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ABSTRACT A smart city is a sustainable and effective metropolitan hub, that offers its residents high

excellence of life through appropriate resource management. Energy management is among the most

challenging problems in such metropolitan areas due to the difficulty and key role of energy systems.

To optimize the benefit from the available megawatt-hours, it is important to predict the maximum electrical

power output of a baseload power plant. This paper explores the method of a deep extreme learning machine

to create a predictive model that can predict a combined cycle power plant’s hourly full-load electrical output.

An intelligent energy management solution can be achieved by properly monitoring and controlling these

resources through the internet of things (IoT). The universe of artificial intelligence has produced many

strides through deep learning algorithms and these methods were used for data analysis. Nonetheless, for

further accuracy, deep extreme learningmachine (DELM) is another candidate to be investigated for analyses

of the data sequence. By using the DELM approach, a high level of reliability with a minimum error rate is

achieved. The approach shows better results compared to previous investigations since previous studies could

not meet the findings up to the mark and unable to predict power plant electrical energy output efficiently.

During the investigation, it is shown that the proposed approach has the highest accuracy rate of 98.6% with

70% of training (33488 samples), 30% of test and validation (14352 examples). Simulation results validate

the prediction effectiveness of the proposed scheme.

INDEX TERMS DELM, ANN, feedforward, power plant, prediction, smart city, IoT.

NOMENCLATURES

u Inputs

P Outputs

G Points of moving average

ux Starting value input

N Natural number

α Dimension of the input matrix
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v Input layer nodes

β Dimension of the target matrix

l Output layer nodes

σ I/p features

B Target matrix

K Input layer node, weights between I/p and

hidden layer

W Weights between hidden neurons and out-

put layer neurons
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R Hidden layer output

S Resultant matrix

γ Make the matrix more generalized

AFE Output of the hidden layer

hl Hidden layer

Rhli,j weight and bias among the output and the

hidden layer

tpj Calculated output

S′ Transpose of the resultant matrix

Rγ Hidden layer output

Al Weight matrix of lth hidden layer

R Bias of hidden layer neurons

Bl Estimated output of the first hidden layer

Rl Estimated output of the lth hidden layer

AFERE Net hidden layer value

I. INTRODUCTION

The smart city is a new concept, well defined and used

by many researchers and institutions [1]. In a simple term,

the smart city is intended to tackle or minimize problems

created by rapid urbanization and population growth, such as

energy consumption, waste, and mobility, through the highest

efficiency and resource optimization. In the literature, one can

be finding a lot of classifications of the smart city interven-

tion areas [2]. The main disadvantage of these categories is

that they classify energy mainly based on the infrastructure,

ignoring other appropriate energy aspects such as a smart

grid. Urban life is an important challenge already in our

daily lives [3]. The Population Fund of the United Nations

forecasts that by 2030 around 60% of the world’s population

will live in urban areas whereas 27 large cities with over

10 million people are projected to exist [4]. Thus, urgent

solutions for sustainable living and urban development are

being sought. The energy demands of cities are complicated

and extensive [5]. As a result, modern cities should enhance

current technologies and execute new alternatives in a timely

and effective manner, taking advantage of the interactions

between all these energy approaches [6]. The intermittent

use of renewable resources, increased demand, and the need

for energy-efficient systems represent important energy chal-

lenges that, as usual, are more addressed in general than

separately.

Simulation models were designed to help participants

understand city dynamics and mitigate the influence of

energy policy substitutes [7]. However, these attempts very

often tackle individually the energy regions, where the whole

image is missing and therefore inadequate alternatives are

produced [8]. To satisfy the growing energy requirements

of current and future cities effectively, an extensive smart

city model that involves all energy operations whilst main-

taining the volume and complexity of the model manageable

is extremely desirable [9]. Energy management performs an

important part in identifying an appropriate and efficient

alternative to reduce peak demand and attain energy con-

servation [10]. The Internet of Things provides numerous

advanced and ubiquitous applications for smart cities [11].

IoT applications are increasing their energy needs, while IoT

devices are growing both in terms of numbers and require-

ments [12]. Therefore, Smart city solutions must be capable

of efficient energy use and of addressing the challenges asso-

ciated with it.

On the other hand, it can help us to look at the light

at the end of the tunnel by developing huge information

and communications technologies, and by using the internet

power [13]. Even now, without the internet, someone can

hardly imagine our lives [14]. It is even difficult to think

that with the increasing accessibility of linked items; the

internet today is to achieve individuals to discover data and

to help us in our regular life with creative facilities is not

expanded to create value from such enhanced accessibility

of linked items [15]. This research is about helping people to

move from the Internet of People to the Internet of Things

(IoT), in particular in future smart cities. According to the

European Research Cluster for the Internet of Things, IoT

is an auto-configuring vibrant, worldwide network infras-

tructure where physical and virtual items can be identified

and communicated by normal and interoperable procedures.

While IoT is expected to be the perfect hope of viable

city lives [16]. On the other hand, in order to make IoT

smarter, lots of analysis technologies are launched into IoT;

in which few of the most valuable technologies are Data

Mining, Artificial Intelligence, Cloud Computing and Neural

Networks [17].

