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Abstract

We will be concerned with the mathematical modeling, numerical simulation, and shape

optimization of microfluidic biochips that are used for various biomedical applications. A

particular feature is that the fluid flow in the fluidic network on top of the biochips is in-

duced by surface acoustic waves generated by interdigital transducers. We are thus faced

with a multiphysics problem that will be modeled by coupling the equations of piezoelec-

tricity with the compressible Navier-Stokes equations. Moreover, the fluid flow exhibits

a multiscale character that will be taken care of by a homogenization approach. We will

discuss and analyze the mathematical models and deal with their numerical solution by

space-time discretizations featuring appropriate finite element approximations with respect

to hierarchies of simplicial triangulations of the underlying computational domains. Simu-

lation results will be given for the propagation of the surface acoustic waves on top of the

piezoelectric substrate and for the induced fluid flow in the microchannels of the fluidic

network. The performance of the operational behavior of the biochips can be significantly

improved by shape optimization. In particular, for such purposes we present a multilevel

interior point method relying on a predictor-corrector strategy with an adaptive choice of

the continuation steplength along the barrier path. As a specific example, we will consider

the shape optimization of pressure driven capillary barriers between microchannels and

reservoirs.
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1. Introduction

Microfluidic biochips are used in pharmaceutical, medical, and forensic applications for high

throughput screening, genotyping, and sequencing in genomics, protein profiling in proteomics,

and cytometry in cell analysis [19, 43, 46, 51]. They provide a much better sensitivity and a

greater flexibility than traditional approaches and, most importantly, give rise to a significant

speed-up of the hybridization processes. This can be achieved by integrating the fluidics on top

the chip by means of a lithographically produced network of channels and reservoirs (cf. Fig.

1.1 (left)).

Fig. 1.1. Microfluidic biochip (left) and sharp jet created by surface acoustic waves (right)

The idea is to inject a DNA or protein containing probe and to transport it in the fluid

to a reservoir where a chemical analysis is performed. The fluid flow can be taken care of by

external pumps which, however, are subject to wear. Instead, a new generation of biochips is

based on a surface acoustic waves (SAW) driven fluid flow [25, 53, 54]. Surface acoustic waves

are generated by interdigital transducers (IDT), propagate through the base of the device with

amplitudes in the range of nanometers and enter the fluid filled microchannels thus creating

a sharp jet (cf. Fig. 1.1 (right)). This happens within nanoseconds. The SAWs experience a

significant damping along the microchannels which results in a stationary flow pattern, called

acoustic streaming. This relaxation process occurs on a time-scale of milliseconds. We are thus

faced with a multiscale, multiphysics problem whose mathematical modeling and numerical

simulation represents a significant challenge. It is also a challenging problem with regard to

various optimization issues such as the optimal design of the microchannels in order to achieve

a maximum pumping rate. Another one is the design of pressure driven capillary barriers

between the channels and the reservoirs to guarantee a precise filling of the reservoirs with the

probes (cf. Fig. 1.2). This amounts to the solution of a shape optimization problem where the

mathematical model for the acoustic streaming represents the associated state equations.

The paper is organized as follows: In section 2, we will present a mathematical model for

Fig. 1.2. Capillary barriers
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the acoustic streaming that can derived by a homogenization approach based on the coupling

of the equations of piezoelectricity and the compressible Navier-Stokes equations. In section 3,

we will discuss numerical methods that have been used for the simulation of the operational

behavior of the microfluidic biochips and present simulation results. Section 4 is devoted to the

shape optimization of the microchannels by means of a so-called all-at-once approach featuring

the simultaneous optimization and numerical solution of the state equations. In particular,

we use a primal barrier method in terms of a path-following predictor-corrector continuation

scheme with an adaptive choice of the continuation steplength along the barrier path. The

barrier method is realized within a multilevel framework using a nested iteration type predictor

and a Newton multigrid technique as a corrector. As an application, we consider the shape

optimization of pressure driven capillary barriers between microchannels and reservoirs serving

as valves for the fluid (cf. Fig. 1.2).

2. Mathematical modeling

In this section, we will develop and analyze a mathematical model describing the operational

behavior of SAW driven microfluidic biochips. The model consists of the equations of piezo-

electricity unilaterally coupled with the compressible Navier-Stokes equations. In particular, in

subsection 2.1 we will be concerned with the piezoelectric equations, whereas subsection 2.2 will

be devoted to the compressible Navier-Stokes equations. Using techniques from heterogeneous

multiscale methods [14,15], we will derive a compressible Stokes system which serves as a model

for the acoustic streaming.

Throughout this section, we will use standard notation from Lebesgue and Sobolev space

theory. In particular, for a bounded polygonal or polyhedral domain Ω ⊂ lRd, d ∈ {2, 3}, with

boundary Γ = ∂Ω, we denote by L2(Ω) and L2(Ω) the Hilbert spaces of scalar and vector-valued

Lebesgue integrable functions on Ω with inner products (·, ·)0,Ω and norms ‖ · ‖0,Ω. Likewise,

H1(Ω) and H1(Ω) refer to the Sobolev spaces with inner products (·, ·)1,Ω and norms ‖ · ‖1,Ω,

whereas H1/2(Γ′) and H1/2(Γ′),Γ′ ⊂ Γ, stand for the associated trace spaces. We further refer

to H−1(Ω) and H−1(Ω) as the dual spaces of H1
0 (Ω) and H1

0(Ω), respectively.

2.1. The piezoelectric equations

In piezoelectric materials, the stress tensor σ depends linearly on the electric field E ac-

cording to a generalized Hooke’s law

σ(u,E) = c ε(u) − eE. (2.1)

Here, ε(u) := (∇u + (∇u)T )/2 refers to the linearized strain tensor with u denoting the

mechanical displacement, whereas c and e stand for the symmetric fourth order elasticity

tensor and the symmetric third order piezoelectric tensor, respectively. Hence, the application

of an electric field will cause a displacement of the material. Piezoelectric materials also show

the reverse effect to generate an electric field when subjected to mechanical stress. These

properties are called the piezoelectric effect and the inverse piezoelectric effect. The origin of

the piezoelectric effect is related to an asymmetry in the unit cell of a piezoelectric crystal and

can be observed only in materials with a polar axis (cf., e.g., [17, 37]).

