

Modelling Statecharts behaviour in a fully abstract way

Citation for published version (APA):
Huizing, C., Gerth, R. T., & Roever, de, W. P. (1988). Modelling Statecharts behaviour in a fully abstract way.
(Computing science notes; Vol. 8807). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1988

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Aug. 2022

https://research.tue.nl/en/publications/e21afc4d-4a55-43c3-9f0f-7cdf54287f29

Modelling Statecharts behaviour
in a fully abstract way

by

C. Huizing
R. Gerth
W.P. de Roever

88/07

April 1988

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing Science Section of the Department

of Mathematics and Computing Science of Eindhoven University of Technol­

ogy.

Since many of these notes are preliminary versions or may be publi~ht:d else­

where, they have a limited distribution only and are not for review.

Copies of these notes are available from the author or the editor.

Eindhoven University of Technology

Department of Mathematics and Computing Science

P.O. Box 513

5600 MB Eindhoven

The Netherlands

All rights reserved

editor: F .A.J. van Neerven

Modelling Statecharts behaviour in a fully abstract way

Conference version

C. Huizing

R. Gerth

W P. de Roever

Eindhoven University of TechnologyU

ABSTRACT

We present a denotational, strictly syntax-directed, semantics for Statecharts, a graphical,

mixed specification/programming language for real-time, developed by Harel [H]. This

requires first of all defining a proper syntax for the graphical language. Apart from more

conventional syntactical operators and their semantic counterparts, we encounter unconven­

tional ones, dealing with the typical graphical structure of the language. The synchronous

nature of Statecharts makes special demands on the semantics, especially with respect to the

causal relation between simultaneous events, and requires a refinement of our techniques for

obtaining a denotational semantics for OCCAM [HGR]. We prove that the model is fully

abstract with respect to some natural notion of observable behaviour. The model presented

will serve as a basis for a further study of specification and proof systems within the

ESPRIT-project DESCARTES.

1. Introduction

Statecharts belong together with Esterel [B], LUSTRE [BCH], SIGNAL [GBBG] and an unknown number of

local industrial concoctions to the group of mixed speCification/programming languages used in development of

real-time embedded systems.

Some of these languages (LUSTRE, SIGNAL, Esterel) have no internal notion of time. An external signal must

be provided as a clock and the system can use it as it likes to. Hence, various clock operations can be speCified.

The disadvantage of this approach is that time constraints and other specifications w.r.t. the time are not clearly

visible in the specification/ program. Statecharts adopts the view that these specifications should be visible and

hence has an internal notion of time.

Statecharts adopts, like Esterel, the synchrony hypothesis as formulated by Berry [B]. This means that output

occurs simultaneously with the input that caused it. If applied without care, this hypothesis can lead to casual

paradoxes, such as events disabling their own cause. In Esterel, these paradoxes are circumvented by syntacti­

cally forbidding situations in which they can arise l . In Statecbarts, they are semantically impossible, because

t) Eindhoven University of Technology, Department of Mathematics and Computing Science, P.O. Box 513, 5600

ME Eindhoven, The Netherlands. E-mail: mcvax!eutrc3!wsinkees.UUCP or: wsdckeesh@heithe5.EITNET

:t) This research was earned out in the context of ESPRIT-project 937, DESCARTES (Debugging and Specification

of Ada Real-Time Embedded Systems).

1) Recently, the semantics of Esterel has been changed towards a more semantical check upon paradoxes [G],

- 2 -

there the influence of an event is restricted to events that did not cause it. We expect that the semantics of

Esterel and Statecharts coincide in the situations that are allowed by Esterel. The problem is to model causality

between events that have no precedence in time. In the operational semantics of [HPSS], this is done by intro­

ducing the notion of micro-steps. Every lime step is subdivided into micro-steps between which only a causality

relation holds and no timing relation. On the level of the denotational semantics this is done by applying a par­

tial order on the events that occur simultaneously. This order describes in which direction events influence each

other.

Another problem that arises in giving a c;ompositional semantics of Statecharts, is its graphical nature. For tex­

tuallanguages, defined by means of a pmper syntax, it is clear what is demanded of a syntax-directed semantics.

It has to be compositional (a homomorphism) with respect to the syntactical operators. For a graphical language,

without a proper syntax, this is not so clear.

Hence, in chapter 3 we first define a syntax of Statecharts that makes use of a restricted set of natural operators

and primitive objects. These objects and the immediate results of applications of operators slightly generalise

statecharts, by allowing transitions to be incomplete, i.e., to have no origin states or no target states yet.

Some syntactical operators lack a clear counterpart in conventional languages. This is because in the graphical

representation of Statecharts, the notion of area plays an important role, as it defines a hierarchy of states.

Subareas of states are associated with alternative activities or concurrent activities. Transitions leaving a super­

state influence the behaviour in all its substates (which are lower in hierarchy). This leads to a semantics in

which it is possible to extend the behaviour of some subchart with the behaviour of the state that is put higher

in hierarchy.

Unlike Esterel, Statecharts does not have a restricted kernel of operations, in terms of which all other features

are defined. The designers of Statechart.~ adopt the view that handy operations should be provided as long as

they can be built in. As a consequence, we had to study a restricted version of Statecharts. A next version of

this paper will include the use of variables.

The semantics that we develop in chapter 4 is compositional w.r.t. the above syntax. The domain in which Sta­

techarts acquire meaning basically records computations as functions that associate to every time point a record,

(F, C , ~), that represents the activity at that time. Such a record states the claims, C, (or assumptions) about

which events are generated, both in the statechart and in its environment; it specifies the fact that the events in

F (~C) are generated by the Statechart itself and, finally, it records in the partial order ~ on C which events

influence the occurrence of which other events.

This semantics turns out to be fuJly abstract relative to a notion of observation that observes about any statechart

only the events that are generated by that statechart. The fuJI abstraction proof is sketched in chapter 5.

2. Informal introduction to Statecharts

We give a short description of the language Statecharts and an intuitive semantics. For a more basic treatment of

this, one is referred to [H] and [HPSS].

Statecharts is a formalism designed to describe the behaviour of reactive systems [HP]. A reactive system is a

mainly event-driven system, continuously reacting to external and internal stimuli. In contrast to transforma­

tional systems, that perform transformations on inputs thus producing outputs, reactive systems engage in con­

tinuous interactions, dialogues so to say, with their environment. As a consequence, a reactive system cannot

be modelled by giving its input and output alone. It is necessary to model also the timing or causality relation

between input and output events.

Statecharts generalise Finite State Machines (FSM's), or rather Mealy machines [HU], and arise out of a cons­

cious attempt to free FSM's from two serious limitations: the absence of a notion of hierarchy or modularity and

£"Cl ... ~~ , E. XCt p/e 5

..s T, IT:/.

A I
I

T I
.. [e-J 0.1\ -rb/c C-If:,

,J, •
&

8

[&.lL':.JL~___; --~
b

I S I
I~ .. At.. <:. t>

A, A~ 0,
Co

.o~ ,
I

~

"-
~

~~
,

---- 0-
- - --- - C'.....;;;~ - - - - - - - - --

~ L
~. I- a.~ c::. '{J "i

.5

IT, :T. : T.i

EJ I
C I e

I I
I I

G.1I."Ib/d.
I I a.J I d/Io'c
I ~ I

I!.
I

l>
I

F
I I

I I
I I

- 3 -

the ability to model concurrent behaviour in a concise way. The external and internal stimuli are called events

and they cause transitions from one state to the other. We introduce the basic conceptions now.

2.1. States

In contrast to FSM's, states can be structured as a tree. We call the descendants in such a tree substates. A state

can be of two types: AND or OR. Being in an OR-state implies being in one of its immediate substates, being

in an AND-state implies being in all of its immediate substates at the same time. The latter construction

describes concurrency.

Example 1 (see overleaf)

In this picture S is an OR-state with substates A and B. Being in state S implies being in A or B, but not in

both. A, B and T have no substates, a and b stand for events that trigger transitions and c is a condition. E.g.,

the transition from A to B is triggered when event a occurs and condition c is true. These events are called

primitive events. because they have no further structure. They can be generated outside the system, but also by

the system itself.

When the system is in A and event a happens and condition c is true, A will go to state B , and also stay in S.

