
3710 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 32, NO. 20, OCTOBER 15, 2014

Modeling Sources of Nonlinearity in a Simple
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Abstract—Nonlinearity in p-i-n photodetectors leads to power
generation at harmonics of the input frequency, limiting the
performance of RF-photonic systems. We use one-dimensional
and two-dimensional simulations of the drift-diffusion equations
to determine the physical origin of the saturation in a simple
heterojunction p-i-n photodetector at room temperature. Incom-
plete ionization, external loading, impact ionization, and the
Franz–Keldysh effect are all included in the model. Impact ion-
ization is the main source of nonlinearity at large reverse bias
(>10 V in the device that we simulated). The electron and hole
current contributions to the second harmonic power were calcu-
lated. We find that impact ionization has a greater effect on the
electrons than it does on the holes. We also find that the hole ve-
locity saturates slowly with increasing reverse bias, and the hole
current makes a large contribution to the harmonic power at 10 V.
This result implies that decreasing the hole injection will decrease
the harmonic power.

Index Terms—2D simulation, impact ionization, nonlinearity,
p-i-n photodetector.

I. INTRODUCTION

NONLINEARITY in p-i-n photodetectors leads to power
generation at harmonics of the input signal frequencies,

which limits the performance of RF-photonic systems [1]. The
nonlinearity can be measured by integrating an optical signal
that carries a single RF frequency and measuring the power in
the higher harmonics of that frequency. The harmonic power
always decreases as the reverse bias increases up to some
voltage, beyond which the harmonic power saturates and can
even increase slightly. Determining the origin of this saturation
is important for understanding and eliminating the sources of
nonlinearity.

Williams et al. [2], [3], Dunn et al. [4], and Walker and
Wilson [5] carried out one-dimensional (1D) simulations in the
mid-1990s in which they demonstrated that the drift-diffusion
equations contain the essential physics that is needed to repro-
duce this saturation. Williams et al. [2] suggested that p-region
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absorption is the dominant source of this saturation. In any
1D model, it is necessary to assume an effective beam radius
for the light beam, which then determines the light intensity.
In order to obtain agreement between theory and experiment,
Williams et al. [2] used the device radius as the beam radius in
the p-region and the much smaller physical beam radius in the
intrinsic region.

In this work, we revisit the question of determining the
sources of nonlinearity in simple p-i-n photodetectors at room
temperature. Subsequent to the early simulation work [2]–[5],
it has been discovered that several effects not included in the
original studies can play an important role. These include
external loading [6], thermionic emission at the heterojunc-
tion boundaries [7]–[9], incomplete ionization [9], impact
ionization [9]–[12], and the Franz–Keldysh effect [13].

We will show that impact ionization, in particular, is the
dominant nonlinear effect at large reverse biases (>10 V) in the
simple device being studied here, leading in most cases to an
increase in the harmonic power beyond some voltage. Second,
modern-day computers allow us to do cylindrically-symmetric
two-dimensional (2D) simulations, and thus take into account
transverse diffusion without making ad hoc assumptions about
the beam radius. We will show that it is necessary to take into
account 2D effects to obtain good agreement with experiments
at low reverse biases where the transverse diffusion becomes im-
portant. Finally, we carry out fully implicit simulations, in con-
trast to the explicit simulations in the original work by Williams
et al. [2], [3]. Explicit simulations of the drift-diffusion equa-
tions are intrinsically unstable [14]. (See also [3], Fig. 4.14,
p. 56.]) Williams et al. [2], [3] used a grid-dependent diffu-
sion cap that avoids this instability, but lowers the diffusion by
up to a factor of 100 in some regions of the photodetector—in
particular, the p-i interface. We did not use a diffusion cap, which
in some cases led to different physics for the dominant source of
nonlinearity. In particular, we find that the role of p-region ab-
sorption is diminished because of diffusive backflow of electrons
from the n-region through the intrinsic region to the p-region.

The remainder of this paper is organized as follows: Section II
contains a discussion of our photodetector model. Section III
describes our computational approach. Section IV contains
our simulation results. Section V discusses the sources of
nonlinearity in our device. Section VI contains the conclusions.

II. PHOTODETECTOR MODEL

A. p-i-n Photodetector Structure

The basic structure that we investigate here is a single
heterojunction device made from InP and InGaAs [2], as
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Fig. 1. Structure of the p-i-n photodetector. Lengths are not to scale.

shown in Fig. 1. The device is composed of a highly-
doped transparent n-InP substrate of length wn = 0.1μm
(ND = 2 × 1017 cm−3), an intrinsic layer of n-InGaAs of
length wi = 0.95μm (NB = 5 × 1015 cm−3), and a de-
generately doped p-InGaAs p-region of length wp = 1μm
(NA = 7 × 1018 cm−3), where NA and ND denote the
acceptor and donor densities, and NB denotes the unintentional
donor density in the intrinsic region. The total length of the
photodetector is L = 2.05μm. The incident light is assumed
to pass through an aperture on the n-side ohmic contact of the
device. The device radius is 15 μm. In the simulation,
we set ND = 2 × 1017 cm−3 , NA = 7 × 1018 cm−3 ,
and NB = 5 × 1015 cm−3 .