In this research work, managing energy is regarded as the

main prototype for the implementation of smart city compli-

cated energy systems. This research work provides a short

summary of energy management and difficulties in smart

cities, then specify a cohesive structure for energy sustain-

ability for IoT based smart cities. A deep extreme learning

machine (DELM) approach will be used to make smart cities

energy efficient with IoT enabled sensors with improved

performance. Energy-efficient systems are entering future

smart cities with superior equipment, control structures, and

demand response policies [18].

The Internet of Things (IoT) transmits the prospective of

transform communities around all over the world into ‘‘smart

cities,’’ actually by creating a new lifestyle of urban liv-

ing [19]. The major benefits include increased safety, Health,

improve education and living houses environments, Energy

consumption, more efficient of climate and ecosystem, green

economy and improve the employment system [3]. Even

though the basic idea of smart cities has existed for almost

more than 10 years, but the concept has come a long way

since it is introduced at the beginnings, now the posed to rad-

ically alter city life that is an emergence of different serious

enablers like the internet of Things. Reference [20] stated that

the vision of smart cities is a safe, secure, eco-friendly and

effective metropolitan center of the future because of all the

structures like power, water, and transportation.

Reference [21] stated that a smart city is an innovation-

intensive and improved city that links individuals, data and
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urban features through innovative technologies, to build a

sustainable, safer city featuring competition and innovative

trade, and improved quality of living. As citizens shape such

a city through ongoing relationships, they are the main com-

ponent of smart cities. That is why a smart population is

acknowledged as the main driving force of smart cities; there-

fore, in smart cities, learning, education, and communication

are significant strategies. Reference [22] argued that a smart

city is an intelligent community in which different compo-

nents such as individuals, climate, mobility, democracy and

the economy are constructed within an intelligent structure.

Fog Computing is an alternative term to cloud computing

that places certain transactions and resources at the edge of

a network, rather than creating channels for cloud storage

and use [23]. Fog computation can decrease the bandwidth

requirements by providing no data on cloud channels and

aggregating it instead at certain entry points, such as routers.

This enables more strategic data compilation that may not be

necessary for cloud storage. Fog computer extends the normal

cloud computing to the brink and is thus also known as edge

computing [24].

In this paper, a deep extreme learning machine for the pre-

diction of power plant electrical energy output is investigated

to achieve the highest accuracy. In the training and testing

of estimation of electrical energy output with deep learning,

a data set named combined cycle power plant with 47840 data

instances are used, so that each instance includes different and

diverse characteristics. Consequently, the examination and

comparison with state-of-the-art techniques in the same field

are made.

The remainder of this paper is organized as follows.

Section 2 briefly describes the related work. Section 3

presents the method to carry out a comprehensive evaluation

for the prediction of power plant electrical energy output.

Section 4 discusses the simulation and results of the DELM

approach. Sections 5 discuss the conclusions from the study.

II. LITERATURE REVIEW

The smart city relates to the convergence, the generation of

big data and artificial intelligence systems, and the evolving

IoT and smart city systems [25]. IBM utilizes a concept of

cognitive computing to define technologies that can learn

from various information sets, provide explanations for inter-

action and acquire knowledge with individuals in natural

languages. Google Now is also a service to make customer

suggestions and to provide the customer with themost helpful

data at the correct moment. This scheme is taught by users ’

previous behaviors and inputs in Google accounts including

Calendar, Chrome, Gmail, Search and YouTube [26]. It is

nearer to the cognitive age with the use of natural language

comprehension embedded with other facilities like search

engines.

IoT is the latest communication paradigm that will emerge

in the future when all items used in daily life are integrated

with electronic transmission and interactionmicrocontrollers,

detectors and transceivers and protocol servers. This type of

protocol can be used to prepare them for a great opportunity to

interact with one another and with customers and to become

an essential part of the Internet [27]. The smart city project

is most popular now a day. The latest estimates and research

forecast of the World Health Organization that the population

of the world will live in municipal regions in the future.

Reference [28] supposes that, by 2050, 70% of the population

will live in cities. The smartness project is used for creating

luxury in life. The smart city is a project which uses the

latest technology to enhance the quality of urban life. Smart

cities also improve the performance of the environment and

provide people with superior facilities [29]. Transmission and

Information Technology is important to support and change

urban cities to smart cities [30].

Reference [31] decided to explore new ways of tackling

the problems of energy management. Among the approaches

discussed he chose to focus in particular on methods for ’

machine learning ’ to manage repeated in-patient real-time

scenarios through the use of historical data. It was at a period

when the revival of artificial neural networks was pursued

with great enthusiasm.

In order to address nonlinear relations in the ability of

artificial neural networks, environmental conditions are con-

sidered as inputs of the model and energy generated as out-

puts of the model. We can forecast the plant’s output power

based on environmental conditions using this model [32].

A GA method for the production of MLP for CCPP power

output estimates has been proposed in this study [33]. MLP

model selection based on the GAMultiple- layers perceptron

is performed using an individual mutation, three different

crossover processes, and two distinct fitness functions for

several hidden layers.

The Internet of Things (IoT) connects multiple physical

gadgets, cars, mobile and dissimilar stuff that can interact and

exchange data with hardware, software, sensors, actuators

and network [34]. Since it was founded, IoT has played a cru-

cial part from a variety of traditional equipment to prevalent

household objects and in latest years has attracted the atten-

tion of educational, academic, technological and industrial

scientists as well as the public. The main aim is to control,

manage, and monitor everything readily at a key stage, and

to automatically identify other stuff which is interconnected

and can even make choices on their own.

