

Modeling stormwater management at the city district level in response to changes in land use and low impact development

Kong, F, Ban, Y, James, P and Dronova, I

http://dx.doi.org/10.1016/j.envsoft.2017.06.021

Title	Modeling stormwater management at the city district level in response to changes in land use and low impact development					
Authors	Kong, F, Ban, Y, James, P and Dronova, I					
Publication title	Environmental Modelling & Software					
Publisher	Elsevier					
Туре	Article					
USIR URL	This version is available at: http://usir.salford.ac.uk/id/eprint/42645/					
Published Date	2017					

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: <u>library-research@salford.ac.uk</u>.

1	Modeling stormwater management at the city district level in response to changes in
2	land use and Low Impact Development
3	
4	Fanhua Kong ^{*1} , Yulong Ban ² , Haiwei Yin ² , Philip James ³ , Iryna Dronova ⁴
5	¹ International Institute for Earth System Science (ESSI), Nanjing University, Xianlin
6	Ave. 163, 210023, Nanjing, China;
7	² Department of Urban Planning and Design, Nanjing University, No. 22, Hankou Road,
8	210093, Nanjing, China;
9	³ School of Environment and Life Sciences, University of Salford, Salford, M5 4WT, UK
10	⁴ Department of Landscape Architecture and Environmental Planning, University of

11 California at Berkeley, Berkeley, CA-94720, United States.

12 Abstract

Mitigating the impact of increasing impervious surfaces on stormwater runoff by low 13 impact development (LID) is currently being widely promoted at site and local scales. In 14 15 turn, the series of distributed LID implementations may produce cumulative effects and benefit stormwater management at larger, regional scales. However, the potential of 16 multiple LID implementations to mitigate the broad-scale impacts of urban stormwater is 17 not yet fully understood, particularly among different design strategies to reduce directly 18 connected impervious areas (DCIA). In this study, the hydrological responses of 19 stormwater runoff characteristics to four different land use conversion scenarios at the city 20 scale were explored using GIS-based Stormwater Management Model (SWMM). Model 21 simulation results confirmed the effectiveness of LID controls; however, they also 22 indicated that even with the most beneficial scenarios hydrological performance of 23 24 developed areas was still not yet up to the pre-development level, especially, pronounced changes from pervious to impervious land. 25

Keywords: Stormwater management; LID; DCIA; Hydrological responses; SWMM; GIS
 27

28 1. Introduction

The increase in the impervious surface areas as a result of urbanization has produced 29 significant hydrological effects globally (Dietz, 2007; Choi & Deal, 2008; Ahiablame, 30 2012; Bell et al., 2016). It has been widely reported that such changes disrupt the natural 31 water cycle, intensify the urban rain-island effect and the surface runoff, reduce water 32 quality and diminish the groundwater supply (Pomeroy, 2007; Sheng & Wilson, 2009). 33 Of these impacts, the most direct are significant increases in surface water runoff, flood 34 peak frequency and volume, which intensify the risk, frequency, and extent of urban 35 flood disasters (Pauleit et al., 2005) and threaten the safety and livelihoods of urban 36 residents (Baxter et al., 2002; Dougherty et al., 2007). Recent increases in the intensity of 37 precipitation events due to global climate change in various geographic locations further 38 aggravate the impact of urbanization on the natural water system (Rosenberg et al., 2010; 39 Hanak & Lund, 2012). 40

Traditional urban stormwater controls are mostly based on the grey infrastructure and 41 involve measures such as increasing the drainage network and rainfall drainage pipe 42 diameters to facilitate the rapid discharge of accumulated rainfall (USEPA, 2000; 43 Cembrano et al., 2004). However, these measures directly affect generation of local water 44 flow and associated conditions, increase the amount of stormwater, and complicate the 45 task of urban flood prevention (Pomeroy, 2007), while also resulting in a substantial loss 46 of urban water resources (Ahiablame et al., 2012). Therefore, it is important to develop 47 new alternative urban stormwater management approaches globally. 48

Increasing infiltration has always been an important way to reduce stormwater runoff 49 as well as to minimize its impacts (Huber & Cannon, 2004; Yao et al., 2016). 50 Accordingly, a number of urban stormwater management strategies have been proposed 51 and implemented in recent years, especially those controlling total impervious area (TIA) 52 (Carter & Jackson, 2007; Roy & Shuster, 2009). Examples of these measures include 53 water-sensitive urban design (WSUD) in Australia (Coffman, 2002; Zimmer et al., 2007), 54 sustainable drainage systems (SuDS) in the UK (Scholz & Grabowiecki, 2007), and best 55 management practices (BMPs) and Low Impact Development (LID) in the USA (USEPA, 56 2000; Ahiablame et al., 2012; Liu et al., 2016). Of these measures, LID is mentioned as 57 an especially promising novel stormwater management strategy. It is mainly achieved by 58

using green infrastructure, multilayer development and decentralized micro-scale control 59 to create post-development hydrological conditions that mimic the pre-development 60 natural hydrologic functions. LID has been widely applied for stormwater management in 61 the USA, Australia, and several European countries (USEPA, 2000; Coffman, 2002; 62 Adams, et al., 2010; Pyke et al., 2011; Ahiablame et al., 2012; Yazdi & Neyshabouri, 63 2014). Numerous research studies and practical applications have demonstrated that 64 natural drainage systems that are based on an LID concept and incorporate urban green 65 space can effectively reduce surface runoff, decrease peak flow volumes, reduce soil 66 erosion, and promote water quality (Hunt et al. 2006; Dietz 2007; Gregoire & Clausen, 67 2011). In particular, the idea of LID-referenced "sponge" cities was developed in China, 68 and a series of demonstration projections have been conducted in recent years (General 69 Office of the State Council, 2015). However, most quantitative studies of LID scenarios 70 to date have been limited to the lot or block scale. Currently, there are almost no 71 comprehensive quantitative assessments of the hydrological effects of LID measures that 72 73 go beyond this relatively small spatial scale. This limits the promotion and application of LID at the city or regional level (Dietz, 2007; Ahiablame et al., 2012). 74

