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Abstract: 

We review nonadiabatic molecular dynamics (NAMD) methods for modeling spin-crossover 

transitions. First, we discuss different representations of electronic states employed in the grid-

based and direct NAMD simulations. The nature of the interstate couplings in different 

representations is highlighted, with the main focus on the nonadiabatic and spin-orbit couplings. 

Second, we describe three NAMD methods that have been used to simulate spin-crossover 

dynamics, including trajectory surface hopping, ab initio multiple spawning, and 

multiconfiguration time-dependent Hartree. Some aspects of employing different electronic 

structure methods to obtain the information about potential energy surfaces and interstate 

couplings for NAMD simulations are also discussed. Third, representative applications of 

NAMD to the spin-crossovers in molecular systems of different size and complexity are 

highlighted. Finally, we pose several fundamental questions related to the spin-dependent 

processes. These questions should be possible to address with the future methodological 

developments in NAMD.  
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1. INTRODUCTION 

Nonradiative transitions between electronic states with different spin multiplicity play 

important roles in many areas of molecular science, as evident from the different names used for 

these processes, including spin-crossovers (1, 2), intersystem crossings (3), spin-forbidden 

reactions (4), and two/multi-state reactivity (5). These transitions, we will call them spin-

crossovers for consistency, can be initiated by various stimuli, such as light, temperature, 

pressure, and an external magnetic field. The concepts of spin-crossover and internal conversion 

(IC), transitions between electronic states with the same spin, are rooted in two approximations 

central to quantum chemistry. The Born-Oppenheimer approximation (BOA) separates electronic 

and nuclear motions, while the spin-free Hamiltonian in the non-relativistic Schrödinger equation 

decouples electronic motion from electronic spin. These approximations lead to nuclei 

propagating adiabatically on a single electronic state with a well-defined spin. Nonadiabatic 

processes characterized by the energy transfer between the nuclear, electronic and spin degrees 

of freedom are forbidden. However, if an energy gap between electronic states becomes small 

enough to be comparable with the nuclear kinetic energy or the relativistic spin-dependent 

energy, these approximations break down, and transitions between different electronic states 

become allowed. The probability of transition between the electronic states with the same spin 

depends on the nonadiabatic coupling (NAC) defined in the next section. The NAC between the 

electronic states with different spin vanishes due to the orthogonality of the spin eigenfunctions. 

Spin crossovers are mediated by the spin-dependent couplings (SDC), which mix the electronic 

states of different spin and can arise from the spin-orbit, spin-spin, hyperfine and an external 

magnetic field interactions. Here, we will mostly focus on the spin-orbit coupling (SOC), which 

is usually the largest contribution to SDC. 
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Modeling spin-crossovers can provide insight into photochemical reaction mechanisms, 

help to interpret complex vibronic spectra, calculate the rates of formally spin-forbidden 

reactions, and predict the lifetimes of excited electronic states. While time-independent statistical 

theories can be used to study spin-crossover kinetics (see the sidebar Nonadiabatic Statistical 

Theories), the non-equilibrium nature of spin-crossovers often requires the use of nonadiabatic 

molecular dynamics (NAMD), which propagates nuclear and electronic degrees of freedom 

(DOF) in time (6). The NAMD methods can be separated into two types. The grid-based 

methods propagate nuclear DOF on precomputed electronic potential energy surfaces (PESs), 

while in the direct dynamics methods, the electronic properties are calculated “on-the-fly” as 

nuclei propagate. Both types rely on electronic structure methods to obtain energies, energy 

gradients, and couplings for multiple electronic states at different nuclear geometries. In general, 

because spin-crossovers and ICs can happen on a similar time scale, both types of nonadiabatic 

transitions have to be considered in NAMD simulations. 

In NAMD, nuclear DOF can be propagated in time on electronic states obtained in 

several different ways (Figure 1). Most electronic structure calculations solve the spin-free time-

independent Schrödinger equation (TISE) within BOA producing a separate manifold of 

adiabatic electronic states for each spin multiplicity. As their name suggests, these states 

correspond to electrons instantaneously adjusting to nuclear motion and can have mixed 

character (for example,    /    character). However, because the Hamiltonian has no spin-

dependent terms, the states from different spin manifolds do not mix. We will call this 

representation spin-diabatic (13); it also has been called the molecular Coulomb Hamiltonian 

(MCH) representation (14). The breakdown of BOA introduces NAC between the spin-diabatic 

states with the same spin, and the addition of the spin-dependent terms into the Hamiltonian 
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leads to SDC between the states of different spin (Figure 1b). While the spin-diabatic states are 

relatively easy to obtain, the crossings of   -dimensional PESs of the same-spin states produce 

the       -dimensional conical intersections with singular NAC (avoided crossings for     ;    is the number of nuclear DOF). These features present challenges for propagating 

nuclear DOF, especially if the PESs and coupling surfaces have to be fitted for grid-based 

NAMD. Smooth PESs and couplings can be obtained by transformation into the diabatic 

representation, where electronic states preserve their character, and the singular NAC is replaced 

by the smooth interstate coupling V (Figure 1a). However, for polyatomic molecules, only an 

approximate diabatization can be achieved (15), and at least for some NAMD methods, the 

diabatic representation leads to less accurate results (14, 16). Spin-diabatic states can be also 

transformed into the fully adiabatic representation by eliminating SDC at the expense of 

introducing the non-zero NAC between the resulting spin-mixed states (Figure 1c). While 

adiabatic PESs and NAC surfaces are not suitable for fitting, the NAC localized at conical 

intersections and the ability to describe each component of spin multiplets separately (see states 

3, 4 and 5 in Figure 1c) make this representation desirable for direct dynamics (13, 14). In 

general, performing NAMD simulations in fully adiabatic representation requires the 

implementations of analytical energy gradient and NAC for spin-mixed states, which is still a 

challenge; however, an approximate “on-the-fly” adiabatization has been implemented (14).  

In section 2, we review the NAMD and some aspects of electronic structure methods for 

modeling spin-crossover dynamics. While many different flavors of NAMD have been 

developed to describe IC dynamics at conical intersections, and some of them potentially could 

be extended to model spin-dependent processes, we limit our discussion to the methods that have 

been applied to spin-crossovers. In section 3, we describe a few representative applications of 
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these methods to molecular systems of different complexity. We conclude by posing several 

fundamental questions related to the spin-dependent processes. These questions should be 

possible to address with the future methodological developments in NAMD. 

