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Abstract

We introduce an extension of bag-of-words image repre-
sentations to encode spatial layout. Using the Fisher ker-
nel framework we derive a representation that encodes the
spatial mean and the variance of image regions associated
with visual words. We extend this representation by using a
Gaussian mixture model to encode spatial layout, and show
that this model is related to a soft-assign version of the spa-
tial pyramid representation. We also combine our repre-
sentation of spatial layout with the use of Fisher kernels to
encode the appearance of local features. Through an exten-
sive experimental evaluation, we show that our represen-
tation yields state-of-the-art image categorization results,
while being more compact than spatial pyramid represen-
tations. In particular, using Fisher kernels to encode both
appearance and spatial layout results in an image represen-
tation that is computationally efficient, compact, and yields
excellent performance while using linear classifiers.

1. Introduction
Image categorization aims to determine the presence of

objects in images, or to recognize them as particular scene
types such as city, mountain, or beach. Current state-of-
the-art image categorization systems use bag-of-word im-
age representations. This approach represents the image
content by global statistics of the appearance of local image
regions. First, image regions are sampled from the image,
either using a regular grid, in a randomized manner , or us-
ing interest point detectors. Each region is then described
using a feature vector, e.g . SIFT or color histograms. A
visual vocabulary is then learned using k-means or a mix-
ture of Gaussians (MoG). The visual vocabulary quantizes
the feature space into different cells, and region features are
assigned to these cells: either using hard-assignment for k-
means, or using soft-assigment for a MoG model. The as-
signments are then aggregated over whole image to obtain
an image representation: a histogram with as many bins as
visual words, where each bin gives the number of regions
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Figure 1. The spatial pyramid image representation concatenates
visual word histograms of the complete image and spatial cells.
Our spatial Fisher vector representation models spatial layout by
the mean and variance of the occurrences of each visual word.

assigned to a visual word. In this way the image represented
by a set of regions is embedded into vector space in which
an image classification model is learned.

Several extensions to the basic bag-of-words image rep-
resentation have been proposed; we will discuss the most
relevant ones in detail in the next section. One recent ex-
tension to the bag-of-words model is the Fisher kernel im-
age representation [17]. Instead of only storing the average
(soft-)assign of patches to visual words, the first and second
order moments of the patches assigned to each visual word
are also stored. This means that, for a descriptor of size
D and K visual words, the image representation is of size
K(1 + 2D). Since more information is stored per visual
word, a smaller number of visual words can be used for a
given level of categorization performance, which is compu-
tationally more efficient.

Another extension is the spatial pyramid representation
of [10] which captures the information about the spatial lay-
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out of the image by computing bag-of-word histograms over
different regions of the image, and concatenating these to
form the final representation. Using K visual words and C
spatial cells results in image representation of sizeKC. The
same idea applied to the Fisher kernel image representation
[19], leads to a representation of size KC(1 + 2D). This
representation has been proven to be effective, in particu-
lar when the image categories exhibit characteristic layouts,
as in the case of the scene recognition. For object catego-
rization this idea is also effective because even though the
objects may appear anywhere in the image, the scenes in
which they appear may still have strong layout patterns.

We propose an alternative encoding of spatial layout in-
formation, based on the Fisher kernel principle [8], which
was previously only used to encode the appearance infor-
mation [17]. We model the spatial location of the image
regions assigned to visual words using MoG models, and
compute the Fisher kernel representation for these models.
See Figure 1 for a schematic comparison of our approach to
spatial pyramids. We explore variants of our image repre-
sentation experimentally, using the 15-Scenes and PASCAL
VOC 2007 data sets. Compared to using spatial pyramids,
we obtain representations that are smaller, while not de-
grading performance. Using bag-of-word for appearance,
our representations are smaller and achieve better perfor-
mance using linear classifiers, as compared to using the spa-
tial pyramid representation with the non-linear intersection
kernel. Using Fisher kernels for appearance, our represen-
tation achieves similar performance as spatial pyramids, but
have the advantage that it is significantly more compact.

In the following section we discuss the most relevant re-
lated work, and then present our image representations in
Section 3. We present extensive experimental results in
Section 4, comparing different variants of our image rep-
resentations to alternatives from the literature. Finally, we
present our conclusions in Section 5.