Modeling LID impact at a larger scale of decision-making is necessary to generalize 75 and provide guidance for stormwater management and LID practices (Lee et al., 2012). 76 Hydrological models can be used to simulate the effects of LID application at various 77 78 temporal-spatial scales in urban areas, thus enabling the potential multi-scale application of LID (Elliot et al., 2009; Ahiablame, 2012). Currently, various distributed hydrological 79 models, including the SCS (Soil Conservation Service), SWAT (Soil-Water Assessment 80 Tool), MOUSE (Model for Urban Sewers, Danish Hydraulic Institute, 1995), Hydro 81 CAD, and the stormwater management model (SWMM) are available to manage urban 82 runoff (Gironás et al., 2010; Mancipe-Munoz et al., 2014; Cunha et al., 2016). Bosely 83 84 (2008) conducted a sensitivity analysis for the 19 most commonly used hydrological models or software programs by applying them to a representative area and found that 85 SWMM was the most suitable hydrological model in the urban setting for various 86 land-use scenarios and the application of LID simulation analysis. 87

88 SWMM developed in 1971 by the United States Environmental Protection Agency
89 (USEPA, 2000) is a rainfall-runoff simulation model based on either a single rain event or

a long-term rain series. This model can effectively simulate hydrology, hydraulics, and 90 water quality using a series of sub-catchments that can accept rainfall as a source of 91 runoff or as a pollutant (Hsu et al., 2000; Rossman, 2010; Cunhua et al., 2016). Currently, 92 SWMM is widely used in simulation, analysis, and design in areas such as urban storm 93 runoff, drainage piping systems, catchment planning and, specially, runoff mitigation 94 with LIDs (Peterson & Wicks, 2006; Elliott & Trowsdale, 2007; Lee et al., 2013). 95 However, compared to other hydrological models, the insufficiently large scale of 96 application for SWMM remains a challenge. To address this issue, a number of 97 98 researchers have used GIS or the catchment discretization method to apply SWMM to large urban catchments (Barco et al., 2008; Rosa et al., 2015; Dietrich, 2015). 99

Total impervious area (TIA) has often been used to represent the land surface modified by urbanization (Shuster et al., 2005; Mejía & Moglen, 2010.); however, recent studies have suggested that TIA is not sufficient to explain the impact of urbanization on the local hydrology, for it does not reflect the impervious land connectivity pattern (Roy and Shuster, 2009 ; Beck et al., 2016). Alternatively, the metric of directly connected

105 impervious area (DCIA), or the effective impervious area (EIA), has been proposed, representing the subset of impervious surfaces that route stormwater runoff directly to 106 streams via stormwater pipes (Roy and Shuster, 2009; Jarden et al., 2016). DCIA not only 107 provides an indicator of the watershed ecological condition (Urrutiaguer et al., 2012), but 108 also has been found to strongly affect the surface runoff changes (Yao et al., 2016; 109 110 Ebrahimian et al., 2016; Sohn et al., 2017) and hydrological responses at the catchment outlet (Mejía and Moglen, 2010). DCIA can be calculated based on the empirical 111 relationships with TIA (Jacobson, 2011; Shuster and Rhea, 2013; Ebrahimian et al., 2016). 112 However, such efforts usually lack an explicit consideration of the spatial pattern of land 113 use and specific methods of stormwater flow management (Lee and Heaney, 2003; Sohn 114 et al., 2017). The use of LID controls, and especially the spatial pattern of their 115 implementation, can play a significant role in reducing DCIA. However, until now, little 116 research has been conducted to optimize the spatial pattern of LID controls in order to 117 118 reduce the DCIA (Roy and Shuster, 2009; Jacobson, 2011; Ebrahimian et al., 2016).

In the present research, a framework was developed to simulate stormwater runoff atthe city scale under different development scenarios, using the GIS-based SWMM5.0

model to bring together urban planning data, geospatial and hydrological information. 121 Focusing on a case study area in a new developing region west of Bazhong, Sichuan 122 Province, China, the stormwater runoff characteristics of the four urban land use 123 124 conversion scenarios were simulated under the same heavy rainfall condition. The aim of this study was to investigate: (1) how the hydrological responses to changes in land use in 125 the near future vary among different scenarios with rapid urbanization; (2) how a growing 126 city can integrate the LID-based design into urban planning to decrease the DCIA and 127 more effectively manage stormwater; and (3) what potential hydrological effects result 128 from LID implementation, and whether such effects can be evaluated by the GIS-based 129 SWMM at a large urban region scale. The study presents new LID-based urban 130 stormwater management models in a rapidly urbanizing region, and the results will 131 132 provide an important decision-making basis for the future urban and land-use planning of the study area. 133

134

135 2. Study area

Bazhong is a city located in the Qinba mountains, northeastern Sichuan Province, China (106°20'–107°49'E, 31°15'–32°45'N) (Fig. 1). The city has a subtropical monsoon climate with four distinct seasons. The average annual rainfall is 1,108.3 mm, approximately 80% of which falls from June to October. Excessive rainfall and rainstorms result in frequent flooding (Zhang, 2010). Bazhong is approximately 90% mountainous (Fig. 1b). Geological disasters, such as landslides and ground collapses, are common after the rainstorms.

