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Abstract

This study is devoted to a consistent derivation of an effective model Hamiltonian to

describe spin transport along a helical pathway and in presence of spin-orbit interaction,

the latter being induced by an external field with helical symmetry. It is found that

a sizeable spin polarization of an unpolarized incoming state can be obtained without

introducing phase breaking processes. For this, at least two energy levels per lattice

site in the tight-binding representation are needed. Additionally, asymmetries in the

effective electronic-coupling parameters as well as in the spin-orbit interaction strength

must be present to achieve net polarization. For a fully symmetric system —in terms

of electronic and spin-orbit couplings— no spin polarization is found. The model

presented is quite general and is expected to be of interest for the treatment of spin-

dependent effects in molecular scale systems with helical symmetry.

Keywords: charge transport, Green’s functions, spin polarization, Landauer theory, curvi-

linear coordinates
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Introduction

Gaining control over the spin degree of freedom to transfer information lies at the very

basis of spintronics. Up to date, the majority of existing spintronic devices are based on

inorganic materials. However, an alternative route that exploits organic molecules would

offer many advantages, including the chemical control of the the spin-dependent response of

the system as well as the rather inexpensive synthesis of identical molecular-scale building

blocks. Some work has been performed on organic molecules, suggesting them as spin-

valves.1–5 However, as a rule, the spin sensitivity of molecular based spintronics is rather

related to the magnetic properties of the electrodes or of the used molecules, so that for

non-magnetic molecular systems it is unlikely that strong spin-dependent effects will arise.

Hence, the recent experimental demonstration6,7 of spin selective effects in monolayers of

double-stranded DNA oligomers as well as earlier works8–15 have triggered strong interest.

As a working hypothesis, it was suggested that the observed spin selectivity may be related

to the specific geometric structure of the involved molecular systems, namely their helical

conformation.7

On the theoretical side, some investigations based on minimal model approaches including

the helical symmetry of the system have been published. In brief, two main lines can be

identified up to now:

i. Studies based on scattering theory at the level of the Born approximation,16,17 including

spin-orbit coupling (SOC) derived from a helically shaped potential. This approach

can be closely related to the experiments in Ref. 6, where the energies of the emitted

electrons lie well above the energy of molecular orbitals of the DNA molecules and thus,

the problem can be viewed as a scattering process in an external helical potential.

ii. Approaches based on quantum transport18–20 have also been proposed, being closer

related to the second class of experiments,7 which probe the electrical response of

DNA self-assembled monolayers in a two terminal setup. Ref. 18 addressed for the first
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time in the context of a quantum transport model the possibility that an electrostatic

field with helical symmetry could induce a spin-orbit interaction. An effective one-

dimensional (1D) Hamiltonian was formulated, assuming that only the z-component

(along the helical axis) of the electron momentum was not vanishing. Although strong

spin-dependent effects were found, it turns out that the model needs to break time-

reversal symmetry to reveal the spin polarization. This is unsatisfactory from a formal

point of view and builds the main motivation to explore extensions of this model not

requiring to artificially break any symmetry of the problem. In Ref. 19, the motion

of a charge carrier along a helical path including spin-orbit interactions was treated

within a tight-binding model. A rather large positive spin polarization was found;

however, also here it was necessary to introduce a symmetry breaking interaction —

through Büttiker probes— in order to achieve spin polarization. The authors also

stated that the double-strand structure of the DNA molecule was required to get a

non-zero polarization, a result that would impose strong constraints on the molecular

systems, where this type of chirality induced spin-dependent effects could be detected.

Apart from these two main lines, in Ref. 21 the emergence of bound states in the elec-

tronic system induced by curvature effects was studied, and its possible relation to the spin

selectivity analyzed. It is also worth mentioning an earlier work exploring electron transmis-

sion/transfer in chiral molecules based on the concept of current transfer.22 Furthermore, not

directly related to the physical problems at stake in our work but nonetheless relevant for

some of the analytical studies proposed here, are investigations of the electronic states in non-

planar geometries, namely 1D curved wires,23 helical nanotubes,24 bent nanostructures,25

and the Schrödinger equation in general curvilinear coordinates.26 Besides the simplest case

of 1D curved wires, most of the investigations only address the kinetic-energy part of the

Hamiltonian, but do not include spin-orbit interactions in systems with curvature.