 

2. METHODS FOR MODELING SPIN-CROSSOVER DYNAMICS 

In this section, we describe three types of NAMD used to model spin-crossover 

dynamics. The stochastic trajectory surface hopping (TSH) method solves the time-dependent 

Schrödinger equation (TDSE) for electrons while propagating classical nuclei. In the multiple 

spawning method, the nuclear wave function is expanded in the adaptive basis of frozen 

Gaussians propagating in time. In the multiconfiguration time-dependent Hartree (MCTDH) 

method, the nuclear wave function is represented as a superposition of multidimensional 

products of basis functions, where both the superposition coefficients and the basis functions are 

time-dependent. In principle, all three types of NAMD can be performed on the precomputed 

(usually diabatic) PESs or as direct dynamics (usually using the spin-diabatic or fully adiabatic 

representations). However, the strength of TSH and multiple spawning methods is in direct 

dynamics, while MCTDH was originally developed as a grid-based method. Finally, since any 

NAMD simulation requires accurate electronic energies, gradients and interstate couplings, we 

discuss several aspects of electronic structure methods used to model spin-crossover dynamics.   

 

2.1. Trajectory surface hopping 

In the TSH method, the nuclear wave packet on a particular electronic state is represented 

as a swarm of independent trajectories obeying the classical Newton equations of motion (EOM). 

The force acting on the nuclei is equal to the negative energy gradient of the corresponding 
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electronic state (17–19). At each timestep, a stochastic process determines whether the system 

will propagate on the current electronic state or hop to another state leading to population 

transfer between the states. The classical propagation and purely local nature of nuclei make the 

TSH method easy to implement and widespread (20–22). Although TSH was originally 

formulated to describe ICs, it has been extended to model spin-crossovers (13, 23–26). Gonzalez 

and coworkers introduced the surface hopping including arbitrary couplings (SHARC) method 

with “on-the-fly” adiabatization of spin-diabatic states (14, 23). Persico and coworkers included 

SOC in the TSH method to study spin-crossovers in both spin-diabatic and fully adiabatic 

representations (13, 27).  

We define the full electron-nuclear Hamiltonian    as a sum of the nuclear kinetic energy    , the spin-free electronic Hamiltonian     and the SOC operator      :                                              

where r, R and s are vectors of the electronic, nuclear and spin DOF, respectively. The nuclear-

nuclear repulsion is included in    . The time-dependent electronic wave function is expanded in 

the basis of    time-independent electronic states    that depend parametrically on nuclear 

positions: 

                               
      

Inserting this wave function into the electronic TDSE with the Hamiltonian           yields the 

EOM for the coefficients (we will use the atomic units with    ): 
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where a dot above a variable indicates a time derivative,      and        are the matrix elements of 

the spin-free and SOC Hamiltonians. The NAC is defined as                        , where 

  is the nuclear velocity vector, and                   is the NAC vector. In the spin-diabatic 

representation,    are the eigenfunctions of    , and      =     , where    are the electronic state 

energies. If states I and J have different spin quantum numbers    and   ,        vanishes due to 

the orthogonality of the spin eigenfunctions. If I and J are both singlet states or           ,        vanishes. A detailed discussion of the SOC selection rules can be found in (28, 29). In 

contrast to NAC, which is mostly localized around conical intersections, SOC only weakly 

depends on molecular geometry and can lead to interstate transitions far away from the crossing 

seam of two PESs (26). In the diabatic representation, the off-diagonal elements of      are 

interstate couplings, while        should vanish (in quasi-diabatic representations, usually some 

residual NAC is still present), and the SOC selection rules are the same as in the spin-diabatic 

representation. Finally, in the fully adiabatic representation, the spin-mixed states    are the 

eigenfunctions of           and are coupled by non-zero NAC. The results of TSH simulations 

are averaged over a swarm of trajectories with initial conditions sampled from some position-

momentum distribution (30, 31). 

Among various strategies to compute the probability of transitions between electronic 

states, Tully’s fewest switches surface hopping (FSSH) algorithm (32) is the most common. In 

the generalized FSSH algorithm, the hopping probability from state I to state J in the time 

interval    is  

                                                                



   

 

 8 

where           are the elements of the electronic density matrix. For a successful hop, two 

conditions must be simultaneously fulfilled. First, for a random number r selected from the 

interval [0,1], the following must be true:  

            
                 

         

Second, because the electronic energy changes as a result of the hop, to conserve the total 

energy, the nuclear kinetic energy must be adjusted by rescaling the nuclear velocity vector. If 

velocity rescaling along the NAC vector cannot compensate for the electronic energy change, the 

hop is rejected, and the velocity component along the NAC vector is reversed (33). This is 

known as a frustrated hop. Truhlar and coworkers introduced the fewest switches with time 

uncertainty (FSTU) method, where a classically frustrated hop can occur if an allowed hopping 

geometry can be reached within the Heisenberg interval of time uncertainty (34). The TSH 

dynamics can also be performed using the Landau-Zener (35, 36) or more sophisticated Zhu-

Nakamura formulas (37, 38) to calculate the hopping probability at the crossings between 

electronic states. Standard FSSH formulation suffers from overcoherence problem (39, 40), 

which implies that the off-diagonal density matrix elements     do not necessarily decay during 

the dynamics (see the sidebar Spin Decoherence in Molecular Magnets and Qubits). Several, 

decoherence correction schemes were proposed (39, 41–44) to correct for this behavior. 

Although the FSSH algorithm is often criticized as an ad hoc theory, there have been attempts to 

show that the decoherence-corrected surface hopping can be obtained from the mixed quantum-

classical Liouville equation (45–48).  

 

2.2. Multiple spawning 
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The multiple spawning method belongs to a family of techniques where the nuclear wave 

function is represented as a linear combination of the Gaussian basis functions, which are local in 

nuclear configuration space (54). In the full multiple spawning (FMS) method (55, 56), these 

trajectory basis functions (TBFs) propagate in time on multiple electronic states. If TBFs are 

properly distributed in configuration space, FMS approaches the exact solution of TDSE. 