In [35], For different local ambient conditions, the ANN

model is employed to predict the working parameters and

efficiency of a gas turbine. Intelligent systems are also used to

model a fixed gas turbine. In [36], the identification methods

for the ANNs have been established and the findings have

shown that the identification system for the ANN is perfectly

suited for estimating gas turbine conduct from full speed to

full load conditions in many different operating points.

In addition, the research on electricity consumption with

machine learning instruments has also been carried out sev-

eral times [37], [38]. Some research, such as [39], has been

found to be a similar study on the total electric power

produced by a cogeneration power station with three gas
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turbines, one steam turbine, and a district heating system in

this article.

Similar to waste storage procedures and norms, procedures

and mechanisms for the recycling of information are needed

in metropolitan towns with the generation of hundreds or

thousands of gigabytes of information per second. Meth-

ods of data analytics and algorithms of machine learning

should be prepared to obtain information and knowledge to

decrease digital waste [40]. Although computing and stor-

age techniques have recently advanced, most data-analytical

approaches take advantage of sampling techniques that are

time-efficient but overlook a big number of data that can

contain significant information models not presented in the

samples. Data sets with lots of constraints can be taken to

obtain perceptive analysis by means of the use of deep neural

networks (DNNs) [41]. The most important thing, is the IoT

platform actually designing and development, requires a per-

fect solution that is calledmiddleware-level solution to enable

the seamless interoperability between Machine-to-Machine

based application and existing internet-based service [42].

There are several works in the research community that

suggest cognitive solutions, that are appropriate to the

requirements of IoT devices. Reference [43] suggested a

cognitive management structure that allows smart objects

to communicate and thus create end-users more conscious.

The focus in this work was on the reuse of available object

functionality and services across three levels, comprising

virtual objects (VOs), virtual composites (CVOs) and level

of service. The type of service originates from the features

that a stakeholder or a specific implementation requires of the

desired service. The CVOs will be responsible for these func-

tionalities. The writers demonstrated that in their suggested

structure the service delivery period is reduced, leading to

reduced operating costs.

An additional research project carried out by Wu et al.

to develop a cognitive structure for IoT applications is Cog-

nitive IoT (CIoT) [44]. The structure provides relationships

of five behavioral functions: a perception-action cycle, mass

analysis of information, semantic derivation and discovery of

information, smart decisionmaking and supply of on-demand

services. They acknowledged two areas for the understanding

and learning of objects in a cognitive setting. They derived the

semantics from the analyzed data and found useful outlines

and directions as knowledge.

Reference [45] outlined a cognitive framework for smart

homes on the basis of cognitive dynamic, IoT systems and

utilized the Bayesian, Bayesian filter and RL models in the

core of their cognitive memory. The Bayesian model ranks

above the environmental control unit. The Bayesian filter

measures the status of the scheme and RL offers the method

for determining the finest feasible activities based on the

complete awards.

Reference [46] have opted for integrating artificial intel-

ligence in fog computing to promote intelligent large data

exploration. In comparison to centralized cloud intelli-

gence and assessment. They implemented a hierarchical fog

computing model for big data analysis for intelligent city

applications. This model enhances general efficiency by

decreasing the communication bandwidth because raw infor-

mation is not transmitted to the cloud, and because the fog is

close to the information source in real-time analysis. In their

model, they used a hiddenMarkov (HMM)model to assist big

data analysis in an intelligent pipeline surveillance scheme.

III. EXPERIMENTAL

A. SYSTEM MODEL

The smart city manages and controls resources through smart

data systems. To ensure optimum supplies and effective use

of urban assets, the development of IoT-based technologies

to tackle these issues generated by those technologies is

essential. Furthermore, intelligent alternatives are the primary

premises of a smart city for transport, healthcare, comfort,

farming, and public. In this research work, the energy effi-

ciency model has been introduced for smart cities, which

show howdeep extreme learningmachine techniques are used

to provide the inhabitants of the cities with superior facilities.

The general intelligence context in smart cities is presented in

this paper. This structure provides four intelligence concen-

trations: smart city and IoT facilities, deep extreme learning

machine, fog computation, and cloud computation.

FIGURE 1 shows the general situation of the deep extreme

learning machine approach within the smart city structure

hierarchy where the intelligent software manager that is

implemented in fog or in the cloud depends on the features

of the analytics needed. The raw information can, therefore,

be transmitted to the cloud or the fog. The operational analyt-

ical agent based on the approach of a deep extreme learning

machine then gives a proper response based on predictions for

infrastructure devices (e.g. adjust the consumption of energy

on the basis of the information). The reason behind this

architecture is to deepen the abstraction of information and

understanding while transiting the information through the

smart city infrastructure. A city-wide abstraction is required

at the highest levels for the long-term management of city

resources and services. On the other side, sensor or intelligent

object-generated information is used at the smallest stage for

short-term management of assets and facilities. In addition,

fog-driven analytics promote local activities in predefined

situations, while cloud-driven analysis can cover broader

geographical areas with diverse situations. Fog Computing

further divided into two sub-phase training and validation

phase. In the training phase, backpropagation is used to train

data and then trained model export to the cloud. Respectively

in validation phase trained model import from the cloud and

predict electricity production of a power plant from real data.