Whenever it is in A or B and b happens it will go to T. The transition to A is a default transition. When the

system is in T and b happens, it will go to S and hence to A .

Example 2 (see overleaf)

Now, S is an AND-state with immediate substates A and B. A and B are OR-states with substates A 1 and A2

respectively Bland B 2. Being in S implies being in A and B simultaneously. When the system is in

A 1 and B 2 (and hence also in A ,B and S) and b happens it will go to Bland also stay in A 1.

Now, if a happens, it will go simultaneously to A2 and B 2. Notice also the condition in(B 1) on the transition

from A2 to A l' This transition can only be taken if and when the system is in A2 and Bland event d occurs.

2.2. Transitions

In the examples above we used simple transitions from one state to another like in FSM's.

They can be more complicated, however, going from a set of states to a set of states.

Example 3 (see overleaf)

When the system is in A 2 and Bland a happens, it will go to T, and in particular to G and D 1. This is the

general case. In this version of the paper, however, we don't allow transitions leaving more than one state. We

do allow, however, transitions entering more than one state.

Notice the compound event on the transitions from A 1 and A 2. Only when a and b occur simultaneously this

transition will be triggered.

2.3. Actions

In the label of a transition one can specify some events that are generated when the transition is performed. This

is called the action of a transition. These events immediately take effect and can trigger other transitions.

Example 4 (see overleaf)

When the system is in A , C and E and a occurs, a chain reaction of transitions will be performed. The transi­

tion in T 1 will generate event d; this event will trigger the T 2-transition, which, on its tum, will generate

b and c and thus trigger the T 3-transition.

All transitions that are triggered by such a chain reaction are considered to happen at the same time. So, in this

example, the next state configuration after (A ,C,E) is (B,D .F). But see the section on caUSality.

- 4 -

2.4. Events

In general, the event in the label of a transition has the fonn of a logic proposition, using conjunction, disjunc­

tion and negation. A transition labelled al\b can be taken when a and b occur in the same time step; if the

label is aV b, it can be taken as soon as a or b occurs; a transition labelled with ~a can be taken at any time

step in which a does not occur. In these fonnulae, one can use primitive events a ,b ,c ... , but also the structured

events enter(S) and exit(S), denoting the ,event of entering respectively exiting state S.

Another structured event is the time-out event. The expression time-out(e,n) stands for the time-out of n time

units on event e. A transition labelled with this expression will be triggered when the last occurrence of e was

exactly n times ago. One time unit stands for the time that it costs to take one transition or one chain reaction

of transitions. In this version of Statecharts a specification should go with an additional specification relating

time units and physical time.

Events are instantaneous and transient of nature, such in contrast to the conditions, which represent a more con­

tinuous situation. E.g., the event enter(S) can only be sensed at the time unit when state S is entered, but the

condition in (S) is true throughout the time that the system is in the state S, in other words between the

occurrence of enter(S) and exit(S).

2.5. Causality

As already mentioned above, transitions can trigger other transitions and all these transitions occur simultane­

ously. Together with the possibility of negation of events and conditions, this can raise causal paradoxes.

Example 5 (see overleaf)

The transition labelled with a "~b will be triggered when a occurs and b does not occur. This transition gen­

erates an event, e, that triggers another transition which, in its turn, generates b. All transitions in this chain

reaction are considered to be happening at the same time. So b did happen and the first transition could not

occur, hence the whole chain reaction did not occur, hence... . These kinds of paradoxes are avoided by giving

the following operational interpretation to chain reactions. This is taken from [HPSS].

Every time step is subdivided into micro-steps, each of which corresponds to the execution of one transition.

The events that are generated by a transition can only influence transitions in the following micro-steps. So in

the example above, the T I-transition takes place in the first micro-step, triggering the T 2-transition in the second

micro-step. This one generates the events b and e, but these cannot prevent the T I-tranSition any more, because

the latter has taken place in a previous micro-step.

We stress that the micro-steps have nothing to do with time. Their sequential occurrence is only related to the

way they can influence each other - no order in time is implied. Maximal sequences of micro-steps are called

macro-steps.. a macro-step corresponds to one step in time. Here, maximal means that the sequence of micro­

steps cannot be expanded without additional input from the environment. Hence, in example 4 above, the

sequence consisting only of the T I-transition is not maximal, because the T 2-transition is still possible.

3. Syntax

In this chapter we give a non-graphical syntax of statecharts. According to this syntax any statechart is built up

from primitive objects and some operators. These operators have a natural relationship with the pictures. The

intermediate objects to which the operators are applied are the so-called Unvollendetes or Unvs. These are

incomplete statecharts with transitions without source state(s) or target state(s). Two operators, Concatenation

and Connection, can tie these dangling arrows together, thus creating complete transitions.

Concatenation makes a complete transition between two Unvollendetes and resembles sequential composition.

Connection makes a complete transition within one subchart, thus possibly creating loops.

- 5 -

In Slatecharts. there are two types of states: the AND-type and the OR-type. Being in an AND-state means

being in all of its immediate substates simultaneously. We call these immediate substates and their interior the

orthogonal components of that AND-state. Being in an OR-state means being in exactly one of its substates.

The Unv that builds the interior of an AND-state respectively OR-state is called an AndChart respectively

OrChart.

Statification is the operator that builds the hierarchical structure of statecharts. It puts an Unv inside a primitive

state. i.e .• a state without substates. thus creating a structured AND- or OR-state. Semantically. it means execut­

ing the subchart inside. with the possibility of interrupting this execution when one of the (incomplete) transi­

tions leaving the superstate are triggered.

AndCbarts and OrCharts are built using the operators Anding and Orring. Anding corresponds to parallel com­

position in conventional programming languages. Orring can be compared to non-detenninistic choice.

Finally. Closure gives the events that are considered internal for the particular subchart. which means that the

statechart will ignore such events whenever they are generated by its environment Hiding makes the events

that are generated inside a statechart or Unvollendete invisible to the outside world. In this sense they are dual.

Neither operator has a graphical counterpan in the language as defined in [HPSS].

In the Appendix we give the fonnal relationship between the objects generated by the syntax and the formal

objects representing statechans as defined in [HPSS].

3_1. Transition Labels

We define the labels that can be associated with transitions. Let a set of elementary events Ee and a set of states

1: be given. Define the set of primitive events Ep =E.v [enter(S). exit(S) IS E1:}

Definition.

The set of events E is inductively defined by

AE E • the null event;

eeEp ~eEE;

el,e2EEp ~ell\e2' elY e2EE;

eeE ~-'eEE;

ne N\{O},eEE ~ time-out(e .n)EE o
Remads: -.e is here considered as an event. in contrast to [HPSS] where it is a condition. Semantically they

are the same. i.e. we also have the "not yet" interpretation.

We abbreviate enter (S). exit(S) and time-out(e.n) by respectively en(S). ex(S) and tm(e,n).

Definition.

The set of conditions C is inductively defined by

true,false E C;

cl,c2E C -7 CII\C2' C IY C2E C;

ceC -7-'CEC;

Se1:-7in(S)EC

Definition_

The set of actions A is inductively defined by

JlE A. the null action;

eeEp -7eEA;

aieA for i=I n -7al •... ,a.EA

o

- 6 -

[]

Definition.

Lab = (e[cjla leeE.ceC.aeA)

If e = A, c = true or a = I! • we often omit that part of the label. []

3.2. Unvollendetes

Providing a syntax for Statecharts is done using a notion of incomplete statechart or Unvollendete, abbreviated

as Unv. This is a statechart in the process of being built up. It differs from a complete statechart in that it need

not have a unique root state (i.e. a state of which all other states are direct or indirect substates) and that it may

have so-called incomplete transitions. Incomplete transitions are transitions either without source or without tar­

get state(s). These transitions are pictun:d as dangling arrows. Any statechart can be broken up into Unvollen­

detes and in Chapter 4 we will give the semantics of these Unvollendetes.

We distinguish two kinds of Unvollendetes. The basic Unvs that cannot be decomposed are called Primitives.