B. Basic Drift-Diffusion Model

To model the carrier transport in the photodetector, we use
both 1D and 2D drift-diffusion models [4], [5], [12], [15]–[21].
This model consists of three equations that govern the dynamics
of the electron density n, the hole density p, and the electric field
E (gradient of the electrostatic potential, ϕ),

∂n

∂t
= G − R(n, p) +

∇ · Jn

q
, (1a)

∂p

∂t
= G − R(n, p) − ∇ · Jp

q
, (1b)

∇ · E =
q

ε

(
N+

D + p − n − N−
A

)
(1c)

where q is the unit of charge (here positive), G and R are the
generation and recombination rates, ε is the permittivity of the
semiconductor material, and N+

D and N−
A are the ionized donor

and acceptor impurity concentrations. The variables Jn and Jp

are the current densities for electrons and holes, and are given
by

Jn = qnvn (E) + qDn∇n, (2a)

Jp = qpvp(E) − qDp∇p (2b)

where Dn and Dp are the electron and hole diffusion coeffi-
cients, respectively, while vn (E) and vp(E) are the electric-
field-dependent electron and hole drift velocities, respectively.

The electron velocity as a function of electric field has been
measured for InGaAs samples at electric field strengths from
10–100 kV/cm. An empirical expression that has been used to
fit vn (E) for electrons in InGaAs is given by [3], [15]

vn =
E (μn + vn,satβ|E|)

1 + β|E|2
(3)

TABLE I
MATERIAL PARAMETERS AT 300 K USED IN THE SIMULATION

where μn is the electron low-field mobility, vn,sat is the saturated
electron velocity, and β is a fitting parameter. The parameters
μn , vn,sat , and β are given in Table I. The hole velocity has also
been measured in the range of 50–100 kV/cm. An empirical
expression that has been used to fit vp(E) for the holes in the
InGaAs is given by [22]

vp =
μpvp,satE

(
vγ

p,sat + μγ
p |E|γ

)1/γ
(4)

where μp is the hole low-field mobility, γ is an empirical fitting
parameter that depends on temperature, and vp,sat is the satu-
rated hole velocity. The parameters μp, γ, and vp,sat are given
in Table I. In Fig. 2, we show the electron and hole velocities as
a function of the electric field magnitude given by (3) and (4).

The doping-dependence of the low-field mobilities, μn and
μp , are fitted to available experimental data, by adopting
Hilsum’s empirical formula [9], [23],

μ =
μ0

1 +
(

ND +NA

N r e f

)η (5)

where μ0 is the mobility in low doping concentration, while
Nref and η are empirical parameters.
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Fig. 2. Empirical expressions for electron and hole velocities versus the elec-
tric field from (3) and (4). We use different fitting parameters γ =1, 4 and hole
mobility μp = 150 cm2 /V-s, 300 cm2 /V-s. This figure is similar [2, Fig. 3].

We use the same expression for the electron and hole diffusion
coefficient that Williams [3] used,

Dn =
kTμn/q

[
1 − 2 (|E|/Ep)

2 + 4
3 (|E|/Ep)

3
]1/4

Dp =
kT

q

vp(E)
E

, (6)

where Ep is the electric field at which the diffusion constant
peaks. We use Ep = 4 kV/cm in the simulation, with vp(E)
given by (4).

The largest contribution to recombination is the Shockley–
Read–Hall (SRH) effect. The expression for SRH recombination
is

R =
np − n2

i

τp(n + ni) + τn (p + ni)
(7)

where ni is the intrinsic density, while τp and τn are the hole
and electron lifetimes, respectively.

In our 2D simulations, we assume that the light intensity
incident on the detector is a Gaussian function of the radius and
enters through an opening in the n-side, anti-reflection-coated
contact. Assuming that there are no reflections, the generation
rate as a function of position in the device is expressed as

G(r, z, t) = G0(r, t)exp[−α(wp + wi − z)] (8)

where α is the absorption coefficient in the InGaAs. As the
doping concentration increases, the absorption coefficient de-
creases, especially when the wavelength of the incident light is
close to the energy gap [24]. In the simulation, the absorption
coefficient in the p-region is 5% of that in the i-region [24].
For the harmonic analysis, G0(r, t) is a time harmonic function.
We will assume that the beam is Gaussian-shaped with a profile
given by

G0(r, t) = G0(t)exp[−2(r/r0)2 ] (9)

where G0(t) is the time-dependent generation rate and r0 is the
spot size of the light.

