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Abstract

Written text is one of the fundamental manifestations of human language, and the study of its universal regularities can give
clues about how our brains process information and how we, as a society, organize and share it. Among these regularities,
only Zipf’s law has been explored in depth. Other basic properties, such as the existence of bursts of rare words in specific
documents, have only been studied independently of each other and mainly by descriptive models. As a consequence,
there is a lack of understanding of linguistic processes as complex emergent phenomena. Beyond Zipf’s law for word
frequencies, here we focus on burstiness, Heaps’ law describing the sublinear growth of vocabulary size with the length of a
document, and the topicality of document collections, which encode correlations within and across documents absent in
random null models. We introduce and validate a generative model that explains the simultaneous emergence of all these
patterns from simple rules. As a result, we find a connection between the bursty nature of rare words and the topical
organization of texts and identify dynamic word ranking and memory across documents as key mechanisms explaining the
non trivial organization of written text. Our research can have broad implications and practical applications in computer
science, cognitive science and linguistics.
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Introduction

The understanding of human language [1] requires an

interdisciplinary approach and has broad conceptual and practical

implications over a broad range of fields. Computer science, where

natural language processing [2–4] seeks to model language

computationally, and cognitive science, that tries to understand

our intelligence with linguistics as one of its key contributing

disciplines [5], are among the fields more directly involved.

Written text is a fundamental manifestation of human language.

Nowadays, electronic and information technology media offer the

opportunity to easily record and access huge amounts of

documents that can be analyzed in quest for some of the

signatures of human communication. As a first step, statistical

patterns in written text can be detected as a trace of the mental

processes we use in communication. It has been realized that

various universal regularities characterize text from different

domains and languages. The best-known is Zipf’s law on the

distribution of word frequencies [6–8], according to which the

frequency of terms in a collection decreases inversely to the rank of

the terms. Zipf’s law has been found to apply to collections of

written documents in virtually all languages. Other notable

universal regularities of text are Heaps’ law [9,10], according to

which vocabulary size grows slowly with document size, i.e. as a

sublinear function of the number of words; and the bursty nature

of words [11–13], making a word more likely to reappear in a

document if it has already appeared, compared to its overall

frequency across the collection.

The structure of written text is key to a broad range of critical

applications such as Web search [14,15] (and the booming

business of online advertising), literature mining [16,17], topic

detection [18,19], and security [20–22]. Thus, it is not surprising

that researchers in linguistics, information and cognitive science,

machine learning, and complex systems are coming together to

model how universal text properties emerge. Different models

have been proposed that are able to predict each of the universal

properties outlined above. However, no single model of text

generation explains all of them together. Furthermore, no model

has been used to interpret or predict the empirical distributions of

text similarity between documents in a collection [23,24].

In this paper, we present a model that generates collections of

documents consistently with all of the above statistical features of

textual corpora, and validate it against large and diverse Web

datasets. We go beyond the global level of Zipf’s law, which we

take for granted, and focus on general correlation signatures

within and across documents. These correlation patterns,

manifesting themselves as burstiness and similarity, are destroyed

when the words in a collection are reshuffled, even while the global

word frequencies are preserved. Therefore the correlations are not

simply explained by Zipf’s law, and are directly related to the

global organization and topicality of the corpora. The aim of our

model is not to reproduce the microscopic patterns of occurrence

of individual words, but rather to provide a stylized generative

mechanism to interpret their emergence in statistical terms.

Consequently, our main assumption is a global distribution of

word probabilities; we do not need to fit a large number of
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parameters to the data, in contrast to parametric models proposed

to describe the bursty nature or topicality of text [25–27]. In our

model, each document is derived by a local ranking of dynamically

reordered words, and different documents are related by sharing

subsets of these rankings that represent emerging topics. Our

analysis shows that the statistical structure of text collections,

including their level of topicality, can be derived from such a

simple ranking mechanism. Ranking is an alternative to

preferential attachment for explaining scale invariance [28] and

has been used to explain the emergent topology of complex

information, technological, and social networks [29]. The present

results suggest that it may also shed light on cognitive processes

such as text generation and the collective mechanisms we use to

organize and store information.

Results and Discussion

Empirical Observations
We have selected three very diverse public datasets, from

topically focused to broad coverage, to illustrate the statistical

regularities of text and validate our model. The first corpus is the

Industry Sector database (IS), a collection of corporate Web pages

organized into categories or sectors. The second dataset is a

sample of the Open Directory (ODP), a collection of Web pages

classified into a large hierarchical taxonomy by volunteer editors.