They consist of one state with some incomplete transitions. They are. together with the operators the terminal

symbols of the syntax. We denote them by

Prim(/.O.A)

where A is the name of a state. 1 and 0 a set of incoming respectively outgoing transitions. The other three

types of Unvs form the non-terminal symbols of the syntax. PrimCharts are Unvs with one root state. A com­

plete statechart is an example of a PrimChart without incoming or outgoing transitions. AndCharts form the

interior of an AND-state. The operators Connection and Concatenation cannot be applied to them. OrCharts

form the interior of OR-states and furthermore all Unvs that are not the interior of an AND-state. Apart from

Anding. all operators can be applied to them. The structure of the non-terminals is for all three types the same:

PrimChart (/.0). AndChart (I .0). OrChart (I .0)

where 1 and 0 again denote a set of incoming respectively outgoing transitions.

Definition

Let T[respectively To be the set of all incoming respectively outgoing transitions; T[nTO =0.

Let e eEe u r..I r;;;,T[. i •... e T[. 0 •... r;;;,To. o eTo and L: To --7Lab.

Then the set of Statecharts is defined by

* Steh = (VIB --7 V)

* and --7 is the derivability relation for the following set of rules:

B --7 PrimChart (0.0)

PrimChart(1 .0) --7 Prim(/.O.A)

PrimChart«/lul i)\{i),O IUOi) --7 Stat(Prim(/ 1.0 I.A). OrChart(/2.Oi).i) with i e/2

PrimChart(/lu/2.0 IUOi) --7 Stat(Prim(/.O .A).AndChart(/2.Oi»

OrChart(/.O) --7 PrimChart(/.O)

OrChart (I .0) --7 Close(OrChart (I .0).e)

OrChart(/.O) --7 Hide(OrChart(/.O).e)

OrChart(/lu/2'0 IUOi) --7 Or(OrChart(/ 1.0 1).OrChart (/ 2.0 i)

OrChart((lluli) \ Ii), (0 IUOi) \ (o)) --7 Conc(OrChart(/ 1.0 I). o.i. OrChart(/2. o i»

with oeOI and iel2

J~ to

A

i,

t-:,

''''/ I

-6<7..-

"',. to

.·t

u.

$-l-cd: (Prj ... (~~d > f tt (.T)

U:; ArJ (A.,d (U,• U~. f(t3 .fil) J)~ U~'" tP)

u' I

.,. t~

tj" >Ej-/'

d"a
u, :: S~aI:(~,'''''(¢'¢);)~ u,:~)
U;a = 5tQ.j (Pn''''(~, ~ Ti). lJ~' .Jtr.)

-SIAl: p,...... . To. <-I" ~

- 7 -

OrChart(I\{i J,O\{o}) ~ Conn(OrChart(I.O).0 .i) with oeO and ieI

AndChart(I .0) ~ PrimChart(I.O)

AndChart(I.O) ~ Close(AndChart(I.O).e)

AndChart(I.O) ~ Hide(AndChart(I.O).e)

AndChart((1lvI i> \ (il'.···.i:l.O IV0i> ~ And(AndClum(I 1.01)' AndChart(I2.02).{(i I.i I').···.(i •• i:)))

withii ellandi;'eI 2 0

3.2.1. Explanation of the operators

Concatenation Cone (U 100.i.U i>

By concatenation two OrChans are "sequentially composed"'. An outgoing transition. o. of U I is connected to

an incoming one. i. of U 2. thus creating a complete transilim. (See example 6 overleaf).

Connection

Connection only differs from concatenation by taking just one chan and making the new ttansition somewhere

inside. In fact we don't need concatenation if we have connection and offing (see below). but from the semantic

point of view. concatenation is more basic. (See example 7 overleaf).

Statification

This is the hierarchy operator; it has no counterpan in conventional programming languages. It puts an OrChan

(U i> inside a state A (the state of a primitive U I)' An explicitly mentioned incoming ttansition. i. from U 2

becomes the default of A. (See example 8 overleaf). If U 2 is an AndChan. the default is left out. because an

AND-state needs no default staning point: execution is started in all immediate substates simultaneously. Of

course. these substates can have defaults associated with thellL

Anding

Anding in Statechans corresponds to parallel compositioo in conventional programming languages. Two

AndCharts are put in parallel. Through Stat!fication. they will become the onhogonal components of an AND­

state. (See example 9 overleaf). Anding is a binary operator. so if there are to be more than two onhogonal

components. it must be applied repeatedly. The semantic counterpan of Anding is associative and commutative.

Note that the onhogonal components of an And-state are always PrimCharts (chans with one root state).

Forked transitions are made by specifying which of the inmming transitions of the operands should be com­

bined. Repeatedly applying Anding and combining forked Jransitions creates forks with more than two target

states_

Orring

This is the counterpan of Anding. It puts some OrCharts together in non-onhogonal composition. with the

intention of statification by an OR-state and can be compared 10 non-deterministic choice_ (See example 10 over­

leaf).

Closure

In [HPSS1. the set of primitive events is divided inlO internal and external events. External events can be gen­

erated outside the statechan itself. internal events cannot For a compoSitional semantics this distinction is not

useful. because events that are internal 10 the complete statechan. can be external to some subchan.

Therefore. we introduce an operator that declares some events to be internal 10 a subchan meaning that such a

- 8 -

subchart will not react if one of its intl~mal events is generated outside. TItis is not the same as hiding since

these events are sti11 observable.

Hiding

The hiding operator makes the specified events invisible for the outside world. Hiding and Closure are in a

sense dual. Hiding restricts the influence of the operand on the environment, and maintains the influence of the

environment on the operand, whereas Closure restricts the influence of the environment on the component, but

maintains the influence of the component on the environment If Hiding is muting, then Closure is deafening.

They can be seen as a consequence (If the broadcast communication mechanism. The conventional hiding

operation, i.e., making an event or variable fully local, can be obtained by applying both Closure and Hiding to

a component.

4. Semantics

TItis chapter presents a denotational semantics of Slatecharts or rather of Unvs. TItis semantics is compositional

(syntax-directed) with regard to the operators defined in Chapter 3.

The maximality of the sequences of micro-steps as described in Chapter 2 corresponds with the notion of maxi­

mal parallelism as modelled in [HGR,GBJ (see also [SM]). The techniques of those papers also apply here.

As Statecharts describes a set of configurations (as any digital system), a discrete model of time is adequate.

Since it is intended to make global time specifications, we use a global notion of time. The simplest domain that

gives these properties is IV, but for reasons that will be explained later, we use ZI: .

At first sight, Statecharts are quite different from ordinary programming languages. Simplest to characterise are

sequential languages without jump-like constructs. Once jumps enter the picture we have to abandon the idea of

giving state transformations for each command in isolation. Traditionally, this is solved using the idea of con­

tinuations [SW,MJ.

It is our aim to give a compositional semantics of Statecharts. The semantics of [SWJ is only given for full pro­

gram blocks in which all labels of gotos appear. In our solution jumps (transitions) are made in two stages. In

the first stage we have only half jumps, in which the place where we are jumping to or where we come jumping

from is not specified. These are the incomplete transitions in the syntax.

In the semantics, we record the behaviour of a subchan only between such jumps. And we specify for each his­

tory the incomplete transition by which it starts and by which it ends. TItis specification is just the syntactical

identification of the transition.

In the second stage, by concatenation or connection these half jumps are made into full jumps by identifying an

incoming and an outgoing transition. Now we can also give the full semantics of the jump, as we know where

we come from and where we go to. TItis semantics is just the concatenation of the history that ends in one half

of it and the history that starts with the other half. In case of connection, loops can arise since we jump to the

same subchart. Consequently, the semantics of this construct will be characterised by a fixed-point equation.

Now there is a difference between gotos in conventional languages and transitions in Statecharts, namely, in Sta­

techarts the place where a jump can occur is not completely syntactically determined. Transitions from a super­

state can be triggered when execution is anywhere inside that state. Our solution is to give two options at any

moment during execution inside a state: exiting by the outside transition or continuing the history generated by

the semantics of the interior of the state.

- 9 -

4.1. The semantic domain

The semantics of an (incomplete) statechart, i.e., its denotation, will be a set of history-triples, each triple

corresponding to one possible execution,

The set of history-triples is defined by

where T[and To are the sets of incoming respectively outgoing transition identifiers from the syntax and Hi

denotes the set of histories, defined below.

