experiment are shown in Figure 2. We compare the simula-
tion results with 4 analytical curves: an M/M/1 queue, an
M/D/1 queue, a G/M/1 queue and an M /M/1 queue,
where arrivals occur in batches whose sizes are taken from a
distribution computed by our model. The M/M/1 model is
indeed the simplest, and yields the well known result for the
probability of having i packets in the queue 7; = (1 — p)p.
It fails at predicting the actual queue length distribution be-
cause it assumes that the packet arrival process is Poisson,
whereas this is not the case in the Internet [4].

If one wants to account for the fact that constant-size
packets result in deterministic service times, an M/D/1
model should be used, but the distribution of packets in
the queue would be even further from the simulation. One
now may think that because the inter-arrival time between
two consecutive packets is not exponential, a more general
G/M/1 model should be adopted. Figure 2 includes the
queue length distribution predicted by the G/M/1 model,
where the inter-arrival time distribution is obtained directly
from the simulation, observing the arrival process of packets
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Figure 2: Queue length distributions obtained from
simulation and different analytical models when p =
0.8

at the queue. After we solved the G/M /1 model numerically,
we obtained a curve worse than that of the M/M/1 queue !

The errors that we encounter are due to the assumption
that inter-arrival times are independent. TCP introduces
strong correlations that have a deep effect on the the queue
length. This is a well known characteristic of TCP traffic,
generally referred to as its “burstiness”. In order to cap-
ture quantitatively this important correlation, we resorted
to a MX1/M/1, a queue with batch arrivals with batch size
X. We discovered that approximating X by the number of
packets sent by TCP sources every round trip time provides
very accurate results. In particular, the geometric decay of
the buffer occupancy is surprisingly good, as can be seen
in Figure 2. The model also provides a conservative pre-
diction, which is a desirable property for its possible appli-
cations. We will show in Section 3-B that it is possible to
further refine the analysis resulting in a queue length dis-
tribution almost indistinguishable from that obtained from
simulation. In Section 4 we will observe that our technique
indeed captures most (unfortunately not all) of the traffic
correlations under a variety of parameter settings, and we
will explain when and why it instead fails at providing an
accurate prediction.

3. MODELING

Our modeling approach consists of two components: the
first one is a stochastic model of TCP that, given a quite
generic flow length distribution, derives the distribution of
the number of packets transmitted every RTT. This will be
described in section 3-A, and it is one of the contributions
of this paper; the second one is an analytical model of the
queue capable of predicting all of the results of interest (av-
erage values as well as distributions). This will be described
in section 3-B and is another important contribution of our
work.

3-A TCP Model

In this section we provide a detailed description of our
stochastic model of TCP including a discussion of the as-
sumptions that we made. We will first consider the case in
which the amount of data transferred by a TCP connection
is a geometrically distributed random variable with mean

49

Figure 3: Stochastic Finite State Machine of TCP

1/q. In Section 3-A.3 we will describe how this model can
be extended to account for a generic long-tail distribution
of the flow length. We exploit the memoryless property of
the geometric distribution to build a simple, yet accurate
model of TCP dedicated only to the purpose of deriving
the batch size distribution of the packets flowing through
the network. Thus we neglect many details of TCP that
have no impact on this distribution. The model describing
the TCP dynamics of relevance to us is shown in Figure 3,
and is pretty simple. Basically, it is a finite state model
where each state corresponds to a state of the TCP proto-
col, connected with probabilistic transitions that depend on
the packet loss probability. We call this object a Stochastic
Finite State Machine (SFSM). Readers familiar with queu-
ing networks will find it simpler to think of it as an open
network of -/G /oo queues where customers in a given queue
stand for TCP connections in a given protocol state. The
solution of the queueing network is straightforward, as it
requires solving the flow balance equations just once.

In Figure 3 we have only shown transitions corresponding
to the successful delivery of all of the packets sent in each
state. Many other transitions corresponding to loss events
are not shown because doing so would complicate the dia-
gram. The entry point to this state machine is state Fy,
as indicated by the dashed arrow, that represents a source
that starts data transmission. The exit point can be any
state in the diagram, as indicated by the oblique dotted ar-
rows, representing sources that have exhausted the amount
of data to send.

