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Abstract

We propose a novel technique to assess functional brain connectivity
in eletro-/magnetoencephalographic (EEG/MEG) signals. Our method,
called Sparsely-Connected Sources Analysis (SCSA), can overcome the
problem of volume conduction by modeling neural data innovatively with
the following ingredients: (a) the EEG/MEG is assumed to be a lin-
ear mixture of correlated sources following a multivariate autoregressive
(MVAR) model, (b) the demixing is estimated jointly with the source
MVAR parameters, (c) overfitting is avoided by using the Group Lasso
penalty. This approach allows us to extract the appropriate level of cross-
talk between the extracted sources and in this manner we obtain a sparse
data-driven model of functional connectivity. We demonstrate the useful-
ness of SCSA with simulated data, and compare it to a number of existing
algorithms with excellent results.

1 Introduction

1.1 Functional brain connectivity

The analysis of neural connectivity plays a crucial role for understanding the
general functioning of the brain. In the past two decades such analysis has
become possible thanks to tremendous progress that has been made in the fields
of neuroimaging and mathematical modeling. Today, a multiplicity of imaging
modalities exists, allowing us to monitor brain dynamics at different spatial and
temporal scales.

Given multiple simultaneously-recorded time-series reflecting neural activ-
ity in different brain regions, a functional (task-related) connection (sometimes
also called information flow or causal interaction in this paper) between two
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regions is commonly inferred if a significant time-lagged influence between the
corresponding time-series is found. Different measures have been proposed for
quantifying this influence, most of them being formulated either in terms of the
cross-spectrum (e.g., coherence, phase slope index [1]) or autoregressive mod-
els (e.g., Granger causality [2], directed transfer function [3], partial directed
coherence [4], [5]).

1.2 Volume conduction problem in EEG and MEG

In electro- and magnetoencephalography (EEG and MEG), sensors are placed
outside the head and the problem of volume conduction arises. That is, rather
than measuring activity of only one brain site, each sensor captures a linear
superposition of signals from all over the brain. This mixing introduces instan-
taneous correlations in the sensor data, which can cause traditional analyses to
detect spurious connectivity [6].

1.3 Existing source connectivity analyses

Only recently methods have been brought up which qualify for EEG/MEG
connectivity analysis, since they account for volume conduction effects. These
methods can roughly be divided as follows.

One type of method aims at providing meaningful connectivity estimates
between sensors. The idea here is that only the real part of the cross-spectrum
and related quantities is affected by instantaneous effects. Thus, by using only
the imaginary part, many traditional coupling measures can be made robust
against volume-conduction [1, 6].

Another group of methods attempts to invert the mixing process in order
to apply standard measures to the obtained source estimates. These methods
can be further divided into (i) source-localization approaches (where sources are
obtained as solutions to the EEG/MEG inverse problem), (ii) methods using
statistical assumptions, and (iii) combined methods. The first approach is pur-
sued, for example, in [7, 8]. Methods in the second category can be appealing,
since they avoid finding an explicit inversion of the physical forward model. In-
stead, both the sources and the (de-)mixing transformation are estimated. To
make such decomposition unique, assumptions have to be formulated, the choice
of which is not so straightforward. We will now briefly review some possibilities
for such assumptions.

Principal component analysis (PCA) and independent component analy-
sis (ICA) are the most prominent linear decomposition techniques for multi-
variate data. Unfortunately, these methods contradict either with the goal of
EEG/MEG connectivity analysis (assumption of independent sources in ICA)
or even with the physics underlying EEG/MEG generation (assumption of or-
thogonal loadings in PCA). Nevertheless, both concepts have been used in more
sophisticated ways to find EEG/MEG decompositions that better reflect phys-
iology [9–12].
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In this work, we first propose a single-step procedure to estimate all parame-
ters (i.e. the mixing matrix and MVAR coefficients) of the linear mixing model of
MVAR sources [12] based on temporal-domain convolutive ICA (CICA), instead
of the combination of MVAR parameter fitting and demixing by instantaneous
ICA. Furthermore, the approach enables us to integrate a sparsity assumption
on brain connectivity, i.e. on interactions between underlying brain sources.
The additional sparsity prior can avoid overfitting in practical applications and
yields more interpretable estimators of brain connectivity. We remark that it
is hard to incorporate such sparsity priors in MVARICA, since MVAR is fit to
the (principal components of the) sensor signals where interactions (i.e. MVAR
coefficients) are not at all sparse due to the volume conduction [12].

The remainder of the paper is organized as follows. In Section 2, our pro-
cedure will be explained step by step. The correlated source model assumed in
this paper will be defined in 2.2. The identification procedure called connected
sources analysis (CSA) based on the convolutive ICA will be introduced (2.3)
and followed by its sparse version, sparse connected sources analysis (SCSA)
with the Group Lasso prior (2.4). The relations of our methods with existing
approaches such as MVARICA (i.e., MVAR+ICA, [12]) and CICAAR (convolu-
tive ICA with an auto-regressive inverse model [13]) will be elucidated in detail
(2.5). Finally, the optimization algorithms for CSA and SCSA will be explained
(2.6). We implemented two versions for SCSA, one based on limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm and the other by an
expectation maximization (EM) algorithm which is slower, but numerically more
stable. The next section 3 will provide our experimental results on simulated
data sequences emulating realistic EEG recordings. The plausibility of our cor-
related source model will be discussed with future research directions in the
context of computational neuroscience (Section 4), before the concluding re-
marks (Section 5).