A history-triple consists of three components. The first component is the incoming transition of the chart by

which the execution slans, the third component either equals the outgoing transition by which the execution

ends, or equals "1 " in case of an incomplete computation. It is possible that there is no staning transition, indi­

cated by *. This is the case when we have the root state of the complete statechan, or a component of an

AND-state that can be staned implicitly by an incoming transition of another component (see fig).

The second component of the triple is a partial function that associates to each time unit, a so-called clock

record. Execution stans at time unit 0 and ends at the last time unit where the function is defined. The records

associated to negative time values contain information about the past, i.e., before the execution of this subchart

started. We will need this to describe the occurrence of time-out events. The functions are total on ~ <()

UI = (f E~ -+q; 13i'Vj: j<i -+fU) defined" j"2i -+f U) undefined}

The precise structure of clock-records, q; , is defined later.

Notation:

Let f : ;;Z -+X be a panial function. Then:

If I =max({i If(i) is defined})+l

If f E HI, then If 1-1 is the time at which the outgoing transition, if there is one, of this execution occurs.

•

the shift operator changes the time in a history; it shifts each clock record j time units to the future.

shift(f ,j)(i+j)=f(i)

I shift(f ,j)I = If I+j

n n: ~ -+X is defined by

(ftn)(i)=f(i)ifi <n

= undefined otherwise

For f E UI define the projections fF, f C, fS and fS by:

f (i) = (fF (i),fc (i),fs(i» and fS (i) = (fc (i),fs(i» o
In order to use fixed-poim definitions, our domain will be a complete partial order (cpo). In fact, we will use

the standard Hoare ordering as in [K&] and represent it, as usual, as inclusion of prefix-closed sets.

We distinguish extendable and finished history-triples. Extendable triples correspond with incomplete computa­

tions and are characterised by a bottom outgoing transition (1). We define the fonowing partial order on

history-triples:

Definition

(ti.! ,tiJ$ (t' l,f',t' iJ iff tl=('1 " «t:z=1 " If 1$ If' I)V (t:z=t' 2" If I = If' I» " 'Vi< If I:f (i) = f'(i)

If h l$h 2 we say that h 1 is a prefix of h2

o

- 10 -

Definition

• A set of history-triples H is "prefix·closed' iff'<lheH: h'$h ~ h 'eH

• The function. CL maps a set of history-triples, H, into the smallest prefix-closed set that contains H.

The semantical domain is defined as follows:

Definition

The domain is (D,$,1 D)' where D ,= {H ~ T/U (*) X H x Tou (1) I H is prefix-closed} and

1 D=0

Theorem

(lD,$,l D) is a cpo.

Proof:

Standard.

The set of clock records is defined as follows:

Definition:

IE = (F,C,$)IFcC;;;Ep,$ a partial order on C)

o

o

o

o

o
For one particular time· step, a clock record describes the behaviour of the total system (component and environ­

ment) by C and $, a partial ordering on C. The contribution of the component is contained in the set F .

F is the set of events that are generated by the component and C is the set of events that are assumed to be

generated somewhere in the total system (including the component).

Unfortunately this information is not sufficient. A transition can influence other transitions in the same time step

either by triggering them or by preventing them from being triggered. This influence, however, is restricted. A

transition can only influence transitions that occur in subsequent micro-steps. This is the way causal paradoxes

are avoided.

We have to record this restricted influence, too. This leads to the following additional information.

A partial order on the events that occur in the same time step representing the way such events can

influence each other. E.g., if event a causes transition I, then we have a <b for all events b that are gen­

erated by transition t. This means that t can never influence transitions that caused a. These relationships

can also arise from negative causes: if a transition labelled a ,,--.b is taken, we have b < a, because taking

such a transition is only possible if a occurs when b has not been generated (yet).

Examplell (see figure in chapter 5).

If the two transitions occur simultaneously, we have b <a in all behaviours. This means that the T 2"

transition cannot trigger the T I-tranSition, even though it generates b. The trigger of the latter transition

has to come from somewhere else.

The relationship between the partial order and the micro-steps is as follows.

a <b if and only if a occurs in a micro-steps previous to that in which b occurs.

a -b (abbreviation for a :$ b " b :$ a) if and only if a and b occur in the same micro-step.

If an event is generated in more than one micro-step in the same time·step, we only take the first occurrence

into account, since an event is effective during all micro-steps following the micro-step in which it is generated.

- 11 -

4.2. Semantics of transitions

Before we define the semantics of subchans, we define a function that gives the semantics of transitions. All

behaviours that are consistent with taking some transition, are expressed by the function T.

Definition
E

To: E -) 22 P is defined recursively as follOWS:

ToQ..) = 2Ep

To(a) = ICbEp laEC) for aEEp

To(-'e) = IC~p I Co;! To(e»)

To(etf\ez) = To(et)nTo(ez)

To(e tV ez) = To(et)uTo(ez)

To(tm(e,n» = ToO ..) o
T o(e) gives all sets of events that may occur when a transition labelled with e I... takes place. This is not

sufficient for time-out events, for which the past is also relevant. Therefore we extend Toto the function T that

also gives all past histories that are consistent with the transition taking place.

Definition
E

T: E -) ill: 2
p is defined recursively as follows:

T(e) = If If (O)E ToCa)f\ If 1= l} for eEEp or e=')..

T(-'e) = If If.;!T(e)f\ If I = l}
T(tm (e ,n» = If I shift if ,ntlE T(e)f\VO<.i<n: shift if ,itlE T(-.e)}

T(etf\e2) = T(et)nT(ez)

T(e1Vez} = T(et)uT(ez} o
A time-out expression tm (e ,n) is satisfied if the last occurrence of e was exactly n time steps ago. This is

expressed by shift if ,ntIET(e) (e occurred n steps ago) and by shift if ,-i)ET(-.e) (e did not occur later,

i.e., the occurrence at -n was the last occurrence). In Statecharts, it does not matter whether e occurs at the

moment of the time-out, hence, no claims about the present are made. This is expressed by

T(tm(e,n» = IC ICbEp).

The semantics of conditions is defined as follows:

Definition
E

Tc :c-)ill: 2P

TcCtrue) = T(')..)

Tcifalse) = T(-.true)

TcCin(S» = If 13n::;O: en(S)Ef(n) f\ "Vn<i::;O: ex(S)o;!f(i»)

The semantics of actions is as follows:

Definition

A:A -)2E"

A{ji.) = 0

A(a) = la) for aEEp

A(at;az} = A(at)u A(az} for at.2EA

Now we extend the domain of T to the set of complete labels, Lab, and the codomain to sets of histories.

Definition

Let (F, C, :$;)E q: and D ,E.;;;C. Then

o

o

- 12 -

• D is an initial segment of C iff 'ria E C'rIb ED: a5.b V a -b ~ a E D

D <C iff'rlaED,bEC:a <b

An initial segment contains exactly the events that are generated in some prefix of the sequence of micro-steps.

Definition

T: Lab ~ 2H is defined as follows:

fET(e[c]fa) iff If 1=1 and there exist f'E T(e)nTc(c)) andF, C, 5. such that

(i) 'rIkO 3 partial order 5.': f (i)=(0J'(i), 5.')

(ii) F r;;.A(a) , A(a)r;;.C

(iii) there exists an initial segment D of C S.l D Ej'(O) and D <F and 'rIf IJ 2EF : f I-h. o
ad(i) The past of f has nothing to do with the causality relation. It only depends on whether some event did

or did not occur at a particular time step.

ad(ii) We only record the first occurrence of an event, hence not all the events in the action part of the

label have to occur in F. It can well be the case that the environment will generate an event before

(in the sequence of micro-steps) this transition generates it. E.g., if the transition is labelled a fa it is

clear that a should not occur in F, since the transition is still depends on a being generated outside.

ad(iii) The set D contains all the events that occurred before the transition. These should be consistent with

e [c], which is guaranteed by the clause D Ej'(O) (remember that the co-domain of f' consists of sets

of sets of events, each set representing a consistent behaviour for the associated time unit). All events

generated (for the first time) by this transition occur in the same micro-step; this is expressed by

fl-h·

4.3. Definition of the semantics

A fundamental aspect of the semantics is that it describes any behaviour of the system that is consistent with the

behaviour of the component. So, when two components are combined, only those behaviours should be com­

bined that agree totally on the behaviour of the system. In other words. the C - and 5.-components of the clock

records should be equal. The F -components. however. describe only the local contributions and hence these

should be unified.

