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RESEARCH Open Access

Modeling stochasticity and variability in gene
regulatory networks
David Murrugarra1,2*, Alan Veliz-Cuba3, Boris Aguilar4, Seda Arat1,2 and Reinhard Laubenbacher1,2

Abstract

Modeling stochasticity in gene regulatory networks is an important and complex problem in molecular systems
biology. To elucidate intrinsic noise, several modeling strategies such as the Gillespie algorithm have been used
successfully. This article contributes an approach as an alternative to these classical settings. Within the discrete
paradigm, where genes, proteins, and other molecular components of gene regulatory networks are modeled as
discrete variables and are assigned as logical rules describing their regulation through interactions with other
components. Stochasticity is modeled at the biological function level under the assumption that even if the
expression levels of the input nodes of an update rule guarantee activation or degradation there is a probability
that the process will not occur due to stochastic effects. This approach allows a finer analysis of discrete models
and provides a natural setup for cell population simulations to study cell-to-cell variability. We applied our methods
to two of the most studied regulatory networks, the outcome of lambda phage infection of bacteria and the p53-
mdm2 complex.

1 Introduction
Variability at the molecular level, defined as the phenoty-
pic differences within a genetically identical population of
cells exposed to the same environmental conditions, has
been observed experimentally [1-4]. Understanding
mechanisms that drive variability in molecular networks is
an important goal of molecular systems biology, for which
mathematical modeling can be very helpful. Different
modeling strategies have been used for this purpose and,
depending on the level of abstraction of the mathematical
models, there are several ways to introduce stochasticity.
Dynamic mathematical models can be broadly divided
into two classes: continuous, such as systems of differential
equations (and their stochastic variants) and discrete, such
as Boolean networks and their generalizations (and their
stochastic variants). This article will focus on stochasticity
and discrete models.
Discrete models do not require detailed information

about kinetic rate constants and they tend to be more
intuitive. In turn, they only provide qualitative informa-
tion about the system. The most general setting is as fol-
lows. Network nodes represent genes, proteins, and other
molecular components of gene regulation, while network

edges describe biological interactions among network
nodes that are given as logical rules representing their
interactions. Time in this framework is implicit and pro-
gresses in discrete steps. More formally, let x1, ..., xn be
variables, which can take values in finite sets X1, ..., Xn,
respectively. Let X = X1 × ... × Xn be the Cartesian pro-
duct. A discrete dynamical system (DDS) in the variables
x1, ..., xn is a function

f = (f1, . . . , fn) : X → X

where each coordinate function fi: X ® Xi is a function
in a subset of {x1, ..., xn}. Dynamics is generated by itera-
tion of f, and different update schemes can be used for
this purpose. As an example, if Xi = {0, 1} for all i, then
each fi is a Boolean rule and f is a Boolean network where
all the variables are updated simultaneously. We will
assume that each Xi comes with a natural total ordering
of its elements (corresponding to the concentration levels
of the associated molecular species). Examples of this
type of dynamical system representation are Boolean net-
works, logical models and Petri nets [5-7].
To account for stochasticity in this setting several

methods have been considered. Probabilistic Boolean
networks (PBNs) [8,9] introduce stochasticity in the
update functions, allowing a different update function to
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be used at each iteration, chosen from a probability space
of such functions for each network node. For other
approaches, see [10-12]. These models will be discussed
in more detail in the next section. In this article we pre-
sent a model type related to PBNs, with additional fea-
tures. We show that this model type is natural and a
useful way to simulate gene regulation as a stochastic
process, and is very useful to simulate experiments with
cell populations.