However, for systems with more than a few DOF, propagating a large number of TBFs is too 

computationally expensive. To minimize the basis set size without significant loss in accuracy, 

FMS uses the adaptive basis set that is expanded by spawning new TBFs in the regions of strong 

coupling between electronic states (Figure 2). In principle, FMS can be employed as a grid-

based method requiring the global knowledge of PESs and couplings. However, the strength of 

localized TBFs is fully utilized in the direct dynamics ab initio multiple spawning (AIMS) 

method (56–58), which uses the saddle-point approximation (SPA) and the independent first 

generation approximation (IFGA) (59).  

The FMS/AIMS formalism is based on the expansion of the total wave function in the 

basis of the electronic wave functions   : 
                

                      

The nuclear wave functions    are superpositions of the multidimensional Gaussian TBFs    ,  
                                                    

       

where        are complex amplitudes and NTBF is a total number of TBFs. Each TBF follows a 

classical trajectory with the position and momentum centers         and         propagating on the 

electronic state I according to the classical Hamilton EOM, while the phase         propagates 
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semiclassically. The time-independent Gaussian widths collected in the vector   are 

parametrized for each type of nucleus. The following EOM for amplitudes is obtained by 

inserting Equations 7 and 8 into the TDSE: 

                        
       

Equation 9 is written in matrix form, with the elements of the overlap and Hamiltonian matrices 

defined as                        

                           

                                          

The overlap matrix elements and their time-derivatives arise due to the nonorthogonality of 

TBFs propagating on the same electronic state. The diagonal Hamiltonian matrix elements are 

electronic state energies, and the off-diagonal elements are interstate couplings. It is important to 

point out that, in contrast to the independent trajectories in the TSH method, the TBFs in 

FMS/AIMS are coupled, which prevents overcoherence (60). The original AIMS method has 

been developed to study ICs at conical intersections with NAC arising from the kinetic energy 

matrix elements in Equation 12. To model spin-crossovers between spin-diabatic states, AIMS 

was generalized by adding SOC to the Hamiltonian (61–63). 

The matrix elements in Equation 12 are obtained by integration over all electronic, 

nuclear and spin DOF, which requires the knowledge of the entire PESs and coupling surfaces. 

The SPA makes the direct AIMS dynamics possible by using the Taylor expansion to 

approximate these matrix elements. In the zeroth-order SPA, the matrix elements between two 
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TBFs centered at      and     are calculated at the position of their centroid    , which removes the 

problem of nonlocality (55, 64). For example, the SOC matrix elements are approximated as                                                       

It is important to point out that for SOC, the SPA works very well because the magnitude of 

coupling does not change drastically around the state crossing.  

 The key feature of AIMS is an adaptive basis set that is expanded by spawning new TBFs 

in the regions of strong coupling between electronic states. For two TBFs propagating on the 

states I and J with different spin, the spawning is triggered if a preset threshold becomes smaller 

than the effective coupling parameter 

                                            

The denominator, defined as the energy gap between two states, is introduced to avoid an 

excessive spawning far from the state crossing regions. A new TBF is created with zero 

amplitude, and therefore zero population. This is an important distinction from the stochastic 

methods, such as TSH, where a mere fact of a hop means that the population has been transferred 

between electronic states. In AIMS, the population is transferred through the solution of the 

TDSE accounting for quantum effects in a natural way. Although a choice of the coupling 

parameter ensures that spawning occurs only where significant population can be transferred, the 

event of spawning itself does not automatically translate into population transfer. Therefore, 

spawning is just an efficient and physically motivated way of reducing the basis set size. During 

a spawning event, classical energy conservation can be maintained by rescaling both the 

momentum and the position of the new TBF. The finite size of TBFs allows for significant 

adjustments of their momenta and positions, potentially reducing the number of frustrated 
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spawning events compared to the number of frustrated hops in the TSH method. A detailed 

description of the spawning algorithm can be found in (56, 57, 65).  

The IFGA reduces the cost of AIMS simulations by treating the initial TBFs 

independently. Every initial TBF stays coupled to all TBFs that it spawned. This is contrasted 

with FMS, in which every TBF is coupled to every other TBF, even to TBFs spawned by other 

initial basis functions, resulting in the number of matrix elements to be calculated growing 

quadratically. While rigorous, the FMS approach is inefficient because initial TBFs often quickly 

move away from each other, and their overlaps become negligible. Similar to TSH, the results of 

AIMS dynamics are averaged over multiple simulations, each starting from a single initial TBF, 

with positions and momenta sampled from some distribution (56, 66). It is important to point out 

that even if IFGA is applied and multiple AIMS simulations are run independently, the number 

of spawned basis functions in individual AIMS simulations can become too large, drastically 

increasing simulation time or even rendering it intractable. In such cases, a careful tuning of the 

spawning threshold parameter is required. In addition, this problem can be alleviated  by using 

the recently introduced stochastic-selection ab initio multiple spawning (SSAIMS) method, 

which essentially separates groups of TBFs into independent simulations if these groups stay 

uncoupled during dynamics (67). Such situation is very common in high-dimensional problems.  

 

2.3. Multiconfiguration time-dependent Hartree 

The TDSE can be solved by expanding nuclear wave function into a time-independent 

orthogonal basis set, such as the eigenfunctions of a harmonic oscillator, with time-dependent 

coefficients. While such grid-based approach rigorously describes the motion of a nuclear wave 

packet, it scales exponentially with the number of nuclear DOF, and therefore, applicable to only 
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small systems. In MCTDH (68–70), the computational cost is lowered significantly by 

representing a nuclear wave function as a linear combination of f-dimensional products of the 

single particle functions (SPFs)  :  

                           
    

  
                  

          

where           are the nuclear coordinates,  f is the number of nuclear DOF,    is the number 

of SPFs for the kth DOF, and        are the time-dependent expansion coefficients. Each SPF is 

expressed as a linear combination of the time-independent primitive basis functions   with the 

time-dependent coefficients:  

                                   
           

Therefore, the MCTDH ansatz employs standard wave packet expansion, but with time-

dependent SPFs. This reduces the number of basis functions required for a converged calculation 

by providing the variationally determined basis for the optimal description of the evolving wave 

packet.  