In the 2D model, we use the Gaussian profile in (9). However,
in the 1D drift-diffusion model, the physical Gaussian beam
profile must be approximated by a constant intensity over an

effective beam area. We define an effective beam diameter D0
and an average beam intensity Iav such that the total power of
this constant approximation is the same as the Gaussian beam,
so that

∫ ∞

0
I(r)2πrdr = Iavπ

(
D0

2

)2

(10)

where I(r) = I0exp
(
−2r2/r2

0
)

is the intensity of the Gaussian
beam and r0 is the 1/e beam radius of the Gaussian beam.
In the 1D simulation, D0 is a fitting parameter, and we obtain
reasonable results when D0 approximately equals 2r0 . One of
the principal advantages of the 2D model is that it is possible to
use a realistic beam profile, and it is not necessary to define the
fitting parameter D0 .

The total current output is the sum of the hole and electron
currents with the addition of the displacement current integrated
over the photodetector length and is given by

Itotal =
1
L

∫ L

0

∫ R

0
2πr

(
Jn + Jp + ε

∂E

∂t

)
drdz (11)

where L is the length of the device and R is the radius of the
device.

To simulate nonlinearities, the photodetector is excited with a
constant generation rate until the output current reaches a steady
state, at which time a superimposed sinusoidal signal stimulates
the device for a number of cycles, typically 10. We then take the
Fourier transform of the output current to obtain the harmonic
power. In several cases, we carried the simulations out to 20
cycles and observed no significant difference in the results.

C. Boundary Conditions and Thermionic Emission

To determine a set of boundary conditions, the p- and n-
contacts in Fig. 1 are assumed to be ohmic contacts and, as
such, offer no barrier to carrier flow. Hence, the carrier densities
near the contacts may be approximated by their densities in
the bulk region. Assuming thermal equilibrium and vanishing
space charge at the ohmic contacts, the boundary conditions at
the contacts are

p(r, 0) = N−
A , n(r, 0) =

n2
i

p(r, 0)
, (12)

n(r, L) = N+
D , p(r, L) =

n2
i

n(r, L)
(13)

where p(r, 0) and n(r, 0) are the hole and electron densities at
the contact at x = 0, while p(r, L) and n(r, L) are the hole and
electron densities at the contact at x = L.

We set the electrostatic potential at z = 0 to zero, i.e.,
ϕ(r, 0) = 0. We must then set the boundary conditions for ϕ
at the other device interfaces. To determine the condition at
ϕ(r, L), we must take into account the load resistor. Then, the
potential boundary conditions relate the given reverse bias Va ,
the built-in potential Vbi ,

Vbi =
kT

q
ln

(
N−

A N+
D

n2
i

)
(14)
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Fig. 3. A depiction of the photodetector band diagram. This figure is similar
to [3, Fig. 3.2].

and the current in the photodetector to the electric field in the
semiconductor region, so that the boundary condition for the
potential is

ϕ(r, L) − ϕ(r, 0) = ϕ(r, L) = Va − IRLoad + Vbi (15)

where I is the output current. Since the current I is unknown at
the start of the simulation, we must find it iteratively. Starting
with an initial guess I1 , we determine a new current I2 using
(15). We then use I2 as the next guess. We iterate until the
relative difference is smaller than 10−6 .

At the boundary r = R, a floating boundary condition is ap-
plied. The boundary conditions are

∂p

∂r

∣
∣
∣
∣
r=0

= 0,
∂p

∂r

∣
∣
∣
∣
r=R

= 0,

∂n

∂r

∣
∣
∣
∣
r=0

= 0,
∂n

∂r

∣
∣
∣
∣
r=R

= 0,

∂ϕ

∂r

∣
∣
∣
∣
r=0

= 0,
∂ϕ

∂r

∣
∣
∣
∣
r=R

= 0. (16)

Fig. 3 shows the band diagram of the photodetector, where a
reverse bias voltage of a few volts is applied to the device. The
InGaAs/InP heterojunction depicted in Fig. 3 has a valence band
discontinuity of 0.38 eV and a conduction band discontinuity
of 0.23 eV [3], [9], [10]. The reduction in the conduction band
discontinuity and the increase in the valence band discontinuity
of approximately 0.1 eV is the result of the difference in the
doping of the intrinsic and n-InGaAs layer. The electrons will
be allowed to flow without restriction across the heterojunction
because the barrier is only 0.1 eV. However, holes are impacted
by the 0.5 eV barrier. We use a thermionic emission model [7],
[8] to calculate the hole current at the heterojunction. Assuming
that z increases from left to right, as shown schematically in

Fig. 1, we write

Jp = qv1p− exp[(Ev1 − Ev2)/kT ] − qv2p+ (17)

where v1 and v2 are respectively the hole emission velocities
on the left side and right side of the heterojunction, p− and
p+ are the hole densities on the left side and right side of the
heterojunction, and Ev1 and Ev2 are the valance band energies
on the left side and right side of the heterojunction.

D. Additional Effects

We have already described how we model the external load
and thermionic effects in connection with our discussion of
the boundary conditions. Here, we discuss how we model in-
complete ionization, impact ionization, and the Franz–Keldysh
effect. We note that all these effects are modeled at room tem-
perature, which is in accord with the experiments.