IoT infrastructure levels are used to detect surround-

ings by the sensors and resource-contracted equipment. The

limitation of the resources of those devices impedes the

use of complex and extensive learning models. However,

in order to take analytics and intelligence nearer to the

information source (for example, end-users, IoT-resource

resilient equipment), contemporary and sophisticated designs
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of learning like deep extreme learning machines are

required.

A new path of research is to overcome this resource limit,

so that deeper neural model networks can be used. During

the past few years, various methods have also been suggested

for compressing or planting deep neural networks in order

to load them into IoT systems, wearable electronics, and

smartphones that are restricted by resources [47]. The raw

information is collected and transferred to the Cloud comput-

ing level on the fog computing stage. The DELM technique

can be used at this stage because the resources at this stage are

lower than the IoT assets. Lightweight intelligence must also

be provided at this stage to the IoT gates and representatives

in order to efficiently integrate facilities in the assistance of

smart city applications [48]. At the cloud computing stage,

mechanisms and methodologies can be incorporated with

semantical teaching and ontologies to obtain high-level ideas

and trends from the gathered information. Deep learning

models are extremely appropriate at this stage since they can

provide a more profound overview of data.

The purpose is to make the infrastructure more intelligent

so that resources can efficiently utilize it. They want modern

technology, including water wastes, electricity consumption,

transport traffic congestions and so on, to addressmany press-

ing problems. Building intelligent cities help them address

all of these issues, resulting in favorable economic results.

This will make the living atmosphere more effective and

sustainable.

The assumption of smart cities appears interesting, but how

viable is it. This must obtain information in each industry in

order to be effective. It is hard to implement alternatives at

this level because every city is distinctive and therefore each

moment a fresh set of issues arises. If someone wants to con-

struct a scalable model, this needs to discover models that can

constantly be used by many distinct cities to implement the

intelligent citymodel. The focus is on intelligent data analysis

and building solid information collection capabilities, com-

munication protocols, inter-operability between computers,

data storage systems, intelligence levels, etc.

In this research work, the deep extreme learning

machine (DELM) technique is being unified to make

smart cities energy efficient with IoT enabled sensors.

FIGURE 3 demonstrates that in deep extreme learning

machine (DELM) diverse amounts of hidden layers, different

hidden neurons, and numerous kinds of activation functions

have been used to attain the finest structure of DELM for

energy efficiency. The proposed technique comprises of three

diverse layers, namely data acquisition, pre-processing, and

application layer. In the application layer, there are two

sub-layers namely the prediction layer and performance eval-

uation. Real data from sensors are collected and actuators for

experimental analysis. The data collected are provided for

the acquisition layer as an input. Various data cleaning and

preparation systems were implemented to extract anomalies

from the information in the pre-processing layer. In the appli-

cation layer, Deep extreme learning machine (DELM) have

been used for energy efficiency. The DELM takes the benefits

of both extreme learning and deep learning techniques [49].

The complete system procedure is shown in FIGURE 2.

In which layer of data acquisition contains the parameters of

input, they will go to the neural system, where an algorithm

has been trained to predict power plant electrical energy

output. Nowadays, artificial neural networks can be used in

all sectors. The artificial neural network comprises of a set of

neurons which are characterized by special arrangement.

The main parts of an artificial neural network are neurons

and connections between them. A neuron is the fundamental

unit of processing information that forms the foundation for

the performance of ANN. Neurons are conjunct processing

elements that work together to solve a problem.

B. DEEP EXTREME LEARNING MACHINE

The deep extreme learning machine (DELM) is a well-known

method used in various areas for predicting health prob-

lems, energy consumption predictions, transportation and

traffic management, etc. [49]. The traditional ANN algo-

rithms require more samples and slow learning times and can

overfit the learning model [50]. The idea of ELM was first

specified by [51]. The DELM is used widely in various areas

for classification and regression purposes because DELM

learns fast and it is efficient in the cost of computational

complexity. Extreme learning machine is feedforward neural

network which means data only goes one way through the

series of layers but we have used backpropagation method

in this proposed model during training phase where infor-

mation flows back through the network and in backpropa-

gation method network adjust the weights to achieve high

accuracy with minimum error rate. During validation phase

weights of the network are constant in which we import the

trained model and predict the real data. There are three layers

included in the DELMmodel the input layer, multiple hidden

layers, and an output layer. The structural model of a DELM

is shown in FIGURE3,where np represents input layer nodes,

ℓ represents hidden layer nodes, and Op indicates output layer

nodes.

In order to make energy sustainable cities, the prediction

of electricity production in a power plant is a major real-

life problem. For the effectiveness and cost-effectiveness of a

power plant, the complete energy production of a baseload

power plant should be properly predicted. It is helpful to

increase the revenue from the accessible megawatt-hours

(MWh). Turbine reliability and durability rely heavily on

the forecast of its energy generation, especially where ele-

vated profitability and contractual liabilities are restricted.

This research examines the deep extreme learning machine

(DELM) method for developing a predictive model to esti-

mate the complete energy production of a power plant hourly.