The frequency of the electromagnetic wave is small compared to the frequency of the gen-

erated acoustic wave so that a coupling will be neglected. In particular, the electric field will
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be considered as quasistatic. Moreover, it is irrotational and hence, according to E = −∇Φ it

can be expressed as the gradient of an electric potential Φ. Since piezoelectric materials are

nearly perfect insulators, the only remaining quantity of interest in Maxwell’s equations is the

dielectric displacement D which is related to the electric field by the constitutive equation

D = ǫE + P , (2.2)

where ǫ is the electric permittivity of the material and P stands for the polarization. In

piezoelectric materials, the polarization P due to external strain is linear, i.e., there holds

P = e ε(u) . (2.3)

We assume that the piezoelectric material with density ρp > 0 occupies some rectangular

domain Ω1 with boundary Γ1 = ∂Ω1 and exterior unit normal n1 such that

Γ1 = ΓE,D ∪ ΓE,N , ΓE,D ∩ ΓE,N = ∅,
Γ1 = Γp,D ∪ Γp,N , Γp,D ∩ Γp,N = ∅,

where ΓE,D is a rectangular subdomain of the upper boundary of Γ1 and ΓE,N := Γ1 \ ΓE,D.

Given boundary data ΦE,D on ΓE,D, the pair (u, Φ) satisfies the following initial-boundary

value problem for the piezoelectric equations

ρp
∂2u

∂t2
− ∇ · σ(u,E) = 0 in Q1 := Ω1 × (0, T1), (2.4a)

∇ · D(u,E) = 0 in Q1, (2.4b)

u = 0 on Γp,D, n1 · σ = σn1
on Γp,N , (2.4c)

Φ = ΦE,D on ΓE,D, n1 · D = Dn1
on ΓE,N , (2.4d)

u(·, 0) = 0,
∂u

∂t
(·, 0) = 0 in Ω1, (2.4e)

which have to be completed by the constitutive equations (2.1)-(2.3).

Assuming time periodic excitations

ΦE,D(·, t) = Re
(

Φ̂E,D exp(− iωt)
)

such that Φ̂E,D ∈ H1/2(ΓE,D), we are looking for time harmonic solutions

u(·, t) = Re (u(·) exp(− iωt) ) , Φ(·, t) = Re (Φ(·) exp(− iωt) ) .

This leads to a saddle point problem for a Helmholtz-type equation which in its weak form

amounts to the computation of (u,Φ) ∈ V × W , where

V0 := H1
0,Γp,D

(Ω1)
3 and W :=

{

ϕ ∈ H1(Ω1)
∣

∣ ϕΓE,D = Φ̂E,D

}

,

such that for all v ∈ V and ψ ∈ W0 := H1
0,ΓE,D

(Ω1)

a(u,v) + b(Φ,v) − ω2ρp (u,v)0,Ω = ℓ1(v), (2.5a)

b(ψ,u) − c(Φ, ψ) = ℓ2(ψ). (2.5b)
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Here,

H1
0,Γp,D

(Ω1)
3 :=

{

v ∈ H1(Ω1)
3

∣

∣ v|Γp,D
= 0

}

,

H1
0,ΓE,D

(Ω1) :=

{

ψ ∈ H1(Ω1)
∣

∣ ψΓE,D
= 0

}

,

and the sesquilinear forms a(·, ·), b(·, ·), c(·, ·) and the functionals ℓ1 ∈ V∗, ℓ2 ∈ W ∗ are given by

a(v,w) :=

∫

Ω1

c ε(v) : ε(w̄) dx, b(ϕ,v) :=

∫

Ω1

e∇ϕ : ε(v̄) dx,

c(ϕ,ψ) :=

∫

Ω1

ǫ∇ϕ · ∇ψ̄ dx,

ℓ1(v) := 〈σn1
,v〉p,N , ℓ2(ψ) := 〈Dn1

, ψ〉E,N ,

with 〈·, ·〉p,N , 〈·, ·〉E,N denoting the dual pairings between the associated trace spaces and their

dual spaces, respectively.

We denote by A : V → V∗,B : W → V∗, and C : W → W ∗ the operators associated with

the sesquilinear forms and by I the injection I : V → V∗. Then, an equivalent formulation of

(2.5) is

(A − ω2ρp I)u + BΦ = f , (2.6a)

B∗u − CΦ = f. (2.6b)

Here, the right-hand sides f ∈ V∗ and f ∈ W ∗ are given by

f := ℓ1 − BΦ̃E,D, f := ℓ2 + CΦ̃E,D, (2.7)

where Φ̃E,D stands for the extension of the Dirichlet data onto W .

In particular, the operator A is symmetric and V-elliptic, and the operator C is symmetric

and W -elliptic. The symmetry of A results from the symmetry of the elasticity tensor c, whereas

the V-ellipticity is a direct consequence of the positive definiteness of c and Korn’s inequality.

Likewise, the symmetry of C follows from the symmetry of the dielectric permittivity ǫ and the

W -ellipticity can be deduced from the positive definiteness of ǫ.

Elimination of Φ from (2.6) results in the Schur complement system

Su − ω2ρp u = g. (2.8)

Here, the Schur complement operator S : V → V∗ is defined according to

S := A + BC−1B∗, (2.9)

whereas the right-hand side g is given by

g := f + BC−1f. (2.10)

Theorem 2.1. For the Schur complement S given by (2.9) and the Schur complement system

(2.8) there holds:

(i) The spectrum of S consists of a sequence of countably many real eigenvalues 0 < ζ2
1 <

ζ2
2 < . . . tending to infinity, i.e., limj→∞ ζ2

j = ∞.
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(ii) If ω2ρp is not an eigenvalue of S, for every g ∈ V∗, (2.8) admits a unique solution u ∈ V

depending continuously on g.