The third corpus is a random sample of topic pages from the

English Wikipedia (Wiki), a popular collaborative encyclopaedia

that also is comprised of millions of online entries. (See Materials

and Methods for details.)

We measured the statistical regularities mentioned above in our

datasets and the empirical results are shown in Fig. 1. We stress

that although our work focuses on collections of documents written

in English, the regularities discussed here are universal and apply

to documents written in virtually all languages. The distributions

of document length for all three collections can be approximated

by a lognormal with different first and second moment parameters

[30] (see Web Datasets under Materials and Methods). Another

universal property of written text is Zipf’s law [6–8,31], according

to which the global frequency fg of terms in a collection decreases

roughly inversely to their rank r: fg*1=r or, in other words, the

distribution of the frequency fg is well approximated by a power

law P fg

� �
*f {a

g with exponent around a&2. Zipf’s law also

applies to the datasets used here, as supported by a Kolmogorov-

Smirnov goodness-of-fit test [32] (see Fig. 1a and its caption for

details). Heaps’ law [9,10] describes the sublinear growth of

vocabulary size (number of unique words) w as a function of the

size of a document (number of words) n (Fig. 1b). This feature has

also been observed in different languages, and the behavior has

been interpreted as a power law w nð Þ*nb with bv1, although the

exponent b between 0.4 and 0.6 is language dependent [33].

Burstiness is the tendency of some words to occur clustered

together in individual documents, so that a term is more likely to

reappear in a document where it has appeared before [11–13].

This property is more evident among rare words, which are more

likely to be topical. Following Elkan [27], the bursty nature of

words can be illustrated by dividing words into classes according to

their global frequency (e.g., common vs. rare). For words in each

class, we plot in Fig. 1c the probability P(fd) that these words occur

with frequency fd in single documents, averaged over all

documents in the collection. We compare the distribution P(fd)

of common and rare terms with those predicted by the null

independence hypothesis. This reference model generates docu-

ments whose length is drawn from the lognormal distribution fitted

to the empirical data (see Materials and Methods) by drawing

words independently at random from the global Zipf frequency

distribution (Fig. 1a). As compared to the reference of such a Zipf

model, rare terms are much more likely to cluster in specific

documents and not to appear evenly distributed in the collection,

so that ordering principles beyond those responsible for Zipf’s law

have to be at play.

Another signature of text collections, which is more telling about

topicality, is the distribution of lexical similarity across pairs of

documents. In information retrieval and text mining, documents

are typically represented as term vectors [15,34]. Each element of

a vector represents the weight of the corresponding term in the

document. There are various vector representations according to

different weighting schemes. Here, we focus on the simplest

scheme, in which a weight is simply the frequency of the term

in the document. The similarity between two documents is given

by the cosine between the two vectors: s p,qð Þ~P
t wtpwtq

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t w2

tp
:P

t w2
tq

q
where wtp is the weight of term t

in document p. It has been observed that for documents sampled

from the ODP, the distribution of cosine similarity based on term

frequency vectors is concentrated around zero and decays in a

roughly exponential fashion for s.0 [23,24]. Figure 1d shows that

different collections yield different similarity profiles, however they

all tend to be more skewed toward small similarity values than

predicted by the Zipf model.

Modeling how these properties emerge from simple rules is

central to an understanding of human language and related

cognitive processes. Our understanding, however, is far from

definitive. First, the empirical observations are open to different

interpretations. As an example, much has been written about the

debate between Simon and Mandelbrot around different inter-

pretations of Zipf’s law (see www.nslij-genetics.org/wli/zipf for a

historical review of the debate). Second, and perhaps more

importantly, no single model of text generation explains all of the

above observations simultaneously. Third, models at hand are

usually based on descriptive methods that cannot explain linguistic

processes as emergent phenomena.

In the remainder of this paper, we focus on burstiness and

similarity distributions. Regarding similarity, little attention has

been given to its empirical distribution and, to the best of our

knowledge, no model has been put forth to explain its profile.