We assume the reader is familiar with the basic conges-
tion control algorithms of TCP. States labelled L; stand for
the congestion avoidance phase with window size ¢ (Linear
growth), ¢ = 2,--- |W. Here W is the maximum window
size. States labelled E; represent the slow-start phase with
threshold ¢ (Exponential growth), i € {2,---,|[W/2], W}.
The index range for ¢ can be explained as follows: when a
connection starts transmitting, we assume the threshold is
set to the maximum window size. After the first loss event,
the threshold cannot exceed the value |W/2] for the remain-
der of the connection lifetime. The total number of states is
thus roughly %W

Since we are not interested in when a source transmits its
packets, but only how, we do not mind how long a connection
remains in each state, and so we can disregard timeouts
and the timeout back-off mechanism. The purpose of this
model is not to derive performance figures of TCP (such as
throughput or completion time) but to identify the number
of packets sent every RTT, in order to capture the burstiness
of TCP traffic and analyze its impact on the network.

In order to completely specify the model, we need to de-
scribe the underlying loss model (3-A.1), the transition prob-
abilities and the batch size computation (3-A.2).



3-A.1 Loss Model

The loss model is an important component of any stochas-
tic model of TCP. For our purposes, we have chosen a quite
general model, that allows us to understand the impact of
different degrees of loss correlation.

First, we introduce the notion of loss event. A loss event
is a sequence of packets that starts with the first packet lost
in a window (this packet is included in the sequence) and
ends when the same packet is retransmitted by the source
(this retransmission is not part of the sequence). We as-
sume that loss correlation, if any, involves only the packets
sent between these transmissions of the same packet. A
packet not included in a loss event can generate a new loss
event with a probability p that we call loss event probabil-
ity. Note that the retransmission of a packet can generate
a new loss event. We distinguish the loss event probability
from the generic packet loss probability, indicated as p, which
is defined as the average loss probability of all transmitted
packets .

A loss event can be regarded as the “congestion signal”
sent by the network to the source, leading to a single window
reduction 2. We rely on an assumption commonly used in
the literature, that the arrival of congestion signals at the
source is well described by a Poisson stream, so that we can
use a Bernoulli scheme for the first packet lost in a window.
This assumption is verified on simulation (see Section 4),
and has also been validated by real measurements in [19].

The number of packets lost within a loss event depends
on the degree of loss correlation. We have chosen to model
only two extreme cases: the case in which only the first
packet of a loss event is lost (let Ps denote the probability
of such an event), and the case where the complete sequence
of packets corresponding to a loss event is lost (let P, de-
note the probability of such an event, with the constraint
that Ps+ P, = 1). The first case typically allows the source
to fast retransmit the single lost packet and continue to send
new segments at half of the window size (provided that three
dup acks have been received and the retransmission has been
successful). The second case results in a timeout and the siz-
ing of the window to one. Probabilities Ps and P, can be
used to model the behavior of different TCP versions as well
as to account for the effect of particular loss correlations. It
is also possible to make these probabilities depend on the
window size or on the state of the protocol, if desired, with-
out increasing the complexity of the solution of the SFSM.
We will observe in Section 4 that Ps and P, do not play
an important role in the burstiness of the aggregate traf-
fic produced by TCP, so that we believe our approach is
acceptable.

We introduced this loss model directly into ns-2, in or-
der to relieve ourselves from discrepancies in the results due
to different reactions to losses between analysis and simu-
lations. After validating the model using this artificial loss
process we ran experiments with real drop-tail losses, and
observed that our our approach is suitable to analyzing a
realistic loss process as well. The case of drop-tail losses
will be considered in Section 4. Finally, we remark that our
loss model eliminates unnecessary retransmissions from the

IThe stronger and longer the correlation between successive
losses in a sequence of packets, the smaller is p with respect
top

2This is true for NewReno and SACK, but not for the Reno
version of TCP
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sources® and, since losses occur only on the transmitters’
side of the access link, we are guaranteed that each packet
traverses the link just once, as anticipated in Section 2.

3-A.2  Transition probabilities and batch size compu-
tation

In this Section we describe the transition probabilities nec-
essary to solve the SFSM shown in Figure 3, for the case in
which the number of packets in the transfer is geometrically
distributed. At the same time we explain how to compute
the size of the groups of packets sent in each state. To sim-
plify the exposition, we restrict ourselves to the groups of
packets arriving at the queue of interest. In general it is
possible to describe both the groups of packets flowing be-
fore the point in the network in which losses occur, and the
groups of packets flowing after that point. Here we compute
the size of the groups of packets arriving at the queue after
traversing the lossy links (see Figure 1).

The parameters necessary to specify the model are:

e ¢, the parameter of the geometric distribution (the av-
erage size is 1/q).

e p, the loss event probability.

e P, the probability of a single loss per loss event, or its
complement P,, as explained in Section 3-A.1.

e W, the maximum window size expressed in number of
full-size segments.