(iii) If ω2ρp ∈ lR is an eigenvalue of S, (2.8) is solvable if and only if g ∈ Ker(S − ω2ρp I)0

where

Ker(S − ω2ρp I)0 :=

{

v∗ ∈ V∗
∣

∣ 〈v∗,v〉 = 0, v ∈ Ker(S − ω2ρp I)

}

.

Proof. The Schur complement system (2.8) can be rewritten according to

Su − ω2ρp u = −ω2ρp S
(

S−1
R − ω−2ρ−1

p I
)

u = g,

where S−1
R : L2(Ω1) → V is given by S−1

R v = S−1v , v ∈ L2(Ω1). It is easy to see that S−1
R

is a compact self-adjoint endomorphism on L2(Ω1) and hence, the assertions (i), (ii), and (iii)

follow from the Hilbert-Schmidt theory and the Fredholm alternative (cf., e.g., [55]). ¤

2.2. The compressible Navier-Stokes equations

Since compressible effects dominate the SAW induced fluid flow, it has to be described by

the compressible Navier-Stokes equations. We denote by Ω2(t), t ∈ [0, T2], the time dependent

domain occupied by the fluid with boundary Γ2(t) = Γ(t)2,D ∪ Γ(t)2,N , Γ2,D(t) ∩ Γ2,N (t) = ∅.
Here, Γ2,D(t) is that part of the boundary where the SAWs enter the fluid filled microchannels.

We assume that the coupling between the piezoelectric and the Navier-Stokes equations is

unilateral and occurs by means of the deflection of the walls of the microchannels caused by

the SAWs. We denote by v and p the velocity and the pressure, and we refer to ρf , η, and ξ

as the density of the fluid and the standard and bulk viscosities. Then, the pair (v, p) satisfies

the following initial-boundary value problem

ρf

(∂v

∂t
+ v · ∇v

)

= ∇ · σ, (2.11a)

∂ρf

∂t
+ ∇ · (ρfv) = 0, in Q2 := Ω2(t) × (0, T2), (2.11b)

v(· + u(·, t), t) =
∂u

∂t
(·, t), on Γ2,D(t), t ∈ (0, T2), (2.11c)

σn = 0, on Γ2,N (t), t ∈ (0, T2), (2.11d)

v(·, 0) = v0, p(·, 0) = p0, in Ω2(0), (2.11e)

where σ = (σij)
d
i,j=1, σij := −p δij + 2ηεij(v) + δij(ξ − 2η/3)∇ · v in (2.11d). Since the

deflection of the walls of the microchannels by the SAWs is approximately 10−9 m compared to

lengths, widths, and heights of the microchannels in the range of µm to mm, in the sequel we

will neglect the time dependence of Ω2.

The SAW induced fluid flow exhibits two different time scales. When the SAWs enter the

fluid filled microchannels, sharp jets and vortices are created within nanoseconds (cf. Fig.

1.1 (right)). The SAWs propagate along the channels and experience a significant damping

which results in a stationary flow pattern, called acoustic streaming. This relaxation process

happens on a time scale of milliseconds. The multiscale character can be appropriately taken

care of by a homogenization approach. Following [2, 35], we introduce a scale parameter ε > 0
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which represents the maximum deflection of the walls of the microchannels, and we consider

the asymptotic expansions

ρf = ρf,0 + ε ρ′f + ε2 ρ′′f + O(ε3),

v = v0 + ε v′ + ε2 v′′ + O(ε3),

p = p0 + ε p′ + ε2 p′′ + O(ε3).

Collecting all terms of order O(ε), assuming v0 ≡ 0 (fluid at rest, if no SAW actuation), and

setting ρf,1 = ερ′f ,v1 := εv′, p1 := εp′, we find that the triple (ρf,1,v1, p1) satisfies the linear

system

ρf,0
∂v1

∂t
−∇ · σ1 = 0 in Q2, (2.12a)

∂ρf,1

∂t
+ ρf,0 ∇ · v1 = 0 in Q2, (2.12b)

v1 = g1 on Γ2,D, t > 0, (2.12c)

σ1n = 0 on Γ2,N , t > 0, (2.12d)

v1(·, 0) = 0, p1(·, 0) = 0 in Ω2, (2.12e)

where σ1 = ((σ1)ij)
d
i,j=1, (σ1)ij := −p δij + 2ηεij(v1) + δij(ξ − 2η/3)∇ · v1, g1 := ∂u/∂t and

where p1 and ρf,1 are related by the constitutive equation

p1 = c2
0 ρf,1 in Q2 . (2.13)

Here, c0 stands for the small signal sound speed in the fluid. The system describes the propa-

gation and damping of the acoustic waves in the microchannels.

We substitute ρf,1 in (2.12b) by means of (2.13) and introduce the function spaces

Vg1
:=

{

v ∈ L2((0, T );H1(Ω2)
3) ∩ H1((0, T );H−1(Ω2)

3)
∣

∣ v|Γ2,D = g1

}

,

W0 :=H1

(

(0, T );L2
0(Ω2)

)

.

The weak formulation of (2.12) amounts to the computation of (v1, p1) ∈ Vg1
× W0 such that

for all (w, q) ∈ H1
0,Γ2,D

(Ω2) × L2
0(Ω2) there holds

〈

ρf,0
∂v1

∂t
,w

〉

+ a(v1,w) + b(p1,w) = 0, (2.14a)

(

ρ−1
f,0c

−2
0

∂p1

∂t
, q

)

0,Ω2

− b(q,v1) = 0, (2.14b)

v1(·, 0) = 0, p1(·, 0) = 0. (2.14c)

Here, 〈·, ·〉 stands for the respective dual pairing, and the bilinear forms a(·, ·) and b(·, ·) are

given by

a(v,w) := η

∫

Ω2

∇v : ∇w dx +

(

ξ +
η

3

) ∫

Ω2

∇ · v∇ · w dx , (2.15a)

b(p,w) := −
∫

Ω2

p∇ · w dx. (2.15b)
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For time periodic excitations g1, we also consider the time periodic problem: Find (v1, p1) ∈
Vg1