2. Related work
Because of its effectiveness, the bag-of-words (BOW)

model has become one of the most popular representa-
tions for image categorization since its introduction in the
seminal papers [6, 25]. Subsequent research has focused
on overcoming its two intrinsic limitations, namely (a) the
computational cost of the assignment of local features to vi-
sual words, and (b) the lack of information on the spatial
layout of the local features.

Quantization issues and codebook compactness. Per-
formance of the BOW model is often reported to increase
with the size of the dictionary [6, 25, 26] and the number
of regions sampled from images [16]. Typically, vocabu-
laries of several thousands codewords are used, and thou-
sands of regions are densely sampled from the images. As-

signing local features to their nearest visual word is com-
putationally expensive, as it scales as the product of the
number of visual words, the number of regions, and the
local feature dimensionality. These issues have been ad-
dressed by different authors, e.g . [15] proposed a hierar-
chical k-means framework scaling logarithmically with the
number of codewords, while [20] introduced an approxi-
mate k-means algorithm better suited to the use of large vo-
cabularies. Random forests, because of their hierarchical
structure, are also good candidates for handling large visual
vocabularies [4, 13].

Nevertheless, the simplest way to reduce the time spent
in assigning features to visual words is certainly to make the
vocabulary smaller, of course without losing performance.
Different authors have tried to build compact discrimina-
tive vocabularies [12, 13, 32], i.e . vocabularies that are spe-
cialized in representing the differences between categories.
One of the most convincing approaches is the one by Per-
ronnin et al. [18]. However, these vocabularies are not uni-
versal since they have to be rebuilt each time a new category
is added, which is a severe drawback.

Additionally, when the vocabularies are more com-
pact, the information lost in the quantization process be-
comes more important, in particular when using hard as-
sigment [26]. The amount of discriminative information
is considerably reduced due to the rough quantization of
the feature space, as clearly shown by [3] who propose to
compute direct image-to-class distances without descriptor
quantization. The loss of information can be compensated
by assigning descriptors to multiple visual words, as sug-
gested by [21, 26, 27]. The assignment can also be guided
by sparsity constraints [30] or locality constraints [28].
However, these approaches again require large codebooks,
e.g . 2048 visual words in [28].

Regarding the production of compact vocabularies, an
appealing approach is the one proposed in [17]. They have
suggested to use the Fisher kernel framework [8], whose
high dimensional gradient representation contains more in-
formation than a simple histogram representation, resulting
in informative representations using compact vocabularies.

Spatial information. The BOW representation is a fre-
quency histogram of quantized local appearances, and the
spatial layout of the appearances is completely ignored.
Clearly, the spatial information may convey useful cues for
image categorization, and at least two different ways to en-
code spatial information have been explored: based on pair-
wise positions of features, and using absolute positions.

Considering pairs of spatially close image regions is
probably the most intuitive way to incorporate spatial infor-
mation. Visual word “bigrams” are considered in [23], by
forming a bag-of-word representation over spatially neigh-
boring image regions. Others have proposed a more effi-



cient feature selection method based on boosting which pro-
gressively mines higher-order spatial features [11], and [14]
proposes joint feature space clustering to build a compact
local pairwise codebook. Distinctive spatial configurations
of visual words can also be discovered by data mining tech-
niques, such as frequent itemsets [22].

In addition to pairwise relationships, images often have
global spatial biases: the composition of the pictures of par-
ticular object or scene category typically share common lay-
out properties. Therefore, exploiting the global positions of
the features in the image is effective in many cases. Spa-
tial Pyramid Matching (SPM) [10] exploits this property
by partitioning the image into increasingly finer cells and
concatenating the BOW histograms of the cells. This strat-
egy is used in most of the state-of-the-art approaches, see
e.g . [19, 31]. In [5] SPM is further improved by learning a
weighting of the levels of the SPM representation on a val-
idation set. The idea of implicitly representing spatial in-
formation by weighting image cells based on their discrim-
inative information was explored earlier in the context of
facial expression recognition in [24], where linear discrim-
inant analysis was used to find a weighting of the spatial
cells. In addition to global spatial information, they also
used local auto-correlation measures to include local spa-
tial information. Recently, a similar strategy was applied to
address image categorization in [7], which yielded results
comparable to the state-of-the-art on the 15-Scenes data set.

