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Abstract—This paper presents a new spectral modeling method
for statistical parametric speech synthesis. In the conventional
methods, high-level spectral parameters, such as mel-cepstra or
line spectral pairs, are adopted as the features for hidden Markov
model (HMM)-based parametric speech synthesis. Our proposed
method described in this paper improves the conventional method
in two ways. First, distributions of low-level, un-transformed
spectral envelopes (extracted by the STRAIGHT vocoder) are
used as the parameters for synthesis. Second, instead of using
single Gaussian distribution, we adopt the graphical models
with multiple hidden variables, including restricted Boltzmann
machines (RBM) and deep belief networks (DBN), to represent
the distribution of the low-level spectral envelopes at each HMM
state. At the synthesis time, the spectral envelopes are predicted
from the RBM-HMMs or the DBN-HMMs of the input sentence
following the maximum output probability parameter genera-
tion criterion with the constraints of the dynamic features. A
Gaussian approximation is applied to the marginal distribution
of the visible stochastic variables in the RBM or DBN at each
HMM state in order to achieve a closed-form solution to the
parameter generation problem. Our experimental results show
that both RBM-HMM and DBN-HMM are able to generate spec-
tral envelope parameter sequences better than the conventional
Gaussian-HMM with superior generalization capabilities and
that DBN-HMM and RBM-HMM perform similarly due possibly
to the use of Gaussian approximation. As a result, our proposed
method can significantly alleviate the over-smoothing effect and
improve the naturalness of the conventional HMM-based speech
synthesis system using mel-cepstra.

Index Terms—Deep belief network, hidden Markov model, re-
stricted Boltzmann machine, spectral envelope, speech synthesis.

I. INTRODUCTION

T HE hidden Markov model (HMM)-based parametric

speech synthesis method has become a mainstream

speech synthesis method in recent years [2], [3]. In this method,

the spectrum, F0 and segment durations are modeled simul-

taneously within a unified HMM framework [2]. At synthesis
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time, these parameters are predicted so as to maximize their

output probabilities from the HMM of the input sentence. The

constraints of the dynamic features are considered during pa-

rameter generation in order to guarantee the smoothness of the

generated spectral and F0 trajectories [4]. Finally, the predicted

parameters are sent to a speech synthesizer to reconstruct the

speech waveforms. This method is able to synthesize highly

intelligible and smooth speech sounds [5], [6]. However, the

quality of the synthetic speech is degraded due to three main

factors: limitations of the parametric synthesizer itself, inad-

equacy of acoustic modeling used in the synthesizer, and the

over-smoothing effect of parameter generation [7].

Many improved approaches have been proposed to overcome

the disadvantages of these three factors. In terms of the speech

synthesizer, STRAIGHT [8], as a high-performance speech

vocoder, has been widely used in current HMM-based speech

synthesis systems. It follows the source-filter model of speech

production. In order to represent the excitation and vocal tract

characteristics separately, F0 and a smooth spectral envelope

without periodicity interference are extracted at each frame.

Then, mel-cepstra [5] or line spectral pairs [6] can be derived

from the spectral envelopes of training data for the following

HMM modeling. During synthesis, the generated spectral

parameters are used either to reconstruct speech waveforms

directly or to recover the spectral envelopes for further speech

reconstruction by STRAIGHT.

Acoustic modeling is another key component of the

HMM-based parametric speech synthesis. In the common

spectral modeling methods, the probability density functions

(PDF) of each HMM state is represented by a single Gaussian

distribution with diagonal covariance matrix and the distribu-

tion parameters are estimated under the maximum likelihood

(ML) criterion [2]. Because the single Gaussian distributions

are used as the state PDFs, the outputs of maximum output

probability parameter generation tend to distribute near the

modes (also the means) of the Gaussians, which are estimated

by averaging observations with similar context descriptions in

the ML training. Although this averaging process improves the

robustness of parameter generation, the detailed characteristics

of the spectral parameters are lost. Therefore, the reconstructed

spectral envelopes are over-smoothed, which leads to a muffled

voice quality in the synthetic speech. The existing refine-

ments on acoustic modeling include increasing the number of

Gaussians for each HMM state [4], reformulating HMM as a

trajectory model [9], improving the model training criterion by

minimizing the generation error [10].