2 Connected Sources Analysis with Sparsity Prior

2.1 MVAR for modeling causal interactions

Autoregressive (AR) models are frequently used to define directed “Granger-
causal” relations between time-series. The original procedure by Granger in-
volves the comparison of two models for predicting a time series zi, containing
either past values of zi and zj , or zi only [2]. If involvement of zj leads to a
lower prediction error, (Granger-causal) information flow from zj to zi is in-
ferred. Since this may lead to spurious detection of causality if both zi and
zj are driven by a common confounder z∗, it is advisable to include the set
{z1, . . . , zM} \ {zi, zj} of all other observable time series in both models.

It has been pointed out, that pairwise analysis can be replaced by fitting
one multivariate autoregressive (MVAR) model to the whole dataset, and that
Granger-causal inference can be performed based on the estimated MVAR model
coefficients (e.g., [5, 14]). Several connectivity measures are derived from the
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MVAR coefficents [3, 4], but probably the following definition is most straight-
forward from Granger’s argument that the cause should always precede the
effect. We say that time series zi has a causal influence on time series zj if
the present and past of the combined time series zi and zj can better predict
the future of zj than the present and past of zj alone. In the bivariate case
this is equivalent to saying that for at least one p ∈ {1, . . . , P}, the coefficient
H

(p)
ji corresponding to the interaction between zj and zi at the p-th time-lag

is nonzero (significantly different from zero). In the multivariate case, Granger
causality also includes indirect causes not contained in non-vanishing H(p)

ji .

2.2 Correlated sources model

In this paper we propose a method for demixing the EEG/MEG signal into
causally interacting sources. We start from the same model as in [12]: the sensor
measurement is assumed to be generated as a linear instantaneous mixture of
sources, which follow an MVAR model

x(t) = Ms(t) (1)

s(t) =
P∑

p=1

H(p)s(t− p) + ε(t) . (2)

Here, x(t) is the D-dimensional EEG/MEG signal at time t, M is a D × D
mixing matrix representing the volume conduction effect, s(t) is the demixed
(source) signal. The sources at time t are modeled as a linear combination
of their P past values plus an innovation term ε(t), according to an MVAR
model with coefficient matrices H(p). In the standard MVAR analysis, the
innovation ε(t) is a temporally- and spatially-uncorrelated sequence of Gaussian-
distributed vectors. In contrast, we assume here that it is i.i.d. in time and the
components are subject to non-Gaussian distributions in order to apply blind
source separation (BSS) techniques based on higher-order statistics [12,13].

For simplicity, we deal with the case that the numbers of sensors and sources
are equal and the mixing matrix M is invertible. When there exist less sources
than sensors, the problem falls into the current setting after being preprocessed
by PCA [12]. Under our model assumptions, the innovation sequence can be
obtained by a finite impulse response (FIR) filtering of the observation, i.e.

ε(t) = M−1x(t)−
P∑

p=1

H(p)M−1x(t− p) (3)

=
P∑

p=0

W (p)x(t− p) , (4)

where the filter coefficients are determined by the mixing matrix M and the
MVAR parameters {H(p)} as

W (p) =
{
M−1 p = 0
−H(p)M−1 p > 0

. (5)
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Eq. (3) shows a striking similarity to the convolutive ICA model [13, 15–
17], where only measurements and underlying convolutive sources (here called
innovations) are interchanged. Interestingly, in a somehow reverse approach,
the Granger-causal interpretation of such a convolutive model was recently also
discovered by [18]. Thanks to the non-Gaussianity assumption on the innovation
ε(t), we can use BSS techniques based on higher-order statistics to identify the
inverse filter {W (p)}. Since we would like to impose sparse connectivity as a
plausible prior information later on, it is preferable to apply temporal-domain
convolutive ICA algorithms. The obtained FIR coefficients {W (p)} directly
identify the mixing matrix M and the MVAR model of the same order P .

2.3 Identification by convolutive ICA

We use temporal-domain convolutive ICA for inferring volume conduction effects
and causal interactions between extracted brain signals. The model parameters
can be identified based on the mild assumptions that the innovations are non-
Gaussian and (spatially and temporally) independent. For EEG and MEG
data, a super-Gaussian is prefered to a sub-Gaussian distribution, assuming
that ongoing activity of brain networks is triggered by spontaneous local bursts.
We here adopt the super-Gaussian sech-distribution that was proposed in [13].
The Likelihood of the data under the model is then

p({x(t)}Tt=P+1|{W (p)})

= |W (0)|T−P
T∏

t=P+1

D∏
d=1

1
π

sech (εd(t)) , (6)

where ε(t) = M−1x(t)−
∑P

p=1H
(p)M−1x(t− p) and T is the number of avail-

able time samples. The cost function to be minimized is the negative log-
Likelihood

L({W (p)}) = (P − T ) log |W (0)|

−
T∑

t=P+1

D∑
d=1

log
(

1
π

sech (εd(t))
)
. (7)

The solution of Eq. (7) leads to the estimators of the mixing matrix M and the
MVAR coefficients {H(p)} via Eq. (5). We will call this procedure Connected
Sources Analysis (CSA).

