
Modeling Spiking Neural P systems using Timed Petri nets

Venkata Padmavati Metta
Department of Comp.Sc. and Engg.

Thapar University
Patiala, India

vmetta@gmail.com

Kamala Krithivasan
Department of Comp.Sc. and Engg.

Indian Institute of Technology, Madras
Chennai, India

kamala@iitm.ac.in

Deepak Garg
Department of Comp.Sc. and Engg.

Thapar University
Patiala, India

deep108@yahoo.com

Abstract

This paper shows that deterministic P-timed Petri nets
with inhibitory and test arcs can simulate an SN P system.
A method is proposed to translate an SN P system into
Petri net model and is illustrated with an example.

Keywords: Spiking Neural P System; timed Petri net;
inhibitory arc; test arc; membrane computing.

1. Introduction

Neurons in brain communicate with each other by sending
electrical signals of identical voltage called spikes through
synapses - links established with neighbouring neurons. The
spikes of neurons look alike but the timing and number of
spikes entering a neuron determines the way the information
is encoded. Spiking Neural P (SN P) systems introduced
by Gh.Paun[1] are mathematical models inspired from the
above stated concepts of neurobiology. SN P system is a
variant of P systems, which are a prominent computational
model that has been inspired by the way living cells are di-
vided by membranes into compartments where biochemical
reactions may take place[2].
There are several variants of SN P systems which are
evolved by adding different ingredients of neurobiology like
decaying of membrane potential[3], astrocytes[4] etc. This
paper considers the basic form called standard SN P system.
Different variants of P systems are translated into Petri
nets to complement the functional characterisation of their
behaviour in[5], [6]. To depict and simulate the behaviour
of an SN P system, we introduced the translation of SN P
system into spiking Petri nets in[7]. The spiking Petri net
introduced was a new variant of Petri net. To incorporate
the refractory period of the neuron, each input place in
the spiking petri net is inactive between enabling and firing
of the transition and does not receive any tokens from its
input transitions. In this paper we try to implement SN
P systems using already existing features like timed Petri
nets, inhibitory and test arcs to represent the refractory
period. So using the notions and tools already developed for
Petri nets, one can describe the internal process occurring

during a computation in the SN P system. It is worth noting
that as far as the rules are concerned, SN P systems are
highly concurrent in nature and Petri nets are successful
modeling paradigm, which allows concurrent systems to be
described in a formal yet graphical and well readable way.
Furthermore, Petri nets allow for computer aided simulation
and what is more, formal analysis of models based on them
is also possible.

2. Spiking Neural P System

Mathematically, we represent a spiking neural P system
(SN P system), of degree m ≥ 1, in the form Π=(O, σ1, σ2,
σ3 ,. . . , σm , syn , i0), where

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, σ2, σ3 ,. . . , σm are neurons, of the form

σi=(ni ,Ri) , 1 ≤i≤m, where
a) ni≥0 is the initial number of spikes contained

by the cell;
b) Ri is a finite set of rules of the following two

forms:
(1) E / ar−→a;t, where E is a regular expression

over O, r ≥1, and t≥0;
Number of spikes present in the neuron is de-
scribed by the regular expression E, r spikes
are consumed and it produces a spike, which
will be sent to other neurons after t time units

(2) as −→ λ, for some s ≥ 1, with the restriction
that as /∈ L(E) for any rule E/ar−→a;t of
type (1) from Ri;

3. syn ⊆ { 1, 2, 3, . . . , m} × { 1, 2, 3, . . . , m} with (i,
i) /∈ syn for 1≤ i ≤m (synapses among cells);

4. i0 ∈ { 1, 2, 3, . . . , m } indicates the output neuron.
The rules of type E / ar−→a;t are spiking rules, and they
are possible only if the neuron contains n spikes such that
an ∈ L(E) and n≥r. If E=φ then the rule is applied only
if the neuron contains exactly r spikes. When neuron σi

spikes, its spike is replicated in such a way that one spike
is sent to all neurons σj such that (i, j) ∈ syn, and σj is
open at that moment. If t = 0, then the spikes are emitted
immediately, if t = 1, then the spikes are emitted in the