1558-7916/$31.00 © 2013 IEEE
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In order to alleviate the over-smoothing effect, many im-

proved parameter generation methods have also been proposed,

such as modifying the parameter generation criterion by inte-

grating a global variancemodel [11] or minimizingmodel diver-

gences [12], post-filtering after parameter generation [6], [13],

using real speech parameters or segments to generate the speech

waveform [14], [15], or sampling trajectories from the predic-

tive distribution [16], [17], and so on. In this paper, we pro-

pose a new spectral modeling method which copes with the

first two factors mentioned above. First, the raw spectral en-

velopes extracted by the STRAIGHT vocoder are utilized di-

rectly without further deriving spectral parameters from them

during feature extraction. Comparing with the high-level1 spec-

tral parameters, such as mel-cepstra or line spectral pairs, the

low-level spectral envelopes are more physically meaningful

and more directly related with the subjective perception on the

speech quality. Thus, the influence of spectral parameter ex-

traction on the spectral modeling can be avoided. Similar ap-

proach can be found in [18], where the spectral envelopes de-

rived from the harmonic amplitudes are adopted to replace the

mel-cepstra for HMM-based Arabic speech synthesis and the

naturalness improvement can be achieved. Second, the graph-

ical models withmultiple hidden layers, such as restricted Boltz-

mann machines (RBM) [19] and deep belief networks (DBN)

[20], are introduced to represent the distribution of the spec-

tral envelopes at each HMM state instead of single Gaussian

distribution. An RBM is a bipartite undirected graphical model

with a two-layer architecture and a DBN contains more hidden

layers, which can be estimated using a stack of RBMs. Both

of these two models are better in describing the distribution

of high-dimensional observations with cross-dimension corre-

lations, i.e., the spectral envelopes, than the single Gaussian

distribution and Gaussian mixture model (GMM). The acoustic

modeling method which describes the production, perception

and distribution of speech signals is always an important re-

search topic in speech signal processing [21]. In recent years,

RBMs and DBNs have been successfully applied to modeling

speech signals, such as spectrogram coding [22], speech recog-

nition [23], [24], and acoustic-articulatory inversion mapping

[25], where they mainly act as the pre-training methods for a

deep autoencoder or a deep neural network (DNN). The archi-

tectures used in deep learning as applied to speech processing

have been motivated by the multi-layered structures in both

speech production and perception involving phonological fea-

tures, motor control, articulatory dynamics, and acoustic and au-

ditory parameters [26], [27]. The approaches of applying RBMs,

DBNs, and other deep learning methods to the statistical para-

metric speech synthesis have also been studied very recently [1],

[28]–[30]. In [28], a DNN-based statistical parametric speech

synthesis method is presented, which maps the input context in-

formation towards the acoustic features using a neural network

with deep structures. In [29], a DNN which is pre-trained by the

1Here, the “level” refers to the steps of signal processing procedures in-
volved in the spectral feature extraction. The high-level spectral parameters
are commonly derived from the low-level ones by functional representation
and parameterization.

DBN learning is adopted as a feature extractor for the Gaussian

process based F0 contour prediction. Furthermore, RBMs and

DBNs can be used as density models instead of the DNN ini-

tialization methods for the speech synthesis application. In [30],

a single DBN model is trained to represent the joint distribu-

tion between the tonal syllable ID and the acoustic features. In

[1], a set of RBMs are estimated to describe the distributions of

the spectral envelopes in the context-dependent HMM states. In

this paper, we extend our previous work in [1] by incorporating

the dynamic features of spectral envelopes into the RBM mod-

eling and developing RBMs to DBNs which has more layers of

hidden units.

This paper is organized as follows. In Section II, we will

briefly review the basic techniques of RBMs and DBNs. In

Section III, we will describe the details of our proposed method.

Section IV reports our experimental results. Section V gives the

conclusion and the discussion on our future work.

II. RESTRICTED BOLTZMANN MACHINES
AND DEEP BELIEF NETWORKS

A. Restricted Boltzmann Machines

An RBM is a kind of bipartite undirected graphical model
(i.e., Markov random field) which is used to describe the de-
pendency among a set of random variables using a two-layer
architecture [19]. In this model, the visible stochastic units

are connected to the hidden stochastic units
as shown in Fig. 1(a), where and are the

numbers of units of the visible and hidden layers respectively,
and means the matrix transpose. Assuming
and are both binary stochastic variables, the en-
ergy function of the state is defined as

(1)

where represents the symmetric interaction between and
, and are bias terms. The model parameters are com-

posed of , , and
. The joint distribution over the visible and hidden

units is defined as

(2)

where

(3)

is the partition function which can be estimated using the an-
nealed importance sampling (AIS) method [31]. Therefore, the
probability density function over the visible vector can be cal-
culated as

(4)

Given a training set, the RBMmodel parameters can
be estimated by maximum likelihood learning using the con-
trastive divergence (CD) algorithm [32].
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Fig. 1. The graphical model representations for (a) an RBM and (b) a three-
hidden-layer DBN.

RBM can also be applied to model the distribution of
real-valued data (e.g., the speech parameters) by adopting its
Gaussian-Bernoulli form, whichmeans are real-valued
and are binary. Thus, the energy function of the
state is defined as

(5)

where the variance parameters are commonly fixed to a pre-
determined value instead of learning from the training data [33].