There are two constraints invoked into the formal MCTDH derivation: (a) initially 

orthonormal SPFs remain orthonormal at all times; (b) the constraint operator ensuring the 

uniqueness of the nuclear wave function is Hermitian (70). The wave function defined by 

Equations 15 and 16 is inserted into the Dirac-Frenkel variational principle to obtain the EOM 

for the time-dependent expansion coefficients and SPFs:                               
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In Equation 17, composite indices and the configuration function    are defined as           

and               . In Equation 18,                       
 is the vector of SPFs, and     is 

the   -dimensional identity matrix. The Hamiltonian    is split into the separable terms       
acting only on a single DOF, and     that includes all correlations between DOF.         and      are the mean-field and density matrices. The projector operator      ensures that the SPF 

time-derivative is orthogonal to the space spanned by SPFs. The eigenfunctions of the density 

matrix are called natural orbitals, and the eigenvalues correspond to populations of these orbitals. 

As the space spanned by the natural orbitals is equivalent to that of the original SPFs, the natural 

orbital populations provide a measure for the quality of the MCTDH wave function. If the 

population of the highest natural orbital is negligibly low, this orbital (SPF) is redundant, and 

hence, the MCTDH wave function is of good quality. The time-dependent Hartree method is a 

limiting case of MCTDH with all       On the other hand, the standard wave packet 

expansion into a primitive basis corresponds to         When SPFs do not form the complete 

basis set, the variational method ensures that the available SPFs provide the best possible basis 

set to describe the wave function at each timestep. The EOM (Equations 17 and 18) are coupled 

nonlinear differential equations that can be solved by a predictor-corrector integration scheme. 

However, a suitable integration scheme, called constant mean-field (CMF) integration has been 

designed to solve these EOM accurately and efficiently (70, 71).  

To describe nonadiabatic transitions, an extra electronic DOF with the number of SPFs 

equal to the number of electronic states is added. If only one set of SPFs is used to describe all 

electronic states, this is called a single-set formulation. If the PESs are very different from each 

other, a multi-set formulation with different SPF sets for each electronic state is preferable (71). 

A vibrational mode combination technique is introduced to further reduce the computation cost. 
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The idea is to combine the physical coordinates into particles or logical coordinates, and thereby, 

shorten the size of the expansion coefficient vector. A good practice is to combine strongly 

correlated modes in one particle and keep all the particle grids similar in size. Alternatively, the 

DOF with similar vibrational frequencies can be combined. It is advisable not to combine too 

many modes and not to construct particles with large size. The idea of mode combination is the 

foundation for multilayer (ML) MCTDH  (72), which was originally developed by Wang and 

Thoss (73) and later reformulated by Manthe (74) for an arbitrary number of layers. ML-

MCTDH is very computationally efficient and can handle more than 1000 nuclear DOF (75), but 

strict convergence can be difficult to achieve.  

Another important MCTDH development is the variational multiconfigurational Gaussian 

wave packet (vMCG) method (76–78). However, to the best of our knowledge, it has not yet 

been applied to spin-crossovers. The idea was conceived from the G-MCTDH method (79, 80), 

where some of SPFs are replaced by Gaussian functions. Replacing all SPFs by 

multidimensional frozen Gaussians, as done in vMCG, leads to the same wave function as in the 

FMS method. However, the Dirac–Frenkel variational principle used in vMCG yields the EOM 

for the expansion coefficients and the Gaussian parameters that are different from the ones in 

FMS. Similar to FMS/AIMS, the direct dynamics version of vMCG has been also implemented 

(78).  

Because the grid-based MCTDH works with non-local PESs and couplings, it is 

necessary to remove the singular NAC by transforming the adiabatic or spin-diabatic electronic 

states to the diabatic representation (81–83). Vibronic coupling models are often used to 

construct the diabatic Hamiltonians (3, 84). For the model with    electronic states, the   -
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dimensional Hamiltonian matrix      is expanded around some, usually the Frank-Condon (FC), 

geometry   :                                       

where    is the ground state potential, and      is the diagonal matrix of the vertical excitation 

energies. Truncating the series at     and      produces the linear vibronic coupling (LVC) 

and quadratic vibronic coupling (QVC) models, respectively. The LVC parameters, the diagonal 

forces   and the off-diagonal interstate couplings   in     , for each normal mode    are  

                                                       
          

where    is the adiabatic energy of the electronic state  . The spin-vibronic Hamiltonian can be 

obtained as a sum of the spin-free vibronic Hamiltonian      and the spin-orbit Hamiltonian      (85–89). However, it is possible to construct the spin-vibronic Hamiltonian directly from 

the fully adiabatic spin-mixed states (90–94).  

 

2.4. Electronic structure methods 

Here, we discuss some practical aspects of employing different electronic structure 

methods to model spin-crossover dynamics. For comprehensive review of electronic structure 

methods used in NAMD the reader is referred to (22, 58, 60, 95). The success of NAMD 

simulations depend on the accuracy of the electronic structure methods used to obtain the 

energies, energy gradients, and couplings for multiple electronic states at different molecular 

geometries, as has been demonstrated in the recent TSH study of the spin-crossover dynamics in 

thioformaldehyde (96). On the other hand, because the number of electronic structure 

calculations limits the timescale of direct NAMD simulations and the number of nuclear DOF in 
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grid-based dynamics, the electronic structure methods must be computationally efficient. For 

example, a 2 ps direct TSH simulation with the average 0.2 fs time step (often a variable time 

step is used) and a small sampling over 100 trajectories will require 106 electronic structure 

calculations. Assuming the trajectories can be run in parallel, to complete them within one week 

will require calculating energies, gradients and couplings for multiple electronic states 

approximately every minute. A similar AIMS simulation, which have to calculate matrix 

elements between TBFs, will require even more electronic structure calculations. For grid-based 

NAMD, the same 106 electronic structure calculations will be required to build the global PESs 

and coupling surfaces for a system with 3 nuclear DOF, assuming the calculations generate a 

dense 3-dimensional grid with 100 points per each DOF. Modern surface interpolation 

techniques aimed to overcome the “curse of dimensionality” by using the sparse grids and 

focusing on the relevant parts of PESs can push the number of DOF to 24-39 (8-13 atoms), for 

roughly the same number of electronic structure calculations (97–99). Constructing the vibronic 

Hamiltonian models commonly used with the MCTDH method is less computationally 

expensive. Assuming the same 100 electronic structure calculations per vibrational mode, the 15-

mode LVC and QVC models will require roughly 15 100=1500 and 152 100/2=11250 

calculations, respectively. However, these models typically describe only small parts of PESs in 

the vicinity of the FC geometry. The electronic structure methods used in the direct NAMD must 

be also very reliable. A failure to produce smooth electronic energies, gradients and couplings 

during time propagation can lead to the failure of the entire simulation. 