Definition

(F I'C I, 5. 1)II(F2,C 2• 5. 2) = (F luF 2'C I. ~I) if C 1= C2 and 5. 1 = 5. 2

= undefined otherwise

For f I,2E Uf. f tilt 2 is only defined if ff = f ~. In that case.

(f IlIf~(i) = f l(i)lIh(i) for all i < If II

We define the semantic function

[.]: Stch ~ D

by induction on the structure of Stch:

4.3.1. Primitives

o

A primitive has only one state and no complete transitions. Hence. a possible execution consists of some

incoming transition. possibly waiting in the state until some outgoing transition is triggered and then executing

this transition. Incomplete executions have no outgoing transitions (but a 1 instead) and the case that the state

is never left is expressed. as usual, by having arbitrary long incomplete executions. The semantics of the

- 13 -

outgoing transition is pven by the function T. the semantics of waiting is given by a set W. Since waiting is

only allowed if none ofilhe outgoing transitions can be taken. W is the complement of the set of all behaviours

corresponding to takiqg one of the transitions. No semantics is given for the incoming transition, only an

identification. At a la1er SIlIge. this transition will be connected to an outgoing transition of another (or the

same) chart. There. the lOutgoing transition will have a semantics.

Definition

Let gend = shift(g. -{ Jg 1-111 and W = If I If 1=1 1\ --.3i: f E T(ej)(')Tc(c;)} where ej Icd/aj are the labels

of the outgoing transiti~ns in O. Then

(u • J. v) E [Prim(! .0 ,s)] iff there exists agE III such that

UE!U 1*}l\vEOOU II) and

'V'O:>i<lg 1-1: sllift(g.-i~IEW and

v=l ~gendEW aad v,,"l ~gendET(L(v» and Ig 1=lf I and gS=f s and

fF (i) = gF (i)u (.en(S)) ifi =-1

= gF (i)u (e(S») if i = If 1-1 and v¢l

= g F (i) othelWise

4.3.2. Concatenation

o

By concatenating two lIlUbcbarts, new computations become possible. Namely. by entering the first chart, per­

forming a computation that ends in the connecting transition, entering the second chart by this transition and

performing a computatign dJere. In our semantics. this corresponds to simply concatenating the histories from

the first chart and those !from the second chart that end respectively start with the connecting transition.

It is still possible ho~er. to perform a computation in one of the charts in isolation. provided that it doesn't

start or end with one d'me connecting transitions. because these are no entering or leaving points anymore.

Hence. the semantics or the concatenation of two subcharts consists of the concatenation of their respective his­

tories together with thcic ,own histories (performed by the function cone). from which the histories that start or

end in a connecting tnmsition are deleted (performed by the function delete). We have split this definition into

two functions because "We need these functions again in the semantics of Connection (below).

Definition

[Conc(U l.tl.t2'U~] = delete"",(conc ([U 1],tlh,[U J)fL
where deletejJ(D) = l(uJ .v) I (u J.v)ED I\u .vli! Ii.j]]

and conc(D I.tl.f7,Pz) = {(u,ft'fz,v)l(u,Ji,tl)EDII\ (tZ,h,V)EDz}uD1uD z

and the concatenaiWn f J Af 2 is defined by:

if IAf z)(i) = fz(i+lf II) if i2! If ,I

= f ,(iW 2(i-lf ,I) if i<lf ,I

4.3.3. Connection

o

Since connection creates a transition from an OrChart to itself. the semantics is a fixed point of the concatena­

tion operator. Note. however. that the deletion of histories starting or ending with the connecting transitions can

only be applied after 4be fixed-point operation. because these connection points are needed for the repeated

application of concatemllion. Because of the cpo structure on our domain and the continuity of the function

cone, this least fixed pOint exists and is unique.

- 14 -

Definition

[Conn(U ,tl,ti)] = delete'lh(JlX'·conc([U],tl,t2,X)f
L

where It is the least fixed-point operator

4.3.4. Anding

o

Anding two Unvs means executing them in parallel. This means that for each time step the behaviour of both

components at that time step should be combined. The definition of this combination can be found in section

4.3.1. Now we define how two given history-triples should be combined.

Definition

Let v, V I, V 2E To and f ,f l,f 2E DI. We define the predicate MERGE as follows:

MERGE(vIJI,v2J2,vJ) _

(i) [v",l -dj: v=v/, Ifj I< If 3-j 1/\ If 1=lfj I /\ ft If 1-1 = if i1lf:Vt If I /\ f (If 1-1) = fj(If 1-1)] and

(ii) [v=l ~ vI=v2=l/\f=f i1lf 2] 0

Case (i) treats complete computations. The computation can only exit the construct via an outgoing transition of

exactly one of the components (no forks on outgoing transitions are allowed). Hence, at such a moment the

other component must be performing some internal computation. This is expressed by Ifj I< IfJ_j I, where j is

the index of the component from which the outgoing transition is performed. All computations in f 3-j beyond

and including If j 1-1 (this is the time at which the exiting transition is performed) are discarded by the merge.

The remaining ones are combined. If the computation is incomplete, we simply merge the histories of the two

components (ii).

Note that f t1Lf 2 is a partial function: if f I and f 2 do not agree on the behaviour of the total system at some

time step, the function is undefined and the predicate equals false.

Definition

[And(U I'U 2,{(tI'w I), ... ,(tn ,wn))] = {(u ,f,v) 13(ui ,f; ,vi)E [U,]:

« 3 I::;j$2: u=Uj/\uJ-j=*) V (3I$j$n: u=t/,u l=t/'U2=Wj)) /\ MERGE (v I' fl,v2'/z'v J)} o
The execution starts either explicitly by a forked transition (u =tj) or explicitly by a transition to one of the two

components as a result of which execution in the other component is implicitly started (u=Uj and U3-j=*).

4.3.5. Statification

There are two types of Statification, one for OR-states and one for AND-states. Syntactically and semantically

they only differ in that the first one has a default whereas the other one has none.

Definition

[Stat(UI,U2,d)] = {(uJ,v)13(ui,f;,Vi)E[U,]:

«u=u l/\u 2=d) V (U=u2/\U2;"d/\U2"'*)) I\MERGE(VI,fI,v2,f2,V J))

[Stat(UI,Ui)] = (uJ,v)13(ui,f;,vi)E[U,]:

«u=UI/\uz=*)V (U=Uz!\U2"'*)) /\ MERGE (v l,fl,v2' fz,v J)} o
There are two ways to start the execution of an OR -state with inner structure. One can either take a transition

explicitly to some state(s) inside the outer state (u=ui) or take a transition to the outer state and enter some

state(s) inside by default (u=u I).

An AND-state has no defaults associated to it, since execution always starts simultaneously in all of its immedi­

ate substates. So, execution starts either by taking a transition to the outer state and start execution inside impli­

citly (u=u ,/\u2=) or by entering the inner structure explicitly (U=U2/\U2'"). The way the components of this

- 15 -

inner structure are started, is taken care of by the semantics of U 2. Combining the histories from the two com­

ponents and exiting the construct is not different from Anding and hence this definition can be found in the pre-

• vious section.

4.3.6. Closure

Closure with respect to an event a makes the closed statechart insensitive to all a -events generated outside the

chart However, the environment stays sensitive to a -events generated within the closed statechart. Conse­

quently, all histories should be deleted in which a is claimed to occur (a e C), but in which a is not generated.

The predicate OK yields falsehood for such clock records. The insensitivity of the closed statechart also means,

however, that histories depending on the fact that a did not occur are legal if a is generated outside. Therefore,

some new histories should be added to the denotation, representing the behaviours the statechart is consistent

with as a result of the closure. For a given clock record, the function SAT produces all clock records that are

consistent with this behaviour after Closure.

Definition

OK(F,C, $) -= aeC-+aeF

SAT(F ,C, $) = {(F ,C', $') 1 C c;;;C'c;;;C u {a}f\ $'~C= $}

[Close(U,a)] = {(u,f,v)13g: (u,g,v)eUf\Vi: OK(g (i»f\! (i)eSAT(g(i»} foraeE.