B. Deep Belief Networks

A deep belief network (DBN) is a probabilistic generative
model which is composed of many layers of hidden units [20].
The graphical model representation for a three-hidden-layer
DBN is shown in Fig. 1(b). In this model, each layer captures
the correlations among the activities of hidden features in the
layer below. The top two layers of the DBN form an undirected
bipartite graph. The lower layers form a directed graph with a
top-down direction to generate the visible units. Mathemati-
cally, the joint distribution over the visible and all hidden units
can be written as

(6)

where is the hidden stochastic vector of

the -th hidden layer, is the dimensionality of , and is the
number of hidden layers. The joint distribution
is represented by an RBM as (2) with the weight matrix
and the bias vectors and . and

are represented by sigmoid belief networks
[34]. Each sigmoid belief network is described by a weight ma-
trix and a bias vector . Assuming are real-valued and

are binary, the dependency between and
in the sigmoid belief network is described by

(7)

where denotes a Gaussian distribution; and
turns to an identity matrix when are fixed to 1 during model

training. For , the dependency between
two adjacent hidden layers is represented by

(8)

where is the sigmoid function. For
an -hidden-layer DBN, its model parameters are composed
of . Further, the
marginal distribution of the visible variables for a DBN can be
written as

(9)

Given the training samples of the visible units, it is difficult
to estimate the model parameters of a DBN directly under
the maximum likelihood criterion due to the complex model
structure with multiple hidden layers. Therefore, a greedy
learning algorithm has been proposed and popularly applied
to train the DBN in a layer-by-layer manner [20]. A stack
of RBMs are used in this algorithm. Firstly, it estimates the
parameters of the first layer RBM to model the
visible training data. Then, it freezes the parameters
of the first layer and draws samples from to train the
next layer RBM , where

(10)

This training procedure is conducted recursively until it reaches
the top layer and gets . It has been proved that
this greedy learning algorithm can improve the lower bound on
the log-likelihood of the training samples by adding each new
hidden layer [20], [31]. Once the model parameters are esti-
mated, to calculate the log-probability that a DBN assigns to
training or test data by (9) directly is also computationally in-
tractable. A lower bound on the log-probability can be estimated
by combining the AIS-based partition function estimation with
approximate inference [31].

III. SPECTRAL ENVELOPE MODELING
USING RBMs AND DBNs

A. HMM-Based Parametric Speech Synthesis

At first, the conventional HMM-based parametric speech syn-
thesis method is briefly reviewed. It consists of a training stage
and a synthesis stage. During training, the F0 and spectral pa-
rameters are extracted from the waveforms contained in the
training set. Then a set of context-dependent HMMs are es-
timated to maximize the likelihood function for the training
acoustic features. Here is the observa-
tion feature sequence and is the length of the sequence. The
observation feature vector for the -th frame typi-
cally consists of static acoustic parameters and their
delta and acceleration components as

(11)
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where is the dimension of the static component; the dynamic
components are commonly calculated as

(12)

(13)

and

(14)

(15)

Therefore, the complete feature sequence can be considered
to be a linear transform of the static feature sequence

as

(16)

where is determined by the delta and ac-
celeration calculation functions in (12)–(15)[4]. A multi-space
probability distribution (MSD) [35] is applied to incorporate
a distribution for F0 into the probabilistic framework of the
HMM considering that F0 is only defined for voiced speech
frames. In order to deal with the data-sparsity problem of the
context-dependent model training with extensive context fea-
tures, a decision-tree-basedmodel clustering technique that uses
a minimum description length (MDL) criterion [36] to guide
the tree construction is adopted after initial training of the con-
text-dependent HMMs. Next, a state alignment is conducted
using the trained HMMs to train context-dependent state dura-
tion probabilities [2] for state duration prediction. A single-mix-
ture Gaussian distribution is used to model the duration prob-
ability for each state. A decision-tree-based model clustering
technique is similarly applied to these duration distributions.
At the synthesis stage, the maximum output probability pa-

rameter generation algorithm is used to generate acoustic pa-
rameters [4]. The result of front-end linguistic analysis on the
input text is used to determine the sentence HMM . The state
sequence is predicted using the trained
state duration probabilities [2]. Then, the sequence of speech
features are predicted by maximizing . Considering
the constraints between static and dynamic features as in (16),
the parameter generation criterion can be rewritten as

(17)

where is the generated static feature sequence. If the emis-
sion distribution of each HMM state is represented by a single
Gaussian distribution, the closed-form solution to (17) can be
derived. By setting

(18)

we obtain

(19)

where and
are the mean vector and covariance matrix of the sentence as
decided by the state sequence [4].

Fig. 2. Flowchart of our proposed method. The modules in solid lines rep-
resent the procedures of the conventional HMM-based speech synthesis using
high-level spectral parameters, where “CD-HMM” stands for “Context-Depen-
dent HMM.” The modules in dash lines describe the add-on procedures of our
proposed method for modeling the spectral envelopes using RBMs or DBNs.