1.1 Modeling stochasticity in gene regulatory networks
Gene regulation processes are inherently stochastic.
Accurately modeling this stochasticity is a complex and
important goal in molecular system biology. Depending
on the level of knowledge of the biological system and
the availability of data for it one could follow different
approaches. For instance, viewing a gene regulatory net-
work as a biochemical reaction network, the Gillespie
algorithm can be applied to simulate each biochemical
reaction separately generating a random walk corre-
sponding to a solution of the chemical master equation
of the system [13,14]. At an even more detailed level one
could introduce time delays into the Gillespie simulations
to account for realistic time delays in activation or degra-
dation such as in circadian rhythms [15-17]. At a higher
level of abstraction, stochastic differential equations [18]
contain a deterministic approximation of the system and
an additional random white noise term. However, all
these schemes require that all the kinetic rate constants
to be known which could represent a strong constraint
due to the difficulty of measuring kinetic parameters,
limiting these approaches to small systems.
As mentioned in the introduction, discrete models are

an alternative to continuous models, which do not
depend on rate constants. In this setting, several
approaches to introduce stochasticity have been pro-
posed. Specially for Boolean networks, stochasticity has
been introduced by flipping node states from 0 to 1 or
vice versa with some flip probability [12,19-21]. However,
it has been argued that this way of introducing stochasti-
city into the system usually leads to over-representation
of noise [11]. The main criticism of this approach is that
it does not take into consideration the correlation
between the expression values of input nodes and the
probability of flipping the expression of a node due to
noise. In fact, this approach models the stochasticity at a
node regardless of the susceptibility to noise of the
underlying biological function [11].
Probabilistic Boolean networks [8,9,22] is another sto-

chastic method proposed within the discrete strategy.
PBNs model the choice among alternate biological func-
tions during the iteration process, rather than modeling
the stochasticity of the function failure itself. We have
adopted a special case of this setting, in which every

node has associated to it two functions: the function
that governs its evolution over time and the identity
function. If the first is chosen, then the node is updated
based on its logical rule. When the identity function is
chosen, then the state of the node is not updated. The
key difference to a PBN is the assignment of probabil-
ities that govern which update is chosen. In our setting,
each function gets assigned two probabilities. Precisely,

let xi be a variable. We assign to it a probability p↑
i ,

which determines the likelihood that xi will be updated
based on its logical rule, if this update leads to an
increase/activation of the variable. Likewise, a probabil-

ity p↓
i determines this probability in case the variable is

decreased/inhibited. The necessity for considering two
different probabilities is that activation and degradation
represent different biochemical processes and even if
these two are encoded by the same function, their pro-
pensities in general are different. This is very similar to
what is considered in differential equations modeling,
where, for instance, the kinetic rate parameters for acti-
vation and for degradation/decay are, in principle,
different.
Note that all these approaches only take account of

intrinsic noise which is generated from small fluctua-
tions in concentration levels, small number of reactant
molecules, and fast and slow reactions. Another source
of stochasticity is related to extrinsic noise such as a
noisy cellular environment and temperature. For more
about intrinsic vs extrinsic noise see [3,23].

2 Method
Our aim is to model stochasticity at the biological func-
tion level under the main assumption that even if the
expression levels of the input nodes of an update func-
tion guarantee activation or degradation there is a prob-
ability that the process will not occur due to
stochasticity, for instance, if some of the chemical reac-
tions encoded by the update function may fail to occur.
This is similar to models based on the chemical master
equation. This model type introduces activation and
degradation propensities. More formally, let x1, ..., xn be
variables which can take values in finite sets X1, ..., Xn,
respectively. Let X = X1 × ... × Xn be the Cartesian pro-
duct. Thus, the formal definition of a stochastic discrete
dynamical system (SDDS) in the variables x1, ..., xn is a
collection of n triplets

F =
{
fi, p

↑
i , p

↓
i

}n

i=1

where

• fi: X ® Xi is the update function for xi, for all
i = 1, ..., n.
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• p↑
i is the activation propensity.

• p↓
i is the degradation propensity.

• p↑
i , p

↓
i ∈ [0, 1] .

We now proceed to study the dynamics of such sys-
tems and two specific models as illustration.

2.1 Dynamics of SDDS

Let F =
{
fi, p

↑
i , p

↓
i

}n

i=1
be a SDDS and consider x Î X.

For all i we define πi, x(xi ® fi(x)) and πi, x(xi ® xi) by

πi,x(xi → fi(x)) =

⎧⎨
⎩
p↑
i , if xi < fi(x),
p↓
i , if xi > fi(x),
1, if xi = fi(x).