In the present study, we generalize our previous work18 as well as the work of Guo and Sun19

in some important aspects. We consider two concentrical helices, as shown in Figure 1.
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One of the helices, the external one with radius R0 and pitch b, will provide the helical

potential distribution U(r) leading to a helical field E(r) inducing a SOC. The internal

helix, with radius R < R0 but the same pitch b, describes a possible geometrical path of a

charge propagating in the helical field. Also a helical path may be look at the first sight as

artificial, it represents a compromise between a purely 1D straight motion and a fully 3D

propagation, since it involves a non-trivial geometry (curvature and torsion) but at the same

times allows to map the spin transport problem onto a one-dimensional multi-channel tight-

binding model. For the sake of simplicity we will consider a distribution of effective point

charges along the external helix as done previously in Ref. 18, although our formulation

is independent of the specific source of the helical field. This field is felt as an effective,

momentum dependent, magnetic field in the rest frame of the charge carrier and gives rise

to SOC mirroring the helical symmetry of the system. The effective Schrödinger equation

for a spinor wave function of a charge q and spin σ moving along this pathway is obtained

by an appropriate confinement of the 3D motion along a tubular helix to a 1D motion along

the path with curvature ρ and torsion τ .

In addition, we will include two energy levels per site in the tight-binding version of the

continuum model, corresponding to the edge orbitals of a molecular monomer building up the

helical system. We stress that the two levels do not need to lie on different helices, so that the

model only considers transport along a single helical path but with more than one level per

site in the tight-binding description. The model can thus be applied to single-helix systems

and easily extended to double-helix structures. Our results suggest that two elements are

key ingredients to obtain net spin polarization in this class of models: first, including more

than one energy level per site (more than one transport pathway) and second, introducing

asymmetries in the effective electronic-coupling elements between the different channels.

In the next section, we introduce the general Hamiltonian including SOC in three dimensional

(3D) space and provide a derivation of an effective 1D version for the motion along a helical

pathway. This has the advantage that we can, firstly, easily include the geometric effects

5



Figure 1: Schematic representation of the system. Along the external helix with radius R0

point charges are arranged and build the source of the electrostatic field felt by a charge
moving along the internal helical path of radius R. The internal helical path is parametrized
with the arc length s.

arising from the curvature of the helical path and, secondly, take into account the full helical

field generated by the external helix.

Local frames and spin-orbit coupling

In order to set up the appropriate tight-binding model describing the 1D motion of a charge

along a helical path, we will first start with a continuum model in 3D space and, after

introducing an effective confinement potential, the limit of the motion along a 1D sub-

manifold will be considered.27 The motion of a particle along a helical path in 3D can

be described by the following position vector R(s, q1, q2) = x(s) + q1n(s) + q2b(s). Here,

x(s) = (R cosφ,R sinφ, pφ) with φ = s/
√

R2 + p2 ≡ s/κ, parametrizes a helix of radius R

and pitch b = 2πp in 3D, while the coordinates q1 and q2 are related to a local frame moving

along the helix (one can think of a helical tube with e.g. a circular cross section). The

normal vector n and the binormal vector b are unit vectors orthogonal to each other and
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to the tangent vector T(s) = dx(s)/ds. These three vectors build a local orthogonal basis,

which is closely related to the Frenet-Serret frame {T,N,B} (where N lies in the x-y plane)

through the following local rotation mediated by a matrix U(θ)
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0 cos θ − sin θ

0 sin θ cos θ













×
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. (1)

The angle θ(s) =
∫ s

s0
duτ(u) reduces to θ(s) = τs in case of a constant external torsion τ . For

a helix, the torsion τ = p/κ2 and its curvature is ρ = R/κ2. The introduction of the above

rotation mediated by the angle θ is related to the following fact: If the position of a point on

the helical tube is expressed only in terms of the Frenet-Serret frame, it turns out that the

basis es = ∂R/∂s, e1 = ∂R/∂q1, e2 = ∂R/∂q2 is non-orthogonal for q
2
1 + q22 > 0. This makes

the calculation of the kinetic-energy operator and of the SOC operator quite difficult, since

the metric tensor is non-diagonal and hence mixed derivatives can appear in the different

expressions. The local rotation by the angle θ overcomes this problem by adapting the local

frame at each point along the path s in such a way that the Darboux vector does not have

any component on the tangential direction.24 Notice that hereby only the normal and bi-

normal vectors are affected by the rotation, while the local tangent vector is the same in both

frames. In Cartesian coordinates, the Frenet-Serret basis has the following representation

(with φ = s/κ):
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. (2)

Using the above expressions and after a lengthy but straightforward calculation, the trans-

formation matrix J(s, q1, q2) relating the Cartesian unit vectors to the local frame basis
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(es, e1, e2) can be found as

J(s, q1, q2) = B−1(s)U−1(θ)A−1(q1, q2)

=













−κρ
η
sinφ −(A+ cos k− + A− cos k+) −(A− sin k+ + A+ sin k−)

κρ
η
cosφ −(A− sin k+ − A+ sin k−) −(A+ cos k− − A− cos k+)

κτ
η

−κρ sin θ κρ cos θ













. (3)

In this expression, η = 1 − ρ(q1 cos θ + q2 sin θ) =
√
g, with g being the determinant of the

metric tensor with elements Glj = η2δl1δj1 + δl2δj2 + δl3δj3 in the local basis. A(q1, q2) is a

diagonal matrix with elements Ajj =
√

Gjj. Further, A± = (1 ± κτ)/2, and k± = θ ± φ =

(τ ± (1/κ))s = ±(2s/κ)A±.

