# Modeling Social Annotation Data with Content Relevance using a Topic Model

#### T. Iwata, T. Yamada and N. Ueda NIPS 2009

presented by J. Silva, Duke University

April 1, 2010

Modeling Social Annotation Data with Content Relevance using a T

#### Introduction

- Context: social annotations, aka collaborative tagging or folksonomy
- Users freely annotate objects such as webpages, photos, blog posts, videos, music and scientific papers
- Examples: Delicious, Flickr, Technorati, YouTube, Last.fm, CiteULike

### Introduction

- Problem: users often write *noisy*, or content-irrelevant annotations (e.g. "great", "to read")
- This paper proposes a generative model for topics and annotations that takes into account relevance/irrelevance of the annotations
- It is an extension of Blei and Jordan's Correspondence Latent Dirichlet Allocation (Corr-LDA), which assumes the annotations are always relevant

### Proposed Method

• We have a set of *D* documents, and each consists of a pair of words and annotations  $(\mathbf{w}_d, \mathbf{t}_d)$ , where  $\mathbf{w}_d = \{w_{dn}\}_{n=1}^{N_d}$  and  $\mathbf{t}_d = \{t_{dm}\}_{m=1}^{M_d}$ 

|          | Table 1: Notation                                                                             |
|----------|-----------------------------------------------------------------------------------------------|
| Symbol   | Description                                                                                   |
| D        | number of documents                                                                           |
| W        | number of unique words                                                                        |
| $T \\ K$ | number of unique annotations                                                                  |
| K        | number of topics                                                                              |
| $N_{d}$  | number of words in the dth document                                                           |
| $M_d$    | number of annotations in the <i>d</i> th document                                             |
| Wdn      | <i>n</i> th word in the <i>d</i> th document, $w_{dn} \in \{1, \cdots, W\}$                   |
| Zdn      | topic of the <i>n</i> th word in the <i>d</i> th document, $z_{dn} \in \{1, \dots, K\}$       |
| $t_{dm}$ | with annotation in the <i>d</i> th document, $t_{dm} \in \{1, \dots, T\}$                     |
| Cam      | topic of the <i>a</i> th annotation in the <i>d</i> th document, $c_{dm} \in \{1, \dots, K\}$ |
| 1'day    | relevance to the content of the mth annotation of the dth document,                           |
|          | $r_{dm} = 1$ if relevant, $r_{dm} = 0$ otherwise                                              |

Note: all tables and figures taken from the original paper

## Proposed Method

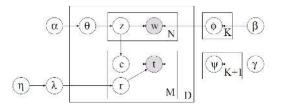



Figure 1: Graphical model representation of the proposed topic model with content relevance

• There are K + 1 annotation distributions ( $\Psi$ ), since  $\Psi_0$  is a topic-unrelated distribution that applies to irrelevant annotations

#### Proposed Method: Generative Model

- 1. Draw relevance probability  $\lambda \sim \text{Beta}(\eta)$
- 2. Draw content-unrelated annotation probability  $\psi_0 \sim \text{Dirichlet}(\gamma)$
- 3. For each topic  $k = 1, \dots, K$ :
  - (a) Draw word probability  $\phi_k \sim \text{Dirichlet}(\beta)$
  - (b) Draw annotation probability  $\psi_k \sim \text{Dirichlet}(\gamma)$
- 4. For each document  $d = 1, \dots, D$ :
  - (a) Draw topic proportions  $\theta_d \sim \text{Dirichlet}(\alpha)$
  - (b) For each word  $n = 1, \dots, N_d$ :
    - i. Draw topic  $z_{dn} \sim \text{Multinomial}(\boldsymbol{\theta}_d)$
    - ii. Draw word  $w_{dn} \sim \text{Multinomial}(\phi_{z_{dn}})$
  - (c) For each annotation  $m = 1, \dots, M_d$ :
    - i. Draw topic  $c_{dm} \sim \text{Multinomial}(\{\frac{N_{kd}}{N_{j}}\}_{k=1}^{K})$
    - ii. Draw relevance  $r_{dm} \sim \text{Bernoulli}(\lambda)$
    - iii. Draw annotation  $t_{dm} \sim \begin{cases} \text{Multinomial}(\psi_0) & \text{if } r_{dm} = 0 \\ \text{Multinomial}(\psi_{c_{dm}}) & \text{otherwise} \end{cases}$