× W0 such that for all (w, q) ∈ H1
0,Γ2,D

(Ω2) × L2
0(Ω2) there holds

〈

ρf,0
∂v1

∂t
,w

〉

+ a(v1,w) + b(p1,w) = 0, (2.16a)

(

ρ−1
f,0c

−2
0

∂p1

∂t
, q

)

0,Ω2

− b(q,v1) = 0, (2.16b)

v1(·, 0) = v1(·, T ), p1(·, 0) = p1(·, T ). (2.16c)

Theorem 2.2. For the solution of the variational problems (2.14) and (2.16) there holds:

(i) For g1 ∈ L2((0, T );H1/2(Γ2,D)) there exists a unique solution (v1, p1) ∈ Vg × W0 of

(2.14) satisfying the stability estimate

‖(v1, p1)‖Vg×W0
≤ CT ‖g1‖L2((0,T );H1/2(Γ2,D)), (2.17)

where CT > 0 is a constant depending on T .

(ii) If the forcing term g1 is time periodic, then there exists a unique solution (v1, p1) of

(2.16).

Proof. Taking advantage of the ellipticity of the bilinear form a(·, ·), i.e.,

a(v,v) ≥ α ‖v‖2
1,Ω2

, α > 0,

and the fact that the bilinear form b(·, ·) satisfies the inf-sup condition

inf
q∈L2

0
(Ω2)\{0}

sup
v∈H1

0,Γ2,D
(Ω2)\{0}

b(q,v)

‖q‖0,Ω2
‖v‖1,Ω2

≥ β > 0,

the existence of a solution (v1, p1) ∈ Vg ×W0 of (2.14a)-(2.14c) satisfying (2.17) can be shown

by standard arguments based on the Galerkin method (cf., e.g., [44]). The uniqueness is an

immediate consequence of (2.17). For the proof of (ii) we refer to Theorem 3.12 in [35]. ¤

Collecting all terms of order O(ε2), neglecting time derivatives, and performing the time-

averaging 〈w〉 := T−1
∫ t0+T

t0
w dt, where T := 2π/ω, we arrive at the compressible Stokes system

−∇ · σ2 =

〈

− ρf,1
∂v1

∂t
− ρf,0[∇v1]v1

〉

in Ω2, (2.18a)

ρf,0∇ · v2 =
〈

−∇ · (ρf,1v1)
〉

in Ω2, (2.18b)

v2 = g2 on Γ2,D, (2.18c)

σ2n = 0 on Γ2,N (2.18d)

where σ2 = ((σ2)ij)
d
i,j=1, (σ2)ij := −p δij + 2ηεij(v2) + δij(ξ − 2η/3)∇ · v2, g2 := −〈[∇v1]u〉.

The density ρf,2 can be obtained via the constitutive equation

p2 = c2
0 ρf,2 . (2.19)

The compressible Stokes system (2.18a)-(2.18c) is used as a model for the acoustic streaming,

i.e., the stationary flow pattern which forms on a time scale of milliseconds.
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The weak formulation of (2.18) requires the computation of (v2, p2) ∈ Vg2
×L2

0(Ω2), where

Vg2
:=

{

v ∈ H1(Ω2) | v|Γ2,N = g2

}

,

such that

a(v2,w) + b(p2,w) = (f ,w)0,Ω, w ∈ V0, (2.20a)

b(q,v2) = (f, q)0,Ω2
, q ∈ L2

0(Ω2). (2.20b)

Here, the bilinear forms a(·, ·), b(·, ·) are as in (2.15a),(2.15b), and the right-hand sides f , f are

given by

f := −
〈

ρf,1
∂v1

∂t
− ρf,0 [∇v1]v1

〉

, f :=
〈

ρ−1
f,0 ∇ · (ρf,1 v1)

〉

.

Theorem 2.3. If f ∈ L2(Ω2), f ∈ L2(Ω2), and g2 ∈ H1/2(Γ2,D), then the weak formulation

(2.20) of the compressible Stokes system admits a unique solution (v2, p2) ∈ Vg2
× L2

0(Ω2)

depending continuously on the data according to

‖(v2, p2)‖Vg2
×L2

0
(Ω2) ≤ C

(

‖f‖0,Ω2
+ ‖f‖0,Ω2

+ ‖g2‖H1/2(Γ2,D)

)

, (2.21)

where C is a positive constant.

Proof. Due to the ellipticity of a(·, ·) and the inf-sup condition satisfied by b(·, ·), the proof

follows by standard arguments (cf., e.g., [9]). ¤

3. Numerical simulation

3.1. Simulation of SAWs

We assume Th(Ω1) to be a geometrically conforming, simplicial triangulation of the compu-

tational domain Ω1. We denote by Vh the finite element space of vector fields with continu-

ous, piecewise linear components, whereas Wh refers to the finite element space of continuous,

piecewise linear scalar functions. Then, the finite element approximation of the saddle point

problem (2.5a),(2.5b) amounts to the computation of (uh, Φh) ∈ Vh × Wh such that for all

(vh, ψh) ∈ Vh × Wh there holds

a(uh,vh) + b(Φh,vh) − ω2(uh,vh)0,Ω = ℓ1(vh), (3.1a)

b(ψh,uh) − c(Φh, ψh) = ℓ2(ψh). (3.1b)

We denote by Ah : Vh → V∗
h,Bh : Wh → V∗

h,Ch : Wh → W ∗
h the operators associated with

the restrictions a|Vh×Vh
, b|Wh×Vh

, c|Wh×Wh
, and by Ih the injection Ih : Vh → V∗

h. We further

define fh ∈ V∗
h and f ∈ W ∗

h by 〈fh,vh〉 := 〈f ,vh〉,vh ∈ Vh, and 〈fh, wh〉 := 〈f, wh〉, wh ∈ Wh,

where f ∈ V∗ and f ∈ W ∗ are given by (2.7). Then, the operator form of (3.1) reads as follows:

(Ah − ω2Ih)uh + BhΦh = fh, (3.2a)

B∗
huh − ChΦh = fh. (3.2b)
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Static condensation of the discrete electric potential Φh gives rise to the discrete Schur comple-

ment system

Shuh − ω2uh = gh, (3.3)

where the discrete Schur complement Sh and the right-hand side gh are given by

Sh := Ah + BhC
−1
h B∗

h, gh := fh + BhC
−1
h fh.