Confining to one dimension

The above equations describe the motion along a helical tube with a cross section whose

precise shape can be specified through the local coordinates q1 and q2. Thus, e.g. a polar

representation q1 = r cos γ and q2 = r sin γ would correspond to a helical tube with a circular

cross-section. We are however not interested in this aspect, since our aim is to reduce the

3D motion along the helical tube to a 1D motion along a helical path. Physically this can be

realized through the introduction of a transversal confining potential Vλ(q1, q2) with strength

λ → ∞. In this limit, the precise shape of this potential does not matter, although for the

sake of simplicity one can assume it to be a harmonic confinement.

Formally, the Hamilton operator of a particle with spin 1/2 and including SOC will read as

H = K(s, q1, q2) + Vpot(s, q1, q2) +
αSOC

2

[

σ· (p× E)− E· (p× σ)
]

. (4)

In this equation, K(s, q1, q2) is the kinetic energy operator and Vpot(s, q1, q2) includes the

previously mentioned transversal confinement potential Vλ as well as the potential related to

the electric field E in the SOC term, αSOC = eh̄/(2mc)2. The vector σ = (σx, σy, σz) contains
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the Pauli matrices. Notice that we have already symmetrized the SOC Hamiltonian in order

to have a Hermitian expression in the continuum case. Special care must be taken of the

action of the momentum operator on the electric field and the Pauli matrices since in the

new local coordinate system the latter will also become dependent on s, q1 and q2.

The kinetic-energy term K(s, q1, q2) has been already discussed in the literature (see e.g. Ref.

27), and it can be written using Einstein’s sum convention as

K(s, q1, q2) = − h̄2

2m

1√
g

∂

∂j

[

gj
√
g
∂

∂j

]

= − h̄2

2m

[

1

η

∂

∂s

(

1

η

∂

∂s

)

+
∑

j=1,2

(

∂2

∂q2j
+

∂

∂qj
ln(η)

∂

∂qj

)

]

. (5)

Hereafter gj stands for the contravariant diagonal components of the metric tensor and index

j runs over the three local coordinates s, q1 and q2. In order to preserve the normalization

of the wave function when going from the 3D situation to 1D, the Ansatz Ψ(s, q1, q2) =

η−1/2χ(s, q1, q2) is now performed. This leads to the result

K(s, q1, q2)Ψ = − h̄2

2m

[

1

η3/2
∂

∂s

(

1

η

∂

∂s

)

χ

]

− h̄2ρ2

8mη5/2
χ− h̄2

2mη1/2

∑

j=1,2

(

∂2

∂q2j

)

χ . (6)

Notice that the second term in the previous expression is a potential energy term with a

purely geometric character since it only depends on the curvature of the helix ρ.

In a next step we need to consider the SOC term. First, we can write this term as

HSOCΨ = −i h̄αSOC

{

σ· (∇Ψ× E) +
1

2

[

∇· (E× σ)
]

Ψ

}

=
−i√
η
h̄αSOC

{

σ· (∇χ× E) +
√
ηχσ·

(

∇ 1√
η
× E

)

+
χ

2

[

∇· (E× σ)
]

}

=
−i√
η
h̄αSOC

{

σ· (∇χ× E) +
1

2

[

∇· (E× σ)
]

χ

}

. (7)

Note that the second nabla operator does not act beyond the square brackets. Writing

explicitly the terms containing the momentum operator acting along the arc s and collecting
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into H⊥
SOC the contributions including p1 and p2, we can write the SOC Hamiltonian in the

following way

HSOC =
αSOC√

η

[

σ2E1 − σ1E2

]

ps −
i

2
√
η
h̄αSOC∂s

[

σ2E1 − σ1E2

]

+
1√
η
H⊥

SOC . (8)

Here (Es, E1, E2) are the components of the electric field written in the local coordinate

frame. Without SOC and in the limit λ → ∞ the Hamiltonian consists only of kinetic

and potential energy terms and would be easily separable. Thus the wave function χ would

be written as a product χ(s, q1, q2) = Φ(s)ξ(q1, q2). In the present case this does not seem

so obvious since HSOC still depends on all coordinates s, q1 and q2. However, in a first

approximation, we may consider that in the limit λ → ∞ the kinetic-energy contributions to

the transversal motion become much larger than the energy scale associated with the SOC,

so that we may use a sort of adiabatic approximation based on the Ansatz Φ(s)ξs(q1, q2),

where ξs(q1, q2) is a solution of the transversal Schrödinger equation for a given s. In this

limit, we can perform an approximate separation of variables and set q1 = q2 = 0 everywhere

in K(s, q1, q2) and in the other terms related to the longitudinal motion along the helical

path. As a result, we arrive at an effective Hamiltonian for the motion along the 1D helical

path in the 2× 2 spin space as

H1D =

[

− h̄2

2m

∂2

∂s2
− h̄2ρ2

8m
+ V (s)