1) Incomplete Ionization: The doping impurities introduced
into InGaAs and InP are not fully ionized at room temperature
[9]. The incomplete ionization of impurities in InGaAs and InP
must be considered in a similar manner to those in silicon.
Indeed, the impurity energy levels are relatively deep compared
to the thermal energy. The model accounts for the incomplete
ionization of doping impurities such as boron, aluminium, and
nitrogen, using the following expressions:

N+
D =

ND

1 + gD exp
(

EC −ED

kT

)
exp

(
EF n −EC

kT

) ,

N−
A =

NA

1 + gA exp
(

EA −EV

kT

)
exp (−EF p −EV

kT )
(18)

where N+
D and N−

A are the ionized donor and acceptor impu-
rity concentrations, ND and NA are the donor and acceptor
impurity concentrations, gD = 2 and gA = 4 are the respective
ground-state degeneracy of donor and accept impurity levels,
EA and ED are the acceptor and donor energy levels, EC and
EV are the low conduction band and the high valence band
energy levels, EF n and EF p are the quasi-Fermi energy levels
for the electrons and holes, k is the Boltzmann constant, and
T is the temperature. The energy differences in the simulation
are ΔED = EC − ED = 5 meV and ΔEA = EA − EV = 25
meV. The basic variables in the drift-diffusion equations, (1),
are the potential (or electric field), the electron concentration,
and the hole concentration. Therefore, it is more convenient to
rewrite (18) in terms of the carrier concentration instead of the
quasi-Fermi levels:

N+
D =

ND

1 + gD n/n1
, N−

A =
NA

1 + gAp/p1
(19)

where

n1 = NC exp
(
−ΔED

kB T

)
,

p1 = NV exp
(
−ΔEA

kB T

)
(20)
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and we make use of the expressions

n = NC exp
(

EF n − EC

kB T

)
,

p = NV exp
(
−EF p − EV

kB T

)
. (21)

2) Impact Ionization: In a strong electric field, accelerating
electrons and holes can have kinetic energies that are larger
than the band gap (around 1 eV for In0.53Ga0.47As [25]), at
which point a lattice collision will produce an electron-hole
pair. The electron and hole move in opposite directions and
can themselves produce new electron-hole pairs. With a strong
electric field and an acceleration region with a sufficiently long
length, this mechanism can lead to avalanche breakdown [26]. In
the p-i-n photodetectors that we are considering, the acceleration
lengths are too small to lead to avalanche breakdown since
electrons leave the acceleration region too quickly. Nonetheless,
this impact ionization can lead to an important increase in the
electron and hole densities. We may write the electron and hole
generation rate Gi as

Gi = αn
|Jn |
q

+ αp
|Jp |
q

(22)

where αn and αp are the impact ionization coefficients of the
electrons and holes, respectively. We calculate their values using
the formula [9]:

αn = An · exp
[
−

(
Bn

|E|

)m ]
,

αp = Ap · exp
[
−

(
Bp

|E|

)m ]
(23)

where An,Bn ,Ap , and Bp are experimentally determined pa-
rameters [9], [10]. The exponent m is taken to be 1.05. The
values that we use, shown in Table I for InGaAs, are modified
slightly from the values in [9], [10] in order to obtain harmonic
powers that are consistent with experiments. However, all values
fall within the range of experimental error.

3) Franz–Keldysh Effect: When the photon energy of the
incident optical light is close to the band edge of the InGaAs
absorber, the Franz–Keldysh effect must be taken into account
[27]. The Franz–Keldysh effect leads to oscillations in the carrier
transition probability for energies that are greater than the band
gap and tunneling of the electron state into the forbidden band
due to band-bending below the band gap in the presence of
an applied electric field. The absorption coefficient is given
by [28]

α(ω,E) =
(
Cθ

1/2
F /ω

)
[∣
∣
∣
∣
dAi(β)

dβ

∣
∣
∣
∣

2

− β |Ai(β)|2
]

(24)

where ω is the light frequency, C is a fitting parameter, and
Ai(x) is the Airy function. We also have

β =
ω1 − ω

θF
(25)

Fig. 4. Numerical mesh used for the finite difference spatial discretization of
the 1-D drift-diffusion equation.

and

(θF )3 =
e2E2

2mnp�
(26)

where �ω1 is the energy of the band gap, and mnp is the reduced
mass of the electric-hole pair. We may write

1
mnp

=
1

m∗
n

+
1

m∗
p

(27)

where m∗
n and m∗

p are the electron and hole effective masses,
respectively.