C. SERVICE-ORIENTED ARCHITECTURE

The main advantage of smart grids lies in the capacity of

incorporation of energy sources into the network and control

of energy consumption and generation, as is shown in III-D.
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Energy generation is the first step of the smart grid value

chain, it involves power sources and relieves broad-based

technology monitoring and control to communicate with the

next step known as power distribution. This is focused on

a proximity network connecting consumers to the grid and

transmitting data via advancedmetering facilities. Power con-

sumption is the final step in the smart network value chain,

involving both residential and industrial electricity users.

Therefore, to maximize the operation, it is very important to

supervise their consumption and production.

D. DATASET

A power plant’s baseload function is affected by four primary

parameters that are used in the dataset as input factors, such

as temperature (T), ambient pressure (AP), relative humidity

(RH), and exhaust vacuum (V). These parameters influence

the production of electrical power, which is termed the target

variable such as electrical power output (EP). The temper-

ature (T) input variable is measured in the range between

1.81 ◦C and 37.11 ◦C. Ambient pressure (AP) is the input

variable and is measured in the range between 992.89 and

1033.30 millibar. The variable relative humidity (RH) is eval-

uated as a percentage in the range from 25.56% to 100.16%.

The variable exhaust vacuum (V) is evaluated with the spec-

trum between 25.36 to 81.56 cmHg. The data set uses electri-

cal energy output (EP) as a target variable. It is calculated in

megawatt with the range of 420.26–495.76 MW. In the data

acquisition layer, inputs will be taken from the collection of

data such as temperature(T), ambient Pressure, (AP), rela-

tive humidity (RH) and exhaust vacuum(V). These variables

affect the output of electrical energy, which is termed as the

target variable (EP). In the pre-processing layer, cleaning

abnormalities in data and data reduction will be used for

quality data in machine learning. In the application layer,

a deep extreme learning machine method will be consid-

ered for energy management. In the evaluation layer, three

parameters mean absolute error (MAE), root means square

error (RMSE),means absolute percentage errors (MAPE) and

mean square error (MSE) will be observed for calculating

full load electrical energy output to improve the efficiency

of energy management for smart cities. In this article, DELM

was used to train and fit 47840 sets of data. This data arbitrar-

ily divides into 70% of training (33488 samples), 30% of data

is used for validation and testing (14352 samples). In Table 1 a

pseudocode of proposed deep extreme learning machine of a

powerplant electrical energy output is described.

In Eq. (1), a mathematical representation of the moving

average filter is considered. Where u ( ) denotes the inputs,

P [ ] denotes the output and G represents the point of moving

average.

P [x] =
1

G

G−1
∑

T=0

u (x + T ) (1)

In the modeling of machine learning algorithms to increase

predictability and to improve the training process, complete

TABLE 1. Pseudocode of proposed DELM based training model of
powerplant electrical energy output.

sample data have been standardized to fit in the interval

[0, 1] by using Eq. (2) given below:

C =
ux − umin

umax − umin
, where x = 1, 2, 3 . . .N (2)

Take a training sample at first [σ ,B] = [σv, βv] (x =

1, 2, ...,Z), and input sample σ = [αv1αv2αv3... αvz] and

a targeted matrix B = [β11β12β13... β1z] was composed of

samples from training, the matrices σ and B can then be

represented, respectively, as in Eqs. (3) and (4), where the

dimensions α and β are the input matrix and output matrix.

The ELM will then adjust weights arbitrarily among input

and the hidden layer. Where kD1 represents the weights

between the kth input node and lth hidden layer node as shown

in Eq. (5).

σ =















α11 α12 · · · α1n

α21 α22 . . . α2n

α31 α32 . . . α3n
...

...
...

αD1 αD2 αDn















(3)

B =















β11 β12 · · · β1n

β21 β22 . . . β2n

β31 β32 . . . β3n
...

...
...

βD1 βD2 βDn















(4)
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K =















κ11 κ12 · · · κ1n

κ21 κ22 . . . κ2n

κ31 κ32 . . . κ3n
...

...
...

κD1 κD2 κDn















(5)

W =















̟11 ̟12 · · · ̟1n

̟21 ̟22 . . . ̟2n

̟31 ̟32 . . . ̟3n
...

...
...

̟D1 ̟D2 ̟Dn















(6)

Next, the ELM has randomly selected the biases of the

hidden layer nodes, as in Eq. (7). Extreme Learning Machine

also preferred an f(u) function that was the network activation

function. Data acquisition layer in Fig. 1, the resulting matrix

is shown in Eq. (8). Respectively the column vector of the

resulting matrix S shown in Eq. (9) [49].

B = [β1, β2, β3 − − − − − − − βD]T (7)

S = [s1, s2, s3 − − − − − −sz]m ∗ n (8)

s1 =















s1j
s2j
s3j
...

smj















=























∑i

e=1
Mc1 f (∀cie + βc)

∑i

e=1
Mc2 f (∀cie + βc)

∑i

e=1
Mc3 f (∀cie + βc)

...
∑i

e=1
Mcn f (∀cie + βc)























(e = 1, 2, 3, . . . .., n) (9)

Then we can obtain Eq. (10) with regard to Eqs. (8) and (9).