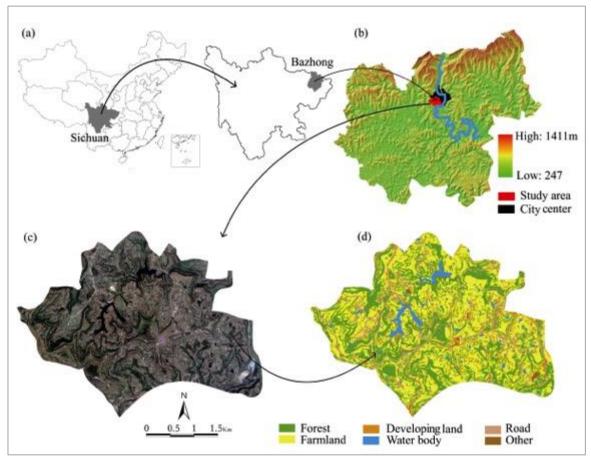
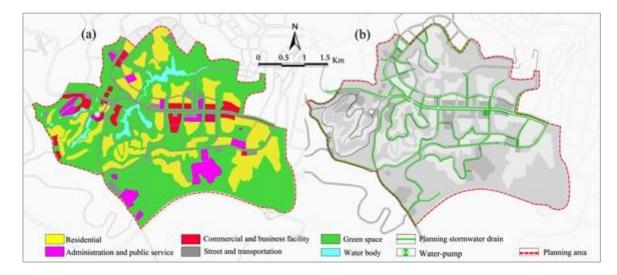



Fig. 1 Map of the study area: (a) location of Bazhong City in Sichuan Province; (b) the
DEM (Digital Elevation Model) of Bazhong City; (c) aerial photograph and (d) land use
map.

Our study area is located west of downtown Bazhong with a total area of about 838 ha (Fig. 1b). At the time of this research, this area was still a predominantly rural landscape covered by farmland (49.2%) and forest (42.0%) with the remaining 3% of land occupied by housing, roads, and water bodies. The TIA is about 5.8% of the total study area. During the rainy season, management of stormwater is mainly achieved by relying on the river networks in the study area (Fig. 1 b, c and d).

However, the 2013–2030 urban development plan for this study area indicates that the 154 land use pattern will change significantly, and the region will likely become more 155 intensively developed by 2030. Specifically, the impervious land is expected to increase 156 greatly from the development of 331.85 ha (39.63%) as new residential, commercial, 157 public service areas, and roadways (Fig. 2a). This plan also considers current natural 158 drainage system by preserving the original ecological spillway channels and rivers. 159 However, the land use change and the construction of the urban sewerage system will 160 considerably alter this natural hydrological environment and runoff regulation (Fig. 2b), 161 which creates the need to evaluate the opportunities for the green stormwater 162 infrastructure as part of the current plan for the study area. 163

164

Fig. 2 Planned land use and drainage system of the study area: (a) the regulatory land use 165 plan (2013–2030); (b) the planned stormwater drainage networks. 166

167

3. Data and methods 168

3.1 Data and data preprocessing 169

The following data were used for scenario modeling: a 2011 CAD topographic data; 2012 170 aerial photograph data (0.1m x 0.1m); the 2013–2030 regulatory planning data (CAD 171 format) including a land-use layout map, a road planning map, and a rainwater conduit 172 network map (supplied by Bazhong Landscape Bureau); and the daily rainfall and hourly 173 rainfall distribution data for June 23-24, 2015, approximately corresponding to a 10-year 174 return-period rainfall event in Bazhong City (obtained from Bazhong meteorological 175 176 Bureau).

The CAD topographic data was first converted to a GIS shapefile dataset, and the 177 178 projected coordinate system was set to a Universal Transverse Mercator (UTM)-projected Xi'an 80 geographical coordinate system. Then, the aerial photograph data were rectified 179 and georeferenced to the UTM coordinate system using the reference topographic map 180 (total root mean square (RMS) < 1 image pixel) in ArcGIS software (Version 10.2, ESRI, 181 Redlands, CA 92373-8100, USA). A land use map was created through these aerial 182 photograph data by manual delineation and interpretation of landscape polygons using 183 eCognition (Trimble Inc.) software (version 8.7) (see Fig. 1d). Finally, the regulatory 184 planning data were all converted to GIS shapefile datasets and then used to create the 185 land use, road and rainwater pipe network maps for the planning scenario analysis. 186

3.2 Designs of urban development scenarios 187

188

Four land development scenarios were simulated in this research. The scenarios were:

S1, the pre-development scenario (current situation); S2, a traditional urban development scenario; S3, an urban development with hypothetical LID implementation; and S4, an urban development plan in which hypothetical LID controls were combined with the specific goal of reducing DCIA. These scenarios were designed according to the urban zoning and planning (regulatory planning), the current land use pattern and the planned stormwater management strategies.

195 1) Pre-development scenario (S1)

196 S1 represents the current, pre-development state. The hydrological environment in S1 197 was considered as the natural state in this research. The land cover in S1 consists of 198 primarily forestland and farmland, and the TIA is about 5.8%.

199 2) Traditional urban development scenario (S2)

The traditional urban development scenario (S2) does not include the LID stormwater management. However, with rapid urbanization, the built-up land will significantly increase, replacing the farmland and forestlands. The TIA will rise to 40%.

3) Urban development with LID controls (S3)

This scenario includes a suite of potential LID implementations (Green-roof, Porous pavement, Vegetative swale and Rain garden) applied to the impervious areas that are not directly routing stormwater runoff to streams via stormwater pipes, that is, the non-directly connected impervious areas (NDCIA). After implementation of the LID controls, the percentage of pervious surface of S3 will be approximately 75.6%.