[Close(U ,s)] = [Close(Close(U ,en (s »,ex (s »] for s E 1: o

4.3.7. Hiding

Hiding is in a sense dual to Closure. It makes the environment of a statechart insensitive to the occurrence of

a particular event. So, at applying Hiding of event a to a statechart, all occurrences of a should be deleted

from the histories. This is performed by the function DElETE. This insensitivity, however, makes some

behaviours legal that were not legal before the hiding of the statechart. If a is generated inside, then after hid­

ing the component is consistent with those behaviours of the environment in which a occurred later or even not

at all in that macro step. It does not become consistent with behaviours in which a occurred be! ore it was

generated, because in these behaviours a is actually generated by the environment and on such occurrences hid­

ing does not apply. The operator that extends the denotation with the appropriate clock records is DELAY.

Definition

DELAY (F ,C, $) = {(F ,C. $)} if aotF

= {(FnC',C',$,)1 (C'=C\{a}f\$'=$\ {aj)V

(C'=C f\ $' \ {a)= ~ \ [a) f\ 'Vb eC: b<a -+b<' a) otherwise

DElETE(F ,e, $) = (F\{a },e, $)

[Hide(U,a)] = {(u,f,v)13g: (u,g,v)EUf\lg 1=1/ 1 f\ Vi3de DELAY (g (i»: !(i)=DElETE(d)}

[Hide(U,s)] = [Hide(Hide(U,en(s»,ex(s»] forse1:

S. Full Abstraction

D

In this chapter we give a notion of observable behaviour for Statecharts and prove that the semantics is fully

abstract with respect to this notion of observable behaviour. We refer to [HGR,HePl] for a further explanation

about full abstraction.

A context is a program with a "hole" in it. If C [.J is a context and P a program then e [P] is the program that

results from plugging P into the hole of C. Let 0 (P) give the observable behaviour of program P.

p;

u'

x,,:
v'

AI,

10.. : ['-U o./~ ...
'0] ~: 'iY-I!

I{ b:
>

~)./'0 lis ••).A., ... ~)./~i ~A~/~ ... ~

r T 1

Ij :1;.
A I c:

I
I
I 7

bh7Q.
I

cjQ,;h I

Ii.
I

lL I
a I

D 1 I , ,

- 16 -

Definition

A semantics [.] is fully abstract with mspect to 0 iff:

for all programs P.Q: [p]=[Q] .=- for all contexts C: 0 (C [PJ)=O (C [Q)) o
For Statecharts. we choose as the observable behaviour of a state chart or Unv the events that are generated by

that statechart at every time unit So we define

o (P)=(fF I 3u.v: (U./.V)E [p])

Theorem

[.] = fully abstract w.r.t. 0

Proof

For reasons of simplicity we do not consider enter and exit events. conditions or time -out events. The proof

can be easily extended to cover these features. too.

~: follows from the compositionality of [.].

<=:

Suppose [p] .. [Q]. We want to find a contextX. such that O(X[PJ)" O(X[Q)). Let E be the set of prim­

itive events that occur in P and Q. Assume without loss of generality that there exists a history-triple

(u .k,.V)E [p] \ [Q].

If the entrance transition u .. * we signal this by concatenating P to a chart Xu (see fig.). If u=* we don't

have to signal this, because any computation can start this way. Let us assume that P and Q are OrCharts, oth­

erwise we apply Statification first. Likewise, if the exit transition v .. 1 , we signal this by concatenating P to a

chart Xv (see fig.). Again, we don't have to signal the case that v=l .

Define Xc = Conc(Conc(Xu,u',u,<hole:»,v,v',Xv) and P' =Xc!PJ and Q' =Xc!QJ. Now [p'] .. [Q']

and we know that this difference cannot be based on incoming or outgoing transitions. So we can restrict our­

selves to histories instead of history-triples. We will write "f E [p]" etc. instead of "there exist u, v such that

(u .. /. V)E [p]" etc. So we assume that there exists a history kE [p'] \ [Q ']. On basis of this history we

build our context X. We use a set of events Gu!+) that do not occur in P' or Q'. Events in G witness

behaviour in accordance with k, the event * signal a violation of such.

We now construct for each time unit i a program that allows behaviour as described by k(i) and that willlry to

catch as many aberrations as possible.

Let k(i) = (F.C,S,). In the construction below, g.,g.,bEG will generically stand for some fresh. i.e. unused

events.

• For each a E E with ae C we build the chart W. and for each a E C we build the chart T •• (see fig).

For each pair a,bEG with a<b and a and b successors. i.e. ~3c: a<c<b, we build the chartL. b with

g fresh (see fig).

• For each pair a ,b E C with a -b, we build the chart M •. b (see fig).

Now we put all these charts in parallel by Anding and apply Closure on the events in Gu (:j:). This AndChart

defines Xi: the set of events g E G that it uses is G i.

- 17 -

Lemma 1

If (F',C',S;,)e [X;], Gig and ;f:eF then (F',C',S;')tE=(0,C, S;).

Proof

I. F'nE=0, because events in E are not in the action part of any label in Xi.

2. (E\C)nC'=0, because :f;eF' implies that none of the transitions in the Was were taken.

3. C!;;C', because Gir;;F implies that all transitions in the Tas were taken.

4. Gir;;;.F' implies that all La b transitions have been taken and hence that any S;-successors are also S;'­

successors.

5. Furthermore, none of the Ma b transitions have been taken (;f:eF,) and hence for any a ,be C with a-b

we have neither a<!b nor b<!a, or, in other words a-'b.

From 4. and 5. we can infer that for any a ,b e C we have a S;b ~ a $,'b, which is equivalent with saying

that $,= $,'~C. This, together with I, 2 and 3, gives the desired property. 0

To make sure that the AndChart Xi is only active at time step i, we build a synchroniser that generates at time

step j the special event Sj for each 05,jS; Ik I (see fig). To each label in Xi we add the conjunct si' For each

time step j we build an AndChart Xj and put these in paraIlel with the synchroniser and this AndChart we call

X.

Lemma 2

If Ie [X'] and Jl 1=lk I then

'Vi<lk I: Gir;;;,kF(i) and +ri.kF(i) iff'Vi<lk I: I «(tE=(0,C , $,).

Furthermore, such an I exists.

Proof

From the construction of X' and Lemma I. o
Let X[.] be the context And(X', <hole>, 0). Now we can prove that o (X [P']) '" o (X[Q'J). Let the history I

be as in Lemma 2. Then we define Tby

T(i) = (IF (i)ukF (i)JC (i),I"(i»

It is clear that lex [P'] and hence that yF eO (X [P'D.

Suppose that yF e 0 (X [Q 'D. Then there must be some me [X [Q ']] with mF = yF. By the semantics of And­

ing, there must be k' e [Q '] and m e [X] such that

mF~G = IF~G and k'F~E = kF~E

By lemma 2, we know that m(i)\,E=(0,C, S;) for all i, hence k'(i)\'E= (Fi'C, $,) for some Fi , because the

merge could not have taken place otherwise. But since the only events that P' and Q' can generate are in E, Fi

must be empty. Applying this argument to all time steps, yields

k' = k

which is in contradiction with our initial assumption, so that Tri. 0 (X [Q 'D. o

- 18 -

6_ Discussion

In this chapter we discuss the future extension of statecharts with variables, and a possible other definition of the

semantics with respect to causality betWel:D micro-steps. ;

6_1. Variables

The full version of this paper will include the use of variables in the labels of transitions (in conditions and in

actions as assignments). This will not involve an essential extension of the model. The same technique used for

the condition in (S) can be applied here. All changes to variables are signalled in the form of events and the

satisfaction of conditions is checked by an inspection of the history.

6.2. Other definition on causality

In the semantics of [HPSS], the influence of a transition is restricted to the transitions that follow it in the

sequence of micro-steps building the macro-step. In our compositional semantics, this restricted influence is

modelled by the partial order in the cloc.k record. This solves the causal paradox of the transition annulling its

own cause (see example 5 in chapter 2), but this solution is not fully satisfactory. E.g., a transition labelled -'a

can always be taken, even if a happens during that time unit. (It only differs from a transition labelled by A in

as much that it need not be taken when a happens.) Furthermore, the semantics depends heavily on the relative

order in which the micro-steps occur, whereas the micro-steps are definitely not observable - they are only intro­

duced to solve the causal problems.