The outcome of the hidden layer is R and transposition of S

as S‘ and values of weight matrix γ are calculated in Eq. (11)

with the least square method.

Rγ = S‘ (10)

γ = R+S‘ (11)

The γ regularization term was used to increase the net-

work’s overall stability [52]. Deep learning emerges and now

a day the very famous subject for researchers. A systemwith a

minimum of four layers with inputs/outputs fulfills the needs

of a deep learning system. The neurons of every layer are

trained in a deep neural network on a diverse set of parameters

with the result of the previous layer. This allows extensive

datasets to be processed by the deep learning networks. Deep

learning captured numerous researchers ’ attention because it

is very effective in solving real-world issues. DELM is used

in our proposed work to capture both ELM advantages and

deep learning. DELM’s model comprised of a single input

layer with four neurons, six hidden layers, with Ten neurons

each hidden layer, and FIGURE 3 shows one layer of output

with one neuron. The test and error method for selecting the

number of nodes from hidden layers was used because of the

lack of any special mechanism for specifying hidden layer

neurons. The second hidden layer output is achievable as;

Rl = Sγ +
l Where l = 1, 2, 3, . . . 6 (12)

where γ + is the general inverse of a matrix γ . Thus, second

hidden layer values can be easily attained through Eq. (11).

f (AlR+ Bl) = Rl (13)

In the Eq. (13), the parameters Al,R,Bl , and Rl represent

the first two hidden layers ’ weight matrix, preference of

the first neurons in the hidden level, the first hidden layer

assessed output, and the second hidden layer estimated output

respectively.

AFE = f −1 (l)F+
E (14)

F+
E is the inverse of FE and in order to compute Eq. (5),

the active function f (x) is being used. Hence the required

outcome of the second hidden layer is revised as follows by

indicating the correct f (x) activation function:

Rl+1 = f (AFERE )

where AFERE = Nhl+!

Rl+1 = f (Nhl+1) (15)

Updating the weighted matrix γ among the second layer

and third layer as per Eq. (16). R+
l+1 is the inverse of Rl+1.

The estimated layer’s results are thus shown as Eq. (17).

γl+1 = R+
l+1S (16)

Sγ +new is the inverse of the weight matrix µl+1. The

DELM then sets the matrix FME l = [Bl+1,Al+1]. Eqs. (10)

and (11) allow the output of the further layer to be achieved.

f (x) =
1

1 + e−x
(17)

The back-propagation algorithm incorporates, weight ini-

tialization, feedforward, back error propagation, and weight

and bias update is subject to distinctive developments.

An activation function like g (x) = sigmoid exists on each

neuron in the hidden layer. The sigmoid input function and

the hidden layer of the DELM can be composed in this way;

F =
1

2

∑

j

(

r j − tpj
)

2 (18)

rj = Desired output

tpj = calculated output

Eq. (18) shows the backpropagation of error, which can be

calculated by the sum of the square of the desired output from

the calculated output divided by 2.

To reduce the overall error the adjustment of weight is

required. Eq. (19) shows the rate of change in weight for the

output layer.

1Rhl=6

i,j ∝ −
∂H

∂Rhl=6

where i = 1, 2, 3 . . . . . . . . . 10 (Neurons)

and j = output Layer (19)

1Rhl=6

i,j = −const
∂H

∂Rhl=6
(20)
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FIGURE 1. Proposed model for energy sustainability in the smart city.

writing Eq. (20) by using the chain rule method

1Rhl=6

i,j = −const
∂H

∂tphlj
×

∂tphlj

∂NhRhlj
×

∂NhRhlj

∂Rhli,j
(21)

The value of change weight can be achieved after substi-

tuting the values in Eq. (21) as shown in Eq. (22).

1Rhl=6

i,j = const
(

r j−tpj
)

×

(

tphlj

(

1 − tphlj

)

× tphlj

)

From tp to R6

1Rhl=6

i,j = const∋jtp
hl
j (22)

The calculation to determine appropriate weight change to

the hidden weight is shown in the following procedure. It is

more complex because the weighted connection can lead to

errors at all nodes.

From R6 to R1 or Rn
Where n = 5, 4, 3, 2, 1

1Rhli,n ∝ −





∑

j

∂H

∂tphlj
×

∂tphlj

∂NhRhlj
×

∂Rhlj

∂tphln



 ×
∂tphln

∂NhRhln

×
∂NhRhln

∂Rhli,n

1Rhli,n = −H





∑

j

∂H

∂tphlj
×

∂tphlj

∂NhRhlj
×

∂Rhln

∂tphln



 ×
∂tphln

∂Rhln

×
∂NhRhln

∂Rhli,n
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FIGURE 2. Proposed diagram for the prediction of power plant electrical energy output using the DELM approach.

1Rhli,n = H





∑

j

(

r j−tphlj

)

× tphln

(

1 − tphlj

)

×
(

Rn,j

)





× tphlj

(

1 − tphlj

)

× Xi,n

1Rhli,n = H





∑

j

(

r j−tphlj

)

× tphln

(

1 − tphlj

)

×
(

Rn,j

)





× tphlj

(

1 − tphlj

)

× Xi,n

1Rhli,n = H





∑

j

(

r j−tphlj

)

× tphln

(

1 − tphlj

)

×
(

Rn,j

)





× tphln

(

1 − tphln

)

× Xi,n

1Rhli,n = H





∑

j

∋j(R
hl
n,j)





× tphln

(

1 − tphlj

)

× Xi,n

1Rhli,n = H∋nXi,n

where

∋n =





∑

j

∋j(R
hl
n,j)



 ×tphln

(

1 − tphln

)

The process of upgrading the weight and bias among the

output and the hidden layer is shown in Eq. (23).