4) LID controls by considering overland flow routing and DCIA (S4)

This scenario has the same total area of LID and the drainage systems as S3, but two types of LID (Porous pavement and Green-roof) were specifically allocated within the DCIA regions, and a specific type of overall flow was designated for each sub-catchment. There are three routes for overland flow in the SWMM model: pervious, impervious, and outfall (Huber, 2001). This S4 scenario used the pervious route mode which implies that the stormwater runoff would be first routed to the LID sites, and accordingly the DCIA would be reduced.

218 **3.3 SWMM model setup**

219 3.3.1 Generation of sub-catchments, conduits, junctions, and outlets

The EPA (U.S. Environmental Protection Agency) Stormwater Management Model (SWMM, Version 5.0, EPA, Cincinnati, Ohio) was used to simulate the hydrological response to the land use changes and LID controls in the study area. In the SWMM model, a given watershed can be developed as a set of physical components, including sub-catchments, conduits, junctions, and outlets.

The sub-catchment is the fundamental unit of the hydrological model. To represent pre-development conditions, sub-catchments were first constructed based on the digital elevation model (DEM) (5m x 5 m resolution), using the ArcHydro extension in ArcMap (9.3 ESRI, Redlands, California) by creating a depressionless DEM (filling analysis), defining the flow direction, calculating the flow accumulation, and then creating the outlet of the river networks (Martz & Garbrecht 1992; Barco et al., 2008) (Fig. 3a and b).

As urbanization is expected to substantially alter the surface hydrological 231 characteristics, the sub-catchments had to be further subdivided based on the surface 232 types and land use types (Krebs et al., 2013). Incorporating the planned road network 233 (e.g. the road width, slope, and cross-sectional shape) was especially important, as it 234 affects the stormwater surface flow routing, and in the study area most of the planned 235 stormwater drainage system will also be developed along the roads (Fig. 3c). Thus, the 236 sub-catchments obtained using DEM were further discretized by overlaying the 237 centerlines of the roads with the drainage pipes within their areas. The sub-catchment 238 boundaries were further adjusted using DEM and in-situ observations to ensure their 239 consistency in the surface runoff characteristics after the planned development (Ji and 240 Qiuwen, 2015). These operations produced a set of 80 sub-catchments in the 241 pre-development state (Fig. 3a), and 118 sub-catchments in the urban development 242 243 scheme (Fig. 3d). Geometric properties of each sub-catchment, such as area, spatial coordinates, flow length and width, percentage of impervious surface cover, and slope 244 were subsequently quantified and added to the attribute table of the spatial dataset. 245

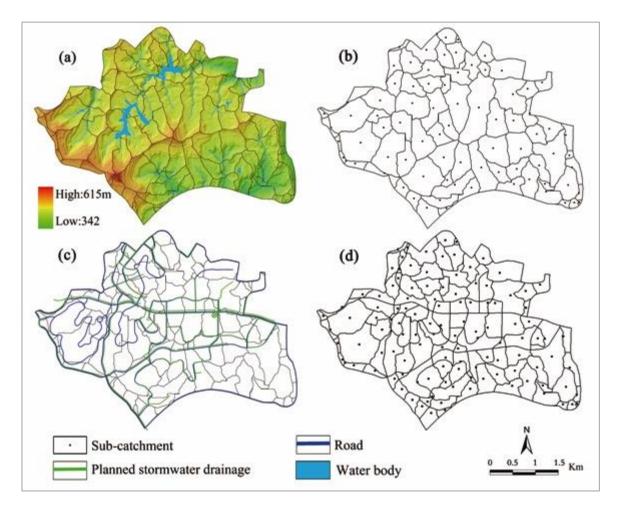
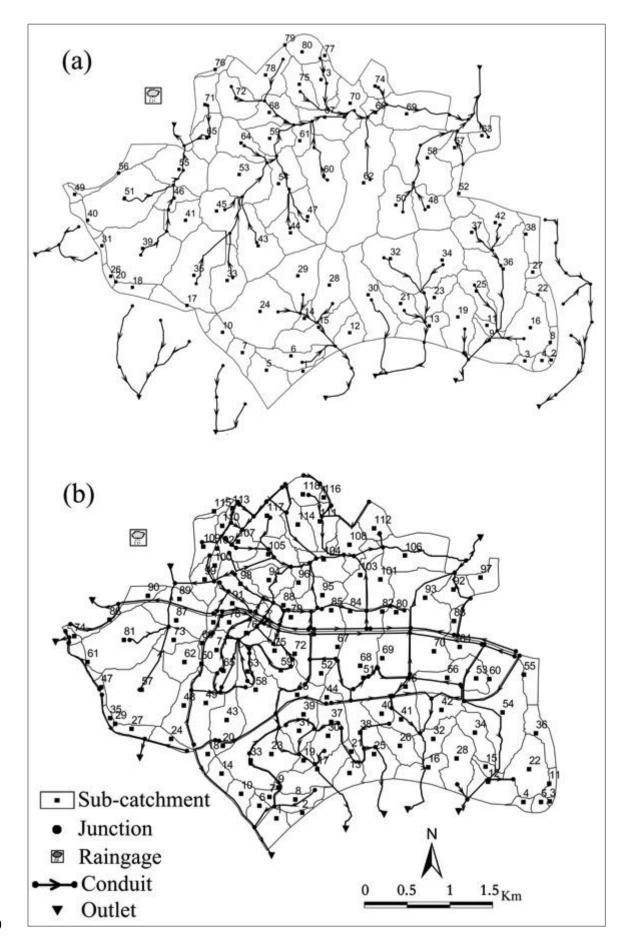