Proposed Method: Inference

- The joint distribution is  $P(\mathbf{W}, \mathbf{T}, \mathbf{Z}, \mathbf{C}, \mathbf{R} | \alpha, \beta, \gamma, \eta) = P(\mathbf{Z} | \alpha) P(\mathbf{W} | \mathbf{Z}, \beta) P(\mathbf{T} | \mathbf{C}, \mathbf{R}, \gamma) P(\mathbf{R} | \eta) P(\mathbf{C} | \mathbf{Z})$
- In the expression above, we have:  $\mathbf{W} = \{\mathbf{w}_d\}_{d=1}^D, \mathbf{T} = \{\mathbf{t}_d\}_{d=1}^D, \mathbf{Z} = \{\mathbf{z}_d\}_{d=1}^D, \mathbf{C} = \{\mathbf{c}_d\}_{d=1}^D, \mathbf{c}_d = \{c_{dm}\}_{m=1}^{M_d}, \mathbf{R} = \{\mathbf{r}_d\}_{d=1}^D, \mathbf{r}_d = \{r_{dm}\}_{m=1}^{M_d}$

April 1, 2010

•  $\boldsymbol{\theta}$ ,  $\boldsymbol{\Phi}$ ,  $\boldsymbol{\Psi}$  and  $\lambda$  are marginalized out

## Proposed Method: Inference

• 
$$P(\mathbf{Z}|\alpha) = \prod_{d=1}^{D} \int P(\mathbf{Z}|\theta_d) P(\theta_d|\alpha) d\theta_d = \left(\frac{\Gamma(\alpha K)}{\Gamma(\alpha)^K}\right)^D \prod_d \frac{\prod_k \Gamma(N_{kd}+\alpha)}{\Gamma(N_{kd}+\alpha K)}$$
  
•  $P(\mathbf{W}|\mathbf{Z},\beta) = \left(\frac{\Gamma(\beta W)}{\Gamma(\beta)^W}\right)^K \prod_k \frac{\prod_w \Gamma(N_{kw}+\beta)}{\Gamma(N_{kw}+\beta W)}$   
•  $P(\mathbf{T}|\mathbf{C},\mathbf{R},\gamma) = \left(\frac{\Gamma(\gamma T)}{\Gamma(\gamma)^T}\right)^{K+1} \prod_{k'} \frac{\prod_t \Gamma(N_{k't}+\gamma)}{\Gamma(N_{k't}+\gamma T)}$ , where  $k' \in \{0,\ldots,K\}$   
•  $P(\mathbf{R}|\eta) = \frac{\Gamma(2\eta)}{\Gamma(\eta)^2} \frac{\Gamma(M_0+\eta)\Gamma(M-M_0+\eta)}{\Gamma(M+2\eta)}$   
•  $P(\mathbf{C}|\mathbf{Z}) = \prod_d \prod_k \left(\frac{N_{kd}}{N_d}\right)^{M'_{kd}}$ 

Inference of the latent Z|W, T is done using collapsed Gibbs sampling

• The hyperparameters are estimated by maximizing the joint distribution, using a fixed-point iteration method

#### Proposed Method: Inference

• We have the following expressions, where j = (d, n), i = (d, m) and  $\setminus j$  denotes the count excluding the *n*-th word in the *d*-th document