]

12×2 − i h̄αSOC

[

σ2E1 − σ1E2

] ∂

∂s

− i

2
h̄αSOC

∂

∂s

[

σ2E1 − σ1E2

]

, (9)

where 12×2 is the 2× 2 unit matrix. The second term in the diagonal part of Eq. (9) is, as

mentioned previously, a local potential of purely geometric origin related to curvature effects

on the helical path. The term V (s) is the electrostatic potential from where the SOC field

E(s) arises. The fourth term is the spin-orbit term and the last term takes into account that

the field components as well as the Pauli matrices depend on the arc length. The matrices
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σ1 and σ2 are explicitly given by:

σ1(s) = −







κρ sin θ A+e
i k− + A−e

−i k+

A+e
−i k− + A−e

i k+ −κρ sin θ






,

σ2(s) =







κρ cos θ i (A+e
i k− − A−e

−i k+)

−i (A+e
−i k− − A−e

i k+) −κρ cos θ






. (10)

The local field components E1 and E2 (and Es, which does not appear in the final expressions)

can be expressed in terms of their components in a cylindrical coordinate system

E1 = A+(Er cos θ + Eφ sin θ) + A−(Er cos θ − Eφ sin θ)− κρEz sin θ ,

E2 = −A+(Eφ cos θ − Er sin θ) + A−(Eφ cos θ + Er sin θ) + κρEz cos θ ,

Es = −κρEφ + κτEz . (11)

In terms of the cylindrical field components, the expression σ2E1 − σ1E2 from Eq. (9) reads

σ2(s)E1 − σ1(s)E2 =

[

Z Z0

Z†
0 −Z

]

≡ C(s), (12)

where Z = κρEr and Z0 = κe−iφ [ρEz + τ(iEr − Eφ)].

For a helical charge distribution, as that used in the remaining of this paper, the cylindrical

components are given by

Er(φ, z) = Ec

∑

n,m

[

ǫR − cos (∆φ)
]

g3n,m(φ, z) ,

Eφ(φ, z) = Ec

∑

n,m

sin (∆φ)g3n,m(φ, z) ,

Ez(φ, z) , = Ec

∑

n,m

z − nb−m∆z

R0

g3n,m(φ, z) ,

gn,m(φ, z) =
[

1 + ǫ2R − 2ǫR cos (∆φ) +
(z − nb−m∆z

R0

)2]− 1

2

, (13)
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where ∆φ = φ− (2π/b)m∆z and ǫR = R/R0. In the previous equations, the variables R, φ

and z are the corresponding coordinates of a point on the internal helix and the indices n

and m run over the discretized external helix. In general, the prefactor Ec will depend on the

specific physical origin of the local effective charge at a given site and its knowledge requires a

detailed microscopic calculation of field strengths and SOC parameters for specific molecular

systems. In Ref. 18, we have provided a rough estimate of the order of magnitude of the

combined parameter h̄αSOCEc ∼ 2 − 6meVnm. We will adopt similar orders of magnitude

in the current study.

Limiting cases

In the limit of zero torsion τ = 0 (planar geometry) and assuming only the z-component of

the field to be non-vanishing and constant, one gets

Hplanar =

[

− h̄2

2m

∂2

∂s2
− h̄2

8m
ρ2 + V (s)

]

12×2 + h̄αSOCEz







0 e−iφ(−i ∂s − ρ
2
)

eiφ(−i ∂s +
ρ
2
) 0






,(14)

which is the standard expression for the planar Rashba Hamiltonian on a 1D curved wire.23

In the case that only the radial field component is assumed to be nonzero and constant, we

recover the continuous version of the Hamiltonian of Ref. 19 for the single channel case:

Hradial =

[

− h̄2

2m

∂2

∂s2
− h̄2

8m
ρ2 + V (s)

]

12×2

+ h̄αSOCEr







−iκρ∂s iκτe−iφ(−i ∂s − 1
2κ
)

−iκτeiφ(−i ∂s +
1
2κ
) iκρ∂s






. (15)

Notice, however, that in Ref. 19 neither the geometric potential −h̄2ρ2/8m nor the electro-

static potential V (s) have been considered in the calculations. For the typical parameters

of the DNA helix, the geometric potential is rather small (∼ 5 − 10 meV); only for large

curvatures its contribution may become relevant. The electrostatic potential V (s), on the
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contrary, must be included for physical consistency, since it is the source of the helical electric

field.