We remark that the temporal-domain algorithm of convolutive ICA has ob-
vious indeterminacy due to permutations and sign flips. However, once we fix
a rule to chose one from all candidates, the cost function can be considered as
convex.

2.4 Sparse connectivity as regularization

In practice, we usually have to consider a long-range lag P to explain temporal
structures of data sequences. However, this causes too many parameters to be
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estimated reliably. Maximum-Likelihood estimation may easily lead to overfit-
ting, especially if the number of observations T is small. For this reason, it is
advisable to adopt a regularization scheme. Several authors have suggested that
the complexity of MVAR models can be reduced by shrinking MVAR coefficients
towards zero. In [14] and [19], MVAR-based functional brain connectivity is es-
timated from functional magnetic resonance imaging (fMRI) recordings using
an `1-norm based (Lasso) penalty, which has the property of shrinking some
coefficients exactly to zero. In [5] it is pointed out, that, by using a so-called
Group Lasso penalty [20], whole connections between time-series can be pruned
at once. In this approach, all coefficients H(p)

ij , p = 1, . . . , P modeling the infor-
mation flow from si to sj are grouped together and can only be pruned jointly.
Note that, besides MVAR modeling, such groupwise sparsification has been ap-
plied in a number of different learning tasks in neuroimaging, e.g., [21–25].

From the practical standpoint the assumption of sparse connectivity is very
appealing, since fewer connections are much easier to interpret. But assuming
sparse connectivity in fMRI data is also justified by studies of the numerical
characteristics of network connectivity in anatomical brain databases (see [14]
and the references therein). This reasoning also applies to EEG and MEG data.

We note that, besides the penalty-based approach, other strategies for ob-
taining sparse connectivity graphs exist. For example, post-hoc sparsification
can be achieved for dense estimators by means of statistical testing [5,26]. How-
ever, due to the compelling built-in regularization, we here adopt Group Lasso
sparsification.

The sparsity assumption is only reasonable for the MVAR coefficients {H(p)},
but not for the W (p) matrices which combine MVAR coefficients and the instan-
taneous demixing. Hence, in order to apply sparsifying regularization, one has
to split the parameters into demixing and MVAR parts again, as in the original
model Eqs. (1) and (2). Since the offdiagonal elements {H(p)} correspond to
interaction between sources, we propose to put a Group Lasso penalty on them
analogously to [5]. I.e., we penalize the sum of the `2-norms of each of the
groups {H(p)

df }, d 6= f .
Let B := M−1(= W (0)), s(t) = Bx(t) and s̃(t) =

∑P
p=1H

(p)s(t− p). The
regularized cost function is

LSCSA(B, {H(p)})

= (P − T ) log |B|+ λ
∑
d6=f

∥∥∥∥(H(1)
df , . . . ,H

(P )
df

)>∥∥∥∥
2

−
T∑

t=P+1

D∑
d=1

log
(

1
π

sech (sd(t)− s̃d(t))
)
, (8)

λ being a positive constant. The solution to Eq. (8) for a choice of λ is called
the Sparsely-Connected Sources Analysis (SCSA) estimate.

Diagonal parts of the MVAR matrices {H(p)} model the sources’ autocorre-
lation and should preferably not be pruned. However, in some cases numerical
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stability can be increased if these variables are also penalized, especially if D
and P are large. For this reason, we use a slight variation of the cost function
Eq. (8) in practice, which includes

λ

∥∥∥∥(H(1)
11 , . . . ,H

(P )
11 , . . . ,H

(1)
DD, . . . ,H

(P )
DD

)>∥∥∥∥
2

(9)

as an additional penalty term.

2.5 Relation to other methods

The proposed method extends previously suggested MVAR-based sparse causal
discovery approaches [5, 14] by a linear demixing, which is appropriate for
EEG/MEG connectivity analysis. Although the correlated sources model Eq. (1)
leads to an MVAR model of the observation sequence [12], sparsity of the co-
efficients cannot be expected after mixing by volume conduction effects. Our
method compares with MVARICA [12], which uses the same model Eq. (1), but
estimates its parameters differently. More precisely, the authors of MVARICA
suggest to initially fit an MVAR model in sensor-space. The demixing can then
be obtained by performing instantaneous ICA on the MVAR innovations, i.e.,
a dedicated contrast function (Infomax) is used to model independence of the
innovations. The obtained sources follow an MVAR model with time-lagged
effects (interactions), but ideally no instantaneous correlations (as caused by
volume conduction).

As mentioned our model Eq. (1) is very similar to the convolutive ICA
model. The only difference is that Eq. (1) employs a FIR filter to extract
the innovations, while an infinite response filter (IIR) is usually used in the
CICA literature (see, e.g., [13]). This discrepancy is explained by the different
philosophies that are associated with both methods. While in our approach the
innovations ε(t) arise as residuals of a finite-length source-MVAR model, CICA
understands them as sources of a finite-length convolutional (forward) mixture.
Nevertheless, our unregularized cost function can be regarded as a maximum-
Likelihood approach to an IIR version of convolutive ICA. This leads us also to
a new view of convolutive ICA as performing an instantaneous demixing into
correlated sources. Hence, it is possible to conduct source connectivity analysis
using CICA (see Fig. 1 for illustration).