$$\begin{split} P(z_{j} = k | \boldsymbol{W}, \boldsymbol{T}, \boldsymbol{Z}_{\backslash j}, \boldsymbol{C}, \boldsymbol{R}) &\propto \frac{N_{kd \backslash j} + \alpha}{N_{d \backslash j} + \alpha K} \frac{N_{kw_{j} \backslash j} + \beta}{N_{k \backslash j} + \beta W} \left( \frac{N_{kd \backslash j} + 1}{N_{kd \backslash j}} \frac{N_{d} - 1}{N_{d}} \right)^{M_{kd}} \\ P(r_{i} = 0 | \boldsymbol{W}, \boldsymbol{T}, \boldsymbol{Z}, \boldsymbol{C}, \boldsymbol{R}_{\backslash i}) &\propto \frac{M_{0 \backslash i} + \eta}{M_{\backslash i} + 2\eta} \frac{M_{0\iota_{i} \backslash i} + \gamma}{M_{0 \backslash i} + \gamma T}, \\ P(r_{i} = 1 | \boldsymbol{W}, \boldsymbol{T}, \boldsymbol{Z}, \boldsymbol{C}, \boldsymbol{R}_{\backslash i}) &\propto \frac{M_{\backslash i} - M_{0 \backslash i} + \eta}{M_{\backslash i} + 2\eta} \frac{M_{c_{i}\iota_{i} \backslash i} + \gamma}{M_{c_{i} \backslash i} + \gamma T}, \\ P(c_{i} = k | r_{i} = 0, \boldsymbol{W}, \boldsymbol{T}, \boldsymbol{Z}, \boldsymbol{C}_{\backslash i}, \boldsymbol{R}_{\backslash i}) &\propto \frac{N_{kd}}{N_{d}}, \\ P(c_{i} = k | r_{i} = 1, \boldsymbol{W}, \boldsymbol{T}, \boldsymbol{Z}, \boldsymbol{C}_{\backslash i}, \boldsymbol{R}_{\backslash i}) &\propto \frac{M_{kt_{i} \backslash i} + \gamma}{M_{k \backslash i} + \gamma T} \frac{N_{kd}}{N_{d}}. \end{split}$$

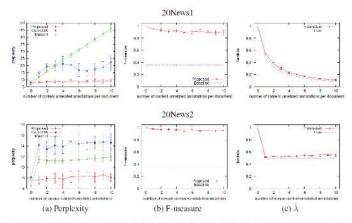



Figure 2: (a) Perplexities of the held-out content-related annotations, (b) F-measures of content relevance, and (c) Estimated content-related annotation ratios in 20News data.

Figure 2 (c) shows the content-related annotation ratios as estimated by the following equation,  $\hat{\lambda} = \frac{M-M_0+n}{M+2\eta}$ , with the proposed method. The estimated ratios are about the same as the true ratios.

April 1, 2010 10 / 13

- A 🖓

590

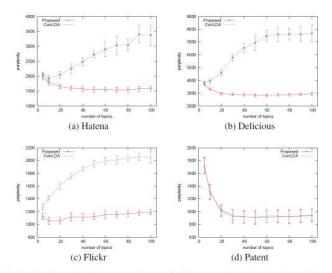



Figure 3: Perplexities of held-out annotations with different numbers of topics in social annotation data (a)(b)(c), and in data without content unrelated annotations (d).

< 市

DQC

Modeling Social Annotation Data with Content Relevance using a T

Table 2: The ten most probable content-unrelated annotations (leftmost column), and the ten most probable annotations for some topics (other columns), estimated with the proposed method using 50 topics. Each column represents one topic. The lower half in (a) and (b) shows probable words in the content.

| unrelated                                                                         | Topic1                                                                                                      | Topic2                                                                                        | Topic3                                                                                                         | Topic4                                                                                                                  | Topic5                                                                                         | Topic6                                                                                         | Topic7                                                                                                       | Topic8                                                                                              | Topic9                                                                                                            |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| toread<br>web<br>later<br>great<br>document<br>troll<br>#<br>?<br>summary<br>memo | programming<br>development<br>dev<br>webdev<br>php<br>java<br>software<br>ruby<br>opensource<br>softwaredev | game<br>animation<br>movie<br>Nintendo<br>movie<br>event<br>xbox360<br>DS<br>PS3<br>animation | economics<br>finance<br>society<br>business<br>economy<br>reading<br>investment<br>japan<br>money<br>company   | science<br>research<br>biology<br>study<br>psychology<br>mathematics<br>pseudoscience<br>knowledge<br>education<br>math | food<br>cooking<br>gournet<br>recipe<br>cook<br>life<br>fooditem<br>foods<br>alcohol<br>foodie | linux<br>tips<br>windows<br>security<br>server<br>network<br>unix<br>mysql<br>mail<br>Apache   | politics<br>international<br>oversea<br>society<br>history<br>china<br>world<br>international<br>usa<br>news | pc<br>apple<br>iphone<br>hardware<br>gadget<br>mac<br>cupidity<br>technology<br>ipod<br>electronics | medical<br>health<br>lie<br>government<br>agriculture<br>food<br>mentalhealth<br>mental<br>environment<br>science |
|                                                                                   | development<br>web<br>series<br>hp<br>technology<br>management<br>source<br>usage<br>project<br>system      | game<br>animation<br>movie<br>story<br>work<br>create<br>PG<br>mr<br>interesting<br>world     | year<br>article<br>finance<br>economics<br>investment<br>company<br>day<br>management<br>information<br>nikkei | science<br>researcher<br>answer<br>spirit<br>question<br>human<br>ehara<br>proof<br>mind<br>brain                       | eat<br>use<br>omission<br>water<br>decision<br>broil<br>face<br>input<br>miss<br>food          | in<br>setting<br>file<br>server<br>case<br>mail<br>address<br>connection<br>access<br>security | japan<br>country<br>usa<br>china<br>politics<br>aso<br>mr<br>korea<br>human<br>people                        | yen<br>product<br>digital<br>pc<br>support<br>in<br>note<br>price<br>equipment<br>model             | rice<br>banana<br>medical<br>diet<br>hospital<br>poison<br>eat<br>incident<br>korea<br>jelly                      |