25978-1-4244-5612-3/09/$26.00 c©2009 IEEE

next step and so on. In the case t ≥ 1, if the rule is used in
step d, then in step d, d + 1, d + 2, ..., d + t− 1, the neuron
is closed and it cannot receive new spikes (If a neuron
has a synapse to a closed neuron and sends spikes along
it, then the spikes are lost, biology calls this the refractory
period)). In step t+ d, the neuron spikes and becomes open
again, hence can receive spikes(which can be used in step
t + d + 1). If a neuron σi fires and either it has no outgoing
synapse, or all neurons σj such that (i, j) ∈ syn are closed,
then the spike of neuron σi is lost; the firing is allowed, it
takes place, but results in no new spikes.
The rules of type as−→ λ are forgetting rules; s spikes are
simply removed (“forgotten”) when applying. Like in the
case of spiking rules, the left hand side of a forgetting rule
must “cover” the contents of the neuron, that is, as−→ λ
is applied only if the neuron contains exactly s spikes.
Definition 2.1 (Configuration) C =
〈n1/t1, n2/t2, . . . , nm/tm〉 is a configuration where
neuron σi, i = 1, 2, 3, . . . ,m contains ni ≥ 0 spikes and it
will open after ti ≥ 0 steps. The initial configuration of the
system is described by C0 = 〈n1/0, n2/0, n3/0, . . . , nm/0〉
where ni is the number of spikes present in each neuron σi

for 1 ≤ i ≤ m, which is open initially.
A global clock is assumed in SN P system and in each
time unit each neuron which can use a rule should do it
(the system is synchronized), but the work of the system is
sequential locally: only (at most) one rule is used in each
neuron. The rules are used in the non-deterministic manner,
in a maximally parallel way at the level of the system; in
each step, all neurons which can use a rule of any type,
spiking or forgetting, have to evolve, using a rule.
Definition 2.2 (Vector rule) A vector rule v is a mapping
with domain Π such that each v(i) is at most one instance
of rule from R(i) i.e | v(i) |= 1. A vector rule v is
enabled at a configuration C if, for each neuron σi of Π,
the following hold:

1. if σi is closed and ti ≥ 2 then no rule can be used
i.e. v(i) = i0 but if ti = 1 then v(i) = iS (S stands
for spiking of the neuron after being closed for t − 1
steps).

2. if σi is open and if v(i) is of the form ij: E / ar−→a;t
then ni ∈ Parikh set of L(E) and ni ≥ r. If v(i) is of
the form ij: as−→ λ then ni is exactly s. The number
of spikes consumed and produced are called lhs and
rhs of the rule respectively.

if a vector rule v is enabled at a configuration
C=〈n1/t1, n2/t2, . . . , nm/tm〉 then C can evolve to
C′=〈n′

1/t′1, n
′
2/t′2, . . . , n

′
m/t′m〉 such that for every σi in Π:

if v(i) has a rule then

t′i =
{

t if v(i) is a spiking rule with delay t ≥ 1
0 otherwise

else // v(i) has no rule then

t′i =
{

ti − 1 if ti ≥ 1
0 otherwise

Definition 2.3 (Transition) Using the vector rule, we pass
from one configuration of the system to another configura-
tion, such a step is called a transition. For two configurations
C and C ′ of Π we denote by C ⇒ C ′, if there is a direct
transition from C to C ′ in Π.
A computation of Π is a finite or infinite sequences of
transitions starting from the initial configuration, and every
configuration appearing in such a sequence is called reach-
able. Note that the transition of C is non-deterministic in
the sense that there may be different vector rules applicable
to C, as described above.
A computation halts if it reaches a configuration where no
rule can be used. With any computation halting or not we
associate a spike train, a sequence of digits of 0 and 1,
with 1 appearing in position which indicates the steps when
the output neuron sends spikes out of the system. One of
the neurons is considered to be the output neuron, and its
spikes are sent to the environment. With any spike train
we can associate various numbers which are considered as
computed by the system. Because of the non-determinism
in using the rules, a given system computes in this way a
set of numbers.
Example 2.1 Figure.1(a) represents the initial configuration
of an SN P system Π2. It is formally represented as:
Π2 = ({a},σ1, σ2, σ3, syn,3), with
σ1 = (2, { a2 /a−→a;0, a−→ λ }),
σ2 = (1,{ a−→a;0, a−→a;1 }),
σ3 = (3,{ a3 −→ a; 0,a−→ a;1,a2 −→ λ }),
syn = { (1,2),(2,1),(1,3),(2,3) }.