III. COMPUTATIONAL MODEL

A. 1D Computational Model

When discretizing the drift-diffusion equations for numerical
computation, it is important to use a fully implicit method [14].
Explicit methods are intrinsically unstable and thus require an
unreasonably small time step to yield physical results with
the diffusion coefficients given in (6). In our simulations, the
time step would be smaller than 10−15 s if we use an ex-
plicit method, compared with a time step of 10−12 s using
an implicit method. We have used the implicit Euler method
to discretize the equations in time t. We use second-order fi-
nite differences to discretize the spatial dimension x. We dis-
cretize the x-dimension using the mesh shown schematically in
Fig. 4. We define p, n, and ϕ, at integral points in the mesh
that are indexed by m = 1, 2, . . . , M . The current and elec-
tric field are defined at intermediate points that are indexed by
m = 3/2, 5/2, . . . ,M − 1/2. We use an uneven spacing be-
tween mesh points, and hence we specify the distance between
the integral points m and m + 1 as h(m), and the distance be-
tween the intermediate points m − 1/2 and m + 1/2 as h′(m).
We set

h′(m) =
h(m − 1) + h(m)

2
. (28)

Using this mesh, (1) and (2) become

ni+1
m − ni

m

δt
=

1
q

(Jn )i+1
m+1/2 − (Jn )i+1

m−1/2

h′(m)

+ Gi+1
m + Gi

i+1
m − Ri+1

m ,

pi+1
m − pi

m

δt
= −1

q

(Jp)
i+1
m+1/2 − (Jp)

i+1
m−1/2

h′(m)

+ Gi+1
m + Gi

i+1
m − Ri+1

m ,
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Fig. 5. Gridding scheme used in the device model for multilayer devices.

1
h′(m)

[
ϕi+1

m+1 − ϕi+1
m

h(m)
− ϕi+1

m − ϕi+1
m−1

h(m − 1)

]

= −q

ε

(
N+

D m − N−
A m + pi+1

m − ni+1
m

)
(29)

and

(Jn )i+1
m+1/2 = q(Dn )i+1

m+1/2
ni+1

m+1 − ni+1
m

h(m)

+ q(vn )i+1
m+1/2

ni+1
m+1 + ni+1

m

2
,

(Jp)
i+1
m+1/2 = −q(Dp)

i+1
m+1/2

pi+1
m+1 − pi+1

m

h(m)

+ q(vp)
i+1
m+1/2

pi+1
m+1 + pi+1

m

2
(30)

where ni+1
m and pi+1

m are the electron and hole densities at the
point m and time-step i + 1, respectively, while (Jn )i+1

m+1/2 and

(Jp)
i+1
m+1/2 are the electron and hole currents at the point m +

1/2 and time-step i + 1, respectively, Gi+1
m is the generation

rate at the point m and time-step i + 1, Ri+1
m is the recom-

bination rate at the point m and time-step i + 1, ϕi+1
m is the

electrostatic potential at the point m and time-step i + 1, N+
D m

and N−
A m are the ionized donor and acceptor doping den-

sity at the point m, (Dn )i+1
m+1/2 and (Dp)

i+1
m+1/2 are the elec-

tron and hole diffusion coefficient at the point m + 1/2 and
time-step i + 1, (vn )i+1

m+1/2 and (vp)
i+1
m+1/2 are the electron and

hole velocities at the point m + 1/2 and time-step i + 1. Here,
we used the average carrier densities

(
ni+1

m+1 + ni+1
m

)
/2 and(

pi+1
m+1 + pi+1

m

)
/2 to approximate the carrier densities ni+1

m+1/2

and pi+1
m+1/2 at the intermediate m + 1/2 point and time-step

i + 1 in (30).
At the heterojunction interface x0 shown in Fig. 5, the dis-

cretization is different. We treat the drift-diffusion equation as
a differential equation in the hole density, assuming all other
variables are constant across the grid, and integrating across
the grid element to obtain the hole density at the interface x0 .
For a grid element containing a heterojunction interface, there
is a discontinuity in the hole density at this interface. So, the
integration is done in two steps, first from x(m) to x0 and then
from x0 to x(m + 1), as illustrated in Fig. 5. The drift-diffusion

Fig. 6. Schematic of the boundary condition used at the heterojunction.

equation for holes, which is obtained by inserting (6) into (2b),
can be written as a differential equation in the hole density,

∂p

∂x
=

qE

kT
p − EJp

kTvp
. (31)

Integrating from x(m) to x0 yields

p(x−
0 ) = p(m)exp

[
qE(m + 1/2)

kT
Δx1

]
− Jp(m + 1/2)

qvp(m + 1/2)

×
{

1 − exp
[
qE(m + 1/2)

kT
Δx1

]}
. (32)

The integral from x0 to x(m + 1) yields:

p(x+
0 ) = p(m + 1)exp

[
−eE(m + 1/2)

kT
Δx2

]

− Jp(m + 1/2)
qvp(m + 1/2)

{
1−exp

[
−qE(m + 1/2)

kT
Δx2

]}
.