Compared to MVARICA and time-domain implementations of convolutive
ICA such as CICAAR [13], our formulation has the advantage that sparse con-
nectivity can easily be modeled by an additional penalty. This is not possible
for CICAAR, because CICAAR only indirectly estimates the MVAR coefficients
through their inverse filters. However, these are generally nonsparse, even if the
true connectivity structure is sparse. Inverting the inverse coefficients is also
generally not possible (recall, that convolutive ICA is equivalent to an infinite-
length source-MVAR model). It is furthermore not possible to introduce a
sparse regularization for MVARICA, since this method carries out the MVAR-
estimation step in sensor-space, where no sparsity can be assumed.
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By variation of the regularization parameter, our method is able to cover
all possibilities between the extremes of a fully-correlated source model (similar
to convolutive ICA) and a model which allows no cross-talk between sources.
Interestingly, the latter extreme can be seen as a variant of traditional instanta-
neous ICA, in which independence is measured in terms of mutual predictability
with a Granger-type criterion.

(  )p{     }H

(  )p{     }W
ε x

s
M

(IIR)

(FIR)

(  )p M−1{             }HMM−1

ε
(IIR)

Mε

(FIR)

(ARfit)(ICA)

x

(a) (b)

(  )pW{     }
(  )pA{     }

ε
(FIR)

(IIR) x

(c)

Figure 1: Relations between (a) SCSA, (b) MVARICA and (c) CICAAR. All
approaches assume a non-Gaussian innovation sequence ε. SCSA and MVAR-
ICA fit an IIR model to the observed sequence x, while CICAAR assumes an
FIR filter for it. Therefore, in SCSA and MVARICA the inverse filter from
x to the innovation ε is an FIR. MVARICA is a two step approach with AR
fitting to the observed sequence x and spartial demixing of the innovation Mε
obtained in the first step. On the other hand, SCSA is a one-step approach
which compute the inverse FIR filter by convolutive ICA. We remark that the
AR fitting in MVARICA relies only on the second order statistics, which may
cause the performance drops compared to CSA.

2.6 Optimization

2.6.1 CSA

The gradient of the unregularized cost function Eq. (7) is obtained as

∂L
∂W

(p)
d

= δ(p)
(

(P − T )W (p)−>ed

)
+

T∑
t=P+1

tanh

(
P∑

p=0

W
(p)
d

>
x(t− p)

)
x(t− p) , (10)

where W (p)
d := W (p)>ed, i.e. the d-th column vector of W (p)>. Using Eq. (10),

CSA can be readily solved by means of an L-BFGS optimizer [27]1.
1We use an implementation by Naoaki Okazaki, http://www.chokkan.org/software/liblbfgs/.
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2.6.2 SCSA via a modified L-BFGS algorithm

Using sparse regularization, two difficulties emerge compared to the unregular-
ized cost function. First, using the factorization Eq. (5), the cost function is
likely to have local minima, which might be found instead of the true global
minimum. Furthermore, the function Eq. (8) is not differentiable, when one of
the terms ‖(H(1)

df , . . . ,H
(P )
df )>‖2, d 6= f becomes zero, which is expected to be

the case at the optimum. For tackling these difficulties we here propose to use
a modified version of the L-BFGS algorithm, which allows joint nonlinear opti-
mization of B and {H(p)}, while taking special care of the nondifferentiability
of the regularizer. The gradient of Eq. (8) for the case d 6= f is obtained as

∂LSCSA

∂H
(p)
df

= −
T∑

t=P+1

tanh (sd(t)− s̃d(t)) sf (t− p)

+ λ
H

(p)
df∥∥∥∥(H(1)

df , . . . ,H
(P )
df

)>∥∥∥∥
2

(11)

(analogously for d ≡ f) and

∂LSCSA

∂Bd
= (P − T )B−>ed

+
T∑

t=P+1

D∑
d=1

tanh (sd(t)− s̃d(t))

×

(
x(t)−

P∑
p=1

xd(t− p)H(p)
d

)}
. (12)

Our modified L-BFGS algorithm checks before each gradient evaluation,
whether ‖(H(1)

11 , . . . ,H
(P )
11 , . . . ,H

(1)
DD, . . . ,H

(P )
DD)>‖2 or some of the terms

‖(H(1)
df , . . . ,H

(P )
df )>‖2, d 6= f are already (close to) zero. If any of the terms

equals zero, the gradient is not defined uniquely but as a set (subdifferential).
Nevertheless it is straightforward to compute the element of the subdifferential
with the minimum norm, whose sign inversion is always a descent direction.
Care must be taken because in practice we would not find any of the above
terms exactly equal to zero. Thus we truncate the elements of H corresponding
to the terms with small norms below some threshold to zero before computing
the minimum norm subgradient. If the minimum is indeed attained at the
truncated point, the minimum norm subgradient will be zero. Otherwise the
subgradient will drive the solution out of zero. Further care must be taken in
practice to prevent the solution from oscillating in and out of some zero.