By “solving the model” we mean finding the arrival rate
to each state, given the arrival rate of new connections at the
entry point, which is simply Ag,, = A, where A is the arrival
rate of new connections. This reduces to solving the system
of linear equations defined by the matrix of transition prob-
abilities P(S;, S;) from state S; to state S;. The complexity
of the numerical solution is thus very low. Once we have
obtained the arrival rates to the states, we can compute the
arrival rate of batches at the queue, using the probabilities
that batches of any given size are generated in each state.

The specification of the transition probabilities in form of
equations requires an excessively complex notation. Here
we describe the model in an informal way to make it more
understandable to the reader?.

To simplify the notation, we define s = 1 — p (where s
stands for “successful”), the probability M,(i) = (1 — q)°
that more than ¢ packets remain to send, the probabil-
ity R,(i) = q(1 — q)""" that exactly i packets remain to
send. We assume that TCP receivers generate acks for ev-
ery packet, i.e. the delayed acknowledgement option is not
used (a similar model can be built if this option is used).

3-A.2.1 Congestion avoidance without loss.

When the window size is i during congestion avoidance
(state L;), we assume that ¢ packets are sent before the
window grows to size i + 1. If no losses occur, and more
than i packets remain to be sent, a connection transits to
state L;11 and generates a batch of size i. This occurs with
probability s*M,(i). As a special case, the window stops

3Tt can be easily shown that if a single packet or all of the
packets within a window are lost, a source does not send
again a packet already delivered to the destination

4A piece of code implementing the TCP model described in
this Section is available at [2]



growing when it reaches the maximum window size W; hence
we add a self loop to the state Ly (Fig. 3). A flow can also
exhaust the amount of data to send. For each j,1 < j <4,
a connection leaves the SF'SM sending a batch of size j, with
probability s7 Ry ().

3-A.2.2  Congestion avoidance with loss.

Suppose that a loss event occurs starting with the j
packet sent in state L;,(1 < j < i). The window, before
shrinking, grows to size n; = min(¢ + 1, W), and when the
loss is detected the threshold is updated to the value t; =
max(2, [n;/2]). The maximum number of packets that can
be sent before the window is reduced is d;,; = j — 1 + n;.

In case an entire window is dropped, a connection moves
to state EY,, while a batch of size j — 1 arrives at the queue.
This occurs with probability p s/~ P, My(j — 1).

In the case of a single loss, a connection remains within
the SFSM only if more than d; ; packets remain to be sent
while entering state L;, with probability p s =" Py M, (d; ;).
To determine the next state, we first consider the case that
not enough duplicated acks are received to trigger the fast
retransmit mechanism. This happens when n; < 4, lead-
ing to state Fa. If fast retransmit is triggered (n; > 4),
we must distinguish the case in which the retransmission is
successful (with probability s), resulting in a transition to
state L¢,, from when it fails (with probability p), resulting
in a transition to ;. We still need to specify the groups
of packets sent in the case of a single loss. If m < i packets
remain to be sent, a batch of size m — 1 arrives at the queue
and the connection leaves the SFSM. This occurs with prob-
ability ps’~' P; R,(m), where j is restricted to the range
(1 <j <m). If m packets remain to be sent, i < m < d; j,
we must split the packets into two batches of size i — 1 and
m — 1, because they are sent spaced by a RT'T, with proba-
bility ps? ! Ps Rg(m). If more than d; ; packets are remain-
ing, two batches of size i — 1 and d; ; — i arrive at the queue,
with probability ps?~' Ps My(d; ;). Finally, we account for
the retransmission of the single lost packet as a batch of size
1, with probabilities ps? ™ P, M, (j — 1), (1 < j <4).

th

3-A.2.3  Slow start without loss.

Now we consider the states F; representing slow-start. We
remind that here ¢ represents the threshold. The maximum
number of packets sent in state E; while the window grows
from one to i is given by e; = 211982+ _ 1 If no losses
occur, and more than e; packets remain to be sent, a con-
nection transits to state L; shifting to congestion avoidance,
with probability s®Mg(e;), generating a sequence of size e;.
A sequence is the set of all packets sent during a slow start
phase. A simple algorithm, that we omit here, is used to con-
vert a sequence into the groups of packets sent every RTT,
according to the geometric progression 1, 2, 4, 8, ---. For
example, a sequence of size 20 must be split into the groups
1,2,4,8,5. In the next paragraph we will specify only the
sequences of packets, implying that they must be split into
groups in order to obtain the batches arriving at the queue.