 Because of their computational efficiency, the density functional theory (DFT) and 

multiconfigurational self-consistent field (MCSCF) based methods are widely used in direct 

NAMD. The conventional linear-response time-dependent DFT (LR-TDDFT) method is a 
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popular choice. However, the LR-TDDFT reliance on a single-reference closed-shell wave 

function for the ground state and singly excited configurations for excited states limits its 

applicability and accuracy. The situations with strongly multi-configurational electronic states, 

such as diradical states in organic molecules, electronic states of transition metal complexes, and 

crossing seams between the ground and excited electronic states cannot be described accurately. 

The excited states dominated by double excitations also cannot be modeled by conventional LR-

TDDFT. The spin-flip TDDFT capable of describing the multi-configurational and doubly 

excited electronic states (100) could become an important method for modeling spin-crossover 

dynamics.  

The MCSCF methods, including the complete active space self-consistent field 

(CASSCF) version, are well-suited for the direct NAMD simulations of the processes where 

multiple electronic configurations play an important role, assuming relatively small active spaces 

can describe these processes. Efficient implementations of analytical energy gradient, NAC and 

SOC for state-averaged (SA)-CASSCF are widely available. However, neglecting the dynamic 

electron correlation in CASSCF can lead to incorrect energy gaps between electronic states of 

different character. While covalent states often have a significant contribution from multiple 

electron configurations, and therefore, are stabilized by the static correlation recovered by 

CASSCF, for ionic states dominated by a single configuration, little correlation energy is 

recovered. This leads to the overstabilization of covalent states with respect to ionic states, which 

in turn can affect the location of state crossings and overall outcome of NAMD simulations. 

Another important issue is related to the selection of the active space (101), which, ideally, 

should describe all possible outcomes of an NAMD simulation. However, such active space is 

usually too large to be practical. Therefore, a smaller active space must be selected to describe 
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the electronic transitions of interest and the parts of a molecule where chemical bonds are 

expected to break and/or form. This approach could lead to NAMD oversampling the reaction 

pathways best described by the chosen active space at the expense of other pathways. In 

addition, if dynamics leads to molecular geometries that are not correctly described by the 

selected active space, the active space orbitals could rotate out of the active space. The results of 

such sudden active space change include discontinuities in electronic energies, gradients and 

couplings, as well as failed CASSCF convergence often leading to the failure of the entire 

NAMD simulation. 

While using the post-MCSCF methods, such as multi-reference perturbation theory and 

configuration interaction, to account for dynamic electron correlation in direct NAMD is 

possible, it is often impractical due to the high computational cost. This led to the development 

of parametrized approaches, such as scaled-CASSCF (102),  -CASSCF (103), and floating 

occupation molecular orbitals CASCI (104–106). Despite the fact that these methods were 

developed to model IC dynamics, they are also applicable to spin-crossovers. In the future, other 

emerging multireference methods with analytical energy gradients, NAC and SOC (95) are 

expected to find applications in modeling spin-crossover dynamics.       

For constructing the vibronic coupling Hamiltonian models commonly used in the grid-

based dynamics, the requirements for electronic structure methods are less stringent than for 

direct dynamics. A much smaller number of electronic structure calculations is required, and the 

failure of any particular calculation does not lead to the failure of the NAMD simulation. Also, 

implementations of analytical energy gradient and couplings, while helpful, are not required. As 

a result, the post-MCSCF methods, such as MS-CASPT2 and MR-CISD, can be used to obtain 

the vibronic Hamiltonian parameters. However, these reduced requirements come at the price of 
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restricting dynamics to the relatively small regions of PESs where vibronic coupling models are 

valid. 

The most common approach to calculate SOC between spin-diabatic states is the first-

order perturbation theory in combination with the Breit-Pauli or Douglas-Kroll-Hess spin-orbit 

Hamiltonians (29, 107, 108). Such calculations produce the SOC matrix elements between the 

individual    components of the spin states. The root-mean-square of these matrix elements for 

the two states with spin S and S' is defined as the SOC constant representing the effective 

coupling between two spin states (29). The SOC matrix elements have been implemented for the 

multireference (29, 109, 110), DFT (111–114) and single-reference (115) methods. For the 

systems with heavy elements where S is not a good quantum number, including complexes of 

third-row transition metals, lanthanides and actinides, it is desirable to carry out NAMD 

simulations in the spin-adiabatic basis with the NAC between the spin-mixed states driving the 

interstate population transfer. While such spin-adiabatic simulations are starting to emerge (25, 

116–118), the progress requires interfacing NAMD with the electronic structure methods capable 

of calculating the analytical NAC between the spin-mixed states (119, 120). 

 

3. APPLICATIONS 

In this section, we describe several selected applications of NAMD to model spin-

crossovers in systems of different complexity. First, we focus on the SO2 molecule, which due to 

its small size and complex photophysics has been studied with the grid-based methods and 

several flavors of TSH dynamics. Second, we describe two test applications of the AIMS method 

to spin-crossovers in the GeH2 and H2CS molecules. Finally, we highlight the capabilities of 

NAMD to model spin-crossovers in large systems by discussing the full-dimensional direct TSH 
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simulations of the [Ru(bpy)3]
2+ complex and the MCTDH modeling of the active center of 

myoglobin protein using a reduced dimensionality LVC model. 