Theorem 3.1. Assume that ω2 is not an eigenvalue of the Schur complement S as given by

(2.9). Then, for sufficiently small h the discrete Schur complement system (3.3) admits a unique

solution uh ∈ Vh.

Proof. If ω2 is not an eigenvalue of S, the inf-sup condition

inf
v∈V\{0}

sup
w∈V\{0}

|〈(S − ω2I)v,w〉|
‖v‖1,Ω1

‖w‖1,Ω1

≥ β > 0

holds true which implies

β ‖v‖1,Ω1
≤ sup

w∈V\{0}

|〈(S − ω2I)v,w〉|
‖w‖1,Ω1

= sup
w∈V\{0}

|〈(S(v − ω2S−1v),w〉|
‖w‖1,Ω1

≤ ‖S‖ ‖v − ω2S−1v‖1,Ω1
. (3.4)

On the other hand, we note that Sh is the Galerkin approximation of S, i.e.,

〈Shvh,wh〉 = 〈Svh,wh〉, vh,wh ∈ Vh.

Hence, referring to αS > 0 as the ellipticity constant of S, we have

〈Shvh,vh〉 ≥ αS ‖vh‖2
1,Ω1

, vh ∈ Vh. (3.5)

Using (3.5), we deduce from (3.4) that

sup
0 6=wh∈Vh

| < (Sh − ω2Ih)vh,wh > |
‖wh‖1,Ω1

= sup
0 6=wh∈Vh

| < Sh(vh − ω2S−1
h vh),wh > |

‖wh‖1Ω1

≥ | < Sh(vh − ω2S−1
h vh),vh − ω2S−1

h vh > |
‖vh − ω2S−1

h vh‖1,Ω1

≥ αS‖vh − ω2S−1
h vh‖1,Ω1

≥ αS

(

‖vh − ω2S−1vh‖1;Ω1
− ω2‖(S−1

h − S−1)vh‖1,Ω1

)

≥ βh ‖vh‖1,Ω1
,

where

βh := αS

(

β

‖S‖ − ω2‖S−1
h − S−1‖

)

.

Since S−1
h → S−1 as h → 0, there exists hmax > 0 such that βh ≥ γ > 0 uniformly for h ≤ hmax.

This shows that Sh − ω2Ih asymptotically satisfies a discrete inf-sup condition which gives the

assertion. ¤
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The discrete saddle point problem (3.1) can be written equivalently as the algebraic saddle

point problem
(

A B

BT −C

) (

u

Φ

)

=

(

b1

b2

)

, (3.6)

where A ∈ R
nh×nh , nh := dimVh, and C ∈ lRmh×mh ,mh := dimWh, are symmetric positive

definite matrices, B ∈ lRnh×mh , and b1 ∈ lRnh , b2 ∈ lRmh . We have solved (3.6) by precondi-

tioned GMRES using a block-diagonal preconditioner P of the form

P =

(

Ã 0

0 C̃

)

such that

γA vT Ãv ≤ vT Av ≤ ΓA vT Ãv,

γC wT C̃w ≤ wT Cw ≤ ΓC wT C̃w,

with constants 0 < γA ≤ ΓA, 0 < γC ≤ ΓC satisfying ΓA/γA ≪ κ(A), ΓC/γC ≪ κ(C), where

κ(A), κ(C) are the spectral radii of A and C, respectively. We have realized Ã−1 and C̃−1

by BPX preconditioners with respect to a hierarchy {Thi}ℓ
i=0 of simplicial triangulations and

corresponding finite element spaces Vhi
,Whi

, 0 ≤ i ≤ ℓ. Alternatively, we have used BPX

preconditioned CG applied to the Schur complement system associated with (3.6), observing

that S̃ = Ã−1S is the Schur complement matrix of the preconditioned saddle point problem.

For a systematic comparison of the performance of these multilevel preconditioned iterative

solvers, we refer to [20].

We have performed numerical simulations of SAWs for plates of length L, width W , and

height H such that Ω1 := (0, L) × (0,W ) × (0,H) with Γp,D := [0, L] × [0,W ] × {0}. As

the piezoelectric material we have assumed Lithiumniobate (LiNbO3). Table 3.1 contains the

elasticity tensor c, the piezoelectric tensor ε, the electric permittivity tensor ǫ, and the density

ρp of this material.

Table 3.1: Piezoelectric material moduli (Lithiumniobate LiNbO3)

Elast. tensor c11 = c22 c12 c13 = c23 c14 = −c24 = c56 c33 c44 = c55 c66
1010 N

m2 20.3 5.3 7.5 0.9 24.5 6.0 7.5

Piezoel. tensor e15 = e24 e22 = −e21 = −e16 e31 = e32 e33

C
m2 3.7 2.5 0.1 1.3

Permitt. tensor ǫ11 = ǫ22 ǫ33 Density ρp

10−12 F
m

749.0 253.2 103 kg

m3 4.63

The IDT has been positioned at the top of the plate, i.e., ΓE,D := [L1, L2]× [W1,W2]×{L},
and has been assumed to operate at a frequency ω/(2π) = 100 MHz thus generating SAWs of

wavelength λ = 40 µm. In order to control the finite element error appropriately, following [34]

we have chosen an initial mesh of mesh length h .
√

λ3.
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Fig. 3.1. Amplitudes of an electric potential wave (left) and elliptic displacement (right)

For a plate of length L = 1.2 mm, width W = 0.6 mm, height H = 0.6 mm, and ΓE,D :=

[0.2, 0.4] × [0.1, 0.5] × {1.2}, Fig. 3.1 (left) shows the computed amplitudes of the electric

potential wave for the longitudinal section [0, 1.2] × {0.3} × [0, 0.6].