Fig. 3 Discretized sub-catchments in the planned study area: (a) digital elevation analysis;
(b) current sub-catchment layout; (c) planned road and drainage networks; (d) discretized
sub-catchments under the future planned land use

Next, the planned drainage network (Fig. 2b) together with flow directions within 251 and between the sub-catchments and in-situ observations were used to generate detailed 252 information on the rainwater conduit characteristics (i.e., spatial location, conduit 253 diameter, conduit segment length, cross-sectional shape, and conduit slope), the conduit 254 junctions (i.e., spatial location and depth), and the stormwater outlets (i.e., spatial location 255 and depth). As a result, scenario S1 had 95 junctions, 95 conduit segments, 9 rainwater 256 outlets in the study area (Fig. 4a), while scenarios S2 S3, S4 had 151 junctions, 150 257 conduit segments, and 10 rainwater outlets (Fig. 4b). 258

260

Fig. 4 The conceptualized stormwater drainage system: (a) the sub-catchments of study
area (S1); (b) stormwater drainage system in the SWMM model (S2, S3 and S4)

263

264 **3.3.2 Data conversion between GIS and SWMM**

To enable the SWMM-based modeling at the city scale, all the relevant sub-catchment and rainwater conduit GIS vector datasets were converted to the *.inp*

format of the SWMM. First, the sub-catchment polygon GIS vector shapefiles data were 267 converted to point datasets, where all the vertices of the original polygons were 268 preserved. Then, each relevant data layer required for the model was exported as a .txt file 269 to satisfy the SWMM input data requirements (Rossman, 2010). Finally, the file 270 extension of the TXT file (.txt) was changed to .inp, and the relevant SWMM inputs 271 could now be used in the model. Thus, these steps coupled the SWMM with a 272 Geographic Information System (GIS) to provide a database for the required model data. 273 Such a GIS-based SWMM model can be used on a large scale, while the runoff and the 274 flow routing modules in the SWMM can be used to simulate stormwater flow from the 275 ground surface over the whole-city system (Krebs et al., 2013). 276

277

278 **3.3.3 SWMM model parameters**

Runoff simulations for pre- and post-development (or different land use scenarios) in SWMM required a substantial number of input parameters. The majority of the parameters used to define the ground surface and the stormwater drainage network characteristics were derived from the available GIS data and then coupled with the SWMM directly (Table 1).

284

Table 1. The SWMM parameters extracted from GIS datasets

Туре	SWMM parameters	GIS datasets	
Sub-catchment	Spatial location, Area	Land use data, 5m x5m resolution DEM	
	Percentage of impervious land	Land use data	
	Slope, outlet	5m x 5m resolution DEM	
	-	Planned stormwater drainage	
Conduit	Spatial location	Planned stormwater drainage	
	Shape, diameter, length, depth of	Planned stormwater drainage	
	cross-section	Water bodies	
Junction	Spatial location, depth	Planned stormwater drainage	
		Land use data	
Rainwater outlet	Spatial location, depth	Planned stormwater drainage and water bodies	

²⁸⁶

The remaining parameters were determined by the land use type and the sub-catchment properties, which included: the depression storage for pervious (Per-DS) and impervious surfaces (Imp-DS); Manning's n value for overland flow for pervious (Per-n) and impervious (Imp-n) surfaces, and conduits (Conduit-n); the hydraulic conductivity of the impervious surface and the soil infiltration parameters (Rossman, 2010). The parameters values assigned to SWMM model based on the SWMM 5.0

- 293 manual (Rossman, 2010) and adjusted according to the characteristics of each 294 sub-catchment were listed in Table 2. The soil infiltration in pervious areas was 295 determined using the Horton method (Horton, 1933).
- 296

Table 2:	Input Parameters	for the	SWMM model

Parameter	Туре	Symbol	Value
	Overland flow	Imp-n	0.010
Mannin a'a n	Overtaild flow	Per-n	0.100
Manning's n	Conduit flow	Con-n	0.010
	Open channels		0.400
Depression storage	Per-DS		2.54–7.62 (mm)
	Imp-DS		1.27-2.54 (mm)
		Max. infil. rate	76.2 (mm/hr)
		Min. infil. rate	3.18 (mm/hr)
Soil infiltration	Horton infiltration	Decay constant	3.12 hr
	parameters	Drying time	7d
		Max. infil. vol.	0

297

298 3.3.4 LID settings and estimation of DCIA

The number, types, and locations of LID elements are the most widely considered 299 criteria in LID design (Martin-Mikle et al., 2015). In this study, the hypothetical LID 300 control types were based mainly on the various land use characteristics of each 301 sub-catchment, and LID design criteria were established according to the "Technical 302 Guide for Sponge Cities-Construction of Low Impact Development" in China (MoHURD, 303 2014). In residential and commercial areas, LID controls were designed predominantly as 304 green roofs; in the paved squares of residential and commercial districts, they were set 305 mainly as the porous pavement; along the roads, LID were designed as grassed swales; 306 and in the parks, the LIDs were designed as rain gardens (MoHURD, 2014). The numbers 307 of LIDs were allocated based on the area of different land types in each sub-catchment, 308 for example, the number (and area) of green roofs were determined by the residential area, 309 310 building density (i.e., the area of the building ground floor footprints divided by the total site area, which can indicate the amount of open space left on the site; Ministry of 311 construction, P.R. China, 1998; Yu et al., 2010) and potential greening rate of the roofs. 312 313 The summary of how the LID controls were designed is shown in Table 3. The allocation of LID designs followed the rule that the runoff passes through a pervious area before 314 entering the sewage system (inlet), which could reduce DCIA and facilitate stormwater 315 management (Gironás et al., 2010). Accordingly, in the SWMM model, the pervious 316 sub-area routing was set as the routing mode (Gironás et al., 2009 and 2010). 317