3-A.2.4 Slow start with loss.

Suppose that a loss event occurs starting with the ;"
packet sent in state F;,(1 < j < e;). Before shrinking,
the window grows to size n; = min(i,5), and when the
loss is detected the threshold is updated to the value t; =
max(2, [n;/2]). The maximum number of packets that can
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be sent before the window is reduced is d;;; = 7 — 1 4+ n;.
Using the same notation, the transition probabilities are ex-
actly the same as those identified for states L;. The number
of packets sent in states F; is also computed in the same way
as described for states L;. In the case that an entire win-
dow is dropped, a sequence of size j — 1 arrives at the queue.
In the case of a single loss, if m packets remain to be sent,
j <m <d;;, a sequence of size m — 1 is generated; if more
than d; ; packets are remaining, a sequence of size d; ; — 1 is
generated. Finally, we account for the retransmission of the
single lost packet as a batch of size 1.

3-A.3 Extension to generic long-tail flow length dis-
tributions

Our model can be easily extended to the case in which
the flow length distribution is not geometric. Traffic mea-
surements have shown that the distribution of the amount
of data transferred by a TCP connection exhibits a long tail,
i.e. a tail that decays more slowly than exponentially. The
key idea is to fit a finite mixture of exponentials to a given
long-tail distribution. More precisely, since our flow size is
expressed as a discrete number of full-size packets, we use
a mixture of n geometric distributions to fit the actual dis-
tribution for the number [ of full-size packets transferred by
TCP connections:

Hy(l) = Zai g (1—q) ™" (2)

This decomposition allows us to apply our TCP model to
study each geometric component separately, obtaining a par-
tial batch size distribution as described in Section 3-A.2. Fi-
nally we add up the arrival rates of batches of all possible
sizes derived for each geometric component. The aggregate
arrival rate of batches of size ¢ is denoted by A;. The result-
ing aggregate batch size distribution is denoted by 3.

The reader is referred to [17] for the details regarding the
fitting procedure, which applies to a large class of distribu-
tions, especially the long-tail distributions that characterize
Internet traffic. The authors of [17] provide the theoretical
basis for this technique, as well as a recursive algorithm for
approximating a long-tail distribution with a given number
of exponential components.

3-B  Queuing Model

The simplest way to obtain the queue length distribution
is to use the classic MX1/M/1 model, in which the batch
size X is distributed according to the distribution 8 com-
puted by the TCP model (Section 3-A). We find that this
simple model alone accurately predicts the queue length dis-
tribution while providing a conservative estimate (see fig. 2).
The assumption of a Poisson arrival of batches is justified by
the presence of a large number of flows started at random
times and with different RTTs.

In this Section we introduce a novel queuing system, indi-
cated as Mg!X1/M/1, that provides a better estimate of the
queue length distribution in comparison with the M ] /M/1
model. We believe this model represents an important con-
tribution of our work.

Basically we modify the batch size distribution 8 obtained
from the Stochastic model of TCP to account for the fact
that packets belonging to the same batch do not enter the
queue exactly at the same time, but are ‘spread’ over time.



The modified batch size distribution is then used in a stan-
dard M™/M/1 model.

The inter-arrival time of two successive packets within a
batch must at least equal the minimum transmission time
of a packet on the path followed from the source to the
queue. For simplicity we consider the case of homogeneous
link capacities, so that the inter-arrival time between two
packets belonging to the same batch is taken equal to 7, the
transmission time of a packet over the link that drains the
queue. It is possible to relax this assumption, in order to
consider the case of heterogeneous links capacities, but we
do not report on this extension.

We can make an analogy with a fluid, considering a batch
arrival as a fluid chunk arriving at the queue at a constant
fluid rate, which in our case also equals the rate with which
the link drains the queue. It is intuitive to understand that
the effect on the queue of this “distributed” arrival can be
rather different from what is modeled by a MX/M/1, in
which packets within a batch arrive simultaneously.