(33)

Thermionic emission [7], [8] is considered at the heterojunc-
tion interface. The possible barriers for holes are illustrated in
Fig. 6. When holes move from a material with a higher valance
band energy to a lower valance band energy, as shown on the
left of Fig. 6, the heterojunction is a barrier to holes, which is
the case in our structure. When holes move from a material with
a lower valance band energy to a material with a higher valance
band energy, as shown on the right of Fig. 6, then holes move
freely through the heterojunction. This kind of heterojunction is
not a barrier to holes. This case does not appear in our structure.
Using (17), the current at the heterojunction can be written as

Jp(m + 1/2) = qv1p(x−
0 ) exp[(Ev1 − Ev2)/kT ]

− qv2p(x+
0 ). (34)

Inserting (32) and (33) into (34) and rearranging yields

Jp(m + 1/2) = qvp(m + 1/2)
A − B

1 + C − D
(35)

where A,B,C, and D are

A = p(m) exp
[
qE(m + 1/2)Δx1 + Ev1 − Ev2

kT

]
,

B = p(m + 1) exp
[
−qE(m + 1/2)Δx2

kT

]
,



3716 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 32, NO. 20, OCTOBER 15, 2014

C =
{

1 − exp
[
qE(m + 1/2)Δx1

kT

]}
exp

[
Ev1 − Ev2

kT

]
,

D = 1 − exp
[
−qE(m + 1/2)Δx2

kT

]
. (36)

We have assumed that the electric field and the hole velocity are
the same across the heterojunction interface.

B. 2D Computational Model

We have used the implicit Euler method to discretize the
equations in time t. We use a second-order finite difference
scheme to discretize the spatial dimensions r and z. The mesh
is shown schematically in Fig. 7. The integral points in the
mesh, labeled (i, j), are where the values of p, n, and ϕ are
defined, while the intermediate points labeled (i − 1/2, j) and
(i, j − 1/2) are where the current and electric field are defined.
We use an uneven spacing between mesh points, and hence we
specify the distance between the integral points (i, j) and (i, j −
1) as hj−1 in the longitudinal (z) direction, and between (i, j)
and (i − 1, j) as ki−1 in the radial (r) direction. The distance
between the intermediate point (i, j + 1/2) and (i, j − 1/2) is
h′

j and between the intermediate point (i + 1/2, j) and (i −
1/2, j) is k′

i . We set

h′
j =

hj−1 + hj

2
, k′

i =
kj−1 + kj

2
. (37)

Our time step is given by δt. We thus obtain

nt+1
i,j − nt

i,j

δt
=

1
q

(Jnr )t+1
i+1/2,j − (Jnr )t+1

i−1/2,j

k′
i

+
1
q

(Jnr )t+1
i,j

ri

+
1
q

(Jnz )t+1
i,j+1/2 − (Jnz )t+1

i,j−1/2

h′
j

+ Gt+1
i,j + Gi

t+1
i,j − Rt+1

i,j , (38a)

pt+1
i,j − pt

i,j

δt
= −1

q

(Jpr )t+1
i+1/2,j − (Jpr )t+1

i−1/2,j

k′
i

− 1
q

(Jpr )t+1
i,j

ri

− 1
q

(Jpz )t+1
i,j+1/2 − (Jpz )t+1

i,j−1/2

h′
j

+ Gt+1
i,j + Gi

t+1
i,j − Rt+1

i,j , (38b)

− q

ε

(
N+

D i,j − N−
A i,j + pt+1

i,j − nt+1
i,j

)

=
1
k′

i

[
ϕi+1,j − ϕi,j

ki
− ϕi,j − ϕi−1,j

ki−1

]

+
1
h′

j

[
ϕi,j+1 − ϕi,j

hj
− ϕi,j − ϕi,j−1

hj−1

]

+
1
ri

ϕi+1,j − ϕi−1,j

ki + ki−1
(38c)

and

(Jnr )t+1
i+1/2,j = q(Dn )t+1

i+1/2,j

nt+1
i+1,j − nt+1

i,j

ki

+ q(vnr )t+1
i+1/2,j

nt+1
i+1,j + nt+1

i,j

2
,

(Jnr )t+1
i,j = q(Dn )t+1

i,j

nt+1
i+1,j − nt+1

i−1,j

ki + ki−1

+ q(vnr )t+1
i,j nt+1

i,j ,

(Jnz )t+1
i,j+1/2 = q(Dn )t+1

i,j+1/2

nt+1
i,j+1 − nt+1

i,j

hj

+ q(vnz )t+1
i,j+1/2

nt+1
i,j+1 + nt+1

i,j

2
, (39)

(Jpr )t+1
i+1/2,j = −q(Dp)t+1

i+1/2,j

pt+1
i+1,j − pt+1

i,j

ki

+ q(vp)t+1
i+1/2,j

pt+1
i+1,j + pt+1

i,j

2
,

(Jpr )t+1
i,j = −q(Dp)t+1

i,j

pt+1
i+1,j − pt+1

i−1,j

ki + ki−1

+ q(vp)t+1
i,j pt+1

i,j ,

(Jpz )t+1
i,j+1/2 = −q(Dp)t+1

i,j+1/2

pt+1
i,j+1 − pt+1

i,j

hj

+ q(vp)t+1
i,j+1/2

pt+1
i,j+1 + pt+1

i,j

2
(40)