This SN P system works as follows. All neurons can fire in
the first step, with neuron 2 choosing non-deterministically
between its two rules. Note that neuron 1 can fire only if
it contains two spikes; one spike is consumed, the other
remains available for the next step. Output neuron 3 sends
its spike to the environment. Both neurons 1 and 2 send a
spike to the output neuron 3; these two spikes are forgotten
in the next step. Neurons 1 and 2 also exchange their spikes;
thus, as long as neuron 2 uses the rule a−→a;0, the first
neuron receives one spike, thus completing the needed two
spikes for firing again.
However, at any moment, starting with the first step of the
computation, neuron 2 can choose to use the rule a−→a;1.
On the one hand, this means that the spike of neuron 1
cannot enter neuron 2, it only goes to neuron 3; in this way,
neuron 2 will never work again because it remains empty.
On the other hand, in the next step neuron 1 has to use its
forgetting rule a−→ λ, while neuron 3 fires, using the rule
a−→a;1. Simultaneously, neuron 2 emits its spike, but it
cannot enter neuron 3 (it is closed this moment); the spike
enters neuron 1, but it is forgotten in the next step. In this

26 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC 2009)

a2

r11 : a2/ a a ; 0
r12 : a

a
r21 : a a ; 0
r22 : a a ; 1

a3

r31 : a3 a ; 0
r32 : a a ; 1
r33 : a2

(a) SN P system)

< 2/0, 1/0, 2/0>

< 0/0, 0/0, 0/0>

< 2/0, 1/0, 3/0>

< 1/0, 0/1, 1/0>

< 1/0, 0/0, 0/1>

11, 21, 31 11, 22, 31

12, 2S, 32

12, 20, 3S

11, 21, 33

11, 22, 33

(b) Evolution

Figure 1.

way, no spike remains in the system. The computation ends
with the expelling of the spike from neuron 3. Because of the
waiting moment imposed by the rule a−→a;1 from neuron
3, the two spikes of this neuron cannot be consecutive, but
at least two steps must exist in between.
Figure.1(b) can be used for analyzing the evolution of the
system Π2. Because the system is finite, the number of
configurations reachable from the initial configuration is
finite, too. Hence, we can place them at the nodes of a
graph, and between two nodes/configurations we draw an
arrow if and only if a direct transition is possible between
them. In Figure.1(a) we represent the labelled rules used in
each neuron, with the following conventions: for each rule
we have written only the unique subscript ij; when a neuron
σi, i = 1, 2, 3 uses no rule, we have written i0, and when it
spikes (after being closed for one step), we write iS.

3. Petri net

A Petri net is a bipartite graph with two types of nodes,
place nodes represented with circles containing tokens and
transition nodes represented with bars or boxes. The directed
arcs connecting places to transitions and transitions to places
may be labeled with an integer weight, but if unlabelled are
assumed to have a weight equal to 1. A transition has a
certain number of input and output places representing the
preconditions and post conditions of the event respectively.
A transition is enabled if all of its input places have tokens
equal to or greater than the weight of the arc connecting

that place to the transition. A transition without any output
place is called a sink transition. Note that the firing of a
sink transition consumes tokens but does not produce any.
Similarly a place without any output transition is called
output place.
Many extensions to the simple Petri net model have been
developed for various modeling and simulation purposes.
These high level Petri nets include coloured Petri nets [8],
which allow tokens to have internal structure, and transitions
can have a guard function to further constrain their enabling.
Timed Petri nets in which places and/or transitions may be
assigned deterministic/probabilistic time delays [9]. Here we
have considered deterministic P-timed Petri nets in which
each place is associated with deterministic holding time to
represent the refractory period of a neuron. When time is
associated with a place; it refers to the length of time that the
tokens created in that place by any transition are unavailable
to the enabled transition.
Inhibitory arc is a special kind of arc which connects a place
with a transition and is used to test the unavailability of
tokens in a place. The inhibitor arcs thus provide a “test if
zero” condition and are represented by circle headed arcs
connecting the place to the transition. Similarly test arc,
denoted by dotted directed line connecting a place with a
transition, does not consume any content of a place at the
source of the arc by firing but it allows firing iff a token is
present in the input place.