As can be clearly seen, the SAWs are strictly confined to the surface of the piezoelectric

material with a penetration depth of approximately one wavelength. The SAW velocity is

4.0 · 103 m/s. Fig. 3.1 (right) displays the typical elliptic displacement of Rayleigh waves, i.e.,

the amplitudes of the surface displacement in the x1- and x3-direction are 90o out of phase.

For the simulation of the SAW induced fluid flow in the microchannels of the biochip, we

have numerically solved the two systems (2.16a)-(2.16c) and (2.18a)-(2.18c) obtained from the

compressible Navier-Stokes equations (2.12a)-(2.12d) by the homogenization approach as des-

cribed in subsection 2.2.

For discretization in space, we have used Taylor-Hood P2-P1 elements with respect to a geo-

metrically conforming simplicial triangulation Th(Ω2) of the computational domain Ω2 occupied

by the fluid, i.e., we have chosen the finite element spaces

Fig. 3.2. Effective force (left) and associated vortex (right)

Fig. 3.3. Propagation and damping of SAWs in a microchannel
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Vh :=

{

vh ∈ C(Ω2)
3

∣

∣

∣

∣

vh|T ∈ P2(T )3, T ∈ Th(Ω2)

}

,

Wh :=

{

wh ∈ C(Ω2)

∣

∣

∣

∣

wh|T ∈ P1(T ), T ∈ Th(Ω2)

}

,

and Vgh,i
:= Vh ∩ Vgh,i

with gh,i being a piecewise quadratic approximation of gi, 1 ≤ i ≤ 2

(cf., e.g., [22]). The boundary data have been chosen according to the computation of the

displacements uh obtained by the numerical solution of the piezoelectric equations as described

in subsection 3.1. For discretization in time of (2.16a)-(2.16c), we have used the Θ-scheme

with respect to a uniform partitioning of the time interval of step size k and a preferred choice

of Θ = 1 (backward Euler scheme) or Θ = 1/2 (Crank-Nicolson). The chosen discretizations

amount to the numerical solution of algebraic saddle point problems of the form

3.2. Simulation of acoustic streaming

(

A B

BT 0

)(

v

p

)

=

(

b1

b2

)

,

which has been done using a multilevel preconditioned inexact Uzawa algorithm [13] with respect

to a hierarchy {Thi}ℓ
i=0 of triangulations.

Table 3.2: Microfluidic material data (water at 20o)

ρf η ξ c0

1.0 · 103 kg/m3 1.002 · 10−4 kg/(ms) 7.97 · 10−4 kg/(ms) 1.484 · 103 m/s

The fluid in the microchannels has been assumed to be water with the relevant constants

ρf , η, and ξ as well as the small sound velocity c0 listed in Table 3.2.

For the simulation of the penetration of the SAWs into a microchannel and the creation of

sharp jets we have chosen Ω2 := (0, L) × (0,W ) × (0,H) and Γ2,D := [0, L1] × [0,W ] × {0}
assuming a maximal displacement of the lower wall of ε = 1.0 · 10−9 m.

For L = W = H = 2.5 · 102 µm and L1 = 0.25 · 102 µm, Fig. 3.2 (left) shows the effective

force which is the time-averaged sound velocity in the fluid, whereas Fig. 3.2 (right) displays

the associated velocity field, both at the longitudinal section [0, L] × {1.25} × [0, H].

Fig. 3.3 illustrates the computed propagation of the SAWs in a microchannel where the

SAWs penetrate the channel at its lower left end. The SAWs propagate from the left to the

right and experience a significant damping.

4. Shape optimization

We have performed shape optimizations of the walls of the microchannels and reservoirs

using objective functionals of tracking type or representing the pumping rate at selected cross

sections with the systems (2.16) and (2.18a)-(2.18c) as the underlying state equations.
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The optimal design of the shape or topology of structures is an area within the theory of op-

timization with applications, e.g., in aero- and fluid dynamics, electromagnetics, and mechanics

whose importance is reflected by a series of monographs on this topic that have been published

during the past decades (cf. [1, 7, 8, 11,24,27,28,38,42,45]).

A typical shape optimization problem associated with a time-independent PDE or a system

thereof as the underlying state equation amounts to the minimization of a shape functional J

over bounded domains Ω in Euclidean space lRd. The state function u is assumed to satisfy a

boundary value problem as described by means of a partial differential operator L, and there

may be further equality and/or inequality constraints on the domain.

inf
Ω

J(u, Ω), J(u, Ω) :=

∫

Ω

j(x, u(x)) dx, (4.1a)

subject to LΩu = fΩ in Ω, u = gΩ on Γ, h(Ω) ≥ 0. (4.1b)

In order to cope with the inherent difficulty that the minimization is over a certain class

of domains instead of a set of functions in an appropriate function space, we have used the

classical approach based on a parametrization of the domain by a finite number of design

variables: the boundary Γ is represented by a composite Bézier curve using a certain number

of Bézier control points d ∈ R
m,m ∈ N, which serve as design variables. The equality and/or

inequality constraints are expressed by means of the design variables. For the finite element

approximation of (4.1) we choose d̂ as reference design variable and refer to Ω̂ := Ω(d̂) as the

associated reference domain. Then, the actual domain Ω(d) can be obtained from the reference

domain Ω̂ by means of a mapping Ω(d) = Φ(Ω̂; d). The advantage of using the reference domain

Ω̂ is that finite element approximations can be performed with respect to that fixed domain

without being forced to remesh for every new set of the design variables.

An alternative approach would be the use of shape calculus [11], i.e., of shape gradients and

shape Hessians in case of interior-point methods requiring first and second order information.

Since stable numerical implementations of shape Hessians were not available at the time the

research has been conducted, we decided to use the standard approach described above.

The finite element discretization of (4.1) with respect to a simplicial triangulation Th(Ω) of

the computational domain Ω leads to a finite dimensional optimization problem

inf
uh,d

Jh(uh, d), (4.2a)

subject to Lhuh = bh, hj(d) ≥ 0, 1 ≤ j ≤ s, (4.2b)

where uh ∈ R
n is the finite element approximation of the state u, Jh(uh, d) the discretized objec-

tive functional and Lhuh = bh the algebraic system arising from the finite element discretization

of the PDE.