More closely related to our work, [33] models regions
appearances with a mixture of Gaussian (MoG) density, and
uses the posterior over visual words for the image regions to
form so called “Gaussian maps”. Then then apply SPM to
encode the spatial occurrence of visual words in the image.
Our approach is similar, as we also use a MoG to model
the region appearances and also incorporate spatial layout
based on coding the region locations of each visual word.
However, different from their approach, we use the more
efficient Fisher kernel [8, 17] approach to jointly code ap-
pearance and spatial layout, giving efficient, compact, and
discriminative image representations. Our work is also re-
lated to [1] which employed first and second order spatial
moments associated with bins of color histograms to derive
an improved representation for mean-shift tracking.

3. Fisher kernels to encode spatial layout
In this section we present our models to encode both

the spatial layout of local image features and their visual
appearance. In Section 3.1 we start by reinterpreting the
bag-of-words (BOW) image representation as a Fisher vec-
tor representation for a simple multinomial probabilistic
model. We then extend this model in Section 3.2 by includ-
ing a Gaussian location model, and further extend the spa-
tial model to a mixture of Gaussians (MoG) in Section 3.3.
We integrate our spatial models with MoG appearance mod-

els in Section 3.4, combining Fisher vector representations
for both appearance and spatial layout. Finally, we consider
normalization of the Fisher vectors in Section 3.5, and we
compare the models we introduced to spatial pyramid image
representations in Section 3.6. The derivations of equations
can be found in appendix of [9].

3.1. A generative model view on bag-of-words

The BOW image representation uses k-means to quan-
tize the space of patch appearances, for each patch xn we
use wn ∈ {1, . . . ,K} to denote the index of the k-means
center that is closest to xn among the K centers. The triv-
ial probabilistic model over the quantization indices is just
a multinomial π, and the likelihood of observing the k-th
quantization index is given by p(wn = k) = πk. The pa-
rameters of this multinomial are fitted from the data used
to learn the k-means quantizer, and are simply given by the
fraction of the patches assigned to each visual word.

To apply the Fisher kernel framework [8], we consider
the average log-likelihood of the N patches in an image,
given by

L =
1
N

N∑
n=1

ln p(wn), (1)

where the average is taken to achieve invariance w.r.t.
the number of patches N in the image. We parameter-
ize the multinomial using a softmax by defining πk =
expαk/

∑
j expαj , which by construction satisfies the

constraints πk ≥ 0, and
∑
πk = 1 for any setting of the

αk. The gradient is then given by

∂L
∂αk

= hk − πk, (2)

where hk is the frequency of the k-th visual word in the
image, i.e . its count divided by N .

We recognize the gradient of dimension K as the stan-
dard bag-of-word historgam minus the multinomial learned
from the vocabulary training data.

3.2. A simple Gaussian spatial model

We extend the appearance-only bag-of-words model by
introducing a Gaussian location model per visual word.
Each image patch is represented as the tuple f = (w, l),
where w is the quantization index and l gives the spatial
location of the patch in the image. We define a generative
model over appearance-location tuples as

p(f) = p(w)p(l|w), (3)
p(w = k) = πk, (4)
p(l|w = k) = N (l;mk,Sk), (5)

where N (·;mk,Sk) denotes the Gaussian location model
with mean mk and covariance matrix Sk associated with



the k-th visual word. The location models can be learned
trivially by computing the mean and variance of the spa-
tial coordinates of image patches assigned to the k-th visual
word in the vocabulary training data.

Using diagonal covariance matrices, the gradient of the
log-likelihood of a patch fn is

∂ ln p(fn)
∂αk

= qnk − πk, (6)

∂ ln p(fn)
∂mk

= qnkS
−1
k lnk, (7)

∂ ln p(fn)
∂S−1

k

= qnk

(
Sk − l2nk

)
/2, (8)

where qnk = 1 if wn = k and qnk = 0 otherwise, lnk =
ln −mk, and l2nk denotes the element-wise square. With
slight abuse of notation, the last equation gives the gradient
w.r.t. the inverse of the diagonal covariance matrix.

By averaging the gradients over all patches in an image,
this yields an image descriptor of size K(1 + 2d), where
d = 2 is the dimension of the location l. For each visual
word we have 1 element for the gradient w.r.t. the αk, and 4
for the gradient w.r.t. the spatial meanmk and variance Sk.