B. Spectral Envelope Modeling and Generation Using RBM

and DBN

In this paper, we improve the conventional spectral modeling
method in the HMM-based parametric speech synthesis from
two aspects. First, the raw spectral envelopes extracted by the
STRAIGHT vocoder are modeled directly without further de-
riving high-level spectral parameters. Second, the RBM and
DBN models are adopted to replace the single Gaussian dis-
tribution at each HMM state. In order to simplify the model
training with high-dimensional spectral features, the decision
trees for model clustering and the state alignment results are as-
sumed to be given when the spectral envelopes are modeled.
Thus, we can focus on comparing the performance of different
models on the clustered model estimation. In current implemen-
tation, the conventional context-dependent model training using
high-level spectral parameters and single Gaussian state PDFs
is conducted at first to achieve the model clustering and state
alignment results.
The flowchart of our proposed method is shown in Fig. 2.

During the acoustic feature extraction using STRAIGHT
vocoder, the original linear frequency spectral envelopes2 are
stored besides the spectral parameters. The context-dependent
HMMs for conventional spectral parameters and F0 features
are firstly estimated according to the method introduced in
Section III-A. A single Gaussian distribution is used to model
the spectral parameters at each HMM state. Next, a state align-
ment to the acoustic features is performed. The state boundaries
are used to gather the spectral envelopes for each clustered
context-dependent state. Similar to the high-level spectral
parameters, the feature vector of the spectral envelope at each
frame consists of static, velocity, and acceleration components

2The mel-frequency spectral envelopes can also be used here to represent
the speech perception properties. In this paper, we adopt the linear frequency
spectral envelope because it is the most original description of the vocal tract
characters without any prior knowledge and assumption on the spectral param-
eterization and speech perception.
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as (11)–(15). Then, an RBM or a DBN is estimated under the
maximum likelihood criterion for each state according to the
methods introduced in Section II. The model estimation of the
RBMs or the DBNs is conducted only once using the fixed
state boundaries. Finally, the context-dependent RBM-HMMs
or DBN-HMMs can be constructed for modeling the spectral
envelopes.
At synthesis time, the same criterion in (17) is followed to

generate the spectral envelopes. The optimal sequence of spec-
tral envelopes are estimated by maximizing the output proba-
bility from the RBM-HMM or the DBN-HMM of the input sen-
tence. When single Gaussian distributions are adopted as the
state PDFs, there is a closed-form solution as shown in (19) to
this maximum output probability parameter generation with the
constraints of dynamic features once the state sequence has been
determined [4]. However, the marginal distribution defined in
(4) for an RBMor in (9) for a DBN is muchmore complex than a
single Gaussian, which makes the closed-form solution imprac-
tical. Therefore, a Gaussian approximation is applied before pa-
rameter generation to simply the problem. For each HMM state,
a Gaussian distribution is constructed, where is
the spectral envelope feature vector containing static, velocity,
and acceleration components;

(20)

is the mode estimated for each RBM or DBN and is de-
fined as (4) or (9); is a diagonal covariance matrix estimated
by calculating the sample covariances given the training sam-
ples of the state. These Gaussian distributions are used to re-
place the RBMs or the DBNs as the state PDFs at synthesis
time. Therefore, the conventional parameter generation algo-
rithm with the constraints of dynamic features can be followed
to predict the spectral envelopes by solving a group of linear
(19). By incorporating the dynamic features of the spectral en-
velopes duringmodel training and parameter generation, tempo-
rally smooth spectral trajectories can be generated at synthesis
time. The detailed algorithms of the mode estimation in (20) for
an RBM and a DBN model will be introduced in the following
subsections.

C. Estimating RBM Mode

Here, we consider the RBM of the Gaussian-Bernoulli form
because the spectral envelope features are real-valued. Given
the estimated model parameters of an RBM, the
probability density function (4) over the visible vector can
be further calculated as3

3The variance parameters in (5) are fixed to 1 to simplify the notation.

(21)

where denotes the -th column of matrix . Because there
is no closed-form solution to solve (20) for an RBM, the gradient
descent algorithm is adopted here, i.e.,

(22)

where denotes the number of iteration; is the step size;

(23)

Thus, the estimated mode of the RBM model is determined
by a non-linear transform of the model parameters .
In contrast to the single Gaussian distribution, this mode is no
longer the Gaussian mean which is estimated by averaging the
corresponding training vectors under the maximum likelihood
criterion.
Because the likelihood of an RBM ismultimodal, the gradient

descent optimization in (22) only leads to a local maximum and
the result is sensitive to the initialization of . In order to find
a representative , we firstly calculate the means of the con-
ditional distributions for all training vectors . These
means are averaged and made binary using a fixed threshold of
0.5 to get . Then, the initial for the iteratively updating
in (22) is set as the mean of .