Now we introduce the class of P-timed Petri nets with
transitions having guards, inhibitory and test arcs, to be used
in the translation.
Definition 3.1(Petri net) A P-timed Petri net is represented
by N = (P, T,A,H, S,W,Γ, G, P0), where
P = {P1, P2, P3, . . . , Pm} is a finite, nonempty set of
places.
T = {T1, T2, T3, . . . , Tn} is a finite, nonempty set of
transitions.
A ⊆ (P×T)∪(T×P) is a set of directed arcs which connect
places with transitions and transitions with places such that
P ∩ T= P ∩ A=A ∩ T=φ.
H ⊆ (P×T) is a (possibly empty) set of inhibitor arcs which
connect places with transitions and A∩H=φ.
S ⊆ (P×T) is a (possibly empty) set of test arcs which
connect places with transitions and S∩H=S∩A=φ.
W : A−→ N assigns weight W (f) to elements of f ∈ A de-
noting the multiplicity of unary arcs between the connecting
nodes.
Γ: P −→ R

+∪0 assigns holding delay, the delays associated
to place. If Γ is not defined for place Pi then place is
assumed to have no delay.
G: T −→ {true,false}, the guard function maps each transi-
tion Ti to boolean expression, which specifies an additional
constraint which must be fulfilled before the transition is
enabled.
P0 ∈ P indicates the output place with no outgoing arcs and

2009 World Congress on Nature & Biologically Inspired Computing (NaBIC 2009) 27

is empty in the beginning.
The sets of all input and output places of a transition Tj are
denoted by I(Tj)={Pi : (Pi, Tj)∈ A} and O(Tj)={Pi : (Tj ,
Pi)∈ A} respectively. Similarly the sets of input and output
transitions of a place Pi are denoted by I(Pi)={Tj : (Tj ,
Pi)∈ A} and O(Pi)={Tj : (Pi, Tj)∈ A} respectively. The
set of all inhibitor places of Tj is denoted by Inh(Tj)={Pi

: (Pi, Tj)∈ H} and the set of transitions connected by
inhibitor arcs with a place Pi is denoted by Inh(Pi)={Tj

: (Pi, Tj)∈ H}. Similarly a place Pi is a test place of a
transition Tj iff (Pi, Tj) ∈ S. The set of all test places of
Tj is denoted by Tst(Tj)={Pi : (Pi, Tj)∈ S} and the set of
transitions connected by test arcs with a place Pi is denoted
by Tst(Pi)={Tj : (Pi, Tj)∈ S}.
Definition 3.2 (Marking) A marking(state) assigns to each
place Pi a non negative integer k, we say that place Pi

is marked with k tokens. Pictorially we place k black dots
(tokens) in place Pi. A marking is denoted by M , an m-
vector where m is the total number of places. M0 is the
initial marking, the initial number of tokens in each place
Pi.
The state or marking of Petri net is changed by the occur-
rence of transition. Transition Tj is enabled iff Tj satisfies
the guard condition and its every input place has at least as
many tokens as the weight of the input arcs, inhibitor places
have no tokens and each of the test place has a token. Upon
firing the transition Tj removes number of tokens from each
of its input places(but not inhibitory places and test places)
equal to the weight of the input arcs and deposits number of
tokens into the output places equal to the weight of output
arcs. if the output place is associated with time delay, the
tokens are unavailable to its transitions for the length of time
equal to delay.
Concurrency is also a concept that Petri net systems rep-
resent in an extremely natural way. Two transitions are
concurrent at a given marking if they can be fired at the
same time i.e. simultaneously. Every transition enabled by a
marking M can fire but is never forced to fire. An important
concept in Petri nets is that of conflict. Conflict occurs
between transitions that are enabled by the same marking,
where the firing of one transition disables the other. A major
feature of net is that they do not define in any way how and
when a given conflict should be resolved, leading to non-
determinism on its behaviour.
Definition 3.3 (Step) A step is a set U of transitions which
are free enabled in a marking. A step U is free enabled at a
marking M if every input place of t ∈ U has sufficient
tokens, each inhibitor place does not contain any token,
test places has only one token each and satisfies the guard
function. A step U which is enabled at a marking M can
be executed leading to the marking M’. We denote this
by M [U〉M ′. A computation of a Petri net N is a finite
or infinite sequences of executions starting from the initial
marking and every marking appearing in such a sequence is

called reachable.
A major strength of Petri nets is their support for analysis
of many properties and problems associated with concurrent
systems such as reachability, boundedness and liveness.
The firing of an enabled transition will change the token
distribution in a net according to the transition. A sequence
of firings will result in a sequence of markings. A marking
Mn is reachable from initial marking M0 if a sequence of
firings that transforms M0 to Mn. The reachability problem
for Petri net is the problem of finding if a marking Mi is
reachable from the initial marking M0.