πi,x(xi → xi) =

⎧⎨
⎩
1 − p↑

i , if xi < fi(x),
1 − p↓

i , if xi > fi(x),
1, if xi = fi(x).

That is, if the possible future value of the i-th coordi-
nate is larger (smaller, resp.) than the current value,
then the activation (degradation) propensity determines
the probability that the i-th coordinate will increase
(decrease) its current value. If the i-th coordinate and
its possible future value are the same, then the i-th
coordinate of the system will maintain its current value
with probability 1. Notice that πi, x(xi ® yi) = 0 for all
yi ∉ {xi, fi(x)}.
The dynamics of F is given by the weighted graph X

which has an edge from x Î X to y Î X if and only if
yi Î {xi, fi(x)} for all i. The weight of an edge x ® y is
equal to the product

wx→y =
n∏
i=1

πi,x(xi → yi)

By convention we omit edges with weight zero. See
Additional file 1 for pseudocodes of algorithms to com-
pute dynamics of SDDS. Software to test examples is
available at http://dvd.vbi.vt.edu/adam.html[24] as a web
tool (choose SDDS in the model type).

Given F =
{
fi, p

↑
i , p

↓
i

}n

i=1
a SDDS, it is straightforward

to verify that F has the same steady states (fixed points)
as the deterministic system G = {fi}ni=1 (see Additional
file 1). It is also important to note that the dynamics of
F includes the different trajectories that can be gener-
ated from G using other common update mechanisms
such as the synchronous and asynchronous schemes
(see Additional file 1).

2.1.1 Example
Let n = 2, X = {0, 1} × {0, 1}, F = (f1, f2): X ® X, where
Table 4 represents the regulatory rules for x1 and x2
and Table 5 represents their propensity parameters

and

Pr(01 ® 10) = (.1)(.9) = .09, Pr(01 ® 00) = (1 -
.1)(.9) = .81

Pr(01 ® 01) = (1 - .1)(1 - .9) = .09, Pr(01 ® 11) =
(.1)(1 - .9) = .01
Pr(10 ® 10) = (1 - .2)(1 - .5) = .4, Pr(10 ® 01) =
(.2)(.5) = .1
Pr(10 ® 00) = (.2)(1 - .5) = .1, Pr(10 ® 11) = (1 - .2)
(.5) = .4

Pr(11 ® 11) = (1)(1 - .9) = .1, Pr(11 ® 10) = (1)
(.9) = .9

Pr(00 ® 00) = (1)(1) = 1.

Figure 1 shows that there is a 9% chance that the sys-
tem will transition from 01 to 10. Similarly, there is an
81% chance that the system will transition from 01 to
00. The latter was expected because there is a high
degradation propensity for f2. Note that 00 is a fixed
point, i.e., there is 100% chance of staying at this state.

3 Applications
We illustrate the advantages of this model type by
applying it to two widely studied biological systems, the
regulation of the p53-mdm2 network and the control of
the outcome of phage lambda infection of bacteria.
These regulatory networks were selected because sto-
chasticity plays a key role in their dynamics.

3.1 Regulation in the p53-Mdm2 network
The p53-Mdm2 network is one of the most widely studied
gene regulatory networks. Abou-Jaude et al. [25] proposed
a logical four-variable model to describe the dynamics of
the tumor suppressor protein p53 and its negative regula-
tor Mdm2 when DNA damage occurs. The wiring dia-
gram of this model is represented in Figure 2, where P
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denotes cytoplasmic p53, nucleic p53, and the gene p53.
Mc and Mn stand for cytoplasmic Mdm2 and nuclear
Mdm2, respectively. DNA damage caused by ionic irradia-
tion decreases the level of nucleic Mdm2 which enables
p53 to accumulate and to remain active, playing a key role
in reducing the effect of the damage. There is a negative
feedback loop involving three components: p53 increases
the level of cytoplasmic Mdm2 which, in turn, increases
the level of nuclear Mdm2. Nucleic Mdm2 reduces p53