3.3. A spatial mixture of Gaussian model

We extend the spatial model by using an MoG distribu-
tion over the patch locations instead of a single Gaussian,
i.e . we replace Eq. (5) with

p(l|w = k) =
C∑

c=1

θkcN (l;mkc,Skc), (9)

using a mixture of C Gaussians to model the spatial
locations of the patches per visual word. We define
the mixing weights again using the softmax as θkc =
expβkc/

∑
j expβkj . The spatial model of each visual

word can be learned using the EM algorithm [2] from the
patch locations associated with each visual word.

The gradient w.r.t. the αk remains as in Eq. (6), but for
the location model parameters we obtain

∂ ln p(fn)
∂βkc

= qnk (rnkc − θkc) , (10)

∂ ln p(fn)
∂mkc

= qnkrnkcS
−1
kc lnkc, (11)

∂ ln p(fn)
∂S−1

kc

= qnkrnkc

(
Skc − l2nkc

)
/2, (12)

where lnkc = ln −mkc and rnkc = p(c|ln, wn = k) =
θkcN (ln;mkc,Skc)/p(ln|wn = k). The rnkc can be inter-
preted as a “spatial soft-assign” of patches of visual word
k to the spatial mixture components. The image represen-
tation has size K + KC(1 + 2d), K dimensions for the
appearance part, and KC(1 + 2d) for the spatial layout.

3.4. Mixture of Gaussians appearance models

We now combine the ideas from the previous section
with a mixture of Gaussians (MoG) model for the patch ap-
pearances, and use Fisher vectors to obtain the image rep-
resentations. The parameters of the models defined in this
section can all be learned using the EM algorithm.

Appearance-only Fisher vector image representation.
First, we define the appearance-only model as in [17]; the
patch appearances x ∈ IRD are modeled as

p(x) =
K∑

k=1

πkp(x|w = k) (13)

p(x|w = k) = N (x;µk,Σk), (14)

where πk denotes the mixing weight of the kth Gaussian in
the mixture, defined using the softmax as above. Similarly
to the spatial models, for the appearance models we also
use diagonal covariance matrices, therefore the appearance
representation has size K(1 + 2D).

Redefining qnk to denote the posterior p(wn = k|xn),
or responsibility, and xnk to denote xn −µk, the gradients
of the log-likelihood for a single patch are

∂ ln p(xn)
∂αk

= qnk − πk, (15)

∂ ln p(xn)
∂µk

= qnkΣ−1
k xnk, (16)

∂ ln p(xn)
∂Σ−1

k

= qnk

(
Σk − x2

nk

)
/2. (17)

The image representation is obtained by averaging these
gradients over all patches in the image. This representation
has the computational advantage that we can use smaller
number of visual words, since the appearance information
per visual word is coded more precisely [17].

Gaussian spatial models with MoG for appearance.
When we include a single Gaussian spatial model, the
appearance-location tuple f = (x, l) is modeled as

p(f) =
∑

k

πkp(x|w = k)p(l|w = k), (18)

where p(l|w = k) is defined as in Eq. (5), and p(x|w = k)
as in Eq. (14).

If we redefine qnk = p(wn = k|xn, ln), the gradients
with respect to the αk,µk,Σk are the same as in Eq. (15)–
Eq. (17), and those for the mk,Sk are the same as in
Eq. (7)–Eq. (8), albeit using the current definition of qnk.
The image representation has size K(1 + 2D + 2d) in this
case. Note that since the patch descriptor x is generally
high dimensional, e.g . 128 for SIFT, the additional 2d = 4
dimensions increase the representation size only slightly as
compared to the MoG appearance-only model.



Using MoG spatial models with MoG for appearance.
In this case we use the model of Eq. (18), with the MoG
spatial model p(l|w = k) of Eq. (9). The model now
has K(1 + 2D) parameters for the appearance model, and
KC(1 + 2d) for the spatial models. So in total we have
K(1 + 2D) +KC(1 + 2d) parameters.

The gradients with respect to the appearance parameters
αk,µk,Σk remain as in Eqs. (15)—(17). For the spatial
parameters βkc,mkc,Skc the gradients are the same as in
Eqs. (10)—(12) using the current definition of the qnk.