4. SN P Systems and Petri nets

In this section, we translate an SN P system into a
behaviourally equivalent Petri net. We also translate some
classe of Petri nets into equivalent SN P systems.

4.1. SN P System to Petri net

Let Π=(O, σ1, σ2, σ3 ,. . . , σm , syn , i0) be a spiking
neural P system. Construct Petri net N equivalent to Π using
the following procedure.

1. Each neuron σi in an SN P system is represented
with a place Pi. Output place P0 in Petri net cor-
responds to environment in an SN P system. So add
the set of neuron places {P0, P1, P2, · · · , Pn} to P .
Set M0(Pi) = ni and M0(P0) = 0 where ni is the
initial number of spikes in σi. Similar to the state of
the neuron, the state of a place Pi is maintained by
adding a status place P ′

i . Initially M0(P ′
i) = 1. The

absence of token in place P ′
i indicates that place Pi is

closed, otherwise open. Status place is not maintained
for neuron having no timed rules (with t ≥ 1) as it is
always open.

2. The arcs between a place and transition and transition
and place represents an axon. The neuron σi spikes
using rules ij. This is represented with Petri net as
follows:

a) ij : as−→ λ, the forgetting rule of an SN P
system. In Petri net, we have a sink transition
Tij with W (Pi, Tij) = s and G(Tij)= true if
M(Pi) = s.

b) ij : E / ar−→a;0. Let k1, k2, ..., kl be neu-
rons(called timed neurons) with at least one
timed rule such that (i, ki)∈ syn where 1 ≤
i ≤ l. Let y1, y2, ..., yp be neurons having
no timed rules such that (i, yi)∈ syn where
1 ≤ i ≤ p. Create and add TU to T , a set
of 2l mutually exclusive transitions for checking
each combination of states of timed neurons i.e.
TU =∪{

tijy1y2y3...ypx1x2x3...xl

}
where xi can be

ki(for open state) or k′
i(for closed state). For

28 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC 2009)

each t of the form tijy1y2y3...ypx1x2x3...xl
∈ TU ,

set W (Pi, t) = r and G(t)=true if M(Pi) is a
member of Parikh set of L(E). Also

• for each yi, set W (t, Pyi
) = 1.

• for each xi, if it is ki then add (P ′
ki

) to Tst(t)
and Pki

to O(t) else add (P ′
ki

) to Inh(t).
Here the group of transitions check the status of
output places through test and inhibitory arcs, so
that the tokens can be sent to the places which
are open at that time.

c) ij : E / ar−→a;t where t ≥ 1. Here the refractory
period of the neuron is maintained through timed
place Pij with delay Γ(Pij) = t − 1 that keeps
the token unavailable to the transitions for t− 1
steps. Add Tij to T and update A and W by
adding arcs (Pi, Tij), (P ′

i , Tij) and (Tij , Pij)
with W (Pi, Tij)=r and G(Tij)=true if M(Pi) is
a member of Parikh set of L(E).
Similar to the above rule let σi be connected
to l timed neurons(called timed neurons) and p
non-timed neurons through its synapses. Create
and add TU to T . For each t of the form
tijy1y2y3...ypx1x2x3...xl

∈ TU

• set W (t, P ′
i) = W (Pij , t) = 1.

• for each yi, set W (t, Pyi
) = 1.

• for each xi, if it is ki then add (P ′
ki

) to Tst(t)
and Pki

to O(t) else add (P ′
ki

) to Inh(t).
The initial marking of the Petri net corresponds to initial
configuration of an SN P system C0. To establish the
behavioural equivalence of Π and NΠ, we first capture the
correspondence between configurations and markings and
between enabledness of vector rule and steps.
Definition 4.1 For each marking M of NΠ the configuration
CM is such that for every neuron σi for Π, state of

σi =
{

closed if M(P ′
i)=0

open if M(P ′
i)=1

Moreover for every neuron σi of Π, we have M(Pi)=ni ∀σi

For each step of transitions U of NΠ, there is vector rule
vU such that for every neuron σi ∈ Π and rule v(i) ∈ vU ,
if t in U is a transition of the form

1. Tij with W (Pi, Tj) = s with no out going arcs then
∃ a rule v(i) of the form ij : as −→ λ.

2. Tijy1y2....ypx1x2....xl
with input arc from Pi then ∃ a

rule v(i) of the form ij : E/ar −→ a; 0.
3. Tijy1y2....ypx1x2....xl

with input arc from Pij then neu-
ron i spikes and v(i) is of the form is (s stands for
spiking).