Table 3 LID control settings

	0	
Land type	LID controls	Set-up method
Residential land	Green roof	Area × Building density (35%) × Potential green roof rate (0.5)
Administrative land	Green roof	Area × Building density (50%)× Potential green roof rate (0.6)
Administrative land	Porous pavement	Area×[1-Greening rate (25%)-Building density (50%)] ×Potential porous pavement rate (0.3)
Commercial land	Green roof	Area \times Building density (60%) \times Potential green roof rate (0.8)
Commercial land	Porous pavement	Area×[1-Greening rate (25%)-Building density (60%)]× Potential porous pavement rate (0.5)
Transportation Land	Vegetative swale	Area \times Potential vegetative swale rate (0.2)
Park	Rain garden	Area \times Potential rain garden rate (0.1)
Plaza	Porous pavement	Area \times Potential porous pavement rate (0.7)

Note: building densities of different land use types were taken as their upper limit according to building density requirement in the detailed planning regulations of China and Bazhong (Bazhong

320 *Planning Bureau, 2014*); the green roof rate, porous pavement rate and potential rain gardens were

321 set according to the Sponge city design technologies and practice manual 6 (MoHURD, 2016).

322

The type and numbers of the hypothetical LID controls were specified on a per-unit-area basis according to the land use type and the impervious surface coverage in each sub-catchment. Other parameters listed in Table 4 were set using recommended parameter thresholds in the SWMM manual and the relevant literature for the model (Rossman, 2010; Gomez-Ullate, 2011).

328	Table 4 Parameters used for LID controls in the SWMM model
-----	--

	Surface	Berm height (mm)	Vegetation (%)	Manning's n	Surface slope (%))
	Surface	75	100	0.1	0.3	
Green roof	Soil	Thickness (mm)	Porosity	Conductivity Slope	Conductivity (mm/hr)	Suction Head (mm)
		150	0.5	5	72	20
	Storage	Thickness (mm)	Void (%)	Conductivity (mm/hr)	Clogging factor	
		75	30	78	0	
	Courfs as	Berm height (mm)	Vegetation (%)	Manning's n	Surface slope (%))
	Surface	5	0	0.05	2	
Porous	Pavement	Thickness (mm)	Void (%)	Imp-n (%)	Conductivity (mm/hr)	Clogging factor
pavement		150	40	30	72	100
	Storage	Thickness (mm)	Void (%)	Conductivity (mm/hr)	Clogging factor	
		150	50	78	100	
Vegetative	Surface	Berm height (mm)	Vegetation (%)	Manning's n	Surface slope (%)	Swale side slope (%)
swale		300	90	0.1	4	35
	Surface	Berm height (mm)	Vegetation (%)	Manning's n	Surface slope (%)	1
	Surrace	350	100	0.1	8	
Rain garden	ı Soil	Thickness (mm)	Porosity	Conductivity Slope	Conductivity (mm/hr)	Suction Head (mm)
		150	0.5	10	72	50

329

Finally, to understand the impacts of reducing DCIA on hydrological processes by

improving the LID spatial locations, the DCIA was estimated for each scenario (Sohn et

al., 2017). Generally, accurate and direct measurement of DCIA is complicated and 332 usually requires high resolution land use data, but using GIS tools together with detailed 333 CAD data and field verification could improve the accuracy of DCIA assessments (Lee 334 and Heaney, 2003; Roy and Shuster, 2009). In the ArcGIS environment, all the merged 335 impervious land areas (residential land, commercial land, administrative land and roads) 336 were first overlaid with the sub-catchment data layer, and their attributes were assigned 337 based on the attributes of each sub-catchment area. This step allowed the impervious land 338 area to be intersected with the sub-catchment boundaries while preserving the attributes 339 340 of the corresponding sub-catchments. Then, using the Location Selection tool in ArcGIS, all of the impervious land area was intersected with the drainage network system with 341 different pipe widths (500 mm, 600 mm, 700 mm and 800 mm, 1000 mm and 1200 mm) 342 (Roy and Shuster, 2009). Consequently, the resulting impervious area selected by the 343 drainage networks represented DCIA with the attributes of each sub-catchment (Lee and 344 Heaney, 2003). Finally, a general summary statistics for DCIA and other landscape 345 characteristics were estimated for the four designed scenarios (Table 5). 346

347

Table 5 General characteristics and the LID controls of the four designed scenarios 348 General characteristics and the LID controls **S**1 **S**2 **S**3 S4 1.5 1.5 1.5 Water (%) 3.0 5.8 39.6 22.9 22.9 TIA (%) 91.2 58.9 75.6 75.6 Pervious area (%) 10.3 10.3 Green roof (%) 5.4 5.4 Porous pavement (%) 1.0 1.0 Vegetative swale (%) 2.2 2.2 Rain garden (%)

0

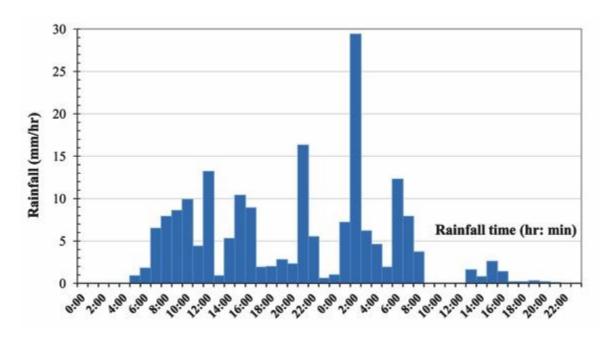
24.0

18.5

13.3

349

350 **3.3.5 Storm event**


DCIA (%)

To evaluate the stormwater drainage systems, larger, less frequent storm events are often used to check whether such systems can meet flood control requirements (Rosa et al., 2015). In this research, a 10-year return period storm event in Bazhong city was used to examine the hydrological responses to the LID controls and different urban development scenarios.