3.5. Fisher score vector normalization

In order to obtain invariance of the kernel w.r.t. re-
parametrization of the model, the Fisher kernel framework
of [8] requires multiplication of the gradient vectors with
F−1/2 where F = IEx

[
g(x)g(x)>

]
is the Fisher informa-

tion matrix and g(x) denotes the gradient vector. Since F
may be large, computation of F−1/2 can be costly, e.g . us-
ing K = 500 visual words, descriptors of size D = 64, and
C = 5 spatial cell in SPM, F is a 322, 500× 322, 500 ma-
trix. Therefore it is common to use a diagonal approxima-
tion of F ; where [17] uses an analytical approximation, we
follow [2] (section 6.2) and use the empirical approximation
of the diagonal. Based on the patches used for vocabulary
construction, we compute the mean and variance on each
dimension of the gradient vectors to obtain an additive and
multiplicative normalizer, so that the dimensions of the nor-
malized gradient vectors have zero-mean and unit-variance.

3.6. Discussion and comparison to SPM

We summarize the models we have presented in this sec-
tion in Table 1, giving the representation size for each of
them, and comparing them to the sizes obtained using spa-
tial pyramids (SPM) [10, 19] that concatenate appearance
representations obtained over C spatial cells. We use C to
denote either the number of components in our spatial MoG,
or the total number of cells in the SPM representation.

Comparing SPM to our MoG spatial model in combina-
tion with k-means for appearance, we see that our represen-
tation adds 2d = 4 numbers for each visual word (K) and
spatial Gaussian (C). The size of the single Gaussian loca-
tion model with equals that of the SPM model with C = 5.

Comparing SPM to our MoG spatial model with MoG
appearance models, we see that our model yields a much
more compact representation. Where SPM concatenates
C appearance Fisher vectors of size K(1 + 2D), our rep-
resentation uses a single appearance Fisher vector of size
K(1 + 2D) and adds KC spatial Fisher vectors of size
(1 + 2d) = 5. For a typical setting of K = 200, D =
64, C = 5, the SPM representation is 129, 000, while our
MoG spatial-appearance model yields a descriptor of size
30, 800: more than four times smaller. When using C = 21
the sizes would be 541, 800 and 46, 800 respectively, and

spatial appearance k-means appearance MoG

None K K(1 + 2D)

Gauss. K(1 + 2d) K(1 + 2D + 2d)

MoG K + KC(1 + 2d) K(1 + 2D) + KC(1 + 2d)

SPM KC KC(1 + 2D)

Table 1. Comparison of representation size for different models,
using k-means or a MoG for appearance, and no spatial model, a
single Gaussian, a C-component MoG, or C spatial pyramid cells.

our descriptor would be more than 11 times smaller.
To compute our representation we have to compute the

appearance soft-assign, and the spatial soft-assign per visual
word. So, the only additional cost is to compute a spatial
soft-assign per visual word, which costs O(KC). Since the
appearance soft assign has cost O(KD) per patch (regard-
less of k-means or MoG model), and since the descriptor
dimension is typically much larger then the number of spa-
tial cells, i.e . D � C , we can state that in general the
computational cost is less than doubled.

4. Experimental evaluation
Feature extraction and vocabulary learning. In all ex-
periments we follow the same feature extraction process.
We sample image patches on a regular spatial grid, with
step-size half of the patch-size, over 8 scales separated by a
factor 1.2. At the finest scale we use a patch-size of 20 and
16 pixels for the 15-Scenes and PASCAL VOC data sets,
respectively. We compute SIFT descriptors and reduce the
dimensionality from 128 to 64 when using Fisher vectors to
code appearance, in order to reduce the image representa-
tion, as it is done in [17, 33]. Because of the spatial binning
in the SIFT descriptor we expect that the local features are
highly correlated, which we decorrelate globally by using
PCA, therefore better fitting our modeling assumption that
the features are uncorrelated locally, which is assumed by
diagonal form of covariance matrices for appearance model
components. The k-means and MoG appearance models, as
well as PCA subspace, are learned using a random sample
of 500, 000 patches from the training images.