D. Estimating DBN Mode

Estimating the mode of a DBN model is more complex than
dealing with an RBM. The marginal distribution of the visible
variables in (9) can be rewritten as

(24)

(25)

where is described in (7) and can be calculated
by applying

(26)

recursively for each from to 2. The conditional distri-
bution is represented by (8) and is the
marginal distribution (4) of the RBM representing the top two
hidden layers. Similar to the RBMmode estimation, the gradient
descent algorithm can be applied here to optimize (25) once the
values of are determined for all possible . However,
this will lead to an exponential complexity with respect to the
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number of hidden units at each hidden layer due to the summa-
tion in (25) and (26). Thus, such optimization becomes imprac-
tical unless the number of hidden units is reasonably small.
In order to get a practical solution to the DBN mode estima-

tion, an approximation is made to (24) in this paper. The sum-
mation over all possible values of the hidden units is simplified
by considering only the optimal hidden vectors at each layer,
i.e.,

(27)

where

(28)

and for each

(29)

The joint distribution in (28) is modeled by a
Bernoulli-Bernoulli RBM according to the definition of DBN
in Section II-B. Because and are both binary sto-
chastic vectors, the iterated conditional modes (ICM) [37] al-
gorithm is adopted to solve (28). This algorithm determines the
configuration that maximizes the joint probability of a Markov
random field by iteratively maximizing the probability of each
variable conditioned on the rest. Applying the ICM algorithm
here, we just update by maximizing and up-
date by maximizing iteratively. Both of the
two conditional distributions are multivariate Bernoulli distri-
bution without cross-dimension correlation [20]. The optimal
configuration at each step can be determined simply by applying
a threshold of 0.5 for each binary unit. The initial of the
iteratively updating is set to be the which is obtained by
solving (28) for the DBN with hidden layers.
For each from to 2, (29) can be solved recur-

sively according to the conditional distribution in (8). After
are determined, the mode of the DBN can be

estimated by substituting (27) into (20). Considering
is a Gaussian distribution as (7), we have

(30)

IV. EXPERIMENTS

A. Experimental Conditions

A1-hour Chinese speech database produced by a professional
female speaker was used in our experiments. It consisted of
1,000 sentences together with the segmental and prosodic la-
bels. 800 sentences were selected randomly for training and the
remaining 200 sentences were used as a test set. The waveforms
were recorded in 16 kHz/16 bit format.
When constructing the baseline system, 41-order mel-cep-

stra (including 0-th coefficient for frame power) were derived
from the spectral envelope by STRAIGHT analysis at 5 ms
frame shift. The F0 and spectral features consisted of static,
velocity, and acceleration components. A 5-state left-to-right

Fig. 3. The cumulative probability curve for the number of frames belonging
to each context-dependent state. The arrows indicate the numbers of frames of
the three example states used for the analysis in Section IV-B and Fig. 4.

HMM structure with no skips was adopted to train the context-
dependent phone models. The covariance matrix of the single
Gaussian distribution at each HMM state was set to be diagonal.
After the decision-tree-based model clustering, we got 1,612
context-dependent states in total for the mel-cepstral stream.
The model parameters of these states were estimated by max-
imum likelihood training.
In the spectral envelope modeling, the FFT length of

the STRAIGHT analysis was set to 1024 which led to
visible units in the RBMs and DBNs

corresponding to the spectral amplitudes within the frequency
range of together with their dynamic components. After
the HMMs for the mel-cepstra and F0 features were trained, a
state alignment was conducted on the training set and the test
set to assign the frames to each state for the spectral envelope
modeling and testing. The cumulative probability curve for
the number of frames belonging to each context-dependent
state is illustrated in Fig. 3. From this figure, we can see that
the numbers of training samples vary a lot among different
states. For each context-dependent state, the logarithmized
spectral amplitudes at each frequency point were normalized
to zero mean and unit variance. CD learning with 1-step Gibbs
sampling (CD1) was adopted for the RBM training and the
learning rate was 0.0001. The batch size was set to 10 and 200
epochs were executed for estimating each RBM. The DBNs
were estimated following the greedy layer-by-layer training
algorithm introduced in Section II-B.

B. Comparison Between GMM and RBM as State PDFs

At first we compared the performance of the GMM and the
RBM in modeling the distribution of mel-cepstra and spectral
envelopes for an HMM state. Three representative states were
selected for this experiment, which have 270, 650, 1530 training
frames and 60, 130, 410 test frames respectively. As shown in
Fig. 3, the numbers of training frames of these three states cor-
respond to the 0.1, 0.5, and 0.9 cumulative probabilities which
are calculated over the numbers of the training frames of all the
1,612 context-dependent states. GMMs and RBMs were trained
under the maximum likelihood criterion to model these three
states. The covariance matrices in the GMMs were set to be
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Fig. 4. The average log-probabilities on the training and test sets when modeling (a) the mel-cepstra and (b) the spectral envelopes of state A (left column), state B
(middle column), and state C (right column) using different models. The number of training samples belonging to these three selected states are indicated in Fig. 3.