According to the rain record of Bazhong Meteorological Bureau, the storm event occurred from 23–24 June, 2015 and produced a maximum precipitation of 191.7mm. The rainfall intensities were over 5 mm h⁻¹ for the duration of the entire storm, with peak

rain rates measured at over 29.4 mm h^{-1} (Fig. 5). Days of heavy rain caused mudslides and flooding. According to the historical statistics, 64.69 million people were affected by this storm, and the direct economic losses were 406 million Yuan (RMB).

362

363

Fig. 5 Hyetograph from 00:00 on the 23^{th} to 23:00 on the 24^{th} , June, 2015

365

366 **4. Results and discussion**

367 4.1 Comparison of the surface hydrological characteristics under four scenarios

The SWMM-simulated results of the overland hydrological characteristics during the 368 369 same storm event showed important differences among the four examined scenarios (Table 6). The traditional development scenario, S2 had the largest runoff volumes, runoff 370 coefficients, peak flow and the lowest percentage of infiltration. This result implies that if 371 the study area is developed in a traditional way, i.e. S2, then TIA would change from 372 5.8% in the pre-development scenario (S1) to 39.6% (Table 5). If there were no other 373 changes in stormwater management, then the hydrological performance would be 374 dramatically changed and the natural hydrological processes in S1 would be disrupted. 375 Under scenario S1, the average runoff volume and runoff coefficient were 62.97 mm and 376 0.33 respectively, and the majority of the rainfall (67.2%) directly infiltrated to the ground. 377 However, the runoff volumes and runoff coefficients of S2 were 121.44 mm and 0.63 378 respectively. The results showed that a 33.3% reduction in pervious area yielded up to 379 380 92.9% and 90.9% increase in runoff and runoff coefficients. At the same time, such reduction in pervious land of S2 will also result in a 31.7% increase in the peak flow and 381 35min earlier of peak runoff time compared with S1 (Table 6). Hence, traditional urban 382

development would cause an increase in TIA and a sharp decline in surface permeability and water storage capacity, thereby dramatically increasing the surface runoff, the runoff coefficient and the peak flow rate (Fig. 6).

Compared with scenario S2, S3 improved the surface hydrological characteristics. Specifically, the runoff volumes and runoff coefficients of S3 decreased by 16.69% and 15.87%, respectively, while the peak runoff also decreased (Fig. 6). These changes in hydrological behavior can be attributed to the implementation of LID controls, which produce a 16.7% increase (Table 5) in pervious land in the study area in this scenario.

391 Even though S3 and S4 both implemented the LID controls and over the same total land area, S4 was obviously more effective in stormwater regulation by considering the 392 overland flow routing and reducing impervious connectivity. Compared with S3, the 393 runoff volumes and the runoff coefficients in scenario S4 decreased by 10.68% and 394 11.32%, respectively (Table 6). This indicates that measures such as designing the 395 overland flow routing and blocking the impervious connectivity with an optimized LID 396 spatial pattern may further decrease the risk of urban flooding. A spatially improved LID 397 will disrupt the direct connectivity among urban impervious surfaces, which may reduce 398 the DCIA and prevent the surface runoff from flowing directly into the conduits. With a 399 decrease in DCIA from 18.5% to 13.3% (Table 5), the retention time and infiltration of 400 the surface runoff will increase, the runoff volume and runoff coefficient will be 401 accordingly reduced, and the peak runoff will also decrease (Table 6 and Fig. 6). 402

The lag time between rainfall and runoff generation in S1 was 10h 40 min 403 (5:00-15:40 23rd June), which is clearly longer than in the other three scenarios. The 404 rainfall peak time lasted around one hour from (02:00-02:55, 24th June). However, the 405 surface peak runoff of S1 was at 03:00. This indicates that the undeveloped land surface 406 obviously contributed to the rainfall infiltration and delay in the peak runoff generation. 407 The surface peak runoff of S2 showed the smallest delay (2h00min vs 2h25min) 408 compared to the rainfall peak (Table 6, Fig. 6). Such relatively small difference between 409 the peaks of rainfall and runoff illustrates the short travel time for surface runoff after the 410 area is urbanized as planned. Compared to S1, the surface peak runoffs of S3 and S4 411 showed around half-hour delay relative to the rain peak (02:30 and 02:35 vs 02:00); yet, 412 the respective peak runoff times were S1 03:00, S3, 02:30 and S4 02:35 (Table 6, Fig. 6). 413

This evidence demonstrates that implementation of LID practices would impact the timing of runoff, but these effects are strongly dependent on land cover, and the increase in impervious area would still trigger an earlier runoff peak time. In general, compared with S2, the LID controls in S3 and S4 can greatly change and improve the overland hydrological characteristics under the traditional development model, even though LID controls cannot completely recreate hydrological functions equivalent to those of the pre-development state.