Construction of spatial models. Once appearance mod-
els are learned we learn the spatial models, either Gaussian
or MoG, from the patches assigned to each visual word.
However, in initial experiments we found that without loss
of performance we can also use a fixed spatial model shared
across all visual words (mc = mkc, Sc = Skc). Therefore
there is no additional computational cost in training as com-
pared to training just the visual vocabularies using k-means,
or EM for MoG. Importantly, we do compute the gradient
w.r.t. the spatial models per visual word. Using one spatial
Gaussian per visual word, we set the mean and variance to



50 500 1000 2000
70

75

80

85

Appearance components (K)

M
e

a
n

 c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

 

 

SFV C=1
SFV C=5
SFV C=21
SPM, C=1
SPM, C=5
SPM, C=21

50 100 200 500
82

83

84

85

86

87

88

89

Appearance components (K)

M
e

a
n

 c
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

 

 

SFV C=1
SFV C=5
SPM, C=1
SPM, C=5

Figure 2. Using 15-Scenes data set to compare Spatial Fisher Vectors (SFV, solid curves) to Spatial Pyramids (SPM, dashed curves) for
coding spatial layout, when using bag-of-words for coding appearance (left), and when using Fisher vector for coding appearance (right).

match the first and second order moments of the uniform
distribution over the unit square. Using C = 5 compo-
nents we complement the global Gaussian with four Gaus-
sians, each matching the first and second order moments of
the four quadrants of the unit square. In a similar manner
we add 16 Gaussians when using spatial models with up to
C = 21 spatial mixture components. Note that the spatial
model resembles the structure of the SPM in this case. The
main differences are that we also store spatial first and sec-
ond order moments of the patches assigned to each spatial
component, and that we use a spatial soft-assign.

Compared representations. In our experiments we com-
pare the representations summarized in Table 1. We test
SPM representations up to three levels; at the first level we
have only C = 1 global spatial cell which does not en-
code any spatial information. Using the first two levels we
have C = 5 spatial cells, and using all three levels we have
C = 21 spatial cells. When using Fisher vectors for ap-
pearance, we do not include C = 21 since then the image
representation becomes very large, without increasing per-
formance.

Classifier training and evaluation. For all image repre-
sentations we learn a linear classifier over the Fisher vector
representations, and include the L2 and power normaliza-
tions of [19]. For a fair comparison, we use the histogram
intersection kernel [10] when using BOW+SPM representa-
tions, since these seem to be optimal for that representation.
For the 15-Scenes data set we learn (kernelized) multi-class
logistic discriminant models, and report classification ac-
curacy measured as the fraction of correctly clasified test
images. For PASCAL VOC 2007 we learn a binary SVM
classifier per class, and report the mean of the per-class av-
erage precision (mAP) values.
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Figure 3. Normalized confusion matrix for 15-Scenes dataset (the
rows are the true classes), we only show figures larger than one.

Experimental results for the 15-Scenes dataset. This
data set [10] contains 4485 images of 15 scene categories.
We use the standard setup for this data set, using 10 random
splits of the data into a train set of 100 images per class, and
using the rest as test data. We then average the classification
accuracy over the test/train splits.

In Figure 2 we show the classification accuracies as a
function of the vocabulary size K. Using k-means to en-
code appearance (left panel) we see that large vocabularies
(K ≥ 1000) yield the best performance, and that our Spa-
tial Fisher Vector representation with C = 1 outperforms
all others, achieving 85.0 ± 0.8 accuracy. The size of our
representation is in this case K + K2d = 10, 000, which
is the same as the size of the best SPM model with C = 5



SPM SFV
K / C 1 5 21 1 5

B
O

W

50 29.1 37.0 41.4 35.1 37.9
100 33.8 40.4 44.1 39.8 41.7
200 38.1 44.1 47.1 43.5 45.1
500 42.7 47.7 49.9 47.5 48.9
1000 45.9 50.1 51.5 50.1 50.8
2000 48.0 51.1 52.3 52.3 52.9

Fi
sh

er
ve

ct
or 50 54.1 55.8 55.4 50.2

100 55.0 56.5 56.1 55.6
200 55.5 56.7 56.5 56.1
500 55.5 56.5 56.6 56.3

Table 2. PASCAL VOC 2007: comparison of spatial pyramids
(SPM) with with C cells (left) to Spatial Fisher vectors (SFV)
with C Gaussian components (right) for coding spatial layout. Us-
ing bag-of-words (BOW) for coding appearance (top), and using
Fisher vector for coding appearance (bottom).

which uses a non-linear kernel an achieves 83.8± 0.5. Our
SFV results are remarkably good for a bag-of-word image
appearance models in combination with linear classifiers.