activity. This model also contains a positive feedback loop
involving two components where p53 inhibits its negative
regulator nucleic Mdm2. Note the dual role of P, as it
positively regulates nucleic Mdm2 through cytoplasmic
Mdm2. On the other hand, P negatively regulates nucleic
Mdm2 by inhibiting Mdm2 nuclear translocation [25]. For
more about the p53-Mdm2 system (see [4,25,26]).
The dynamic behavior of the system is represented in a

network of transitions called its state space (see Figure 3).
This specifies the different paths to follow and the prob-
abilities of following a specific trajectory from a given
state. Dynamics here is not deterministic, i.e., most of the
state vectors have different trajectories they can follow.
The propensity parameters in Table 1 determine the likeli-
hood of following certain paths. The state 0010 is a steady
state, which is differentiated from the others by its oval
shape.
The state space for this model is specified by [0, 2] ×

[0, 1] × [0, 1] × [0, 1], that is, except for the first vari-
able P which has three levels {0, 1, 2}, all other variables
are Boolean. The update functions for this model are
provided in Additional file 1 and also in the model
repository of our web tool at http://dvd.vbi.vt.edu/adam.
html.
Individual cell simulations render plots similar to the

ones shown in Figure 4. Each subfigure shows oscilla-
tions as long as the damage is present with a variability
in the timing of damage repair. On the other hand, cell
population simulations, Figure 5, exhibit damped

81%

10%9%
1%

40%

90%
10%

100%40%10%

9%

01

001011

Figure 1 State Space Diagram. This diagram depicts all trajectories to follow from any given initial state of the network. The numbers next to
the edges specify the transition probabilities. Note that dynamics here is not deterministic, most of the states have different trajectories to
follow.

P
DNA 
damage

MnMc

Figure 2 Four-variable model for the p53-Mdm2 regulatory
network. P, Mc, and Mn stand for protein p53, cytoplasmic Mdm2,
and nuclear Mdm2, respectively.
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oscillations of the expression level of p53 as the degra-
dation propensities of the damage increases. This is cor-
related with the fact that, if the intensity of the damage
is increased, more cells exhibit oscillations in the level
of p53 which was experimentally observed in [4]. The
initial state for all simulations was 0011 which repre-
sents the state when DNA damage is introduced (0010
is the steady state without perturbation).
To highlight the features of our approach we compare

our model with the one presented in [25] in which varia-
bility has been analyzed. The main difference between
these two models is in the way the simulations are

performed. In [25], the transition from one state to the
next is determined by parameters called “on” and “off”
time delays. For instance, to transition from 2001 to 2101
it is required that tMc < tdam which means that the “on”
delay for Mc (time for activating) is less than the “off”
delay (time for degrading) of the damage. Otherwise, if
tMc > tdam the system will transition from 2001 to 2000.
In this article, transitions from one state to others are
given as probabilities which are determined from the pro-
pensity probabilities. Therefore, the complexity of the
model presented here is at the level of the wiring diagram
(i.e. the number of variables) while the complexity of the
model in [25] is at the level of the state space (i.e. number
of possible states) which is exponential in the number of
variables. Another key difference is the way DNA damage
repair is modeled. In [25], a delay parameter tdam is asso-
ciated with the disappearance of the damage, and this is
decreased by a certain amount τ at each iteration so that

t(n)
dam

= t(0)
dam

− nτ ≥ 0 where n is the number of

1010

2110 2100

0110

1011
1001

0010

0001

1111

2101

0111

0000

0011

1110

2001

2000

2111

1000

90%

9%
81%

90%

90%81%9%

9%9%

90%
85.5%85.5%

85.5%

.5%4.5%.5%4.5%.5%

4.5% 90% 90%
90%

9%9%
90%

9%
9%

81%

90%

9%

9%

81%
81%

Figure 3 State space diagram for parameters described in Table 1. The numbers next to the edges encode the transition probabilities. The
order of the variables in each vector state is P, Mc, Mn, DNA damage. Self-loops are not depicted. States with darker background comprise the
cycle with DNA damage. A second cycle with a lighter shaded background corresponds to the cycle with no DNA damage. The oval shaped
state is a steady state.