We find that, using the outlined optimization procedure, sparse solutions
can be found in shorter time, if the solution of the unregularized cost function
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is used as the initializer. The starting point can be obtained using the inverse
transformation of Eq. (5).

2.6.3 SCSA via an EM algorithm

Using joint optimization of B and {H(p)}, the heuristic pruning of connections
might in some cases lead to suboptimal solutions regarding the composite cost
function. For this reason, we present an alternative optimization scheme, which
does not require any heuristic step. The idea here is to alternate between the
estimation of both unknowns. Doing so can be justified as an application of the
EM algorithm (see [28]).

Estimation of B given {H(p)} (here called E-step) amounts to solving an
unconstrained nonlinear optimization problem. Importantly this problem is
also convex, in contrast to the joint approach to SCSA parameter fitting. The
convexity follows from the concavity of log |X| and log(sech(ax)) for constant
a (and from the fact that the sum of convex functions is convex.). The great
advantage of convex problems is, that they feature a unique (local and global)
minimum. In our case, the objective is smooth, so the minimum is guaranteed
to be found by the L-BFGS algorithm, making use of the gradient in Eq. (12).

Optimization with respect to {H(p)} for fixed B (M-step) is more involved,
since the nondifferentiable Group Lasso regularizer remains. Smooth optimiza-
tion methods like L-BFGS are unlikely to find the exact solution here. How-
ever, this problem is not as difficult as the joint optimization problem, since
it is convex. This can be seen from the fact that it is composed of a sum of
− log(sech(ax)) terms (loss function) and the Group Lasso term (regularizer),
which is a sum of `2-norms and thus convex. Hence we can solve this problem
using the Dual Augmented Lagrangian (DAL) procedure [29], which has recently
been introduced as a method for minimizing arbitrary convex loss functions with
additional Lasso or Group Lasso penalties. Application of DAL requires the loss
function and its gradient, the convex conjugate (Legendre transform) of the loss
function, as well as gradient and Hessian of the conjugate loss. Let s(t) = Bx(t)
be the demixed sources and s̃(t) =

∑P
p=1H

(p)s(t− p) be their autoregressive
approximations. The loss function in terms of s̃ is defined as

LM(s̃) = −
T∑

t=P+1

D∑
d=1

log
(

1
π

sech (s̃d(t)− sd(t))
)
. (13)

The gradient is

∂LM

∂s̃d(t)
= tanh(s̃d(t)− sd(t)) . (14)

Let ad(t) (d = 1, . . . , D, t = P+1, . . . , T ) denote the dual variables associated
with the Legendre transform. The conjugate loss function is defined on the

10



interval [−1, 1] and evaluates to

DM(a)

=
T∑

t=P+1

D∑
d=1

sup
s̃d(t)

(
−ad(t)s̃d(t) + log

sech (s̃d(t)− sd(t))
π

)

=
T∑

t=P+1

D∑
d=1

(
1− ad(t)

2
log

1− ad(t)
2

+
1 + ad(t)

2
log

1 + ad(t)
2

− ad(t)sd(t) + log
2
π

)
. (15)

The gradient of the conjugate loss is given by

∂DM(a)
∂ad(t)

=
1
2

log
1 + ad(t)
1− ad(t)

− sd(t) . (16)

The Hessian is diagonal with elements

∂2DM(a)
∂ad(t)2

=
1

2(1− a2
d(t))

. (17)

Having defined the E- and M-steps, we have turned a nonconvex estimation
problem into a sequence of two convex problems, which can both be solved
exactly. A final estimate of the model parameters can now be obtained by
alternating between E- and M-steps until convergence.

3 Performance under realistic conditions

We conducted the following simulations in order to assess the performance of the
proposed source connectivity analysis compared to those of existing approaches.

3.1 Data generation

We simulated seven time-series (pseudo-sources) of length N = 2000 according
to an MVAR model of order P = 4. Seven out of the forty-two possible interac-
tions were modeled by allowing the corresponding offdiagonal MVAR coefficients
H

(p)
df , d 6= f, 1 ≤ p ≤ P to be nonzero. The innovations were drawn from the

sech-distribution (Note that the assumption of non-Gaussianity is crucial for
recovering mixed sources.).

The pseudo-sources were mapped to 118 EEG channels using the theoretical
spread of seven randomly placed dipoles. The spread was computed using a
realistic forward model [30] which was built based on anatomical MR images
of the “Montreal head” [31]. See Fig. 2 for an example illustrating the data
generation.
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In reality, measurements are never noise-free and the following model holds
rather than Eq. (1)

x(t) = Ms(t) + ξ(t) . (18)