An approximate solution of the Mg™)/M/1 can be ob-
tained in the following way. First we derive the distribution
of the aggregate, fluid arrival rate of packets at the queue,
indicated by R; (i =0,1,2,... ), where R; is the probability
that at any given time the aggregated fluid rate of packets
arriving at the queue equals ¢. This is equivalent to say-
ing that ¢ batches arrive concurrently, so that ¢ takes only
integer values greater than or equal to zero. The assump-
tion of a Poisson arrival of batches allows us to say that R;
has the same distribution as the number of customers in an
M /G /oo queue, which is a Poisson distribution with param-
eter equal to the traffic intensity p regardless of the duration
of batches:

R(i) = ®3)

The key idea of our solution is to “modulate” the ampli-
tude of arriving batches using the distribution R;. Thanks
to the PASTA property, when the first packet of a batch
arrives at the queue, it finds the queue currently loaded by
an aggregated fluid rate distributed according to (3). If we
assume that this ‘background’ rate remains constant during
the arrival of the batch we can easily determine how many
packets will be in the system when the last packet of the
batch arrives. If the ‘background’ rate is equal to j, the ar-
riving batch increases by one the total arrival rate of packets
at the queue, but at the same time the link drains packets
from the queue at the same rate, so that during the arrival
of the batch the number of packets in the queue changes at
a rate equal to j. Thus a transition occurs from the ini-
tial state to a state with ¢ x j more packets in the queue, if
7 > 1. In the special case in which 5 = 0, it turns out that
the batch adds a single packet to the queue (the first packet
increases by one the number of packets in the queue, and
after that for each new packet that arrives another one is
drained by the link, so nothing changes). Finally, transition
rates have to be adjusted in order to respect the average
arrival rate of packets at each state: if a batch of size i adds
k packets to the system with probability p (depending on
the fluid rate encountered), and batches of size 4 arrive with
rate A;, that transition occurs with rate A\; p i/k. A com-
parison of Markov chains corresponding to the M /M/1
and MgsX] /M /1 models in the case of batch arrivals of size
three is shown in Fig. 5.

We observed that our solution of the MgsX]/M/1 model
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Figure 5: Comparison of Markov chains correspond-
ing to the M™/M/1 model (upper part) and the
Ms™)/M/1 model (bottom part)
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always provides more accurate results than the M[X]/M/l
model. Results for the network setup described in Section
1 are shown in Fig.4. Even better results can be obtained
by considering that service times should be deterministic,
rather than exponentially distributed. Unfortunately the
exact solution of a Mg!¥] /D/1 is computationally very ex-
pensive in the case of a complex batch size distribution as
computed by our model. We resorted to approximating the
deterministic service time D with an Erlang distribution E,,,
that still allows a simple Markovian analysis of the system,
at the cost of higher computational complexity for increas-
ing values of n. As shown in Fig.4, a value of n = 10 is
able to correct the curve, producing a distribution almost
indistinguishable from that obtained by simulation.
Looking only at the queue length distribution, the im-
provements achieved with our more sophisticated queue mod-
els may appear to be marginal, but if we look at the average
queue length, which is surely an important metric, we see
that the MgX! /M /1 model and even more the MS[X]/Em/l
model provide results much better than the M1 /M /1 model.
A comparison of results for the average queue length is re-
ported in Table 1 for four different values of link utilization.
The “sim” column contains average values and 95% confi-
dence intervals obtained by simulations. The other columns
report analytical results, with relative errors with respect to



p sim MM/ Ms™T /M1 Ms™/Eip/1
0.3 0.917 (£0.015) | 2.293 (150.0 %) | 0.997 (8.7 %) | 0.939 (2.4 %)
0.6 | 4950 (& 0.128) | 8.025 (62.1 %) | 5.527 (11.6 %) | 5.122 (3.5 %)
0.8 | 16.696 (£ 0.698) | 21.401 (28.2 %) | 18.420 (10.3 %) | 16.979 (1.7 %)
0.9 | 41.091 (& 2.887) | 48.145 (17.2 %) | 45.617 (11.0 %) | 41.819 (1.8 %)

Table 1: Comparison of average queue lengths (in packets) predicted by different queue models

0.1
Overall dis‘lribution
oy =0.89 - mean 10 -—-----
0, = 0.1 - mean 100
0.01 & 03=0.01 - mean 1000 ----- J
0.001 fr- 9
2
._'g 0.0001 [ ]
2
~
le-05 4
le-06 il

16:07 : L
I 10 100

Flow length (packets)

.
1000 10000

Figure 6: Flow length distribution resulting from a
mixture of three geometric components

the central value obtained from simulation indicated within
brackets. The significant improvement obtained by the
more sophisticated models is due mainly to the fact that
the probability of finding just a few packets in the queue
is better estimated by ‘spread’ batch arrivals than by ‘in-
stantaneous’ batch arrivals, as shown in the insert of Fig. 4.
Moreover, if one wants to solve the case of a finite buffer
size, the correct model to be adopted is a Mg /M/1/B,
not a MX1/M/1/B, as we will point out later in Section 4.