Tight-binding Hamiltonian

Once the Hamiltonian (9) in the continuum approximation has been obtained, the next step

is to discretize it and to map it to a tight-binding model parametrized by the arc length. We

start with the SOC part expressed in terms of (12)

HSOC = − i

2
h̄αSOC

[

C(s)
∂

∂s
+

∂

∂s
C(s)

]

. (16)

Here, the derivatives with respect to the arc length act on everything to their right, including

a possible wave function. The discretized derivative reads

[ ∂

∂s

]

nm
=

1

2∆s
(δn,m−1 − δn,m+1) . (17)

Here ∆s = κ∆φ = κπ/5 is the discretization step along the arc and φ = π/5 is the angular

distance between monomers building the helix (for the sake of reference we take the typical

value of π/5 for a DNA molecule, although other values are obviously possible).

Acting with HSOC onto a spinor wave function, one obtains

(

HSOC

)

n,n′
Ψn′ =

h̄αSOC

4∆s

[

−i (Cn −Cn+1)Ψn+1 + i (Cn +Cn−1)Ψn−1

]

, Ψn =

(

Ψn,↑

Ψn,↓

)

.

(18)
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With this, the discretized Schrödinger equation resulting from (9) can be written as follows:

EΨn = ǫnΨn +Mn,n+1Ψn+1 +Mn,n−1Ψn−1 = 0 ,

ǫn = − h̄2ρ2

8m
+ V (n) ,

Mn,n+1 = − h̄2

2m∆s2
12×2 − i

h̄αSOC

4∆s
(Cn +Cn+1) ≡

[

Wn,n+1 Dn,n+1

D∗
n,n+1 W ∗

n,n+1

]

,

Mn,n−1 = (Mn−1,n)
† . (19)

Notice that the spin-conserving nearest-neighbor electronic couplingWn,n+1 = −h̄2/(2m∆s2)−

i
(

h̄αSOC/4∆s
)

(Zn + Zn+1) is renormalized by the diagonal blocks of the SOC Hamiltonian,

which will clearly influence the effective band width of the electronic spectrum. The spin-flip

hopping term reads Dn,n+1 = −i
(

h̄αSOC/4∆s
)

([Z0]n + [Z0]n+1).

Thanks to the last identity of Eq. (19), the corresponding Hamiltonian is indeed Hermitian

H1D =
∑

n,σ

ǫnc
†
n,σcn,σ +

∑

n







(

c†n,↑, c
†
n,↓

)

Mn,n+1

(

cn+1,↑

cn+1,↓

)

+
(

c†n,↑, c
†
n,↓

)

Mn,n−1

(

cn−1,↑

cn−1,↓

)






. (20)

This Hamiltonian preserves time reversal symmetry generated by the operator T = −iσy ⊗

1N×N , where N is the number of sites in the discretized tight-binding model and 1N×N is

the unit matrix in the Hilbert space generated by the N localized orbitals.

The present model can then be easily extended to include two orbitals —calling them HOMO

(H) and LUMO (L)— per lattice site. If we neglect SOC between orbitals of different type

and, moreover, assume that the effective SOC parameter α may depend on the specific

electronic state (although not on the lattice site n), then the generalization of the previous
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Hamiltonian is straightforward

H1D =
∑

k=H,L

∑

n,σ

ǫknc
†
n,k,σcn,k,σ + VHL

∑

n,σ

[

c†n,H,σcn,L,σ + c†n,L,σcn,H,σ

]

+
∑

k=H,L

∑

n







(

c†n,k,↑, c
†
n,k,↓

)

Mk
n,n+1

(

cn+1,k,↑

cn+1,k,↓

)

+
(

c†n,k,↑, c
†
n,k,↓

)

Mk
n,n−1

(

cn−1,k,↑

cn−1,k,↓

)






.(21)

In this equation, VHL is the local coupling between the two levels H and L at site n. Notice

that the nearest-neighbor electronic couplingsW k
n,n±1 (included inMk

n,n±1, see Eq. 19) depend

now on the specific orbital: WH,L
n,n±1 = VH,L − i (αH,L/Ec)(Zn + Zn±1), where αH,L is now

considered as an effective parameter with the dimensions energy×length.

We have also introduced a staggered contribution to the site energies ǫkn = −h̄2ρ2/8m+V (n)+

∆k(−1)n which opens a band gap. A gap opening can also be achieved with a large VHL;

however, in order to keep the orders of magnitude of the electronic coupling parameters in a

realistic range of few tens of meV, we will keep the ∆k(−1)n contribution with ∆k = 30meV.