Since none of the methods compared here (see below) explicitly models a
noise term, it is important to evaluate their robustness to model violation.
To this end, we constructed additional variants of the pseudo-EEG dataset by
adding six different types of noise ξ. The six variants (N1-N6) are summarized
in TABLE 1. These variants differ in their degree of spatial and temporal
correlation as follows. In variants N1 and N4, ξi(t), i = 1, . . . ,M were drawn
independently for each sensor, i.e., have no spatial correlation. For variants
N2 and N5 noise terms ξ∗i (t), i = 1, . . . , D were drawn independently for each
source. In this case, sources and noise contributions to the EEG share the same
covariance given by the mixing matrix M , i.e., x(t) = M (s(t) + ξ∗(t)). For the
last variants N3 and N6, spatially independent noise sources were simulated at
all nodes of a grid covering the whole brain, yielding the model x(t) = Ms(t) +
M∗ξ∗(t). Here, in contrast to the previous model, noise contributions are not
collinear to the sources. We further distinguish between noise sources with and
without temporal structure. In variants (N1-N3), noise terms were drawn i.i.d.
(independent and identically distributed) from a normal distribution at each
time instant t. In variants N4-N6, the temporal structure was determined by a
univariate AR model of order 20, i.e., ξi(t) =

∑20
p=1 h

(p)ξi(t− p) + ε(t) for noise
type N4.

Note that, since no time-delayed dependencies between noise sources were
modeled, no additional Granger-causal effects were introduced by the noise. We
used a signal-to-noise ratio (SNR) of 2 in all experiments, where SNR is defined
as

SNR =
‖M (s(1), . . . , s(T ))‖F
‖(ξ(1), . . . , ξ(T ))‖F

, (19)

and ‖ · ‖F is the Frobenius norm (sum of squared entries) of a matrix. One-
hundred datasets with different realisations of MVAR coefficients, innovations
and noise were constructed for each category.

We performed two additional experiments (100 repetitions each) in order
to investigate the performance of the various methods under variation of the
connectivity structure of the underlying sources, as well as the SNR. Seven
degrees of connectedness (from 0% to 100%) and seven choices of the SNR
(from 1 to 4) were considered. These ranges included the parameters used
in the previous experiments (17% = 7/42 of all possible interactions present,
SNR=2). SNR variation was investigated using white sensor noise without
temporal structure (N1), while the effect of connectivity was studied for the
noiseless case.

In all experiments, PCA-based dimensionality reduction was applied to the
pseudo-EEG by taking just the strongest signal components. Since our evalu-
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ation scheme relies on a one-to-one mapping between estimated and true com-
ponents (see Section 3.3), we here used exactly as many dimensions as original
sources D = 7. In practice, this information is of course not avalaible and the
number of dimensions can be chosen such that, for instance, 99% of the vari-
ance in the EEG is explained. Our experience here shows that taking too many
dimensions is generally less harmful than the opposite, since spare dimensions
can just be used to dump noise.

Table 1: The six types of noise used in the simulations. Noise with temporal cor-
relation structure was created using univariate AR models of order 20. Spatial
correlation was introduced using the forward model. We distinguish between
the case, where noise sources coincide with the true dipoles (a) and the case in
which noise from all brain sites contributes to the measurements (b).

independent in time correlated in time

independent in sensors N1 N4
correlated in sensorsa N2 N5
correlated in sensorsb N3 N6

3.2 Methods

We tested the ability of ICA, MVARICA, CICAAR and the two proposed meth-
ods CSA and SCSA to reconstruct the seven sources and their connectivity
structure. Although the goal of instantaneous ICA is fundamentally different
to source connectivity analysis, it was also included here in the comparison.
This is since, even if independence of the sources is not fulfilled, ICA might still
provide minimally dependent components, the connectivity of which might be
analyzed. The ICA variant used here is based on temporal decorrelation [32–35]
(implemented by fast approximate joint diagonalization [36]). The number of
temporal lags was set to 100.

MVARICA, CICAAR, CSA and SCSA were tested with P ∈ {1, 2, . . . , 7}
temporal lags, where four is the true MVAR model order for CSA, SCSA and
MVARICA. CICAAR has the disadvantage here, that it may generally require
extended temporal filters for reconstructing sources following model Eq. (1).
However, due to computation time constraints, P = 7 was taken as the maxi-
mum lag also for this method. For MVARICA and CICAAR, we used imple-
mentations provided by the respective authors. These implementations adopt
the Bayesian Information Criterion (BIC) for selecting the appropriate number
of time lags. The same criterion was used to select the model order in CSA and
SCSA. The regularization constant λ of SCSA was set by 5-fold cross-validation,
i.e. by evaluating the likelihood on test data. SCSA estimates of {H(p)} and B
were obtained either jointly using the modified L-BFGS algorithm or alternately
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using 20 additional EM steps. These variants are named SCSA and SCSA EM
here, respectively.

3.3 Performance measures

The most important performance criterion is the reconstruction of the mixing
matrix, since all other relevant quantities can basically be derived from it. All
considered methods provide an estimate M̂−1 of the demixing, which can be
inverted to yield an estimated mixing matrix. The columns of the mixing matrix
correspond to spatial field patterns of the estimated sources, but unfortunately
these patterns can generally only be determined up to sign, scale and order. For
this reason, optimal pairing of true and estimated patterns as described in [37]
was performed. Compared to we used a slightly modified similarity measure,
which was the goodness-of-fit achieved by a linear least-squares regression of
one to another pattern. For a true pattern Md and an estimated pattern M̂f

the optimal regression coefficient is

c
(
Md, M̂f

)
=
M̂>f Md

‖M̂f‖2
(20)

and the goodness-of-fit (GOF) is

GOF
(
Md, M̂f

)
=
‖cM̂f −Md‖
‖Md‖

. (21)

Having found the optimal pairing, the colums ofM were permuted and scaled
to approximate M as good as possible using the optimal regression coefficients.
The goodness-of-fit with respect to the whole matrix M was used to evaluate
the quality of the different decompositions. Additionally, using the optimally-
matched mixing patterns, dipole scans were conducted. That is, for each discrete
location in the brain (5mm grid size) a dipolar current source was fitted. The
location of the dipole that best explains the EEG pattern was determined. The
deviation of these locations from the true ones was measured. A typical example
of a mixing pattern estimated by SCSA and the corresponding reconstructed
dipole is shown in Fig. 2.