A new version of the operational semantics is under study by Pnueli and others, in which global contradictions

are not allowed. A global contradiction occurs when two transitions with conflicting labels take place in the

same macro-step. E.g., a transition labelled -'a can never take place in the same macro-step with a transition

labelled .. .fa, even if the latter occurs in a later micro-step. This leads to a simpler and more intuitive semantics.

The main drawback, however, is that causal paradoxes such as the one in example now lead to a run time error.

There is no acceptable behaviour anymore to associate to these situations and there is no way to detect them

syntactically.

We can easily adapt the compositional semantics to model this new operational semantics. The only thing that

has to change is the definition of the semantics of a label. Instead of demanding that the triggering event should

only be satisfied by some initial segment of the macro-step, we demand that it should be satisfied by the com­

plete macro-step. The partial order is only used to guarantee that there are no circularities in the triggering of

transitions by other transitions. In fact, we could do with a linear order instead of a partial order, because there

is no need anymore to distinguish events generated in the same micro-step from the same events generated in

arbitrary order.

7. Conclusion

We presented a compositional semantics for the graphical specification/programming language Statecharts, as

described in [HPSS]. For this, we had to define a proper generative syntax. The operators in this syntax have

simple graphical counterparts as well as a natural semantics. The model extends the model of [HGR,GB] to

deal with broadcast and, specifically, with the micro-step semantics of Statecharts as described in [HPSS]. This

is a subtle operational notion to deal with the consequences of the synchrony of action and reaction (called the

synchrony hypothesis by Berry [B]). The compositional semantics does not model the micro-steps directly, but

records only the occurrence relationship between the generated events as imposed by the order of micro-steps.

After fixing the notion of observable behaviour, we prove that the semantics is fully abstract with respect to this

notion of observability.

- 19 -

This wolk selVes as a basis for extending the work of Hooman on proof-systems for Real-Time languages [H]

and that of Zwiers [Z].

Acknowledgement

The authors want to thank Amir Pnueli and Jozef Hooman for the stimulating discussions witb tbem and tbeir

useful suggestions. Special thanks go to S. Ramesh who found a lot of bugs in earlier versions and who helped

very much in finding the definitions for Hiding and Closure.

Furthermore, we want to thank Edme van Thiel and Inge van Drunen for typing this paper.

References

[B] Berry G., Cosserat L. (1985), The Synchronous Programming Language ESTEREL and its Matbemati­

cal Semantics, in "Proc. CMU Seminar on Concurrency", LNCS 197, pp. 389-449, Springer-Verlag,

New Yolk.

[BCH] Bergerand J.-L., Caspi P., Halbwachs N. (1985), Outline of a real-time dataflow language, in "Proc.

lEEE-CS Real-Time systems Symposium", San Diego.

[DD] Danun W., DOhmen G. (1987), An axiomatic approach to tbe specification of distributed computer

architectures, in "Proc. PARLE Parallel Architectures and Languages Europe, Vol I", LNCS 258,

Springer Verlag, Berlin.

[G] Gonthier G., (1988), Ph.D. Thesis, Institute Nationale de Recherche en Informatique et en Automa­

tique, Sophia-Antipolis, to appear.

[GB] Gerth R., Boucher A., A Timed Failures Model for Extended Communicating Processes (1986), in

"Proc. 14th Colloquium Automata, Languages and Programming ICALP", LNCS 267, pp. 95-114,

Springer Verlag, Berlin.

[GBBG] Le Guernic P., Beneviste A., Boumal P., Ganthier T. (1985), SIGNAL: A Data Flow Oriented

Language For Signal Processing, IRISA Report 246, IRISA, Rennes, France.

[H] Harel D. (1987), Statecharts: A visual Approach to Complex Systems, Science of Computer Program­

ming, Vol. 8-3, pp. 389-449, pp. 231-274.

[HePI] Hennessy M., Plotkin G. (1979), Full Abstraction for a Simple Programming Language, in "Proc.

Math. Foundat. of Comput. Science", LNCS 74, pp. 108-120, Springer Verlag, New York.

[HGR] Huizing C., Gerth R., De Roever W.P., (1987), Full Abstraction of a Real-Time Denotational Seman­

tics for an OCCAM-like language, in "Proc. 14tb ACM Symposium on Principles of Programming

Languages POPL", pp. 223-237.

[Ho] Hooman J. (1987), A compositional proof theory for real-time distributed message passing, in "Proc.

PARLE Parallel Architectures and Languages Europe, Vol II", LNCS 259, pp. 315-332.

[HP] Harel D., Pnueli A. (1985), On the Development of Reactive Systems, Logic and Models of Con­

current Systems, in "Proc. of the NATO Advanced Study Institute on Logics and Models for

Verification and Specification of Concurrent Systems", NATO ASI Series F, Vol. 13, pp. 477-498

Springer Verlag, Berlin.

[HPSS] Harel D .. Pnueli A., Pruzan-Schmidt J., Sherman R. (1987), On the Formal Semantics of Statecharts,

in "Proc. Symposion on Logic in Computer Science (LICS)", pp. 54-64.

- 20-

[HU] Hopcroft J.E., Ullman J.D. (1979), Introduction to automata theory, languages, and computation,

Addison-Wesley, Reading.

[K&] Koymans R, Shyamasundar RK., De Roever W.P., Gerth R, Arun-Kumar S. (1988), Compositional

Semantics for Real-Time Distributed Computing, Information and Control, to appear.

[M] Mazurkiewicz A., Proving algorithms by tail functions, Information and Control, 18, (1971), pp. 220-

226.

ISM] Salwicki A., Miildner T. (1981), On the Algorithmic Properties of Concurrent Programs, in "Proc.

Logic of Programs", LNCS 125, Springer Verlag, New Yon.

[SW] Strachey c., Wadsworth C.P., Continuations: A Mathematical Semantics for Handling Full Jumps,

Technical Monograph PRO-II, Oxford University Computing Laboratory, Oxford.

[Z] Zwiers J. (1988), Compositionality and dynamic networlcs of processes: Investigating verification sys­

tems for DNP, Ph.D. Thesis, Eindhoven University of Technology, to appear.

Appendix

In [HPSS] the set of statecharts is not defined by a generative grammar, but in a more direct way. We shall call

these objects H-statecharts and define the formal relationship between H-statecharts and the elements of the sets

Stch, the expressions generated by the syntax as defined in chapter 3.

Definition (taken from [HPSS], adapted):

Let a set of states ~ and a set of labels Lab be given.

A H-statechart is a quintuple (S ,p,1jI,/5,T) where

S d is the set of states;

p: S --+ 2s is the hierarchy function;

1jI: S --+ (AND , OR) is the type function;

/5: S --+ 2s is the default function;

T ~ S xLabxS is the set of transitions,

with the following restrictions:

(i) 'VSES: s~p\S)

(ii) 'VS1,S2:S1 .. S2--+p(sl)n p(Sz) = 121

(iii) 'VSES: I5(s)\;p+(s)

(iv) 3! rES:p*(r)=S/\'V tET:r~<t/\r~t>

(v) 'V S ES: (3 XEX:SEp(X)/\ 1jI(X) = AND) --+ 'VtE T:s~<t/\s~t>

The set of H-statecharts is called HS

Notation: if tET and t=(SI,sz), then <t=81' ;=1 and t>=82

where p' and p+ are the reflexive respectively irreflexive transitive closure of p.

We define a function R: HS --+ Stch as follows:

Let o=(s ,p,1jI,/5,T) be given.

o

Define a function E:S --+ Unv that gives for each statechart with one root state and its interior the associated

Unvollendete (prim Chart). Then we can define:

R (0) = E (r) where r is the root state of 0, i.e., 'V S E S :s E pes).

•

Define:

Notation:

- 21 -

TJ={(t.S)ETxS ISEt» U {(SI.S:z)ESxS IS 2ES(SI»)

TO={(S.t)ESxT ISE<t)

L:To ~ Lab

L(s.t) =;

if i E TJ and i =(t.s). then i>=t> and tr(i)=t if tE T. i>=S(s I) if siE S .

if oETO and o=(s.t). then <o=<t and tr(o)=t.