diagonal and the number of Gaussian mixtures varied from 1
to 64. The number of hidden units in the RBMs varied from 1
to 1,000. The average log-probabilities on the training and test
sets for different models and states are shown in Fig. 4 for the
mel-cepstra and the spectral envelopes respectively. Examining
the difference between the training and test log-probabilities for
both the mel-cepstra and the spectral envelopes, we see that the
GMMs have a clear tendency of over-fitting with the increasing
of model complexity. This over-fitting effect becomes less sig-
nificant when a larger training set is available. On the other
hand, the RBM shows consistently good generalization ability
with the increasing of the number of hidden units. This can be
attribute to utilizing the binary hidden units which create a in-
formation bottleneck and act as an effective regularizer during
model training.
The differences between the test log-probabilities of the best

GMM or RBMmodels and the single Gaussian distributions for
the three states are listed in Table I. From Fig. 4 and Table I,
we can see that the model accuracy improvements obtained by
using the density models that are more complex than a single
Gaussian distribution are relatively small when the mel-cep-
stra are used for spectral modeling. Once the spectral envelopes
are used, such improvements become much more significant
for both the GMM and RBM models. Besides, the RBM also
gives much higher log-probability to the test data than the GMM
when modeling the spectral envelopes. These results can be at-
tributed to that the mel-cepstral analysis is a kind of decorrela-
tion processing to the spectrums. A GMM with multiple com-
ponents is able to describe the inter-dimensional correlations of
a multivariate distribution to some extend even if the diagonal
covariance matrices are used. An RBM with hidden units
can be considered as a GMM with structured mixture com-
ponents according to (21). Therefore, it is good at analyzing
the latent patterns embedded in the high-dimensional raw data

Fig. 5. Visualization of the estimated weight matrices in the RBMs when
modeling the spectral envelopes for the three states. The number of hidden units
is 50 and only the first 513 rows of the weight matrices are drawn. Each column
in the gray-scale figures corresponds to the weights connecting one hidden unit
with the 513 visible units which compose the static component of the spectral
envelope feature vector.

with inter-dimensional correlations. Fig. 5 shows the estimated
weight matrices in the RBMs when modeling the spectral
envelopes for the three states. We can see that the weight ma-
trices are somewhat sparse, indicating each hidden unit tries to
capture the characteristics of the spectral envelope in some spe-
cific frequency bands. This is similar to a frequency analysis
for spectral envelopes which makes use of the amplitudes of the
critical frequency bands context-dependently.
For the spectral envelope modeling, we can further improve

the model accuracy by training RBMs layer-by-layer and con-
structing a DBN. The average log-probabilities on the training
and test sets when modeling the spectral envelopes using an
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TABLE I
THE DIFFERENCES BETWEEN THE TEST LOG-PROBABILITIES OF THE BEST
GMM OR RBM MODELS AND THE SINGLE GAUSSIAN DISTRIBUTIONS
FOR THE THREE SELECTED STATES. THE NUMBERS IN THE BRACKETS
INDICATE THE NUMBERS OF GAUSSIAN MIXTURES FOR THE GMMS
AND THE NUMBERS OF HIDDEN UNITS THE RBMS WHICH LEAD TO

THE HIGHEST LOG-PROBABILITIES ON THE TEST SET

TABLE II
THE AVERAGE LOG-PROBABILITIES ON THE TRAINING AND TEST SETSWHEN
MODELING THE SPECTRAL ENVELOPES USING AN RBM OF 50 HIDDEN UNITS
AND A TWO-HIDDEN-LAYER DBN OF 50 HIDDEN UNITS AT EACH LAYER

TABLE III
SUMMARY OF DIFFERENT SYSTEMS CONSTRUCTED IN THE EXPERIMENTS

RBM and a two-hidden-layer DBN are compared in Table II.
Here, the lower bound estimation [31] to the log-probability of
a DBN is adopted. From this table, we can observe a monotonic
increase of test log-probabilities by using more hidden layers.

C. System Construction

Seven systemswere constructed whose performance we com-
pared in our experiments. The definitions of these systems are
explained in Table III. As shown in Table I, the model accu-
racy improvement achieved by adopting the distributions more
complicated than the single Gaussian is not significant when the
mel-cepstra are used as spectral features. Therefore, we focus
on the performance of spectral envelope modeling using dif-
ferent forms of state PDFs in our experiments. Considering the
computational complexity of training state PDFs for all con-
text-dependent states, the maximum number of hidden units in
the RBM and DBN models were set to 50. All these systems
shared the same decision trees for model clustering and the same
state boundaries which were derived from the Baseline system.
The F0 and duration models of the seven systems were identical.

D. Mode Estimation For the RBMS and DBNS

When constructing the RBM(10), RBM(50), DBN(50–50),
and DBN(50–50-50) systems, the mode of each RBM or
DBN trained for a context-dependent state was estimated for

TABLE IV
AVERAGE LOG-PROBABILITIES OF THE SAMPLE MEANS AND THE ESTIMATED

MODES FOR THE FOUR RBM OR DBN BASED SYSTEMS

Fig. 6. The spectral envelopes recovered from the modes of different systems
for one HMM state.