Finally, causal discovery according to [5] was carried out on the demixed
sources. The exact technique used was MVAR estimation with Ridge Regres-
sion. For the MVAR parameters estimated by Ridge Regression an approximate
multivariate Gaussian distribution can be derived, which was used to test the
coefficients for being significantly different from zero. An influence from si to
sj was defined, if the p-value of one of the coefficients H(p)

ij , p = 1, . . . , P fell
below the critical value. As a third performance criterion, the area under curve
(AUC) score for correctly discovering the interaction structure was calculated
by varying the significance threshold and comparing estimated and true connec-
tivity matrix for each threshold. Note that this way of connectivity estimation
was pursued here, since not all demixing methods provide built-in connectivity
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estimates. For SCSA, however, interaction analysis could as well have been done
by directly examining MVAR coefficients.

(a) Simulated
Dipole

(b) Corresponding
EEG Pattern

(c) Estimated
Dipole

(d) Estimated
EEG Pattern

Figure 2: Example of simulated data (noise type N1) and corresponding re-
construction by SCSA. (a) Simulated dipole. (b) Field pattern describing the
dipole’s influence on the EEG (one column of M). (d) Field pattern as esti-
mated by SCSA from noisy EEG time series. (c) Reconstructed dipole, obtained
from the estimated pattern.

3.4 Results

Fig. 3 shows how well the mixing matrix was approximated by the different
approaches. One boxplot is drawn for the noiseless case (N0) and each of the
six noisy variants (N1-N6, see Table 1). The plots show the median performance
over 100 repetitions, as well as the lower and upper quartiles and the extremal
values. Outliers (red crosses) were removed. As a result of the simulations,
SCSA typically achieves the smallest reconstruction error, followed by CSA,
CICAAR, MVARICA and ICA. In many cases, the differences are also significant
(non-overlapping notches of two boxes indicate that the two medians differ at
the 5% significance level).

Correct (de-)mixing matrix estimation affects both the localization error
achievable by applying inverse methods to the estimated patterns and the error
of any connectivity analysis performed at the demixed sources. As a result of
good mixing matrix approximation, SCSA also achieves smaller dipole localiza-
tion errors than all other methods, except in one scenario (shown in Fig. 4).
The same situation occurs when it comes to estimating the connectivity between
sources (Fig. 5).

Regarding noise influence it might be said that the relative degradation of
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performance in the presence of noise is the same for all methods. Generally, noise
that is collinear to the sources (N2/N5) leads to higher performance than noise
that is uncorrelated across sensors (N1/N4) and noise with arbitrary spatial
correlation structure (N3/N6). These differences are partially explained with
the effectiveness of the PCA step performed for dimensionality reduction. The
average total variance explained by the PCA subspace was 96% for noise types
N1/N4 and 81% for noise types N3/N6, while it was 100% for collinear noise
N2/N5. As a consequence, we suggest that in practice a 99% rule should be
most suitable, even if the number of sources can be roughly estimated.

As shown in the right panel of Fig. 6 the performance of all methods de-
cays with decreasing SNR, while the difference between methods remains rather
stable across SNR levels. The left panel of that Figure shows that the supe-
riority of methods proposed here (CSA and SCSA) over CICAAR, MVARICA
and ICA is stable even under variation of the degree of connectedness. Only,
SCSA variants seem to lose their advantage over CSA in cases of very dense
connectivity structure. This is somewhat unexpected, since SCSA does provide
a mechanism (evaluation of the out-of-sample prediction error) to adjust to the
actual amount of connectivity. In some cases, the data could apparently be bet-
ter explained by models with fewer source connections than actually present,
which might have numerical reasons.

The time each method consumed on average for processing one dataset is
shown in Fig. 7. Most methods finish in rather short time, while the EM imple-
mentation of SCSA is in medium range and CICAAR requires the longest time.
However, for SCSA there is still room for improvement, since the regularization
parameter of this method is currently selected by the cross-validation procedure,
which could be changed.
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Figure 3: Estimation errors of the mixing matrix according to the goodness-of-
fit (GOF) criterion. Results are shown for the proposed (Sparsely-) Connected
Sources Analysis variants (SCSA EM, SCSA, CSA) and three alternative ap-
proaches (CICAAR, MVARICA, ICA). Different subfigures depict the methods’
performance in the noiseless cass (N0), as well as in the presence of different
types of noise (N1-N6, see TABLE 1).
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Figure 4: Localization errors of dipole fits conducted on the estimated mix-
ing field patterns. Results are shown for the proposed (Sparsely-) Connected
Sources Analysis (SCSA EM, SCSA, CSA) variants and three alternative ap-
proaches (CICAAR, MVARICA, ICA). Different subfigures depict the methods’
performance in the noiseless cass (N0), as well as in the presence of different
types of noise (N1-N6, see TABLE 1).