Table 1 Propensity probabilities for the p53-Mdm2
regulatory network

P Mc Mn Dam

Activation .9 .9 .9 1

Degradation .9 .9 .9 .05

Note that there is a low degradation propensity for DNA damage.
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iterations. In order to simulate DNA damage with this

approach it is required to estimate τ, n, and t(0)
dam

. Within

our model framework a single parameter, the degradation
propensity, is used to model the damage repair which is a
more natural setup.

3.2 Phage lambda infection of bacteria
Control of the outcome of phage lambda infection is
one of the best understood regulatory systems [3,27,28].
Figure 6 depicts its core regulatory network that was
first modeled by Thieffry and Thomas [28] using a logi-
cal approach. This model encompasses the roles of the
regulatory genes CI, CRO, CII, and N. From experimen-
tal reports [3,28-30] it is known that, if the gene CI is
fully expressed, all other genes are off. In the absence of
CRO protein, CI is fully expressed (even in the absence
of N and CII). CI is fully repressed provided that CRO
is active and CII is absent.
The dynamics of this network is a bistable switch

between lysis and lysogeny, Figure 7. Lysis is the state
where the phage will be replicated, killing the host.
Otherwise, the network will transition to a state called

lysogeny where the phage will incorporate its DNA into
the bacterium and become dormant. It has been sug-
gested [28,31] that these cell fate differences are due to
spontaneous changes in the timing of individual bio-
chemical reaction events.
The state space for this model is specified by [0, 2] ×

[0, 3] × [0, 1] × [0, 1], that is, the first variable, CI, has
three levels 0, 1, 2, the second variable, CRO, has four
levels {0, 1, 2, 3}, and the third and fourth variables, CII
and N, are Boolean. Update functions for this model are
available in our supporting material, Additional file 1.
This model has a steady state, 2000, and a 2-cycle invol-
ving 0200 and 0300. The steady state 2000 represents
lysogeny where CI is fully expressed while the other
genes are off. The cycle between 0200 and 0300 repre-
sents lysis where CRO is active and other genes are
repressed.
Cell population simulations were performed to mea-

sure the cell-to-cell variability. Figure 8 was generated
using the probabilities given in Tables 2 (top frame) and
3 (bottom frame). The x-axis in both subfigures repre-
sents discrete time steps while the y-axis captures the
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Figure 4 Individual cell simulations for parameters described in Table 1. Each subfigure shows oscillations as long as the damage is
present. This figure shows variability in the timing of damage repair and in the period of the oscilations. Each frame was generated from a
single simulation with sixty time steps. The x-axis represents discrete time steps and the y-axis the expression level. The initial state for all
simulations is 0011.
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average expression level. The initial state for all simula-
tions was 0000 which represents the state of the bacter-
ium at the moment of phage infection. Figure 8 shows
variability in developmental outcome, some of the net-
works transition to lysis while others transition to lyso-
geny. To measure how sensitive the dynamics of the
network is to changes in the propensity probabilities, we
have plotted the outcome of lysis-lysogeny percentages
for different choices of these parameters. Figure 9 shows
the variation in developmental outcome as a function of
the propensity parameters of CI and CRO. Star points
indicate the percentage of networks that transition to
lysogeny and circle shaped points indicate the percentage
of networks that end up in lysis. The bottom x-axis

contains activation propensities for CI and degradation
propensities for CRO while the top x-axis contains activa-
tion propensities for CRO and degradation propensities
for CI. The activation and degradation propensities for
CII and N were all set equal to .9. Although the probabil-
ity distributions for CI and CRO are very symmetric in
Figure 9, it gives a good idea of how the variability in
developmental outcome will change as the propensity
parameters change.

4 Conclusions
Using a discrete modeling strategy, this article intro-
duces a framework to simulate stochasticity in gene
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Figure 5 Cell population simulations. Each subfigure was generated from 100 simulations, each representing a single cell with sixty time
steps. Starting from the top left frame to the right bottom frame the degradation propensity for DNA damage was increased by 5%, i.e.

p↓
dam = .05 (top left), p↓

dam = .10 (top right), p↓
dam = .15 (bottom left), and p↓

dam = .2 (bottom right). The x-axis represents discrete

time steps and the y-axis the average expression level. The initial state for all simulations was 0011. This figure shows that, if the intensity of the
damage is increased more cells exhibit oscillations in the level of p53, in agreement with experimental observations [4].