The inequality constrained optimization problem (4.2) represents a large-scale nonlinear

programming problem. For such problems, efficient numerical solution techniques have been

developed. Interior point methods belong to the methods of choice. In particular, we have used

adaptive multilevel path-following interior point methods. For ease of notation, in the sequel

we will drop the subindex h. The inequality constraints in (4.2b) are coupled by logarithmic

barrier functions with a barrier parameter β = 1/µ > 0, µ → ∞, and the equality constraint

by a Lagrange multiplier λ ∈ lRn. This leads to the saddle point problem

inf
u,d

sup
λ

L(µ)(u, λ, d), (4.3)
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where L(µ) stands for the Lagrangian

L(µ)(u, λ, d) = B(µ)(u, d) + 〈λ,Lu − b〉. (4.4)

Here, B(µ)(u, d) is the barrier function as given by

B(µ)(u, d) := J(u, d) − 1

µ

s
∑

j=1

ln(hj(d)). (4.5)

and 〈·, ·〉 stands for the Euclidean inner product on R
n. The barrier path µ 7−→ x(µ) :=

(u(µ), λ(µ), d(µ))T is given as the solution of the nonlinear system

F (x(µ), µ) =







L(µ)
u (u, λ, d)

L(µ)
λ (u, λ, d)

L(µ)
d (u, λ, d)






= 0, (4.6)

where the subindices refer to the derivatives of the Lagrangian with respect to the primal,

the dual, and the design variables. The choice of the barrier parameter strongly influences

the performance of the interior point method. There are static strategies with the Fiacco-

McCormick approach as the most prominent one (cf. [18]), where the barrier parameter is fixed

until an approximate solution has been obtained, and there is a variety of dynamic update

strategies (cf. [6,16,21,40,47–49]). Convergence properties of the Fiacco-McCormick approach

have been studied in [10] and [50], whereas a convergence analysis of dynamic update strategies

has been addressed in [6, 16, 40, 48]. We have considered the solution of (4.6) by an adaptive

continuation method based on the affine invariant convergence theory of Newton-type methods

(see, e.g., [12]).

The adaptive continuation method is a predictor-corrector method with an adaptively de-

termined continuation step size in the predictor and Newton’s method as a corrector. It relies

on the affine invariant convergence theory of Newton and Newton-type methods and ensures

that the iterates stay within a neighborhood (’contraction tube’) of the barrier path so that

convergence to a local minimum of the original minimization problem can be achieved (cf. Fig.

4.1).

Predictor Step: The predictor step relies on tangent continuation along the trajectory of the

Davidenko equation

Fx(x(µ), µ) x′(µ) = −Fµ(x(µ), µ) (4.7)

and amounts to the implementation of an explicit Euler step: Given some approximation x̃(µk)

at µk > 0, compute x̃(j0)(µk+1), where µk+1 = µk + ∆µ
(j)
k , according to

Fx(x̃(µk), µk) δx(µk) = −Fµ(x̃(µk), µk), (4.8a)

x̃(j0)(µk+1) = x̃(µk) + ∆µ
(j)
k δx(µk), (4.8b)

starting with j = 0 (j ≥ 1 only if required by the correction step (see below)). We use

∆µ
(0)
0 = ∆µ0 for some given initial step size ∆µ0, whereas for k ≥ 1 the predicted step size

∆µ
(0)
k is chosen by

∆µ
(0)
k :=

(

‖∆x(j0)(µk)‖
‖x̃(µk) − x̃(j0)(µk)‖

√
2 − 1

2Θ(µk)

)1/2

∆µk−1, (4.9)
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.

b

x(µ0)

Barrier Path

x
∗

∆µ
(0)
k δx(µk)

x̃(µk)

Fig. 4.1. Predictor step of the adaptive continuation method.

.

b

x(µ0)

x
∗

∆µnew
k δx(µk)

x̃(µk)

x̃(µk+1)

Fig. 4.2. Correction step of the adaptive continuation method.

where ∆µk−1 is the computed continuation step size, ∆x(j0)(µk) is the first Newton correction

(see below), and Θ(µk) < 1 is the contraction factor associated with a successful previous

continuation step.

Corrector step: As a corrector, we use Newton’s method applied to F (x(µk+1),

µk+1) = 0 with x̃(j0)(µk+1) from (4.8b) as a start vector. In particular, for ℓ ≥ 0 (Newton

iteration index) and jℓ ≥ 0 (j being the steplength correction index) we compute ∆x(jℓ)(µk+1)

according to

Fx(x̃(jℓ)(µk+1), µk+1) ∆x(jℓ)(µk+1) = −F (x̃(jℓ)(µk+1), µk+1), (4.10)

update x̃(jℓ+1)(µk+1) := x̃(jℓ)(µk+1)+∆x(jℓ)(µk+1) and compute ∆x
(jℓ)

(µk+1) as the associated

simplified Newton correction

Fx(x̃(jℓ)(µk+1), µk+1)∆x
(jℓ)

(µk+1) = −F (x̃(jℓ)(µk+1) + ∆x(jℓ)(µk+1), µk+1).

The convergence of Newton’s method is monitored by means of

Θ(jℓ)(µk+1) := ‖∆x
(jℓ)

(µk+1)‖/‖∆x(jℓ)(µk+1)‖.