where nt+1
i,j and pt+1

i,j are the electron and hole densities at the

point (i, j) and time-step t + 1, respectively, while (Jnr )
t+1
i+1/2,j

and (Jpr )
t+1
i+1/2,j are the electron and hole currents at the point

(i + 1/2, j) and time-step t + 1 in the radial direction, respec-
tively, (Jnz )

t+1
i,j+1/2 and (Jpz )

t+1
i,j+1/2 are the electron and hole

currents at the point (i, j + 1/2) and time-step t + 1 in the
longitudinal direction, respectively, Gt+1

i,j is the generation rate
at the point (i, j) and time-step t + 1, Rt+1

i,j is the recombina-
tion rate at the point (i, j) and time-step t + 1, Gi

t+1
i,j is the

impact ionization generation rate at the point (i, j) and time-
step t + 1, ϕi,j is the electrostatic potential at the point
(i, j) and time-step t + 1, N+

D i,j and N−
A i,j are the

ionized donor and acceptor doping density at the point
(i, j), (Dn )t+1

i+1/2,j and (Dp)
t+1
i+1/2,j are the electron and hole

diffusion coefficient at the point (i + 1/2, j) and time-step
t + 1, (Dn )t+1

i,j+1/2 and (Dp)
t+1
i,j+1/2 are the electron and hole

diffusion coefficient at the point (i, j + 1/2) and time-step
t + 1, (vnr )

t+1
i+1/2,j and (vpr )

t+1
i+1/2,j are the electron and hole

velocities at the point (i + 1/2, j) and time-step t + 1 in the
radial direction, (vnz )

t+1
i,j+1/2 and (vpz )

t+1
i,j+1/2 are the electron

and hole velocities at the point (i + 1/2, j) and time-step t + 1
in the longitudinal direction.
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Fig. 7. Numerical mesh used for the finite difference spatial discretization of the 2D drift-diffusion equation.

Fig. 8. Measured (symbols) and calculated harmonic power. The green solid
and red dashed curves show the results of the 1D and 2D models.

IV. COMPUTATIONAL RESULTS

The parameters used in our simulations are shown in Table I.
In order to see how these parameter affect the results, some
parameters are adjusted. In the following simulations, we use
the parameters shown in Table I unless otherwise specified.

A. Comparison Between the 1D and 2D Models

The 1D model and 2D models are compared in Fig. 8. In
order to match the experimental data, we set D0 = 8μm in the
1D simulations and we set the spot size of the Gaussian beam
width equal to 4 μm in the 2D simulations. Compared to the 1D
results, the harmonic power in the 2D results is lower when the
reverse bias is small. This difference comes from the assumption
of a constant generation rate as a function of r, which is implicit
in the 1D model. When r is small, the generation rate in the 2D
model must be higher than the constant generation rate in the
1D model, which will induce large harmonic powers. However,
when r is large, the generation rate in the 2D model becomes

smaller than in the 1D model inducing carrier flow in the radial
direction. This transverse flow is particularly important at low
reverse bias, and we find the largest discrepancies between the
1D and 2D models where the reverse bias is less than 3 V.

Despite the discrepancies between the 1D and 2D models as
well as the necessity of empirically determining the parameter
D0 in the 1D model so that the results best match the exper-
iments, it has the important advantage that 1D model is far
more rapid computationally than 2D simulations. To calcu-
late the data in the 1D simulations in Fig. 8 took 30 min of
run time on a Dell T3500 computer, while the data in the 2D
simulation would have taken 60 h of run time on the same
computer that we used for the 1D simulations. Instead we
used UMBC’s High Performance Computing Facility (HPCF)
[http://www.umbc.edu/hpcf/], which required 6 h of run time.

B. External Loading and Thermionic Emission

External loading is another source of nonlinearity in the pho-
todetector. The simulation results are shown in Fig. 9. The results
show that external loading only makes a small difference in the
harmonic powers.

We expect that external loading has its greatest effect on
the harmonic power when the reverse bias is low. However, it
affects the harmonic power elsewhere. First, the load resistor
reduces the bias applied to the device. For an average current
of 1 mA, the potential across the resistor is 0.05 V for a 50 Ω
resistor. So, the harmonic power as a function of reverse bias
should shift to lower bias. Second, an external load is also a
source of nonlinearity. When the generation increases in the
device, there is more space charge in the depletion region, so
that the electric field in the depletion region changes, leading
to space-charge induced nonlinearity [2]. When there is a large
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Fig. 9. Measured and calculated harmonic powers. We compare the load
resistor’s influence to the harmonic power of the photodetector. The red dashed
curves show the results without the load resistor, and the green solid curves
show the results of keeping a 50 Ω resistor in the simulation. (a) 1D model. (b)
2D model.

generation, the current and the bias across the resistor will also
increase. So, there is less reverse bias on the photodetector, and
the electric field decreases, changing the current.

In our simulations, the load resistor is not significant be-
cause the output current of 1 mA is too small to lead to a
significant voltage drop across the resistor. The drop is only
0.05 V. However, we note that the load resistor becomes impor-
tant when the current is large as is the case in some modern-day
devices [11], [13].