Table 2 Propensity parameters for Figure 7 (top frame)

CI CRO CII N

Activation .8 .2 .9 .9

Degradation .2 .8 .9 .9

There is a high activation propensity for CI while a low activation propensity
for CRO.

Table 3 Propensity parameters for Figure 7 (bottom
frame)

CI CRO CII N

Activation .3 .7 .9 .9

Degradation .7 .3 .9 .9

There is a high activation propensity for CRO while a low activation
propensity for CI.

Murrugarra et al. EURASIP Journal on Bioinformatics and Systems Biology 2012, 2012:5
http://bsb.eurasipjournals.com/content/2012/1/5

Page 7 of 11



regulatory networks at the function level, based on the
general concept of PBNs. It accounts for intrinsic noise
due to spontaneous differences in timing, small fluctua-
tions in concentration levels, small numbers of reactant

molecules, and fast and slow reactions. This framework
was tested using two widely studied regulatory networks,
the regulation of the p53-Mdm2 network and the con-
trol of phage lambda infection of bacteria. It is shown
that in both of these examples the use of propensity
probabilities for activation and degradation of network
nodes provides a natural setup for cell population simu-
lations to study cell-to-cell variability. The new features
of this framework are the introduction of activation and
degradation propensities that determine how fast or
slow the discrete variables are being updated. This pro-
vides the ability to generate more realistic simulations of
both single cell and cell population dynamics. In the
example of the p53-Mdm2 system, one can see that
individual simulations show sustained oscillations when
DNA damage is present, while at the cell population
level these individual oscillations average to a damped
oscillation. This agrees with experimental observations
[4]. In the second example, l-phage infection of bac-
teria, it is observed that differences in developmental
outcome due to intrinsic noise can be captured with
this framework. Due to the lack of experimental data we
are unable to calibrate the model so that it reproduces
the correct difference in percentages due to intrinsic
noise. So instead we present a plot of the difference in

CI

CII
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N

Figure 6 Wiring diagram for phage lambda infection model.
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developmental outcome as a function of the propensity
parameters.
It is worth noting that this article addresses only

intrinsic noise generated from small fluctuations in con-
centration levels, small numbers of reactant molecules,
and fast and slow reactions. Extrinsic noise is another
source of stochasticity in gene regulation [3,23], and it
would be interesting to see if this framework or a simi-
lar setup can be adapted to account for extrinsic sto-
chasticity under the discrete approach. This framework
also lends itself to the study of intrinsic noise and it is
useful for the study of developmental robustness. For
instance, one could ask what the effect of this type of
noise is on the dynamics of networks controlled by bio-
logically inspired functions.
Relating the propensity parameters to biologically mean-

ingful information or having a systematic way for

estimating them is very important. A preliminary analysis
shows that it is possible to relate the propensity para-
meters in this framework with the propensity functions in
the Gillespie algorithm under some conditions (see Addi-
tional file 1 where for a simple degradation model, the
degradation propensity is correlated by a linear equation
with the decay rate of the species being degraded). More
precisely, in the Gillespie algorithm [13,14], if one discre-
tizes the number of molecules of a chemical species into
discrete expression levels such that within these levels the
propensity functions for this species do not change signifi-
cantly, then one obtains the setup of the framework pre-
sented here as a discrete model. That is, simulation within
the framework presented here can be viewed as a further
discretization of the Gillespie algorithm, in a setting that
does not require exact knowledge of model parameters.
For a similar approach see [10].
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Figure 8 Cell population simulations. Both figures were generated from 100 simulations, each representing a single cell iteration of ten time
steps. Top frame for parameters in Table 2 shows 93% lysis and 7% lysogeny while bottom frame for parameters in Table 3 shows 4% lysis and
96% lysogeny. The x-axis represents discrete time steps while the y-axis shows the average expression level. The initial state for all the
simulations is 0000. Solid (circle) points correspond to the average of CI (CRO), and dashed lines represent standard deviations.
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