4 Discussion

Let us recall the assumptions we make to identify individual brain sources and to
estimate their interactions. While ICA results in a unique decomposition assum-
ing statistical independence, such an assumption is inconsistent when studying
brain interactions. However, all neural interactions require a minimum delay
well within the temporal resolution of electrophysical measurements of brain
activity. Hence, it makes sense to assume independent innovation processes and
to model all interactions explicitly using AR matrices. In relation to ICA we
pay some price for that: In our case, independence is exploited effectively on
reduced information contained in the residuals of the model. In principle, this
can be a cause for less stable estimates. To increase stability, we have included
sparsity assumptions based on the idea that only a few brain connections can
be as strong to be observable in EEG data which is especially the case in the
presence of artifacts and background noise.

We emphasize that BSS methods exploiting higher order statistics without
using temporal information would fail completely if the data were Gaussian
distributed (cf. the empirical evaluation by [12]). Processes tend to be super-
Gaussian if they are not always active, which is a reasonable assumption for
brain sources and even more so for artifacts which also need to be included
in the model. Here we assume a linear dynamical model and super-Gaussian
innovation processes, i.e. the only cause of non-Gaussianity is the innovation
process itself. Real brain networks are, of course, more complicated. However,
the question whether nonlinear dynamical models may improve the results or
are even essential for a correct decomposition is beyond the scope of this paper
and will be addressed in the future. Similarly, we assumed the total number of

17



0 0.1 0.2 0.3 0.4 0.5 0.6

ICA
MVARICA
CICAAR
CSA
SCSA
SCSA_EM

N
0

1−AUC

Connectivity Error

0 0.1 0.2 0.3 0.4 0.5 0.6

ICA
MVARICA
CICAAR
CSA
SCSA
SCSA_EM

N
1

1−AUC
0 0.1 0.2 0.3 0.4 0.5 0.6

ICA
MVARICA
CICAAR
CSA
SCSA
SCSA_EM

N
4

1−AUC

0 0.1 0.2 0.3 0.4 0.5 0.6

ICA
MVARICA
CICAAR
CSA
SCSA
SCSA_EM

N
2

1−AUC
0 0.1 0.2 0.3 0.4 0.5 0.6

ICA
MVARICA
CICAAR
CSA
SCSA
SCSA_EM

N
5

1−AUC

0 0.1 0.2 0.3 0.4 0.5 0.6

ICA
MVARICA
CICAAR
CSA
SCSA
SCSA_EM

N
3

1−AUC
0 0.1 0.2 0.3 0.4 0.5 0.6

ICA
MVARICA
CICAAR
CSA
SCSA
SCSA_EM

N
6

1−AUC

Figure 5: Estimation errors regarding the source connectivity structure as mea-
sured by fitting an MVAR model subsequently to the demixed sources and
testing the obtained coefficients for significant interaction. The performance
measure reported is the area under the curve (AUC) score obtained by varying
the significance level.

sources to be less or equal the number of channels. Apparently, the significance
of this problem decreases when using a large number of channels.

5 Conclusion

Analyzing functional brain connectivity is a challenging problem, since volume
conduction effects in EEG/MEG measurements can give rise to spurious effects.
In this work we have established a novel connectivity analysis method SCSA that
overcomes these problems in an elegant and numerically appealing manner. In
detail, EEG/MEG is modeled as a linear mixture of correlated sources, then we
estimate jointly the demixing process and the MVAR model (which is the model
basis for the correlated sources). To avoid overfitting we regularize the model
using the Group Lasso penalty. In this manner we can achieve a data driven
interpolation between two extremes: a source model that has full correlations
and one that does not allow for cross-talk between the extracted sources. In
between, our method extracts a sparse connectivity model.

Future work will study the link between methods for compensating non-
stationarity in data such as Stationary Subspace Analysis (SSA, [38]) and our
novel connectivity assessment. In addition, we aim to localize the extracted
components of connectivity using distributed source models to enhance physio-
logical interpretability (e.g. [22, 39]). A third field of upcoming research is the
extension of our causal model to multi-way data by building on the work of [40].
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Mixing Matrix Approximation Error:
Dependence on Connectivity and SNR
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Figure 6: Mixing matrix approximation performance of (Sparsely-) Connected
Sources Analysis variants (SCSA EM, SCSA, CSA) and three alternative ap-
proaches (CICAAR, MVARICA, ICA) under variation of the degree of connect-
edness (left side) and SNR (right side). The performance at different noise levels
is investigated for white sensor noise without temporal structure (N1), while the
influence of connectivity is studied in the noiseless case (N0).
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Figure 7: Average runtime of the proposed (Sparsely-) Connected Sources Anal-
ysis variants (SCSA EM, SCSA, CSA) and three alternative approaches (CI-
CAAR, MVARICA, ICA), taken over all experiments conducted for this study.
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