In case of successful convergence, we set x̃(µk+1) := x̃(jℓ)(µk+1) with ℓ being the current Newton

iteration index, accept the current step size ∆µk := ∆µ
(j)
k with current steplength correction

index j and proceed with the next continuation step. However, if the monotonicity test

Θ(jℓ)(µk+1) < 1 (4.11)

fails for some jℓ ≥ 0, the predicted steplength ∆µ
(j)
k has been chosen too large so that the

predicted solution x̃(j0)(µk+1) is not situated within the Kantorovich neighborhood of x(µk+1),

i.e., it is outside the contraction tube around the barrier path (cf. Fig. 4.2). The corrector
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level 0

level 1

µ

levels

µk µk+1 µk+2

P ℓ

ℓ−1

x(ℓ−1)(µk) x(ℓ−1)(µk+1) x(ℓ−1)(µk+2)

x(ℓ)(µk) (given) x̂(ℓ)(µk+2) (predicted)

Fig. 4.3. Two-level predictor-corrector scheme

step provides a correction of the steplength for the tangent direction δx(µk) such that the new

iterate stays within the contraction tube. To do so, the continuation step from (4.8b) has to

be repeated with the reduced step size

∆µ
(j+1)
k :=

(

√
2 − 1

g(Θ(jℓ))

)1/2

∆µ
(j)
k , (4.12)

g(Θ) :=
√

Θ + 1 − 1

until we either achieve convergence or for some prespecified lower bound ∆µmin observe

∆µ
(j+1)
k < ∆µmin .

In the latter case, we stop the algorithm and report convergence failure.

The Newton steps are realized by an inexact Newton method featuring right-transforming

iterations (cf., e.g., [30, 32, 33, 36, 52]). The derivatives occurring in the KKT conditions and

the Hessians are computed by automatic differentiation (cf., e.g., [23]).

The predictor-corrector scheme is performed in a multilevel framework with respect to a

hierarchy of discretizations following the ideas developed for parameter dependent nonlinear

elliptic problems in [26, 31]. We describe the multilevel approach in case of a two-level scheme

with the levels ℓ − 1 and ℓ (cf. Fig. 4.3). The prediction is done by nested iteration in such

a way that a certain number of adaptive continuation steps are performed on the coarser level

ℓ − 1 before a predicted value is computed on the finer level ℓ. The corrector is a Newton

multigrid method incorporating a two-level PDE solver featuring appropriate smoothers. The

iterates are checked for acceptance by the level ℓ monotonicity test. In some more detail, we

illustrate the two-level scheme in case of two continuation steps on level ℓ− 1. We assume that

Fig. 4.4. Capillary barrier: Velocity profile in the flow mode (left) and in the stopping mode (right)
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approximations xℓ−1(µk) and xℓ(µk) are available for some continuation parameter µk. Firstly,

we perform two continuation steps with an adaptive choice of the continuation steplengths.

Secondly, we use the level ℓ − 1 approximations xℓ−1(µk) and xℓ−1(µk+2) as well as the level

ℓ approximation xℓ(µk) to obtain a level ℓ prediction at µk+2. This approximation is then

corrected by the two-level Newton multigrid scheme and checked for acceptance by the level ℓ

monotonicity test. In the general case of more than two levels, the multilevel predictor-corrector

continuation method consists of a recursive application of the two-level scheme.

For a detailed documentation of numerical results including a comparison with dynamic

update strategies, we refer to [3–5,29].

We have used the adaptive multilevel barrier method for the optimal design of a pressure

driven capillary barrier between a channel and a reservoir (cf. Fig. 1.2) where the objective

functional has been chosen of tracking type

J(v2, p2, d) :=
1

2
‖v2 − v∗

2‖2
0,Ω2(d) +

1

2
‖p2 − p∗2‖2

0,Ω2(d) (4.13)

with desired velocity and pressure profiles v∗
2, p

∗
2 provided by our industrial cooperation partner

[41]. The state equation for (v2, ps) is the compressible Stokes system (2.18a)-(2.18c). As

computational domain we have chosen part of a channel with a capillary barrier at its end

and part of a reservoir connected with the channel by the capillary barrier. The channel

additionally has passive outlet valves (cf. Fig.4.4) that are activated when the barrier operates

in stopping mode and back flow occurs. The stopping behavior has been modeled by Signorini

type boundary conditions between the channel and the reservoir with respect to a pressure

threshold. We have further chosen a total of 12 Bézier control points dj , 1 ≤ j ≤ 12, for the

representation of the upper and lower boundary of the capillary barrier as a composite Bézier

curve such that d
(min)
j ≤ dj ≤ d

(max)
j , 1 ≤ j ≤ 12, with bounds d

(min)
j , d

(max)
j derived from

technological constraints provided by [41].

Table 4.1: History of the adaptive multilevel predictor-corrector strategy (3 Levels)

level k µ ∆µ ∆J CPU

1 1 2.0E+02

2 6.4E+02 4.4E+02 2.99E-05

3 9.9E+02 3.5E+02 3.40E-06

4 1.4E+03 4.1E+02 1.25E-06

5 2.0E+03 6.0E+02 9.30E-08

2 3 9.9E+02 7.9E+02

5 2.0E+03 1.8E+03

3 5 2.0E+03 1.8E+03 4h 30m

Fig. 4.4 shows the computed optimal shape of the barrier and the associated velocity fields

when the barrier is in the flow mode (left) and in the stopping mode (right).

In case of three levels, the history of the adaptive multilevel barrier method is illustrated in

Table 4.1, where µ stands for the inverse of the barrier parameter, ∆µ for the increase in µ, and

∆J for the decrease in the objective functional (the constraints were not active at optimality

so that the value of J at optimality was zero). For a comparison, the results of a multilevel

version of Mehrotra’s predictor-corrector scheme are displayed in Table 4.2 with σ denoting the

centering parameter (cf. [4]). The computations have been performed on a machine with a 2.66
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Table 4.2: History of a multilevel version of Mehrotra’s predictor-corrector scheme (3 Levels)

level k µ σ ∆J CPU

1 1 2.0E+02 1.2E-05

2 3.2E+03 8.7E-02 4.65E-01

3 1.1E+03 1.2E-05 6.79E-04

4 7.2E+03 7.1E-07 1.80E-05

5 4.9E+04 1.2E-09 1.18E-06

2 3 1.1E+03 1.2E-05

5 4.9E+04 1.2E-09

3 5 4.9E+04 1.2E-09 5h 40m

GHz Intel(R) Core(TM)2 Duo processor running Linux Fedora 8. For further results we refer

to [4, 5].
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[27] J. Haslinger and R.A.E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation,

and Computation, SIAM, Philadelphia, 2004.
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