Regarding text burstiness, on the other hand, several models have

been proposed including the two-Poisson model [11], the Poisson

zero-inflated mixture model [35], Katz’ k-mixture model [12], and

a gap-based variation of Bayes model [36]. Another line of

generative models extends the simple multinomial family with

increasingly complex views of topics. Examples include probabi-

listic latent semantic indexing [37], latent Dirichlet allocation

(LDA) [25], and Pachinko allocation [38]. These models assume a

set of topics, each typically described by a multinomial distribution

over words. Each document is then generated from some mixture

of these topics. In LDA, for example, the parameters of the

mixture are drawn from a Dirichlet distribution, independently for

each document. Repeatedly drawing a topic from the mixture first,

and then drawing a term from the corresponding word

distribution generate the words’ sequence in a document. A

variety of techniques have been developed to estimate from data

the parameters that characterize the many distributions involved

in the generative process [21,26,39]. Although the above models

were mainly developed for subject classification, they have also

been used to investigate burstiness since bursty words can

characterize the topic of a document [27,40].

The very large numbers of free parameters associated with

individual terms, topics, and/or their mixtures grant the above

models great descriptive power. However, their cognitive plausi-
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bility is problematic. Our aim here is instead to produce a simpler,

more plausible mechanism compatible with the high-level

statistical regularities associated with both burstiness and similarity

distributions, without regard for explicit topic modeling.

Model and Validation
Two basic mechanisms, reordering and memory, can explain

burstiness and similarity consistently with Zipf’s law. We show this

by proposing a generative model that incorporates these processes

to produce collections of documents characterized by the observed

statistical regularities. Each document is derived by a local ranking

of words that reorganizes according to the changing word

frequencies as the document grows, and different documents are

related by sharing subsets of these rankings that represent

emerging topics. With just the main assumptions of the global

distribution of word probabilities and document sizes and a single

tunable parameter measuring the topicality of the collection, we

are able to generate synthetic corpora that re-create faithfully the

features of our Web datasets. Next, we describe two variations of

the model, one without memory and the second with a memory

mechanism that captures topicality.

Dynamic Ranking by Frequency. In our model, D

documents are generated drawing word instances repeatedly

with replacement from a vocabulary of V words. The document

lengths in number of words are drawn from a lognormal

distribution. The parameters D, V, and the maximum likelihood

estimates of the lognormal mean and variance are derived

empirically from each dataset (see Table 1 in Materials and

Methods). We further assume that at any step of the generation

process, word probabilities follow a Zipf distribution

P r tð Þ½ �!r tð Þ{1
where r(t) is the rank of term t. (We also tested

the model using the empirical distributions of document length

and word frequency for each collection and the results are

essentially the same.) However, rather than keeping a fixed

ranking, we imagine that words are sorted dynamically during the

generation of each document according to the number of times

they have already occurred. Words and ranks are thus decoupled:

at different times, a word can have different ranks and a position in

the ranking can be occupied by different words. The idea is that as

the topicality of a document emerges through its content, topical

words will be more likely to reoccur within the same document.

This idea is incorporated into the model as a frequency bias

favoring words that occur early in the document.

In the first version of the model, each document is produced

independently of each other. Before each new document is

generated, words are sorted according to an initial global ranking,

which remains fixed for all documents. This ranking r0 is also used

to break ties during the generation of documents, among words

with the same occurrence counts. The algorithm corresponding to

this dynamic ranking model is illustrated in Fig. 2 and detailed in

Materials and Methods.

Figure 1. Regularities in textual data as observed in our three empirical datasets. (a) Zipf’s Law: word counts are globally distributed
according to a power law P fg

� �
*f {a

g . The maximum likelihood estimates of the characteristic exponent a are 1.83 for Wikipedia, 1.78 for IS, and 1.88
for ODP. A Kolmogorov-Smirnov goodness-of-fit test [32] comparing the original data against 2500 synthetic datasets gives p-values for the
maximum likelihood fits of 1 for Wikipedia and IS and 0.56 for ODP, all well above a conservative threshold of 0.1. This ensures that the power-law
distribution is a plausible and indeed very good model candidate for the real distributions. (b) Heaps’ law: as the number of words n in a document
grows, the average vocabulary size (i.e. the number of distinct words) w(n) grows sublinearly with n. (c) Burstiness: fraction of documents P(fd)
containing fd occurrences of common or rare terms. For each dataset, we label as ‘‘common’’ those terms that account for 71% of total word
occurrences in the collection, while rare terms account for 8%. (d) Similarity: distribution of cosine similarity s across all pairs of documents, each
represented as a term frequency vector. Also shown are w(n), the distributions of fd, and the distribution of s according to the Zipf null model (see
text) corresponding to the IS dataset.
doi:10.1371/journal.pone.0005372.g001
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When a sufficiently large number of documents is generated, the