Rhl=6

i,j (t) = Rhl=6

i,j (t) + λ1Rhl=6

i,j (23)

Eq. (24) shows how updating the weight and bias among

the input and the hidden layer.

Rhli,n (t) = Rhli,n (t + 1) + λ1Rhli,j (24)

IV. RESULTS AND DISCUSSION

In the proposed article, the deep extreme learning machine

algorithm has been applied to data [53] and in this regard,
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FIGURE 3. Structural diagram of a deep extreme learning machine.

the Matlab tool has been performed for simulation. In Mat-

lab, a python script was implemented to train data [53].

In this article, DELM was used to train and fit 47840 sets

of data. This data arbitrarily divides into 70% of training

(33488 samples), 30% of data is used for validation and

testing (14352 samples). Data were previously processed

to remove data abnormalities and free the data from error.

DELM has attempted to discover the finest configuration

model for power plant electrical energy output prediction

in different hidden layers, hidden neurons and combinations

of Activation Functions. Therefore, we have tried the same

number of neurons, different types of active functions in

hidden layers. In this work, we used the proposed DELM for

prediction to properly test the effectiveness of this algorithm.

In order to measure the performance of this DELM algorithm

together with the counterpart algorithms, we used different

statistical measures written in Eqs. (25,26).

The exhaustive search is applied in this study to the original

dataset consisting of four parameters as input variables and

a target parameter as a response. The goal is to choose a

minimal model with the best subset that predicts the response

correctly [54]. To this end, we applied an exhaustive search

to the original dataset after collecting preliminary statistical

data to find the best subset by comparing all the competing

candidate subsets (24 − 1 = 15) in the experiments. In addi-

tion, we divided the experiments into four groups, applying

the sub-sets with one, two, three, and four parameters to the

regression methods.We calculated the best subset of each test

in these experiments by analyzing and comparing the results

of all regression methods for the candidate subsets, which are

shown in TABLE 2. In Eq. (25), O represent the predictive

output of megawatt-hour and T represent the actual output.

O0 and T0 represent that there is no change in predictive and

powerplant electricity production output respectively from

the previous cycle. O1 and T1 represent the change in electric-

ity production from the previous cycle of the predictive and

actual demand of a powerplant respectively.O0
/

T0
andO1

/

T1
represents predictive and actual output are same. Similarly,
O1

/

T0
andO1

/

T0
represents error, which predictive and actual

demand of electicity are varied.

Miss rate = O1
/

T0
+ O0

/

T1
(25)

Accuracy =

(

O0
/

T0
+ O1

/

T1

)

T0 + T1
(26)

MAE =
1

n

n
∑

j=1

⌈

yj − y] (27)
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FIGURE 4. Power plant service-oriented architecture.

RMSE =

√

√

√

√

n
∑

i=1

(

yj − y
)2

n
(28)

MAPE =
100%

n

∑ |y− y|

y
(29)

MSE =

n
∑

i=1

(

yj − y
)2

(30)

For the occupancy data set [53], the DELM approach was

used and the results obtained can be seen in TABLE 3. After

comparing with expected output and result that got after

applying the proposed approach, Table 3 shown that the result

of our proposed approach gives 98.6% accuracy and 1.6%

miss rate during training.

We take 30% of data (14352 samples) for testing and

validation from the dataset [53]. After comparing with the

expected output and result that got after applying the pro-

posed approach it can be shown in Table 3. Table 3 also

shows that the proposed approach accuracy during testing and

validation is 93.9% and the miss rate is 6.1%.

It is observed that the overall performance of the pro-

posed method (DELM) during training was 98.6% accurate

as shown in

TABLE 4, while the miss rate of training is 1.6%. But

in testing and validation, the overall performance of the

proposed method (DELM) was 93.9% accurate, while the

miss rate of training is 6.1% as shown in Table 3. It also

observed fromTABLE3 in the training phase results accuracy

increases with the minimum miss rate as compared to the

testing and validation phase.

TABLE 2. All possible subsets of the dataset.

According to Table 4 [55] utilized combined cycle power

plant data set [53] consisting of 47840 data samples, the mean

square error in each round is increasing. In the [55] approach,

there is only one hidden layer and an increasing number of

neurons.

TABLE 5 shows that during training the mean square

error of [55] methodology is decreasing respectively but It

is observed that MSE of proposed DELM approach with the

same number of neurons is less than [55]. Moreover, with

the increase in the number of hidden layers, the error is

further mitigated. However, the number of neurons is taken

10 in all the cases, whereas in [55], the number of neurons

is significantly high with a single layer. It can lead to the

conclusion that having more layers with a smaller number of

neurons is a better idea compared to having more neurons in

a single layer.