Transport properties

Spin-dependent transport in the tight-binding model in Eq. (21) can be represented as a

charge transport model in a 4-legs ladder, where each leg corresponds to a molecular orbital

(H or L) and to a given spinor component (↑ and ↓). It is clear that the specific transport

mechanism will in general depend on the molecular system and also be influenced by the

environmental conditions, e.g. single molecule vs. molecule embedded in a self-assembled

monolayer or dry vs. solvent conditions. Being aware of its potential limitations, we will

consider transport in the context of the Landauer approach, which provides a simple frame-

work to analyze the influence of different parameters on the spin polarization. Decoherence

to mimic hopping transport can be introduced via Büttiker probes28 or by directly formu-

lating the problem in terms of master equations. However, we are interested in exploring

the possibility of inducing a spin polarization without the need of decoherence as a key ele-
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ment, so that we limit ourselves to compute the zero-bias transmission function T (E) (linear

conductance) for our model.

The Hamiltonian (21) needs to be extended to include the coupling to the electrodes for

which the Hamiltonian reads Hleads. Along similar lines as in Ref. 18, we consider four

independent L(left)- and four independent R(right)-leads, each of them standing for a spin

channel connected to a specific molecular orbital (H,L) and being represented by a semi-

infinite tight-binding chain.

The transmission function is given by the expression: T (E) = Tr{Ga(E)ΓRGr(E)ΓL}. Here

Gr(a)(E) are retarded (advanced) matrix Green’s functions for the scattering region including

the influence of Hleads via retarded self-energy matrices Σr,L(E) and Σr,R(E). The retarded

Green’s function matrix can be determined via Dyson’s equation (Gr)−1(E) = (E + i η)1−

H−Σr,L(E)−Σr,R(E). The spectral functions ΓL,R of the left and right electrodes are related

to the self-energies via ΓL,R = −2 ImΣr,L,R(E). The only eight non-vanishing elements of the

spectral functions are ΓL
↑,L,H ,Γ

L
↓,L,H ,Γ

R
↑,L,H ,Γ

R
↓,L,H . These quantities are in general energy-

dependent and can be computed analytically for semi-infinite chains (see, e.g., Ref. 29).

Using the previous expressions and approximations, the total transmission function for the

system can be written as

T (E) = T↑↑(E) + T↓↑(E) + T↑↓(E) + T↓↓(E), (22)

where

T↑↑(E) = ΓL
↑,L

[

ΓR
↑,L|G1↑,N↑|2 + ΓR

↑,H |G1↑,2N↑|2
]

+ ΓL
↑,H

[

ΓR
↑,L|GN+1↑,N↑|2 + ΓR

↑,H |GN+1↑,2N↑|2
]

,

T↑↓(E) = ΓL
↑,L

[

ΓR
↓,L|G1↑,N↓|2 + ΓR

↓,H |G1↑,2N↓|2
]

+ ΓL
↑,H

[

ΓR
↓,H |GN+1↑,2N↓|2 + ΓR

↓,L|GN+1↑,N↓|2
]

,

T↓↓(E) = ΓL
↓,L

[

ΓR
↓,L|G1↓,N↓|2 + ΓR

↓,H |G1↓,2N↓|2
]

+ ΓL
↓,H

[

ΓR
↓,L|GN+1↓,N↓|2 + ΓR

↓,H |GN+1↓,2N↓|2
]

,

T↓↑(E) = ΓL
↓,L

[

ΓR
↑,L|G1↓,N↑|2 + ΓR

↑,H |G1↓,2N↑|2
]

+ ΓL
↓,H

[

ΓR
↑,H |GN+1↓,2N↑|2 + ΓR

↑,L|GN+1↓,N↑|2
]

.
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In the previous equations, Gnσ,mν(E) with σ, ν =↑, ↓ are matrix elements of the previously

defined retarded Green’s function of the SOC-active region including the influence of the L-

and R-electrodes via appropriate self-energies. Each contribution in Eq. (22) can be related

to a different transport process with or without spin flip. Thus, all contributions included in

T↑↑ and T↓↓ are related to processes taking place only in the spin-up or spin-down channels,

respectively, while T↑↓ and T↓↑ involve all processes flipping the electron spin. With the help

of the previously introduced transmission components, we can define a spin polarization (SP)

as:

P (E) =
1

T (E)

[

T↑↑(E) + T↓↑(E)− T↑↓(E)− T↓↓(E)
]

. (23)

Finally, an energy-averaged SP can be defined as 〈P 〉E = [〈T↑↑+T↓↑〉E −〈T↑↓+T↓↓〉E]/〈T 〉E.