measured frequency of a word t over the entire corpus approaches

the Zipf distribution P tð Þ* r0 tð Þ½ �{1
, ensuring the self consistency

of the model. We numerically simulated the dynamic ranking

model for each dataset. A direct comparison with the empirical

burstiness curves shown in Fig. 1c can be found in Fig. 3a. The

excellent agreement suggests that the dynamic ranking process is

sufficient for producing the right amount of correlations inside

documents needed to realistically account for the burstiness effect.

Heaps’ law can be derived analytically from our model. The

probability P(w,n) to find w distinct words in a document of size n

satisfies the following discrete master equation:

P wz1,nz1ð Þ~P wz1,nð ÞF wz1ð ÞzP w,nð Þ 1{F wð Þ½ �, ð1Þ

where F wð Þ~
Pw

r~1 P rð Þ, and P(r) is the Zipf probability

associated with rank r.

There are two contributions to the probability to have w+1

distinct words in a document of length n+1, represented by the two

terms in the r.h.s of Eq. (1) above. Before adding the (n+1)th the

document may already contain w+1 distinct words, and such

number remains the same if an already observed word is added.

Since the w+1 words that have been already observed occupy the

first w+1 position in the rank, one of them is observed with

probability F wz1ð Þ~
Pwz1

r~1 P rð Þ, therefore the first contribution

ensues. The other possibility is that the document contains only w

distinct words and that a previously unobserved word is added.

For the same reasons presented above this happen with probabilityPV
r~wz1 P rð Þ~1{F wð Þ, and this accounts for the second

contribution. To make progresses it is useful to write an equation

for the expected number of distinct words. This can be done by

multiplying both sides of Eq. (1) by (w+1) and summing over w.

This leads to:

Table 1. Statistics for the different document collections.

Dataset V D ,w. ,n. s2 nð Þ m s2

Wiki 588639 100000 (0) 160.44 373.86 457083 5.13 1.57

IS 47979 9556 (15) 124.26 313.46 566409 4.81 2.10

ODP 105692 107360
(32558)

8.88 10.34 345 1.93 1.39

V stands for vocabulary size, D for the number of documents containing at least
one word (in parenthesis the number of empty documents in the collection),
,w. for the average size of documents in number of unique words, and ,n.

and s2 nð Þ for the average and variance of document size in number of words.
For each collection, the distribution of document size is approximately fitted by
a lognormal with parameters m and s2 (values shown are maximum
likelihood estimates).
doi:10.1371/journal.pone.0005372.t001

Figure 2. Illustration of the dynamic ranking model. The parameter z regulates the lexical diversity, or topicality of the collection. The extreme
case z = 0 is equivalent to the null Zipf model, where all documents are generated using the global word rank distribution. The opposite case z = 1 is
the first version of the dynamic ranking model, with no memory, in which each new document starts from the global word ranking r0. Intermediate
values of z represent the more general version of the dynamic ranking model, where correlations across documents are created by a partial memory
of word ranks. A more detailed algorithmic description of the model can be found in Materials and Methods.
doi:10.1371/journal.pone.0005372.g002
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X
P wz1,nz1ð Þ wz1ð Þ~

X
P wz1,nð ÞF wz1ð Þ wz1ð Þ{P w,nð ÞF wð Þw

n o

z
X

P w,nð Þwz
X

P w,nð Þ{
X

P w,nð ÞF wð Þ:

ð2Þ

To simplify notations we will use En f wð Þ½ �~
P

P w,nð Þf wð Þ to

indicate the expected value of a function f(w) at step n. Using the

fact that
P

P w,nð Þ~1, and that the term in curly brackets on the

r.h.s. of Eq. (2) is null, one finds:

Enz1 w½ �~En w½ �z1{En F wð Þ½ �: ð3Þ

To further simplify notations, we pose w nð Þ~En w½ �. To close

Eq. (3) in terms of w(n) we neglect fluctuations and assume that the

probability to observe w distinct words in a document of size n is

strongly peaked around w(n). Eq. (3) can then be rewritten as:

w nz1ð Þ{w nð Þ~1{F w nð Þð Þ: ð4Þ

It is convenient to take the continuous limit, replacing finite

differences by derivative, and sums by integrals. One finally

obtains:

dw nð Þ
dn

~

ðV

w

P rð Þdr: ð5Þ

Eq. (5) can be integrated numerically using the actual P(r) from

the data. Alternatively, Eq. (5) can be solved analytically for special

Figure 3. Model vs. empirical observations. The coefficient of determination R2 is computed in all cases as an estimator of the goodness of fit
between the simulation and the empirical measurements. (a) Comparison of burstiness curves produced by the dynamic ranking model with those from
the empirical datasets. Common and rare words are defined in Fig. 1c. For all the comparisons, R2 is larger than 0.99. (b) Comparison of Heaps’ law curves
produced by the dynamic ranking model with those from the empirical datasets. Simulations of the model provide the same predictions as numerical
integration of the analytically derived equation using the empirical rank distributions (see text). For the IS dataset we also plot the result of the Zipf null
model, which produces a sublinear w(n), although less pronounced than our model. The ODP collection has short documents on average (cf. Table 1 in
Materials and Methods), so Heaps’ law is barely observable. For all the comparisons, R2 is larger than 0.99. (c) Comparison between similarity distributions
produced by the dynamic ranking model with memory, and those from the empirical datasets also shown in Fig. 1d. The parameter z controlling the
topical memory is fitted to the data. The peak at s = 0 suggests that the most common case is always that of documents sharing very few or no common
terms. The discordance for high similarity values is due to corpus artifacts such as mirrored pages, templates, and very short (one word) documents. The
fluctuations in the curves for the ODP dataset are due to binning artifacts for short pages. Also shown is the prediction of the topic model for the IS dataset
(see text). Finally, the R2 statistic has a value 0.98 for Wikipedia, 0.94 for IS, and larger than 0.99 for ODP.
doi:10.1371/journal.pone.0005372.g003
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cases. Assuming a Zipf’s law with a tail of the form P rð Þ*r{c

where cw1, the solution is w nð Þ*n1=c and we recover Heaps’

sublinear growth with b&1=c for large n. According to the Yule-

Simon model [41], which interprets Zipf’s law through a

preferential attachment process, the rank distribution should have

a tail with exponent cw1. This is confirmed empirically in many

English collections; for example our ODP and Wikipedia datasets

yield Zipfian tails with c between 3/2 and 2. Our model predicts

that in these cases Heaps’ growth should be well approximated by

a power law with exponent b between 1/2 and 2/3, closely

matching those reported for the English language [33]. Simula-

tions using the empirically derived P(r) for each dataset display

growth trends for large n that are in good agreement with the

empirical behavior (Fig. 3b).

Topicality and Similarity. The agreement between

empirical data and simulations of the model with respect to the

similarity distributions gets worse for those datasets that are more

topically focused. A new mechanism is needed to account for

topical correlations between documents.

The model in the previous section generates collections of

independent text documents, with specific but uncorrelated topics

captured by the bursty terms. For each new document, the rank of

each word t is initialized to its original value r0(t) so that each

document has no bias toward any particular topic. The resulting

synthetic corpora display broad coverage. However, real corpora

may cover more or less specific topics. The stronger the semantic

relationship between documents, the higher the likelihood they

share common words. Such collection topicality needs to be taken

into account to accurately reproduce the distribution of text

similarity between documents.

To incorporate topical correlations into our model, we

introduce a memory effect connecting word frequencies across

different documents. Generative models with memory have

already been proposed to explain Heaps’ law [10]. In our

algorithm (see Fig. 2 and Materials and Methods) we replace the

initialization step so that a portion of the initial ranking of the

terms in each document is inherited from the previously generated

document. In particular, the counts of the r* top-ranked words are

preserved while all the others are reset to zero. The rank r* is

drawn from an exponential distribution P(r*) = z(1-z)r*, where z is

a probability parameter that models the lexical diversity of the

collection and r* has expected value 1/z-1, which can be

interpreted as the collection’s shared topicality.