  

3.1 SO2 molecule 

The SO2 molecule has been studied with different NAMD approaches, including full-

dimensional grid-based quantum dynamics (85, 121) and direct TSH dynamics (122, 123). Xie et 

al. constructed three-dimensional PESs for the lowest singlet (           ) and triplet 

(           ) states using the MRCI+Q/aug-cc-pVTZ level of theory with the full-valence active 

space (121). Only two singlet states and the lowest triplet state were included in the NAMD 

performed in the quasi-diabatic representation with constant SOC. The Chebyshev propagation 

to more than 1200 fs was carried out in the Jacobi coordinates using the discrete variable 

representation (DVR) for the radial DOF and the finite basis representation (FBR) for the angular 

DOF. This study showed a reasonable agreement between the calculated and experimental 

absorption spectra and demonstrated the effect of the lowest triplet state on the excited state 

dynamics. The calculated electronic state population showed that the spin-crossover between       and       states occurs within 100 fs. Köppel and coworkers also investigated the SO2 

photoexcitation dynamics with triplet states using the DVR based quantum dynamics (85). They 

obtained the PESs of the lowest six     states, which are symmetry-isolated from the    manifold, 

with MRCI+Q/cc-PVTZ and the full-valence active space. The triplet     1 components 

were combined into the symmetric (+) and antisymmetric (–) states (Figure 3). Three-

dimensional SOC surfaces were calculated using the Breit-Pauli Hamiltonian. After diabatization 

of the six-state model Hamiltonian, the NAMD simulations were initiated from the vertically 

excited 1B1 state. After 1 ps, the populations of the 1B1 and 1A2 states were 24% and 41% 
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respectively, while 25% of the population was distributed over the two 3B2 components, and 

remaining 10% decayed to 3B1(–) and 3A2(–) states. The overall dynamics was described as a 

three-step process with the characteristic time intervals 0-16 fs, 55-65 fs and 150-165 fs. In the 

first step, the 1B1 3A2 spin-crossover occurs in the FC region around the crossing point labeled 

as ISC3 in Figure 3, followed by the rapid 3A2 3B1 IC through the conical intersection CI2. 

During this time, most of the singlet population is transferred to 1A2 via CI1. In the second step, 

the population on 1A2 propagates into the region of smaller bending angle, and the 1A2  3B1 

spin-crossover takes place at ISC5. In the third step, the wave packet returns to the FC region 

repeating the first step population transfer. This study confirmed the important role of the triplet 

states in the deactivation process of SO2 and demonstrated the complexity of nonadiabatic 

dynamics, even in small molecules.   

The deactivation pathways in SO2 were also studied by Gonzalez and coworkers using 

the direct TSH dynamics (122). They have run 111 trajectories on the four lowest singlet and 

three lowest triplet states calculated at the MR-CIS/ANO-RCC-VDZP level of theory with SOC 

calculated using the effective Fock-type spin-orbit operator. The simulations showed a rapid 1B1  1A2 IC, followed by a significant population transfer from 1A2 to 3B2 with small amount of 

population going to 3B1 via spin-crossovers. During 700 fs dynamics, almost 50% of the total 

population was transferred from 1A2 to 3B2 with a time constant of 410 fs. Because the 1A2 3A2 

transition is El-Sayed forbidden, the population of 3A2 state at the end of the simulation was 

negligible. The fit of total triplet state population produced the effective spin-crossover time 

constant of 540 fs. Franco de Carvalho and Tavernelli performed LR-TDDFT based TSH 

simulations on SO2 in the gas and liquid phases calculating the Landau-Zener transition 

probabilities at the state crossings (123). Two singlet (S1 and S2) and three triplet (T1, T2 and T3) 
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states were included in the 50-trajectory simulation. Again, a fast S2 S1 IC, followed by the 

S1 T2 and S1 T3 spin-crossovers were observed. These were followed by population transfer to 

T1 via successive ICs. The liquid phase QM/MM simulations predicted the effective spin-

crossover rate that is about twice faster than that in the gas phase. Recently, Gonzalez and 

coworkers parameterized an LVC model for SO2 using only a single excited state electronic 

structure calculation and a ground state vibrational frequency calculation. The model was used to 

carry out a 200-trajectory TSH simulation on four singlet and three triplet diabatic states (124). 

This work demonstrated that, at least for this small system, the main timescales predicted by 

direct dynamics simulations can be reproduced with the LVC model dynamics while drastically 

reducing computational expenses.  

 

3.2 Applications of AIMS to GeH2 and H2CS 

The AIMS method has been tested on the spin-crossover between the lowest excited 3B1  

and ground 1A1 states of  GeH2 (61, 62). The spin-diabatic states were obtained using the full 

valence active space CASSCF and unrestricted DFT (B3LYP) methods with 6-31G* basis set, as 

implemented in the GAMESS suite of programs (125). The TBFs were propagated using the 

state-specific energies and gradients, while SOC was calculated perturbatively using the SA(2)-

CASSCF orbitals and the Breit-Pauli Hamiltonian (126). In the DFT-based dynamics, SOC was 

also evaluated using the high-spin unrestricted DFT orbitals. The 48 initial TBFs, which started 

form the FC region with the initial conditions sampled from the Wigner distribution, generated 

about 1200 TBFs during the 150 fs simulations. Due to the presence of a heavy atom in GeH2, 

the SOC between the two states is relatively large (350 cm-1) leading to a fast decay of the 

excited state population. After 150 fs, around 60% of population was transferred in both 
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CASSCF and DFT simulations. Surprisingly, the CASSCF and DFT-based dynamics predicted 

essentially the same lifetime for the 3B1 state (186 fs and 182 fs). However, this agreement is 

believed to be due to a fortunate cancelation of two effects: the higher spin-crossover energy 

barrier and stronger SOC predicted by DFT compared to the corresponding CASSCF values. 

Another implementation of the generalized AIMS method has been used to study the 

spin-crossover dynamics in thioformaldehyde (63). The simulations were performed at the 

SA(4)-CASSCF(4,3)/6-31G* level of theory and included four electronic states (S0, S1, T1, T2). 

The 20 initial TBFs sampled from the Wigner distribution were started from the FC region on the 

S1 state. During the 200 fs dynamics, 326 TBFs were spawned with 306 of them on the triplet 

states (Figure 4). The population transferred to T1 was negligible, whereas T2 had a significant 

population of 8% after 200 fs. These results can be explained by El-Sayed’s rule, which predicts 

a stronger SOC between the states of different character. Therefore, the S1 state with nπ  
character is coupled stronger to the ππ  T2 state than to nπ  T1. As the C=S bond time evolution 

indicates, the dynamics of TBFs on the nπ  states S1 and T1 are similar, whereas the T2 TBFs 

have a longer average C=S bond consistent with the ππ  character of the T2 state. While the 200 

fs simulations were too short to calculate the accurate spin-crossover rates, they provided 

valuable qualitative insight into the H2CS nonadiabatic dynamics. 