Gaussian approximation following the methods introduced in
Section III-C and Section III-D. For each system, the average
Log-Probabilities of the estimated modes and the sample
means were calculated. The results are listed in Table IV. From
this table, we see that the estimated modes have much higher
log-probabilities than the sample means known to have the
highest probability for a single Gaussian distribution. This
means that when the RBMs or the DBNs are adopted to repre-
sent the state PDFs, the feature vector with the highest output
probability is not the sample means anymore. This implies the
superiority of RBM and DBN over single Gaussian distribution
in alleviating the over-smoothing problem during parameter
generation under the maximum output probability criterion.
The spectral envelopes recovered from the modes of different

systems for one HMM state4 are illustrated in Fig. 6. Here,
only the static components of the spectral envelope feature
vectors are drawn. The mode of the GMM(1) system is just
the Gaussian mean vector. The mode of the GMM(8) system
is approximated as the Gaussian mean of the mixture with the
highest mixture weight. Comparing GMM(8) with GMM, we
can see that using more Gaussian mixtures can help alleviate
the over-smoothing effect on the spectral envelope. Besides,
the estimated state mode of the RBM and DBN based systems
have sharper formant structures than the GMM-based ones.
Comparing RBM(50) with RBM(10), we can see the advantages
of using more hidden units in an RBM. While the differences
among the estimated modes of the RBM(50), DBN(50–50), and
DBN(50–50-50) systems are less significant. We will investi-
gate the performance of these systems further by the following
subjective evaluation.

4This state is not one of the three states used in Section IV-B.
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TABLE V
SUBJECTIVE PREFERENCE SCORES (%) AMONG SPEECH SYNTHESIZED USING
THE BASELINE, GMM(8), RBM(10), AND RBM(50) SYSTEMS, WHERE N/P
DENOTES “NO PREFERENCE” AND MEANS THE -VALUE OF -TEST

BETWEEN THESE TWO SYSTEMS

E. Subjective Evaluation

Because the mel-cepstrum extraction can be considered as a
kind of linear transform to the logarithmized spectral envelope,
the spectral envelope recovered from the mean of the mel-cep-
stra in a state is very close to the one recovered from the mean of
the corresponding logarithmized spectral envelopes. Therefore,
theBaseline and theGMM(1) systems had very similar synthetic
results and the Baseline system was adopted as a representative
for these two systems in the subjective evaluation to simplify the
test design. For the GMM(8) system, the EM-based parameter
generation algorithm [4] could be applied to predict the spec-
tral envelope trajectories by iteratively updating. In order to get
a closed-form solution, we made a single Gaussian approxima-
tion to the GMMs at synthesis time by only using the Gaussian
mixture with the highest mixture weight at each HMM state.
The first subjective evaluation was to compare among the

Baseline, GMM(8), RBM(10), and RBM(50) systems. Fifteen
sentences out of the training database were selected and syn-
thesized using these four systems respectively.5 Five groups of
preference tests were conducted and each one was to make com-
parison between two of the four systems as shown in each row of
Table V. Each of the pairs of synthetic sentences were evaluated
in random order by five Chinese-native listeners. The listeners
were asked to identify which sentence in each pair sounded
more natural. Table V summarizes the preference scores among
these four systems and the -values given by -test. From this
table, we can see that introducing the density models that are
more complex than single Gaussian, such as GMM and RBM,
to model the spectral envelopes at each HMM state can achieve
significantly better naturalness than the single Gaussian dis-
tribution based methods. Compared with the GMM(8) system,
the RBM(50) system has much better preference in naturalness.
This demonstrates the superiority of RBM over GMM in mod-
eling the spectral envelope features. A comparison between the
spectral envelopes generated by the Baseline system and the
RBM(50) system is shown in Fig. 7. From this figure, we can ob-
serve the enhanced formant structures after modeling the spec-
tral envelopes using RBMs. Besides, we can also find in Table V
that the performance of the RBM-based systems is influenced by
the number of hidden units used in the model definition when
comparingRBM(10)with RBM(50). These results are consistent
with the formant sharpness of the estimated modes for different
systems shown in Fig. 6.
In order to investigate the effect of extending RBM to DBN

with more hidden layers, another subjective evaluation was con-
ducted among the RBM(50), DBN(50-50), and DBN(50-50-50)
systems. Another fifteen sentences out of the training database

5Some examples of the synthetic speech using the seven systems listed in
Table III can be found at http://staff.ustc.edu.cn/ zhling/DBNSyn/demo.html.

Fig. 7. The spectrograms of a segment of synthetic speech using (a) the Base-
line system and (b) the RBM(50) system. These spectrograms are not calculated
by STFT analysis on the synthetic waveform. For the Baseline system, the spec-
trogram is drawn based on the spectral envelopes recovered from the generated
mel-cepstra. For the RBM(50) system, the spectrogram is drawn based on the
generated spectral envelopes directly.