This variation of the model does not interfere with the reranking

mechanism described in the previous section, so that the burstiness

effect is preserved. The idea is to interpolate between two extreme

cases. The case z = 0, in which counts are never reset, converges to

the null Zipf model. All documents share the same general terms,

modeling a collection of unspecific documents. Here we expect a

high similarity in spite of the independence among documents,

because the words in all documents are drawn from the identical

Zipf distribution. The other extreme case, z = 1, reduces to the

original model, where all the counts are always initialized to zero

before starting a document. In this case, the bursty words are

numerous but not the same across different documents, modeling

a situation in which each document is very specific but there is no

shared topic across documents. Intermediate cases 0,z,1 allow

us to model correlations across documents not only due to the

common general terms, but also to topical (bursty) terms.

We simulated the dynamic ranking model with memory under

the same conditions corresponding to our datasets, but addition-

ally fitting the parameter z to match the empirical similarity

distributions. The comparisons are shown in Fig. 3c. The

similarity distribution for the ODP is best reproduced for z = 1,

in accordance to the fact that this collection is overwhelmingly

composed of very specific documents spanning all topics. In such a

situation, the original model accurately reproduces the high

diversity among document topics and there is no need for

memory. In contrast, Wikipedia topic pages use a homogenous

vocabulary due to their strict encyclopaedic style and the social

consensus mechanism driving the generation of content. This is

reflected in the value z = 0.005, corresponding to an average of 1/

z = 200 common words whose frequencies are correlated across

successive pairs of documents. The industry sector dataset provides

us with an intermediate case in which pages deal with more

focused, but semantically related topics. The best fit of the

similarity distribution is obtained for z = 0.1.

With the fitted values for the shared topicality parameter z, the

agreement between model and empirical similarity data in Fig. 3c

is excellent over a broad range of similarity values. To better

illustrate the significance of this result, let us compare it with the

prediction of a simple topic model. For this purpose we assume a

priori knowledge of the set of topics to be used for generating the

documents. The IS dataset lends itself to this analysis because the

pages are classified into twelve disjoint industry sectors, which can

naturally be interpreted as unmixed topics. For each topic c, we

measured the frequency of each term t and used it as a probability

p(t|c) in a multinomial distribution. We generated the documents

for each topic using the actual empirical values for the number of

documents in the topic and the number of words in each

document. As shown in Fig. 3c, the resulting similarity distribution

is better than that of the Zipf model (where we assume a single

global distribution), however the prediction is not nearly as good as

that of our model.

Our model only requires a single free parameter z plus the

global (Zipfian) distribution of word probabilities, which deter-

mines the initial ranking. Conversely, for the topic model we must

have —or fit— the frequency distribution p(t|c) over all terms for

each topic, which implies an extraordinary increase in the number

of free parameters since, apart from potential differences in the

functional forms, each distribution would rank the terms in a

different order.

Aside from complexity issues, the ability to recover similarities

suggests that the dynamic ranking model, though not as well

informed as the topic model on the distributions of the specific

topics, better captures word correlations. Topics emerge as a

consequence of the correlations between bursty terms across

documents as determined by z, but it is not necessary to predefine

the number of topics or their distributions.

Conclusion
Our results show that key regularities of written text beyond

Zipf’s law, namely burstiness, topicality and their interrelation, can

be accounted for on the basis of two simple mechanisms, namely

frequency ranking with dynamic reordering and memory across

documents, and can be modeled with an essentially parameter-free

algorithm. The rank based approach is in line with other recent

models in which ranking has been used to explain the emergent

topology of complex information, technological, and social

networks [29]. It is not the first time that a generative model for

text has walked parallel paths with models of network growth. A

remarkable example is the Yule-Simon model for text generation

[41] that was later rediscovered in the context of citation analysis

[42], and has recently found broad popularity in the complex

networks literature [43].

Our approach applies to datasets where the temporal sequence

of documents is not important, but burstiness has also been studied

in contexts where time is a critical component [13,44], and even in
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human languages evolution [45]. Further investigations in relation

to topicality could attempt to explicitly demonstrate the role of the

topicality correlation parameter by looking at the hierarchical

structure of content classifications. Subsets of increasingly specific

topics of the whole collection could be extracted to study how the

parameter z changes and how it is related to external

categorizations. The proposed model can also be used to study

the co-evolution of content and citation structure in the scientific

literature, social media such as the Wikipedia, and the Web at

large [10,23,46,47].