When computing it, we use only the hole-like contributions of the P (E) plot, i.e., the E < 0

sector, so that 〈. . . 〉E = (2V0)
−1
∫ 0

−2V0
dE(. . . ). Here, V0 is determined by diagonalizing the

Hamiltonian of Eq. (21), calculating the band width ∆E and taking V0 = ∆E/4. This choice

guarantees that we include all the relevant molecular electronic states in the calculation of the

transmission function. V0 is also taken as the effective band width of the electrodes. Thus,

for the semi-infinite linear chain electrodes with a single orbital per side, the non-vanishing

matrix elements of the spectral functions ΓL,R(E) are given by the standard Anderson-Newns

expressions ΓL,R
↑,↓,L,H(E) = V0

√

1− (E/2V0)2 for |E/2V0| < 1 and zero otherwise, where the

site energies have been set equal to zero.

Results and discussion

We address in this section two issues: (i) Is it possible to obtain a non-zero spin polarization

without including decoherence in the model formulation? (ii) What is the influence of having

more than one molecular orbital per site in the tight-binding representation?

Concerning the typical order of magnitude of the spin-orbit interaction as induced by the
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Figure 2: Spin polarization for an unpolarized incoming state and for three different numbers
of turns L = 1, 2 and 7 of the helix. The parameter ǫR has been set to 0.25. The SP is mostly
negative over the hole band (E < 0) and mostly positive over the electronic band (E > 0).
The inset shows the dependence of the energy-averaged SP on the number of helical turns
and several values of ǫR = R/R0. The absolute value increases with a larger ǫR. For larger
L we may expect an oscillatory behavior to set in. Other parameters are αH = 0.2meVnm,
αL = 2meVnm, VL = 10meV, VH = 90meV and VHL = 50meV.

helical field, we have already provided a rough estimate of its strength in a previous study;18

in the present investigation we are going to use similar values, being aware that a more

accurate estimation would require a separate first-principle study of the electronic structure

of the molecules. Along this paper, if not stated otherwise, we will keep fixed the bare

electronic-coupling parameters: VL = 10 meV, VH = 90meV and VHL = 50meV. These

values have typical orders of magnitude as for a DNA molecule. We remark, however, that

we are not addressing a specific molecular system, but are deriving a generic model and

investigating its main properties.

For the following discussion we will also introduce two parameters, namely ηSOC = αH/αL

and ηelec = VH/VL measuring, respectively, the relative asymmetries of the SOC and of the

nearest-neighbor tight-binding hopping elements for the H and L levels.
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In Figure 2, the spin polarization for an incoming unpolarized state is shown as a function of

the injection energy for different lengths and for the case of an array of helically distributed

(negative) charges. The first interesting feature of Figure 2 is that a non-zero SP can be

obtained with absolute values which can be as large as 60 % for certain energies. These

results suggest that decoherence may not be a key element to reveal a spin polarization.19

Moreover, it seems necessary (although not sufficient, as discussed below) to have more than

one transport channel. This can be implemented in the model either as a double-strand

structure19 or as a single strand with more than one electronic level per site. Notice also

that despite of the oscillations of the SP as a function of the energy, there is a clear tendency

to have a negative polarization for the electron bands (E < 0) and positive polarization

for the hole bands (E > 0). This behavior does not depend much on the length of the

helical system. The inset of Figure 2 shows the dependence of the energy-averaged SP on

the number of helical turns L for three different values of the parameter ǫR = R/R0. This

parameter quantifies the difference between the radii of the internal and external helices

and it is thus a measure for the radius of curvature of the transport path: for ǫR ≪ 1 the

transport pathway approaches a straight line (for a fixed radius of the external helix). For

larger ǫR, the average SP is negative for all L and its absolute value progressively increases

with L. The effect becomes stronger with increasing ǫR, since the helical field will be felt

stronger the closer the charge transport path is to the external helical charge distribution.

The negative average value indicates that the spin-down channel is easier transmitted than

the spin-up channel over the averaged energy window. For ǫR = 0.05, on the contrary, the

SP varies in a considerably weaker way with increasing length and its absolute value stays

below 5 %. This is an indication that the intrinsic geometry of the path, its helical structure,

is playing an important role in influencing the spin polarization.

In Figure 3, the quantities ξup = T↑↑ − T↓↑ and ξdown = T↓↓ − T↑↓ are plotted, in order to

illustrate the relative amount of spin-conserving and spin-flip processes in the outgoing spin-

up and spin-down channels. Hence, for energy regions where ξσ is positive, spin-conserving
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Figure 3: Energy-resolved ratios of the transmission function for the outgoing spin-up chan-
nel, ξup = T↑↑ − T↓↑, and spin-down channel, ξdown = T↓↓ − T↑↓. Insets show the total
transmission tup = T↑↑ + T↓↑ and tdown = T↓↓ + T↑↓, respectively. The calculations have been
performed for equal electronic-coupling elements VL = VH = 90meV, in order to highlight
the influence of asymmetries in the SOC parameters ηSOC = αH/αL, as indicated on each
plot. For stronger asymmetry [panel a)] in the SOC coupling, there the differences between
ξup and ξdown are stronger, which eventually makes spin filtering and spin aligning possible.
The remaining parameters are αL = 2meVnm, VHL = 50meV, ǫr = 0.25, and L = 2 helical
turns.