4. SIMULATIONS

We assessed the robustness of our model running a number
of simulation experiments in which we studied the sensitivity
of different parameters on the resulting queue length distri-
bution: link utilization, loss event probability, loss correla-
tion, link capacity, round trip times, heterogeneous link ca-
pacities, maximum window size, delayed acknowledgement
option, average flow length (geometrically distributed), long-
tail flow length distributions, number of router interfaces
(parameter N on Figure 1), tandem network topology, con-
nection inter-arrival time distributions (Weibull), simulta-
neous opening of connections. This extensive study allowed
us to say that our model is accurate and robust under a va-
riety of parameters settings. However, due to lack of space
we are not able to show results for all of the experiments
(see [1] for further results).

In particular we will not show results for those cases in
which analytical results are very close to those obtained from
simulation. Instead we point out the most important limi-
tation of our approach that we have found.

Our model accounts precisely for the strong correlation of
packet transmissions within the same window of data, but
neglects the correlation between the size of batches sent by
the same source in successive RT'Ts. As a consequence, un-
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der particular circumstances the analysis underestimates the
queueing delay. For example, Figure 7 shows what occurs in
our scenario when the flow size is taken from a mixture of
three geometric distributions with means 10, 100 and 1000
packets and probabilities a; = 0.89, ae = 0.1 and a3 = 0.01,
respectively, while the loss event probability is equal to ei-
ther 0.01 or 0.1. The actual flow length distribution is shown
on a log-log scale in Figure 6.

In the case of event loss probabilities equal to 0.01 the
model underestimates the slope of the queue length dis-
tribution. However, if we increase the number of active
flows while maintaining the same traffic intensity, the ad-
ditional correlation of the traffic that is not captured by the
model disappears, and simulation results agree again with
the model prediction. To show this phenomenon we ran the
same simulation either increasing the channel speed from
28 to 155 Mbps, or multiplying by ten the propagation de-
lays at the transmitters’ side. Both of these modifications
produce the effect of altering the average number of active
connections, establishing our claim. Interestingly, when the
loss event probability equals 0.1 the model prediction is al-
ready accurate without changing the network parameters.
This can be explained by observing that increasing the loss
event probability is actually another way of increasing the
number of active flows; moreover, loss events break the cor-
relation between successive batches belonging to a flow. We
point out that when the assumption of uncorrelated batch
sizes holds, the queue length distribution is insensitive to
both round trip times and channel speed (at the same p).

The discrepancy that we observe between simulation and
analysis is an effect of long range dependence in the input
traffic of the queue. However it does not seem to be due to
the ‘long’ tail of the flow length distribution. We studied
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the impact of flow length distributions consisting of a sin-
gle geometric component, and obtained the results shown in
Figure 8, for the same value of p = 0.8 and channel speed
equal to 28 Mbps. The model is accurate for flow sizes up
to S = 40 packets. A discrepancy shows up using S = 80,
which increases when S = 320, but remains essentially the
same when S = 1000. Actually, the model predicts that the
maximum burstiness is already achieved when S is about
80. This is due to the first slow start phase, during which
the window rapidly grows up the maximum window size.
Simulations confirm that increasing the mean size of the
flow length distribution (and its variance) does not result
in stronger and stronger correlations. This is because the
batches produced by very long flows are in any case limited
by the maximum window size. This fact suggests that, con-
trary to a common belief, the heavy tail of real flow length
distributions does not play an important role on the queue
behavior, if we use TCP as the transport protocol. An ex-
treme case is shown in Figure 9. Here we assume a loss event
probability equal to zero and a single geometric component
with § = 320. Since without loss the behavior of TCP is
deterministic, the batch size distribution used in the queue
model is definitely correct. However there are strong corre-
lations in the size of batches arriving at the queue, due to
flows that reach the maximum window size and stay there
until completion. In fact it is necessary to increase the chan-
nel speed up to 622 Mbps to see these correlations disappear.

In order to discuss the applicability of the model to more
complicated network scenarios than that depicted in Fig-
ure 1, we consider the tandem network shown in Figure 11,
which is essentially the same topology of Figure 1 with the
addition of link C5. This provides a stress test to the naive
approach of solving each queue in isolation: in fact the pres-
ence of traffic arriving at router R3 from a different interface
(indicated in the Figure as ‘cross traffic’) would make the
independence hypothesis more reliable. We obtained from
simulation the queue length distribution at @ for different
values of the capacity C3 (the traffic intensity on link Cs is
always equal to 0.8), in order to understand what kind of
error is produced solving the queues in isolation. Note that
if C3 < O the queue does not even form. Results are shown