4. Tij with input arcs from Pi and P ′
i then ∃ a spiking

rule v(i) of the form ij : E/ar −→ a; t.
if U has no transition beginning with subscript i then v(i) =
i0.

Theorem 4.1: Let M be a reachable marking of NΠ, for
any execution

1. If M [U〉M ′ then CM
vU=⇒ CM ′

2. If CM
v=⇒ C ′ then there is a step U such that v = vU ,

M [U〉M ′ and CM ′ =⇒ C ′

Proof: Let CM be a configuration of Π.
(1) We first show that vU is enabled at CM . As U is enabled
at M , by the definition 4.1, for every t ∈ U , ∃ a rule
v(i) ∈ vU such that v(i) is enabled at CM . Hence there
is C such that CM

vU=⇒ C. Moreover C = CM ′ follows
from the algorithm and definition 4.1.
(2) Let σi be a neuron such that v(i) is a rule of any one of
the four forms (a) ij: E/ ar−→a;t then the number of spikes
in the neuron σi, ni ≥ r and ni ∈ L(E). That is the rule
is enabled. (b) ij:as−→ λ then by the definition 4.1 there
exists a sink transition Tij in Ui with W (Pi, Tij) = s. (c)
is: Neuron σi spikes and sends a spike to its neighbouring
neurons. (d) i0: No rule can be used. By the definition 4.1,
∃ a transition Ui ∈ U for v(i). It therefore follows that
U =

∑
σi∈Π Ui, if v(i) = i0 then Ui = λ. Hence there is

M ′ such that M [U〉M ′. Moreover C ′ = CM ′ follows from
the algorithm and definition 4.1.
Example 4.1 Petri net NΠ corresponding to the SN P system
in Figure.1, is depicted in Figure.2. The transitions are en-
abled only if they satisfy the guard functions, which consider
the count of tokens in the input place. The Petri net NΠ has
eight places, P0 corresponds to the environment and P1,
P2, P3 correspond the neurons 1, 2 and 3 respectively. As
neurons 2 and 3 have spiking rules with t ≥ 1, the neurons
will be in closed state for one step after firing these rules.
In Petri net model the state of these places are represented
using status places P ′

2 and P ′
3. At the first step transitions

T1123, T2113, T22 and T310 corresponding to the spiking rules
used by the neurons in Π in the beginning, are enabled
with non-determinism between T2113 and T22. Transition
T310 deposits a token in the output place. Transition T1123

removes one token from place P1 and deposits in places P2

and P3.Similarly place P2 also send tokens to P1 and P3.
These tokens are consumed by transition T33 in the next step.
Places P1 and P3 also exchange their tokens through the
transitions T1123 and T2113; Thus as long as transition T2113

gets priority over T22, the place P1 gets one token, thus
completing the needed 2 tokens for enabling the transition
T1123 again.
Like in SN P system, at any moment starting with first
step of the computation, transition T22 can be enabled. That
means that token of place P1 cannot be deposited in place
P2 as it is in inactive state for one unit of time but can be
deposited in place P3. The transitions with input place as P2

cannot be live after this marking as place P2 will never get
a token. Thus place P3 gets one token, so the transition T32

will be enabled and fired in the next step. At the same time
transitions T12 will be fired, which consumes token from

2009 World Congress on Nature & Biologically Inspired Computing (NaBIC 2009) 29

P2

P3

P32

D (P32) = t -1=0

 T32

T320

T310

3

2 T33

T1123'
P1

T112'3

T1123

T2113

T22
P

22

D (P22) = t -1=0

T

T

T

T12

T112'3'
P'3

P'
2

P0

2213'

2213

2113'

Figure 2. Petri net model equivalent to SN P system

place P1. Now the place P1 is also empty. Transition T32

deposits the second token in place P0. Because there is a
delay in transition T32, the place P0 cannot get two tokens
consecutively, but requires at least two time units. The Petri
net reaches dead marking, where no transition is enabled.