When using Fisher vectors for appearance (right panel)
performance is generally much higher (note difference in
scaling on both axes). In this case our Spatial Fisher Vec-
tor representation with C = 1 and K = 100 achieves best
performance at 88.2%± 0.6, which is comparable to using
SPM with C = 5 cells (88.1% ± 0.5). Note that our rep-
resentation is much smaller, K(1 + 2D + 2d) = 13, 300
dimensions, than using SPM: KC(1 + 2D) = 64, 500 di-
mensions. We also noticed that performance saturates or
drops when using vocabularies larger than 100 to 200 visual
words. This consistent with the observations made by [17].

Our results with only K = 200 visual words are on par
with the current state-of-the-art of 88.1% reported in [29].
While we only use SIFT descriptors, [29] combines 14 dif-
ferent low-level image features; when using only SIFT [29]
reports 81.2% using a BOW+SPM representation and inter-
section kernels. In Figure 3 we show the confusion matrix
we obtain with our best model.

Experimental results for PASCAL VOC 2007. The
PASCAL VOC 2007 data set contains 9963 images, anno-
tated for presence of 20 different object categories. We have
used the 5011 images in the train and validation sets to train
our models, and evaluate them on the 4952 test images.

In Table 2 we show the mAP scores for different vocab-
ulary sizes. When using bag-of-word appearance models
(top), we observe that our Spatial Fisher vector representa-
tions with C = 1 and a linear classifier yield performance
comparable to using C = 5 cells with SPM and intersec-
tion kernel. The best performance of 52.9% is obtained

K = 50 K = 2000

Figure 4. Ellipsoidal display of the spatial distributions of patches
assigned to the five most frequent visual words in an image. As the
vocabulary size grows, the ellipses become smaller since fewer
patches are assigned to each visual word. In that case, the spa-
tial distribution is succinctly captured by a Gaussian distribution,
while many SPM cells are needed to attain the same precision.

using spatial Fisher vectors with C = 5 components, and
2000 visual words. The best SPM results of 52.3% are ob-
tained using C = 21 cells, and K = 2000. As for the 15-
Scenes data set, using Fisher vectors for appearance (bot-
tom) improves the results, to a maximum of 56.6% using
SFV with a single Gaussian, and for SPM the best results
are 56.7% using C = 5 cells. Again, our representation
is much smaller, using K = 200, C = 1 the SFV has
size K(1 + 2D + 2d) = 26.600, while using SPM with
K = 200, C = 5 yields a KC(1 + 2D) = 129.000 dimen-
sional image representation.

Our results are comparable to those in [19], which re-
ports 55.3% using SPM with C = 1,K = 256, our results
with SPM and C = 1,K = 200 are 55.5%. They reported
58.3% using SPM with C = 8 cells, which uses the com-
plete image, the four quadrants, and 3 horizontal strips; a
configuration which we did not explore here.

Discussion of experimental results. In Figure 4 we vi-
sualize the spatial distributions of patches assigned to vi-
sual words in a particular image for two vocabulary sizes.
As the number of visual words grows, less patches are as-
signed per visual word, and our spatial Fisher vectors —
even with a single spatial component— are able to accu-
rately describe the positions of patches assigned to each vi-
sual word. To represent spatial layout with the same accu-
racy, spatial pyramids would need many spatial cells. How-
ever, this would result in very large image representations,
that are more prone to overfitting.

This analysis could explain the results in Table 2 and Fig-
ure 2 when using BOW appearance models. When using
small number of visual words the gain by adding more spa-
tial components to our model is significant, while this gain
diminishes as we increase the number of visual words.



5. Discussion and conclusion
We introduced Spatial Fisher Vectors (SFV) as a new

method to encode spatial layout for image categorization.
In SFV, spatial cells are adapted per word to the patch posi-
tions, unlike the rigid structure of spatial pyramid cells. The
advantages of our representation are (i) its compactness, and
(ii) its good performance with linear classifiers. When using
bag-of-words appearance models, our representation with
linear classifiers gives similar or better results than SPMs
with nonlinear intersection kernel classifiers, for compara-
ble size of the representation. When we combine our model
with Fisher vector coding of appearance, we obtain simi-
lar or better results compared to SPM, but the image de-
scriptors are roughly four times more compact, reducing re-
quirements on disk storage, memory, and classifier training
time by the same factor. In future work we want to further
explore the Fisher kernel framework using more advanced
generative models to capture the correlations between the
appearance and spatial layout of local images features.
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