54

‘ sim - ld Mbps N
0.1 F sim - 155 Mbps 3
sim - 622 Mbps -~
mod
0.01 |
o .
= 0.001 £ E|
g
i
S
=%}
0.0001 [ = E|
1e-05 RO E|
1e-06 s s ‘ (R
800

0 100 200 300 400 500 600

Number of packets in the queue

900

Figure 9: Queue length distributions with S = 320,
p =0, and different link speeds

S

eceivers transmitters
C Cu

N,

Figure 10: Simple example of tandem network

on Figure 11 and reveal that the error becomes marginal as
soon as the capacity Cs is a little higher than capacity Cr..
Moreover, the independence assumption always leads to a
pessimistic prediction, which is a desirable property in the
context of network design and management.

In the presence of a large amount of cross traffic on the
paths of the flows, one may think that intermingling of pack-
ets belonging to different flows, with the consequent separa-
tion of packets belonging to the same batch, would mitigate
the strong correlations that we have found in the traffic pro-
duced by the TCP sources. On the other hand, the ack
compression phenomenon [22] is expected to exacerbate the
burstiness of packet transmissions. Finally, heterogenous
link capacities should be taken into account. Whatever hap-
pens, it is intuitive to understand that a queue model with
instantaneous batch arrivals will always produce a conser-
vative analysis, provided that there are enough active flows
to assume uncorrelated batch sizes.

Finally we want to show that the loss model on which we
built our stochastic model of TCP (see Section 3-A.1 is gen-
eral enough to deal with the important case in which losses
are introduced by a drop-tail queueing discipline, which is
still widely used in the Internet. For this purpose we ran
simulations in which losses are not artificially introduced on
the peripheral links but result from buffer overflow at the
access router Rz (see Figure 1). We obtained from simu-
lation the loss event probability required to compute the
transition probabilities of our TCP model, and we varied
the parameter P that allows us to consider all values of loss
correlation within the same window of data. Note that now
the batch size distribution required by the queue model is
that of groups of packets flowing before the point in which
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losses occur (the ingress of the drop-tail queue). To solve
the queue we simply found the numerical solution of the
M™V/M/1/B queue to which we reduce the analysis of the
more precise Ms!X) /M /1 (Section 3-B), although this is only
an approximation, as we will show.

There are two methods for deriving the loss event proba-
bility p from the simulation. The first is based on the defi-
nition of loss event introduced in Section 3-A.1 and requires
to simply count the number of loss events occurred during
the simulation. We refer to this as estimate p;. The second
method is based on the following consideration. A flow that
transfers i packets completes without loss with probability
s', where s = 1 — p, if we assume that loss events occur in-
dependently according to a Bernoulli process (this is indeed
an assumption of our model). From simulation it is easy to
compute the fraction f of the flows that complete without
losses. Assuming a geometrical distribution of flow size with
parameter ¢, we have f = > 72 ¢(1 — q)""' s', and after
some algebraic manipulations we obtain a different estimate
p2 of loss event probability as

_ q—4qf
LS

According to our simulations, p1 and ps almost coincide,
which validates our assumption that loss events are described
by a Bernoulli process. In our scenario we set the buffer size
B to 128 packets, and ran a simulation at 90% link utiliza-
tion with a flow size geometrically distributed with an aver-
age of 60 packets. We obtained from simulation p; = 0.0036
and p2 = 0.0033. Using p; into our TCP model and solv-
ing the Ms™!/M/1/B queue resulted in the queue length
distributions shown in Figure 12 for three different values of
Ps. We observe that the agreement with simulation is quite
good, and that Ps does not play an important role, the best
choice of this parameters lying in between the two extreme
values zero and one. Nevertheless the distribution obtained
from simulation exhibits a puzzling peak at the maximum
value of buffer size that cannot be obtained from a queue of
type MXI/M/1/B. In fact the correct model of the queue
should be the finite buffer version of the Mg™!/M/1 model
introduced in Section 3-B. However we do not present this
model here due to lack of space. We simply state that it is

(4)
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possible to obtain analytically also the final peak, which is
again a consequence of the fact that packets within a batch
do not enter the buffer simultaneously, but are spread over
time (see [1] for details).

5. MEASUREMENTS

We compared analytical results also with real measure-
ments taken on the access link of our campus network. This
is only a qualitative validation, because the examined sce-
nario was no more ‘under control’ as a simulation with ns.