TJ and To will serve as the set of incoming respectively outgoing transitions for the Unvollendetes we are going

to use. Since defaults are made out of incoming transitions. we need some of these for this purpose.

Define an auxiliary function Ep:S ~ Unv:

Ep(s)=Prim(l.O.s) with 1={(t.S)ETJ I SEt» and O={(s.t)ETo I SE<t)

For U E Unv. define

Inc(U)=1 ifU=<l.O>

Outg(U) = 0 if U = <l.0>

We need a function Ei : S ~ Unv that gives for each state the Unvollendete that should be associated to the inte­

rior of that state. It depends on whether it is an AND-state or an OR-state. We define E and Ei recursively:

E(s) = Ep(s) if p(s)=0

E (s) = Stat(Ep (s). Ei (s). s.s ') if p(s) "# 0 and 'I'(s)=OR and (s.s JElnc (Ei (s» for some S ';

= Stat(Ep (s).Ei (s» if p(s)=0 and 'I'(s)=AND.

Ei (s) is defined by two cases.

Let SES be given and p(S)=(SI' s.). n>1.

Distinguish two cases:

(i) 'I'(s) = AND

Define a sequence of Unvollendetes A b ... A. as follows:

A 1= E(sl)

Aj = And(Aj _l • E(sj)' aj) for 2 S j S n

and aj={(iI.i:z)E/ l xJ 2 1 sjEilrd 1 S k < j:SkEil»

and II =lnc(Aj _I).12 =lnc(E(sj».

Then Ei(s) = A.

(ii) 'I'(s) = OR

Let U =Or(..Or(E(sl)' E(s:z» •... .E(s.»

Let {rl •... • t.} = (tETILCA(t)=s) Here. LeA is a function defined in [HPSS1; LCA(t) gives the

smallest state that encloses transition t:

Let R =<tut>. then LCA(t) = x iff

1. R~p+(x)

2. 'I'(x) = OR

3. 'tsER:iflJl(s)=OR then R~p+(S)~XEP'(S)

Define a sequence of Unvollendetes B 0 •... .B. as follows.

Bo= U

Bj = Conn (Bj_l.oj.ij) for 1 S j S n.

where tr(ij) = tr(oj)=tj

Then Ei(S) = B. o

In this series appeared:

No. Author(s) Title
85/01 RH. Mak The formal specification and

derivation of CMOS-circuits

85/02 W.M.C.J. van Overveld On arithmetic operations with
M-out-of-N-codes

85/03 W.J.M. Lemmens Use of a computer for evaluation
of flow films

85/04 T. Verhoeff Delay insensitive directed trace
H.M,J.L. Schols structures satisfy the foam

rubber wrapper postulate

86/01 R Koymans Specifying message passing and
real-time systems

86/02 G.A. Bussing ELISA, A language for formal
K.M. van Hee specifications of information
M. Voorhoeve systems

86/03 Rob Hoogerwoord Some reflections on the implementation
of trace structures

86/04 G.J. Houben The partition of an information
J. Paredaens system in several parallel systems
K.M. van Hee

86/05 Jan L.G. Dietz A framework for the conceptual
Kees M. van Hee modeling of discrete dynamic systems

86/06 Tom Verhoeff Nondeterminism and divergence
created by concealment in CSP

86/07 R Gerth On proving communication
L. Shira closedness of distributed layers

86/08 R. Koymans Compositional semantics for
RK. Shyamasundar real-time distributed
W.P. de Roever computing (Inf.&ControI1987)
R. Gerth
S. Arun Kumar

86/09 C. Huizing Full abstraction of a real-time
R Gerth denotational semantics for an
W.P. de Roever OCCAM-like language

86/10 J. Hooman A compositional proof theory
for real-time distributed
message passing

86/11 W.P. de Roever Questions to Robin Milner - A
responder's commentary (IFIP86)

86/12 A. Boucher A timed failures model for
R. Gerth extended communicating processes

86/13 R. Gerth Proving monitors revisited: a
W.P. de Roever first step towards verifying

object oriented systems (Fund.
Informatica IX-4)

86/14 R. Koymans Specifying passing systems
requires extending temporal logic

87/01 R. Gerth On the existence of sound and
complete axiomatizations of
the monitor concept

87/02 Simon J. Klaver Federatieve Databases
Chris F.M. Verb erne

87/03 G.J. Houben A formal approach to distri-
J.Paredaens buted information systems

87/04 T.Verhoeff Delay-insensitive codes -
An overview

87/05 R.Kuiper Enforcing non-determinism via
linear time temporal logic specification.

87/06 R.Koymans Temporele logica specificatie van message
passing en real-time system en (in Dutch).

87/07 R.Koymans Specifying message passing and real-time
systems with real-time temporal logic.

87/08 H.M.J.L. Schols The maximum nuinber of states after
projection.

87/09 J. Kalisvaart Language extensions to study structures
L.R.A. Kessener for raster graphics.
W.J.M. Lemmens
M.L.P. van Lierop
F.J. Peters
H.M.M. van de Wetering

87/10 T.Verhoeff Three families of maximally nondeter-
ministic automata.

87/11 P.Lemmens Eldorado ins and outs.
Specifications of a data base management·
toolkit according to the functional model.

87/12 K.M. van Hee and OR and AI approaches to decision support
A.Lapinski systems.

87/13 J.C.S.P. van der Woude Playing with patterns,
searching for strings.

87/14 J. Hooman A compositional proof system for an occam-
like real-time la',lguage

87/15 C. Huizing A compositional semantics for statecharts
R. Gerth
W.P. de Roever

87/16 H.M.M. ten Eikelder Normal forms for a class of formulas
J.C.F. Wilmont

87/17 K.M. van Hee Modelling of discrete dynamic systems
G.-J.Houben framework and examples
J.L.G. Dietz

87/18 C.W.A.M. van Overveld An integer algorithm for rendering curved
surfaces

87/19 A.J .Seebregts Optimalisering van file allocatie in
gedistribueerde database systemen

87/20 G.J. Houben The R2 .Algebra: An extension of an
J. Paredaens algebra for nested relations

87/21 R. Gerth Fully abstract denotational semantics
M. Codish for concurrent PROLOG
Y. Lichtenstein
E. Shapiro

88/01 T. Verhoeff . A Parallel Progl'am That Generates the
Mobius Sequence

88/02 K.M. van Hee Executable Specification for Information
G.J. Houben Systems
L.J. Somers
M. Voorhoeve

88/03 T. Verhoeff Settling a Question about Pythagorean Triples

88/04 G.J. Houben The Nested Relational Algebra: A Tool to handle
J.Paredaens Structured Information
D.Tahon

88/05 K.M. van Hee
G.J. Houben

Executable Specifications for Information Systems

LJ. Somers
M. Voorhoeve

88/06 H.M.J.L. Schols Notes on Delay·Insensitive Communication

88/07 C. Huizing Modelling Statecharts behaviour in a fully
R. Gerth abstract way
W.P. de Roever

88/08 K.M. van Hee A Formal model for System Specification
G.J. Houben
L.J. Somers
M. Voorhoeve

88/09 A.T.M. Aerts A Tutorial for Data Modelling
K.M. van Hee

88/10 J.C. Ebergen A Formal Approach to Designing Delay Insensitive
Circuits

,
;

	Abstract
	1. Introduction
	2. Informal introduction to Statecharts
	2.1 States
	2.2 Transitions
	2.3 Actions
	2.4 Events
	2.5 Causality
	3. Syntax
	3.1 Transition Labels
	3.2 Unvollendetes
	3.2.1 Explanation of the operators
	4. Semantics
	4.1 The semantic domain
	4.2 Semantics of transitions
	4.3 Definition of the semantics
	4.3.1 Primitives
	4.3.2. Concatenation
	4.3.3 Connection
	4.3.4 Anding
	4.3.5 Statification
	4.3.6 Closure
	4.3.7 Hiding
	5. Full Abstraction
	6. Discussion
	6.1 Variables
	6.2 Other definition on causality
	7. Conclusion
	Acknowledgement
	References