Limitations of the direct dynamics when applied to spin-crossovers arise from the 

generally longer timescale of these processes compared to ICs. In the AIMS method, longer 

trajectories required for the spin-crossover simulations are challenging because of the growing 

size of the adaptive basis set. The need to calculate the matrix elements between each TBF pair 

results in a superlinear growth of computational cost. Techniques to reduce the number of TBFs, 

such as removal of TBFs with small contributions to the total wave function and careful selection 
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of spawning criteria can significantly accelerate AIMS simulations. For high-dimensional 

systems, SSAIMS method (67) can drastically reduce the computational cost by uncoupling 

groups of TBFs in the simulation without sacrificing the accuracy. Another way to overcome the 

quickly growing basis set problem is to accelerate the electronic structure calculations through 

parallelization and the use of graphical processing units (127). 

 

 

 

3.3 Large systems 

Due to its simplicity and computational efficiency, the direct TSH method is the most 

widely used type of NAMD to model spin-crossovers in various systems (24, 25, 27, 128–134). 

The grid-based TSH dynamics on the precomputed PESs is also used to study spin-crossovers in 

small molecules (135–140). A recent study of the [Ru(bpy)3]
2+ complex is an excellent example 

demonstrating the capability of direct TSH dynamics to model spin-crossovers in large systems 

(132) . This complex serves as a prototype for a class of compounds where ultrafast spin-

crossovers occur between the singlet and triplet metal-to-ligand-charge transfer (MLCT) states. 

The electronic energies, gradients, NAC and SOC were calculated with LR-TDDFT using the 

PBE functional. Since the density of excited states is very high, 101 trajectories were initialized 

from different singlet excited states and propagated for 30 fs on the manifold of 15 singlet and 15 

triplet states (Figure 5). Almost 65% of the total population was transferred to the triplet states 

corresponding to the time constant of 26 3 fs, which is in good agreement with the experimental 

value of 15 10 fs. Two interesting observations came out of this study. First, in contrast to 

Kasha’s rule, the spin-crossovers occur between the high-lying singlet and triplet states around 



   

 

 26 

the FC geometry. Second, in addition to the high density of states and strong SOC (up to 350 cm-

1), the vibrational motions of the N and Ru atoms play a major role in promoting the spin-

crossovers.  

There are multiple examples of including SOC in the quantum grid-based molecular 

dynamics (86–89, 141) (see the sidebar Spin Effects in Atom-Diatom Collisions). To overcome 

the “curse of dimensionality” in large systems, reduced-dimensionality model Hamiltonians must 

be constructed by choosing the most important nuclear DOF, as in the recent study of the spin-

crossover dynamics of CO photodissociation from the active center of myoglobin protein (89). 

The geometry optimization and normal mode analysis of the singlet ground state were carried out 

at the B3LYP/LAN2DZ level of theory. The excited state energies were calculated using the 

CASSCF(10,9)+CASPT2/ANO-RCC-VDZ level of theory, and the SOC was obtained 

perturbatively using the Douglas-Kroll-Hess Hamiltonian. The diabatic model Hamiltonian 

included 15 vibrational modes and a total of 179 singlet, triplet and quintet electronic states. The 

main results of the ML-MCTDH wave packet dynamics are presented in Figure 6. In the ground 

state, Fe(II) resides in the porphyrin plane with the Fe(II)-CO distance of 1.80 Å. Upon 

photoexcitation to the bright singlet Q band, the complex experiences the Jahn-Teller symmetry 

breaking and the population transfer to the singlet 1MLCT states within 26 fs. Since the 1MLCT 

states are strongly spin-orbit coupled to the triplet 3MLCT manifold, a rapid singlet-triplet spin-

crossover takes place. Finally, the population is transferred from 3MLCT to the quintet 5MLCT 

state leading to CO dissociation and Fe moving out of the porphyrin plane into a square-

pyramidal geometry. The predicted time constants for the singlet-triplet and triplet-quintet spin-

crossovers (76 15 fs and 429 70 fs) are in excellent agreement with the experimental rates.  
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CONCLUSIONS AND FUTURE DIRECTIONS 

In the last decade, spin-crossover dynamics evolved from a somewhat exotic niche within 

the field of nonadiabatic dynamics primarily concerned with ICs at conical intersections to a very 

active area of research. This rapid development has been driven by the realization that, despite 

being mediated by relativistic effects, spin-crossovers can occur on a time scale similar to that of 

ICs, even in molecules without heavy atoms where the relativistic effects have been traditionally 

neglected. Expanding the capability of NAMD to model spin-crossovers lead to a strong interest 

in nonadiabatic dynamics in the transitional metal and even lanthanide complexes, where spin-

dependent processes play a central role. These new methodological developments also raised 

multiple fundamental questions: How strong the SOC can be before we need to completely 

abandon the spin-diabatic representation, and therefore, the concept of spin-crossover? When the 

spin-dependent relativistic effects can be accounted for using the perturbation theory and when 

they must be treated variationally at the molecular orbital level (interestingly, the perturbation 

approach seems to work reasonably well for lanthanide complexes)? Can the higher-order 

effects, such as the spin-spin and hyperfine couplings, drive spin-crossovers, especially if SOC is 

small as between states with   >1? Can an external magnetic field be used to control the spin-

crossover rates in photochemistry, thermally activated spin-forbidden reactions, and molecular 

magnets? The future development of the NAMD and electronic structure methods, some of 

which we attempted to describe in this review, should help to answer these questions. 

 

SUMMARY POINTS 
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1. Spin-crossovers, transitions between electronic states with different spin multiplicity, are 

common and can be initiated by different stimuli, including light, temperature, pressure, 

and magnetic field. 

2. While spin-crossovers mediated by the relatively weak spin-orbit and higher-order 

couplings often occur on a slower time scale than ICs, these two types of nonadiabatic 

processes can compete with each other. 

3. The NAMD methods originally developed to simulate ICs have been extended to model 

spin-crossover dynamics, with the goals of predicting the spin-crossover rates and 

gaining insights into the reaction mechanisms involving electronic states with different 

spin.  

4. Because building the full-dimensional PESs and interstate coupling surfaces is not 

practical for systems with more than a few nuclear DOF, the direct and reduced-

dimensionality NAMD methods are the most common approaches to model spin-

crossover dynamics. 

5. The NAMD simulations require accurate and computationally efficient electronic 

structure methods. These methods must produce accurate energies, energy gradients and 

couplings for multiple electronic states at different molecular geometries.  