When thermionic boundary conditions are replaced by a com-
plete barrier, as was done by Williams, et al. [3], no difference
is observed in the results. So the comparison between these two
models is not shown.

C. Impact Ionization

In Fig. 10, we show the effect of impact ionization. Below
10 V, it makes little to no difference in the results. However,
above 10 V, the results are significant, leading in most cases to
an increase in the harmonic power as the reverse bias increases.
It is not possible to get agreement with experiments without
including this effect.

D. Franz–Keldysh Effect

In all the simulations that we have shown thus far, we have
not included the Franz–Keldysh effect. We show the results
when this effect is included in Fig. 11. In both the 1D and 2D
models, it leads to a rapid and unphysical oscillation in the har-

Fig. 10. Measured and calculated harmonic powers of the photodetector output
current as a function of the reverse bias. Impact ionization and a load resistor
are kept in the simulations. The harmonic power is compared with (red dashed
curve) and without (green solid curve) impact ionization. The red dashed curve
is not visible until almost 10 V in Fig. 10(a) because the green solid curve lies
on top of it. In Fig. 10(b), we only plot the green solid curve above 7 V. (a) 1D
model. (b) 2D model.

Fig. 11. Measured and calculated harmonic powers of the photodetector output
current as a function of the reverse biases with (green solid curve) and without
(red dashed curve) the Franz–Keldysh effect. Impact ionization and a 50 Ω load
resistor are kept in the simulations. (a) 1D model. (b) 2D model.
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Fig. 12. Calculated hole and electron current contribution to the second har-
monic power.

monic powers as the reverse bias increases. We conclude that the
Franz–Keldysh effect does not play a visible role in this device.
We note that the Franz–Keldysh effect is a quantum coherent
effect that requires maintaining phase coherence of the electron
wave functions, and we also note that the light wavelength of
1319 nm corresponds to an energy of 0.94 eV, which differs
significantly from the band edge of 0.74 eV. We speculate that
electron-phonon, electron-carrier, and/or electron-impurity col-
lisions are disrupting the quantum coherence that is needed for
the Franz–Keldysh effect to appear in the experimental devices.
We note that the Franz–Keldysh effect has been observed to be
important in some modern-day devices [11], [13].

V. SOURCES OF NONLINEARITY IN THE PHOTODETECTOR

Space charge was shown to be the dominant source of non-
linearity in a p-i-n photodetector when the reverse bias is
low [2], [3], but its importance should decrease when the re-
verse bias increases. Since the harmonic power saturates and
then typically begins to increase again beyond 10 V, there must
be another source of nonlinearity. We have shown in Fig. 10
that impact ionization is the source of that nonlinearity in our
simulations. In order to determine the relative importance of the
electron and hole contributions to the nonlinearity, we plot the
hole and electron current contributions to the second harmonic
power as a function of position z in Fig. 12. We obtain the output
current as a function of z in the 1D model and 2D model. We
then take the Fourier transform of the output current to obtain
the harmonic power as a function of position z. We see that the
electron current contribution to the second harmonic power de-
creases slowly in the p-region, and increases in the i-region when
the reverse bias increases from 10 to 15 V. However, the hole cur-
rent contribution to the second harmonic power decreases when
the reverse bias increases from 10 to 15 V. So, impact ionization
leads primarily to an increase in the electron current. At 10 V,
the holes dominate the nonlinear contribution. At 15 V, in the
p-region, the hole current contribution to the second harmonic
power is larger than the electron current contribution; however,
the electron current contribution is larger in the intrinsic region.
In total, the hole and electron current contributions to the sec-
ond harmonic power are almost the same. The hole velocity
saturates more slowly than the electron velocity. So, a structure
that limits the hole current will decrease the harmonic power.
That may be done, for example, by inserting a p-doped absorber

and an n-doped absorber on each side of the intrinsic region to
balance the carriers, as discussed by Tulchinsky et al. [29].

VI. CONCLUSION

We studied 1D and 2D models of a single heterojunction p-i-
n photodetector that are based on the drift-diffusion equations.
The harmonic power in these devices decreases from 2 V to
about 10 V, then saturates at around 10 V, and then in most cases
increases again as the reverse bias increases. We have examined
the impact of an external load, thermionic emission at the p-i-
n interfaces, incomplete ionization, impact ionization, and the
Franz–Keldysh effect at room temperature. We have found that
the dominant physical cause of the observed saturation and the
increase at large reverse bias is impact ionization in the simple
p-i-n device that we are studying.

Hole and electron contributions to the second harmonic power
were calculated. The hole current contribution to the second
harmonic power decreases when the reverse bias increases from
10 to 15 V, while the electron current contribution to the second
harmonic power remains nearly constant in the p-region and
increases slightly in the intrinsic region. Decreasing the hole
injection will lead to a decrease in the harmonic power, which
is consistent with the results of Tuchinsky et al. [29].
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