4.2. Petri net to SN P system

Here we prove that every non-timed basic Petri net
N = (P, T,A,W,P0) with |I(P0)| = 1(i.e. number of input
transitions for place P0=1) and every transition t ∈ T such
that |I(t)| = 1 and W (t, Pj) = 1. N should also have
the property that for every ti, tj ∈ T if I(ti) = I(tj)
then O(ti) = O(tj) . N is converted into behaviourally
equivalent Spiking Neural P system Π=(O, σ1, σ2, σ3 ,. . . ,
σm , syn , i0) having no timed rules using the following
procedure.

1. Set O = {a}. We have environment in Π for place
P0. Let Pk is the only place connected to P0. Set i0
as k.

2. For each place Pi ∈ P except P0, add σi = (ni;Ri)
with ni = M0(Pi) to Π. For each t ∈ O(Pi) do,
(i). if O(t) = φ then add ar −→ λ to Ri else add
E/ar −→ a; 0 to Ri where E = a∗ and r = W (Pi, t)
(ii). for each Pj ∈ O(t) add (i, j) to syn if (i, j) is
not in syn.

We can prove the behavioural equivalence of both systems
in a similar way as we proved in Theorem 4.1. To construct
an SN P system for a P-timed Petri net with inhibitory and
test arcs would be more challenging.

Conclusion

In this paper, we have presented a methodology to derive
a Petri net model for spiking neural P system. We gave

a formal translation for basic class of SN P systems and
proved the equivalence between their behaviours. P-timed
Petri nets can also represent extended SN P system in[10],
where the rules in the neuron are of the form E / ar−→ap

; t, with the meaning that when using the rule, r spikes are
consumed and p spikes are produced(r ≥ p). Because p can
be 0 or greater then 0, we obtain a generalization of both
spiking and forgetting rules, while forgetting rules also have
a regular expression associated with them. This rule can be
implemented similar to the spiking rule E / ar −→ ap ;
t of standard SN P system but with output arc labeled as
p. The main idea of this paper is to generate a Petri net
model for SN P systems to allow the use of existing net
analysis techniques to study the behaviour and properties of
SN P system. We have also given translation for restricted
class of Petri nets into SN P systems. It would be interesting
to consider different variations and normal forms of SN P
systems and find out the suitable class of Petri nets which
could simulate these variations and normal forms.

References

[1] Ionescu M, Paun Gh, Yokomori T, Spiking Neural P Systems,
Fundamenta Informaticae, vol.71, No.2-3, pp.279-308, 2006.

[2] Paun Gh, Computing with Membranes, Journal of Computer
and System Sciences, vol.61, pp.108-143, 2000.

[3] Freund R, Ionescu M, Oswald M, Extended Spiking Neural P
Systems with Decaying Spikes and-or Total Spiking, ACME
FCT Workshop, Budapest, 2007.

[4] Binder A, Freund R, Oswald M, Vock L, Extended Spiking
Neural P systems with Excitatory and Inhibitory Astrocytes,
Proceedings of the 8th WSEAS international conference on
Evolutionary Computing, British Columbia, Canada , June
19-21, 2007.

[5] Kleijn J, Koutny M, Rozenberg G Process Semantics for
Membrane System, Journal of Automata, Languages and
Combinatorics , vol 11, pp.321-340, 2006.

[6] Kleijn J, Koutny M A Petri net model for membrane system
with dynamic structure, Journal of Natural Computing,
2008.

[7] Padmavati M, Kamala K, Deepak G, Spiking Neural P
Systems and Petri nets, Int. Workshop on MIR day, Nagpur,
2009.

[8] Jenson K, Coloured Petri nets: Basic Concepts, Analysis,
Methods and Practical Use, EACTS, Monographs on The-
oretical Computer Science, Springer-Verlag, 1992.

[9] Fred, Bowden D J, A Brief Survey and Synthesis of the Roles
of Time in Petri nets, Mathematical and Computer Modelling,
vol.31, No.10-12, pp.55-68, 2000.

[10] Chen H, Ishdorj T O, Paun Gh, Perez-Jimenez M J, Spik-
ing Neural P Systems with Extended Rules, Proceedings of
Fourth Brainstorming Week on Membrane Computing, Fenix
Editora, Sevilla, vol. I, pp. 241-265, 2006.

30 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC 2009)