 

FUTURE ISSUES 

1. At what point relativistic effects become too strong to justify working in the spin-diabatic 

basis? 
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2. How the slow spin-crossovers can be modeled using NAMD? Perhaps some combination 

of the short NAMD simulations and the nonadiabatic statistical theories can be 

developed. 

3. Can the higher-order effects, such as the spin-spin and hyperfine couplings, influence the 

spin-crossover rates? This is especially important for the situations when the SOC is 

small. 

4. Can the effect of an external magnetic field on the spin-crossover rates be modeled with 

NAMD? This should help to understand how the spin-crossover dynamics can be 

controlled with a magnetic field. 

5. Can computationally efficient multireference electronic structure methods be developed 

for direct NAMD? Such methods must account for dynamic electron correlation and have 

analytical energy gradient, NAC and SOC.  
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Sidebars 

NONADIABATIC STATISTICAL THEORIES 

 
Nonadiabatic statistical theories (NASTs) are based on the assumption that the rate of intra-

molecular energy distribution is much faster than the spin-crossover rate (7–9). These theories 

can account for quantum effects, such as tunneling and zero-point vibrational energy (10), and 

are ideally suited to study kinetics of slow spin-crossovers in large complex systems for which 

long molecular dynamics simulations are not feasible. NASTs require electronic structure 

information only at very few nuclear geometries, making these theories compatible with the 

high-level electronic structure methods (10, 11) and molecular fragmentation techniques (12).  

 

SPIN DECOHERENCE IN MOLECULAR MAGNETS AND QUBITS 

 

Electron spin and orbital angular momentum are responsible for the magnetic properties of the 

atomic and molecular systems that have been proposed for high-density memory and quantum 

information applications (49, 50). In molecular magnets, spin relaxation (population transfer 

between spin states) is responsible for the loss of magnetization, while spin decoherence is 

related to the loss of quantum information in spin qubits. The ability to predict the spin 

relaxation (T1) and decoherence (T2) times is critical for the development of practical spin-

based molecular magnets and qubits with long lifetimes. Depending on the system and 

operating temperature, the spin-vibronic and hyperfine interactions can be responsible for 

electron spin relaxation and decoherence (51–53). 
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SPIN EFFECTS IN ATOM-DIATOM COLLISIONS 

 

It is important to mention the full-dimensional nonadiabatic quantum dynamics calculations on 

collision reactions between an atom and a diatomic molecule that include the SOC effects 

(142–145). For example, considerable efforts have been devoted to construct the spin-vibronic 

PESs for the F+H2 reaction (146–148), where the excited spin-orbit state F*(2P1/2) plays a 

major role in low energy collisions. The quantum dynamics calculations carried out on these 

PESs successfully reproduce the experimental collision cross-sections, reaction rate constants 

and branching ratios for the F+H2/HD/D2 reactions (145, 148–151).  
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Figure 1. Electronic states in the diabatic (a), spin-diabatic (b), and fully adiabatic (c) 

representations with the corresponding electronic Hamiltonian matrices. The panels depicting 

electronic states as functions of a nuclear coordinate adapted with permission from Reference 

(14); copyright 2015 John Wiley and Sons. 
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Figure 2. Illustration of the TBFs propagation and spawning on spin-diabatic PESs. 

Simulation start with the red TBF on the triplet state (S=1). Once this TBF reaches the seam 

region with strong interstate coupling, it spawns a new blue TBF to the singlet state (S=0). 

After returning to the seam region, the red TBF spawns a second blue TBF to the singlet state. 

The amount of population transferred between TBFs depends on the quantum amplitudes 

obtained by solving TDSE. Figure adapted with permission from Reference (61); copyright 

2016 American Chemical Society. 
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Figure 3. The lowest energy     states of SO2. One-dimensional cut through the PESs along the 

bending angle. The angle value corresponding to the FC geometry is marked by the black arrow. 

Figure reproduced with permission from Reference (85); copyright 2014 AIP Publishing. 
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Figure 4. Generalized AIMS dynamics of thioformaldehyde after photoexcitation to the S1 state. 

Upper panel: C=S bond length for all TBFs produced during the simulation. The width of each 

line is proportional to the population carried by the TBF. TBFs are associated with the S1 (light 

gray), T1 (red), or T2 (blue) states. Lower panel: population of the two triplet states averaged 

over 20 initial conditions (light area indicates the standard error). The total number of TBFs is 

given in orange. Figure reproduced with permission from Reference (63); copyright 2016 AIP 

Publishing. 
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Figure 5. Time-resolved normalized singlet (bluish) and triplet (brownish) populations over 30 

fs. For the triplet states, the different MS states are summed as one. Highlighted states are the 

S1 in blue, the S8 in green, the S9 in light blue, and the T1 in red. Figure adapted with permission 

from Reference (132); copyright 2017 American Chemical Society. 
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Figure 6. Quantum photodynamics of heme–CO complex during the first 0.5 ps, with initial 

conditions averaged over 10 molecular dynamics snapshots. (a) Evolution of diabatic 

populations for states 1Q (magenta), 1MLCT (orange), triplet band (green) and quintet band 

(blue). The 1Q population rapidly decays giving rise to 1MLCT population dominating by 75 fs, 

at which point the triplet population increases. The quintet population builds up more slowly and 

evolves into the dominant state at around 350 fs. (b) Schematic representation of the reaction 

mechanism and interpretation in terms of time constants. Upon initial excitation to the Q-band, 
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the metal-to-ligand charge transfer (MLCT) state is populated in ∼25 fs. In a second step, the 

system relaxes to the triplet (∼75 fs) and to the lowest quintet state (∼430 fs). Black arrows 

indicate the direction of the electron transfer and the main nuclear motions. (c) Evolution of the 

Fe–C(O) distance (magenta, left axis) and the Fe out-of-plane distance (black, right axis). Large 

amplitude motions are observed with a period of oscillation of 40 fs. The amplitude of oscillation 

is initially 0.9 Å and converges towards a value of 2.2 Å. At this distance, the CO is essentially 

photolyzed. The standard deviation of these geometric values is shown as a shaded area. In the 

inset, the Fourier transform of the Fe–C(O) oscillations is shown (in cm−1). Figure reproduced 

with permission from Reference (89); (CC BY-SA 4.0)  