For subsequent tests, in order to compare the performance

of different learning methods, 5 × 2 cross-validation [56]

was applied. In this scheme, the dataset is randomly shuffled

5 times and each of them used in the 2-fold CV. The resulting

validation set performances of size 10 are used for statistical

significance tests.

Further, it is observed that in [55], with a single hidden

layer when the neuron count increases the performance of the

system also increases as shown in
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TABLE 3. Mean square error (MSE) and accuracy comparison of all subsets during training and testing.

TABLE 5. While, in the proposed DELM solution as the

number of hidden layers increases with the same (10) num-

ber of neurons, the performance increases significantly. This

means that the performance of the system is increased by the

increased number of neurons but not much as in the proposed

DELM system.

TABLE 5 enlistsMSE performances of local models (LM).

Here, LM1 is k-NN + ANN model with k=100, LM2 is

K- Means + ANN with K=20, LM3 is a K-Means + ANN

ensemble of population 3 with K=20, LM4 is a K-Means +

ANN ensemble of population 5 with K=20 and LM5 is a

K- Means + ANN ensemble of population 3 with K=10.

As can be seen local models with clustering yield better

results with an ensemble.

TABLE 5, the prediction of power plant electrical energy

output is carried out by all conventional findings with data

from the combined cycle power plant data set. The proposed

approach with DELM outperforms in terms of accuracy by

other prototypes, such as backpropagation [55]. The overall

results for [55] were 89.56%, but the proposed DELM system

performance is 98.6% and was higher than the previously

proposed methods in terms of accuracy rate. The values of the

statistical measures suggest that DELM performance is much

TABLE 4. Training and testing accuracy of the proposed DELM system
with varying hidden layers during the prediction of power plant electrical
energy output.

higher than the other approaches. So, the proposed DELM is

a considerable choice for the power plant electrical energy

output prediction.
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TABLE 5. Mean square error (MSE) comparison of the proposed DELM system with [55].

FIGURE 5. Root mean square error (RMSE) comparison of the proposed
DELM system with state-of-the-art methods.

In Figure 5, the prediction of powerplant electrical energy

output is carried out by all conventional findings with data

from combined cycle powerplant [53] other than the Artificial

Neural Network [31]. The proposed approach with DELM

outperforms in terms of accuracy by other prototypes, Arti-

ficial Neural Network [31], GA base Multilayer Percep-

tron [33], Regression ANN Model [32] and K-Means +

ANN [55]. Among these approaches, the worst approach

is an Artificial Neural Network [31] with an RMSE of 47.

Moreover, K-Means + ANN [55] is the best approach during

the training phase compared to Regression ANNModel [32].

In addition, the accuracy of the GA base Multilayer Percep-

tron [33] and Regression ANN Model [32] is quite close.

The proposed DELM system RMSE is 2.61 and was lower

than the previously proposed methods in terms of accuracy.

The values of the statistical measures suggest that DELM

performance is much higher than the other approaches.

So, the proposed DELM is a considerable choice for pow-

erplant electrical energy output prediction.

V. CONCLUSION

Modeling, analysis, and prediction of power plant electrical

energy output is a challenging task. In this research, a model

for power plant electrical energy output prediction has been

proposed to improve the prediction accuracy. The proposed

model is an expert system based on an artificial neural
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system (ANN) with a deep extreme learning machine

(DELM) possessing a high level of potential to predict power

plant electrical energy output. Various numbers of the hidden

layer neurons were defined, and diverse activation functions

and features were used for the ideal arrangement of different

DELM parameters to obtain an optimized structure.

For measuring the performance of the proposed approach,

various statistical measures have been used. These measuring

figures show that proposed DELM in contrast to other algo-

rithms is way better in terms of accuracy. Compared to past

approaches, the proposed DELM technique produces attrac-

tive results. The proposed technique exhibits 98.6% accuracy

which much better than the existing techniques. Moreover,

it is observed that the proposed approach exhibits an afford-

able computational complexity. DELM has been used in the

proposed work to encapsulate the benefits of ELM as well as

deep learning. We are confident in initial results and intended

to expand this work in the future by investigating different

datasets, learning machines, structures, and algorithms.

FUTURE WORK

In this segment, we explored how the technique of a deep

extreme learning machine used to predict electric power plant

energy output. Compare this issue to the systematic experi-

ments of simulated datasets, in particular, because the neural

network is only supplied with partial information: the neural

network is blind to certain topological changes, for example,

changes irrespective of the presence or absence of power

lines. The deep extreme learning machine performs better in

these more complicated cases than the neural network base-

line. This allows approximation of flows without complete

information about the topology of the power plant compared

to most models in use today. This model performs fairly well

on data similar to those on which it has been trained. This

is an important result: deep extreme learning machine can

be used for grid operations. Still, the flows on completely

unseen topologies have been struggling. This more refers to

an evaluation metric issue. Transmission system operators do

not really want to estimate flows; they want to know whether

or not the power grid will be unsafe.

Further research could be done on this dimension. The aim

of future studies will be to identify and quantify this metric

more accurately. The neural network would be more often

retrained to improve the performance of the new topologies.

An algorithm that can be learned within a few hours and that

has the property of being "fine-tuned" has been tested over

a span of more than a month. Another way of improving the

results would be by learning not only from snapshots but also

from the power plant that operators are observing.
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