TABLE VI
SUBJECTIVE PREFERENCE SCORES (%) AMONG THE RBM(50),

DBN(50-50), AND DBN(50-50-50) SYSTEMS

were used and two groups of preference tests were conducted by
five Chinese-native listeners. The results are shown in Table VI.
We can see that there is no significant differences among these
three systems at 0.05 significance level. Although we can im-
prove the model accuracy by introducing more hidden layers as
shown in Table II, the naturalness of synthetic speech can not be
improved correspondingly. One possible reason is the approxi-
mation we make in (27) when estimating the DBN mode.

F. Objective Evaluation

Besides the subjective evaluation, we also calculated the
spectral distortions on the test set between the spectral en-
velopes generated by the systems listed in Table III and the
ones extracted from the natural recordings. The synthetic
spectral envelopes used the state boundaries of the natural
recordings to simplify the frame alignment. Then, the natural
and synthetic spectral envelopes at each frame were normalized
to the same power and the calculation of the spectral distortion
between them followed the method introduced in [38]. For the
Baseline system, the generated mel-cepstra were converted to
spectral envelopes before the calculation. The average spectral
distortions of all the systems are listed in Table VII. We can see
that the objective evaluation results are inconsistent with the
subjective preference scores shown in Table V. For example,
the RBM(50) system has significant better naturalness than
the Baseline system in the subjective evaluation, while its
average spectral distortion is the highest. The reason is that
the spectral distortion in [38] is a Euclidean distance between
two logarithmized spectral envelopes, which treats each di-
mension of the spectral envelopes independently and equally.
However, the superiority of our proposed method is to provide



2138 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 10, OCTOBER 2013

TABLE VII
AVERAGE SPECTRAL DISTORTIONS (SD) ON TEST SET BETWEEN THE
SPECTRAL ENVELOPES GENERATED BY THE SYSTEMS LISTED IN
AND THE ONES EXTRACTED FROM THE NATURAL RECORDINGS

better representation of the cross-dimension correlations for
the spectral envelope modeling, which can not be reflected
by this spectral distortion measurement. Similar inconsistency
between subjective evaluation results and objective acoustic
distortions for speech synthesis has been observed in [12], [39].

V. CONCLUSION AND FUTUREWORK

We have proposed an RBM and DBN based spectral en-

velope modeling method for statistical parametric speech

synthesis in this paper. The spectral envelopes extracted by

STRAIGHT vocoder are modeled by an RBM or a DBN for

each HMM state. At the synthesis time, the mode vectors

of the trained RBMs and DBNs are estimated and used in

place of the Gaussian means for parameter generation. Our

experimental results show the superiority of RBM and DBN

over Gaussian mixture model in describing the distribution

of spectral envelopes as density models and in mitigating the

over-smoothing effect of the synthetic speech.

As we discussed in Section I, there are also some other

approaches that can significantly reduce the over-smoothing

and improve the quality of the synthetic speech, such as the

GV-based parameter generation [11] and the post-filtering

techniques [6], [13]. In this paper, we focus on the acoustic

modeling to tackle the over-smoothing problem. It worth to

investigate alternative parameter generation and post-filtering

algorithms that are appropriate for our proposed spectral enve-

lope modeling method in the future.

This paper only makes some preliminary exploration on

applying the ideas of deep learning into statistical parametric

speech synthesis. There are still several issues in the current

implementation that require further investigation. First, it is

worth examining the system performance when the number

of hidden units in the RBMs keeps increasing. As shown in

Fig. 3, the training samples are distributed among many con-

text-dependent HMM states in a highly unbalanced manner.

Thus, it may be difficult to optimize the model complexity for

all states simultaneously. An alternative solution is to train

the joint distribution between the observations and the context

labels using a single network [20] which is estimated using all

training samples. Similar approach for the statistical parametric

speech synthesis has been studied in [30], where the joint

distribution between the tonal syllable ID and the spectral and

excitation features is modeled using a multi-distribution DBN.

Second, increasing the number of hidden layers in the DBNs

didn’t achieve improvement in our subjective evaluation. A

better algorithm to estimate the mode of a DBN with less

approximation is necessary. We plan as our future work to

implement the Gaussian approximation according to (25) when

the number of hidden units is reasonably small and compare

its performance with our current implementation. Another

strategy is to adopt the sampling outputs rather than the model

modes during parameter generation. As better density models,

the RBM and DBN are more appropriate than the GMM for

generating acoustic features by sampling, which may help

make the synthetic speech less monotonic and boring. Third, in

the work presented in this paper, the decision tress for model

clustering are still constructed using mel-cepstra and single

Gaussian state PDF. To extend the RBM and DBN modeling

from PDF estimation for the clustered states to model clustering

for the fully context-dependent states will also be a task of our

future work. Besides the spectral envelopes used in this paper,

it is also straightforward to apply our proposed method to the

modeling and generation of other forms of speech parameters,

such as the articulatory features recorded by electromagnetic

articulography (EMA) for articulatory movement prediction

[40], the joint distribution between the acoustic features and

the articulatory features for articulatory control of HMM-based

speech synthesis [41], and the joint spectral distribution be-

tween the source and target speakers for voice conversion [42].
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