processes are dominating, while for ξσ negative, spin-flip events dominate. In addition, the

insets of Figure 3 show the total transmission of each spin component. Notice that the

difference between the curves of tup and tdown is proportional to the spin polarization (after

division by the total transmission T (E), see also Eq. 23). The results presented in Figure 3

are calculated for symmetric electronic coupling VL = VH and for two different values of the

SOC ratio ηSOC ≡ αH/αL = 0.1 and 0.85, to point out the difference between strong and a

weak asymmetry in the SOC parameters of the H- and L-states. For a strong asymmetry

ηSOC = 0.1 —leading to net spin polarization over most of the probed energies— a large
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degree of spin-flip is found mainly near the band edges of both the HOMO and LUMO

manifolds. For other energies, the spin conserving processes dominate, i.e. ξσ=up,down > 0.

However, the magnitude of ξup and ξdown is different and thus a non-zero polarization resulting

from an interplay between spin-dependent backscattering, a measure of which is the total

backscattering given by R = 4 − (tup + tdown), and spin-flip processes can be obtained. On

the contrary, for the case ηSOC = 0.85 spin-conserving transmission processes dominate over

spin-flips at all energies. Moreover, there is almost no difference between the backscattering

of the two spin components nor between ξup and ξdown, so that the polarization is almost

negligible. In the limiting case ηSOC = 1, the spin polarization identically vanishes.

0 %

15 %

Figure 4: Density plot showing the absolute value of the average spin polarization 〈P (E)〉E
as a function of the asymmetry ratios ηSOC = αH/αL and ηelec = VH/VL. Parameters are
αL = 2meVnm, VL = 30meV, VHL = 50meV, ǫr = 0.25, and L = 2 helical turns.

To provide a global overview of the effect of the previously mentioned asymmetries in the

electronic coupling and spin-orbit interaction, we show in Figure 4 a density plot of the

energy-average polarization as a function of the two asymmetry parameters ηSOC and ηelec

. We only plot the absolute value of the average polarization, since our main goal is to
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show the regions where a polarization can be obtained and those where it will either vanish

or become too small. From the figure it becomes clear that the spin polarization is very

small around the main diagonal where ηSOC = ηelec, i.e., for the fully symmetric case. The

largest polarizations are obtained in the lower right sector and in the upper left sector of the

diagram, where the asymmetries between both parameters become largest.

We can gain a qualitative understanding of the vanishing polarization along the main diag-

onal of Figure 4 by the following reasoning. For the continuum model, Eq. (9), a unitary

transformation U(s) = exp
[

− i (mαSOC/h̄)
∫ s

duC(u)
]

can be performed that eliminates the

SOC term from the Hamiltonian.19 This is the reason why a single-channel model without

symmetry breaking does not yield spin polarization. However, if more than one channel

are present, e.g. H and L, then the Hamiltonian would be transformed by the direct sum

UH ⊕ UL. This leads to couple terms like VHLU
†
HUL, which are only diagonal in the spin

degrees of freedom if mHαH/mLαL ∼ VLαH/VHαL = 1, which is the case for ηSOC = ηelec.

Only if there is a stronger asymmetry in the ratio ηSOC/ηelec, the SOC may remain effective

and a non-trivial behavior may be expected, as observed in the regions off the diagonal in

Figure 4.

Summary

We have derived an effective 1D Hamiltonian to describe the propagation of a charge carrier

with spin along a helical pathway under the influence of spin-orbit interaction. The SOC

is assumed to be induced by a field of point charges arranged along a concentric external

helix. It has been shown that a net spin polarization of an incoming unpolarized state can

be achieved using realistic parameters for the electronic structure. For up to seven helical

turns, a progressive increase of the (negative) polarization with length was found, although

the computed values are smaller than those measured. The spin polarization results from an

interplay between spin-dependent backscattering and spin-flip processes. This behavior is

22



however strongly weakened upon reducing the different between the two orbital-dependent

SOC parameters, so that in the limit of fully symmetric coupling to both molecular levels

H and L, only spin conserving processes take place and, moreover, the spin polarization

identically vanishes. Interestingly, our model does not require the presence of decoherence to

yield a non-zero spin polarization. However, whether decoherence is an important ingredient

or not requires further inquiry. In our case, the non-vanishing polarization emerges when

(i) more than one transport channel is included in the model description, and related to it,

when (ii) the electronic states display strong asymmetries in both their electronic coupling

and the corresponding SOC parameters.
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tering through Helical Potentials. J. Chem. Phys. 2009, 131, 014707–1–014707–9.
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