From a broader perspective, it seems natural that models of text

generation should be based on similar cognitive mechanisms as

models of human text processing since text production is a

translation of semantic concepts in the brain into external lexical

representations. Indeed, our model’s connection between frequen-

cy ranking and burstiness of words provides a way to relate two

key mechanisms adopted in modeling how humans process the

lexicon: rank frequency [48] and context diversity [49]. The latter,

measured by the number of documents that contain a word, is

related to burstiness since, given a term’s overall collection

frequency, higher burstiness implies lower context diversity. While

tracking frequencies is a significant cognitive burden, our model

suggests that simply recognizing that a term occurs more often

than another in the first few lines of a document would suffice for

detecting bursty words from their ranking and consequently the

topic of the text.

In summary, a picture of how language structure and topicality

emerge in written text as complex phenomena can shed light into

the collective cognitive processes we use to organize and store

information, and find broad practical applications, for instance, in

topic detection, literature analysis, and Web mining.

Materials and Methods

Web Datasets
We use three different datasets. The Industry Sector database is

a collection of almost 10,000 corporate Web pages organized into

12 categories or sectors. The second dataset is a sample of the

Open Directory Project, a collection of Web pages classified into a

large hierarchical taxonomy by volunteer editors (dmoz.org). While

the full ODP includes millions of pages, our collection comprises of

approximately 150,000 pages, sampled uniformly from all top-

level categories. The third corpus is a random sample of 100,000

topic pages from the English Wikipedia, a popular collaborative

encyclopedia that also is comprised of millions of online entries

(en.wikipedia.org).

These English text collections are derived from public data and

are publicly available (the IS dataset is available at www.cs.umass.

edu/̃mccallum/code-data.html, the ODP and Wikipedia corpora

are available upon request); have been used in several previous

studies, allowing a cross check of our results; and are large enough

for our purposes without being computationally unmanageable.

The datasets are however very diverse in a number of ways. The

IS corpus is relatively small and topically focused, while ODP and

Wikipedia are larger and have broader coverage, as reflected in

their vocabulary sizes. IS documents represent corporate content,

while many Web pages in the ODP collection are individually

authored. Wikipedia topics are collaboratively edited and thus

represent the consensus of a community.

The distributions of document length for all three collections

can be approximated by lognormals shown in Fig. 4, with different

first and second moment parameters. The values shown in Table 1

summarize the main statistical features of the three collections

(lognormal parameters are the maximum likelihood estimates).

Before our analysis, all documents in each collection have been

parsed to extract the text (removing HTML markup) and syntactic

variations of words have been conflated using standard stemming

techniques [50].

Algorithm
The following algorithm implements the dynamic ranking

model:

Vocabulary: t[ 1, . . . ,Vf g
Initial ranking: Vt : r0 tð Þ~t

Repeat until D documents are generated:

Initialize term counts to Vt : c tð Þ~0 (*)

Draw L from lognormal (m,s2)

Repeat until L terms are generated:

Sort terms to obtain new rank r(t) according to c(t)

(break ties by r0)

Select term t with probability P tð Þ!r tð Þ{1

Add t to current document

c tð Þ/c tð Þz1

End of document

End of collection

The document initialization step (line marked with an asterisk in

above pseudocode) is altered in the more general, memory version

of the model (see main text). In particular we set to zero the counts

c(t) not of all terms, but only of terms t such that r tð Þ§r�. The

rank r* is drawn from an exponential distribution

P r�ð Þ~z 1{zð Þr
�

with expected value 1/z-1, as discussed in the

main text. In simpler terms, the counts of the r* top-ranked words

are preserved while all the others are reset to zero.

Algorithmically, terms are sorted by counts so that the top-

ranked term t (r(t) = 1) has the highest c(t). We iterate over the

ranks r, flipping a biased coin for each term. As long as the coin

returns false (probability 1-z), we preserve c(t(r)). As soon as the

coin returns true (probability z), say for the term t r�ð Þ, we reset all

the counts for this and the following terms: Vrwr� c(t(r)) = 0.

The special case z = 1 reverts to the original, memory-less

model; all counts are reset to zero and each document restarts

from the global Zipfian ranking r0. The special case z = 0 is

equivalent to the Zipf null model as the term counts are never reset

Figure 4. Distributions of documents’ length for all three
collections. Each distribution can be approximated by a lognormal,
with different first and second moment parameters obtained by
maximum likelihood (ML) (see Table 1).
doi:10.1371/journal.pone.0005372.g004
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and thus rapidly converge to the global Zipfian frequency

distribution.
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