(a) Hatena

|           |            |               |             | (b) Defic  | ious      |             |          |          |            |
|-----------|------------|---------------|-------------|------------|-----------|-------------|----------|----------|------------|
| reference | money      | video         | opensource  | food       | windows   | art         | shopping | iphone   | education  |
| web       | finance    | music         | software    | recipes    | linux     | photo       | shop     | mobile   | learning   |
| imported  | economics  | videos        | programming | recipe     | sysadmin  | photography | Shopping | hardware | books      |
| design    | business   | fun           | development | cooking    | Windows   | photos      | home     | games    | book       |
| internet  | economy    | entertainment | linux       | Food       | security  | Photography | wishlist | iPhone   | language   |
| online    | Finance    | funny         | tools       | Recipes    | computer  | Art         | buy      | apple    | library    |
| cool      | financial  | movies        | rails       | baking     | microsoft | inspiration | store    | tech     | school     |
| toread    | investing  | media         | ruby        | health     | network   | music       | fashion  | gaming   | teaching   |
| tools     | bailout    | Video         | webdev      | vegetarian | Linux     | foto        | gifts    | mac      | Education  |
| blog      | finances   | film          | rubyonrails | div        | ubuntu    | fotografia  | house    | game     | research   |
|           | money      | music         | project     | recipe     | windows   | art         | buy      | iphone   | book       |
|           | financial  | video         | code        | food       | system    | photography | online   | apple    | legal      |
|           | credit     | link          | server      | recipes    | microsoft | photos      | price    | ipod     | theory     |
|           | market     | tv            | ruby        | make       | linux     | camera      | cheap    | mobile   | books      |
|           | economic   | movie         | rails       | wine       | software  | vol         | product  | game     | law        |
|           | october    | itunes        | source      | made       | file      | digital     | order    | games    | university |
|           | economy    | film          | file        | add        | server    | images      | free     | pc       | students   |
|           | banks      | amazon        | version     | love       | user      | 2008        | products | phone    | learning   |
|           | government | play          | files       | eat        | files     | photo       | rating   | mac      | educatior  |
|           | bank       | interview     | development | good       | ubuntu    | tracks      | card     | touch    | language   |

#### (b) Delicious

#### (c) Flickr

| 2008       | dance        | sea       | autumn         | rock      | beach       | family    | island        |
|------------|--------------|-----------|----------------|-----------|-------------|-----------|---------------|
| nikon      | bar          | sunset    | trees          | house     | travel      | portrait  | asia          |
| canon      | de           | sky       | tree           | party     | vacation    | cute      | landscape     |
| white      | digital      | clouds    | mountain       | park      | camping     | baby      | rock          |
| yellow     | concert      | mountains | fall           | inn       | landscape   | boy       | blue          |
| red        | bands        | ocean     | garden         | coach     | texas       | kids      | tour          |
| photo      | music        | panorama  | bortescristian | creature  | lake        | brown     | plant         |
| italy      | washingtondc | south     | geotagged      | halloween | cameraphone | closeup   | tourguidesoma |
| california | dancing      | ireland   | mud            | mallory   | md          | 08        | koh           |
| color      | work         | oregon    | natura         | night     | sun         | galveston | samui         |

Modeling Social Annotation Data with Content Relevance using a T

<ロ> < 団> < 団> < 団> < 豆> < 豆> < 豆</p>

2010 13 / 13