We performed one-way delay measurements over the 28
Mbps link connecting the internal LAN of our university to
the Internet, following the recommendations of [23] and [24].
The average link utilization produced by incoming traffic
from the Internet was obtained with MRT'G, a passive mon-
itoring system widely used throughout the world [26]. Our
measurements consisted of sending a poisson stream of probe
packets, at a rate of 20 probes per second, for a time interval
of ten minutes. This interval was considered to be a good
compromise in terms of (i) assuming the traffic stationary,
and (ii) obtaining enough points to estimate the delay dis-
tribution. We collected several traces at different link uti-
lizations, each ‘trace’ containing about 12000 samples.

We adopted the algorithm presented in [25] to estimate
and remove a clock skew between the sender and the re-
ceiver, that were not synchronized. After that, we have as-
sumed that the variable part of the total delay accumulated
by the probes over the link is completely due to queuing
delay at the buffer of the router.

Examining off-line the trace of all of the packets traversing
the link by means of a tool developed at our university [27],
we obtained a number of statistics used to correctly parame-
terize the model and to run simulations of the same system.
Among them the most important were the following: the
fraction of the traffic volume carried by TCP (about 95%),
the distribution of the most typical values of Maximum Seg-
ment Size, the distribution of the typical values of maximum
window size, the flow length distribution of incoming flows,
the packet size distribution, and a rough estimate of the loss
event probability based on out-of-sequence bursts of data in
the received packet stream. Due to lack of space we are not
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able to report here on all of these statistics®. In Figure 13
we show the complementary cumulative distribution func-
tion (ccdf) of the flow length of incoming flows expressed as
a number of data segments, together with the fitting of a
mixture of seven geometric distributions. The distribution
is highly skewed, with 64% of the connections transferring
less than one full-size MSS and a typical long tail clearly
visible on the log-log scale. The average number of data
packets per flow turns out to be 14.75.

Finally Figures 14, 15 and 16 show the queuing delay dis-
tributions obtained from analysis, measurements and sim-
ulation for different values of link utilization. A discrete
distribution for the queuing delay in @Q was derived using a
constant bin size equal to the transmission time on the link
of an average-size packet, which is 709 bytes. This corre-
sponds to about 0.2 ms over a 28 Mbps link. Simulation
results are obtained using the network setup of Figure 1.
Losses are introduced randomly at the transmitters’ side
using the loss model described in section 3-A.1, with a loss
event probability p = 0.001 and Ps = 0.7. For each connec-
tion we simulated also three-way handshake and connection

SFurther details on the measurement setup, collection of
traces and model parameterization can be found in [1]
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termination. TCP receivers use the delayed acknowledge-
ment option.

We briefly report also on the complexity of the model
solution. We need seven geometric components to model
the flow length distribution, and we consider four different
maximum window sizes (8, 16, 32 and 64 kbytes), so that
28 realizations of the TCP model described in Section 3-A
are required to account for all possible combinations. The
model used to solve the queue is the Ms™1/M/1. On a 333
Mhz pentium IT machine the execution time is less than one
second.

Away from the origin the analytical distributions always
exhibit a geometric decay. Since we have considered a 28
Mbps channel, we expected to see a discrepancy between
model and simulation. On Figure 15 we have also reported
the simulation curve obtained in the case of a 155 Mbps link
(at the same traffic intensity).

Measurement traces (including other traces not reported
here) can exhibit quite different behaviors for similar values
of link utilization. For example we can see that the trace at
82% utilization deviates from a geometric decay much more
than the trace collected at 86% utilization. We argue that
this is due to the extreme variability of a traffic carried by
TCP connections with a long-tail flow length distribution:



while LRD effects show up regularly on simulations run for
a sufficiently long time, they occasionally appear on traces
collected for just ten minutes.

6. CONCLUSION

We conclude summarizing the main results presented in
this paper. In order to study analytically the behavior of a
queue loaded by Internet traffic, any packet-level model of
type GI/GI/1 fails, because it neglects the strong correla-
tions of packets sent by the same TCP source. We discovered
that a model with batch arrivals that consider together the
packets sent every RTT is able to capture most of the traffic
correlations. Additional correlations tend to disappear in-
creasing the number of active flows. We proposed a simple
stochastic model to obtain the correct batch size distribu-
tion in the case of a fairly general long-tail distribution of
the flow length. We also described a queue model in which
packets within a batch do not enter the queue simultane-
ously, but are equally spaced over time. Comparing with
simulation results, our model seems to be able to capture
what really happens in the queue under a variety of param-
eter settings. We also compared the model predictions with
actual measurements of queueing delay on an Internet link,
showing that our technique can be successfully applied to
study the behavior of a queue in a real network scenario.
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