421

422 Table 6. Variation in surface hydrological characteristics under four scenarios

Hydr	ological	Rainfall infiltration	Runoff volume	Runoff coefficient	Peak runoff rate (m3/s)	Peak runoff time
Scenarios	Characteristics	(mm)	(mm)	coefficient	(115/3)	(day, hr:min)
S1		128.73	62.97	0.33	48.54	24rd, 03:00
S2		70.26	121.44	0.63	63.93	24rd, 02:25
S3		90.56	101.14	0.53	52.12	24rd, 02:30
S4		101.37	90.33	0.47	48.69	24rd, 02:35

423

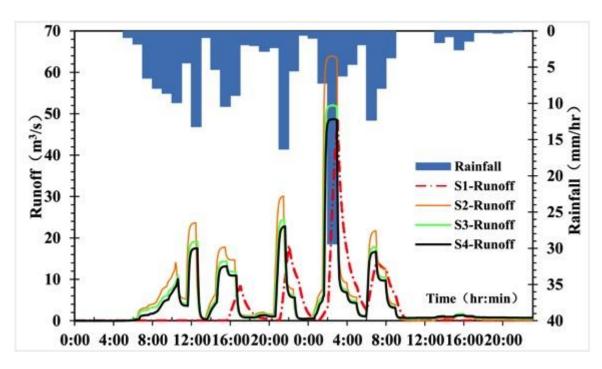


Fig. 6 Differences in the schedules of peak flow under four scenarios and the hyetographfor the selected rain event.

427

428 **4.2** Comparison of the flow rate and flood peak time in conduits under four 429 scenarios

The primary drainage conduits in scenario S1 are all natural rivers and canals without the urban drainage pipe networks, while scenarios S2, S3, and S4 have the same urban drainage pipe networks. Simulation results show that in scenario S1, the average peak flow in the rivers and canals was 1.24 m³/s, and the flow rate was 0.19m/sec, the peak flow time was at 03:06 on the 24th (Tables 6, 7). However, compared with S1, the velocity of flow in
the conduits in S2 was 1.06 m/sec, and the peak flow time occurred at 22:28 on the 23rd,
indicating the 4.57 times increase in the flow rate and more than 4-hour advancement of the
peak flow time. These results confirm that the loss of pervious land following urbanization
will likely impact flow characteristics in conduits, thus increasing the risk of stormwater
accumulation and urban flooding.

The effects of LID controls were clearly observed in the comparison of peak flows 440 and peak flow times of S2 with S3 and S4. When the LID controls were considered, the 441 peak flows in the conduits of scenarios S3 and S4 decreased substantially by 6.15% and 442 9.23% compared to S2, and the peak flow time was delayed by 1h 33 min, and 1h 37 min, 443 respectively (Table 7). However, between scenarios S3 and S4, the flood flow rate in S4 444 decreased by 1.94%, and the peak flood time was delayed by only 4 min. Thus, 445 simulation results indicate that LID controls will substantially improve hydrological 446 performance of the developed areas; however, the decrease in DCIA via spatially 447 improved LID controls may be less effective at reducing the flood rate and peak runoff 448 time in the conduits, especially during large rainfall events. 449

450

451 Table 7. Variation in conduit peak flow, flow rate and peak runoff time for four scenarios

Scenario	Peak flow (m ³ /s)	Flow rate (m/s)	Peak runoff time (day, hr:min)	Time-lag (compared with S2)
S1	1.24	0.19	24 th , 03:06	4h38m
S2	0.65	1.06	23 rd , 22:28	
S 3	0.61	1.03	24 th , 00:01	1h33m
S4	0.59	1.01	24 th , 00:05	1h37m

452

453 4.3 Comparison of flow rate and peak flow time at junctions under four scenarios

In the current pre-development state, scenario S1, the total inflow volume of the 454 junctions was 2887.3×10^6 L, the average peak flow was 1.49 m³/s, and peak flow time 455 was at 03:08 on the 24th (Table 8). Compared with scenario S1, S2 had the total flow 456 volume of 4117.4×10⁶ L, which represented an increase of 42.6%. The corresponding 457 peak flow time occurred 46 min earlier, and the average peak flow (0.99m³/s) decreased 458 by 33.6%. These outcomes occurred because S1 did not include any drainage pipe 459 networks besides the natural rivers and canals. These results confirm that if no measures 460 are taken to compensate for the loss of pervious land, urbanization in the study area will 461

463 flooding.

464

	— 11 0	T T T T T T T T T T	• •	M 1	1 0		c ·
465	Table 8	Variation 1	n iunction	tlow rate and	neak flow	time for	four scenarios
100	1 4010 0.	,		I IIO II I IIIO IIII	pean non	11110 101	1001 000100100

Scenario	Peak flow time (day, hr:min)	Average peak flow (m ³ /s)	Total flood volume (10 ⁶ L)
S1	24, 03:08	1.49	2887.3
S2	24, 02:22	0.99	4117.4
S 3	24, 02:34	0.87	3671.2
S4	24, 02:40	0.83	3313.5

466

Compared to S2, the use of LID controls in S3 will decrease the average peak flow 467 decrease by 12.1%, decrease the total inflow volume by 10.8%, and delay the peak flood 468 time by 12 min, suggesting an improvement of the overall stormwater regulation following 469 the application of LID, which indicates that the application of LID controls can mitigate the 470 impacts that urbanization has on the stormwater conveying. Compared with S3, average 471 peak flow and the total flow volume for scenario S4 decreased by 4.6%, and 9.7% 472 respectively, and the peak flow time was delayed by 6 min. These results indicate that an 473 appropriate spatial pattern of LID controls is also important for improving hydrological 474 performance in the junctions (Table 8). 475

476

477 4.4 Comparison of outflows in the outlets under four scenarios

478 Differences in general outflow characteristics of the outlets could indicate the cumulative effects of the hypothetical LID applications (Gironás et al., 2009). The 479 pre-development scenario S1 had the smallest total flow volume (464.7×10⁶L), however, 480 S2 had the largest total flow volume (733.8 $\times 10^{6}$ L). The results indicate that, compared to 481 S1, the loss of pervious land (33.3%) will bring an increase of 57.9% flood volume. 482 Furthermore, the largest average peak flow (5.1 m³/s)and the earliest peak flow time (at 483 22:51 on the 23rd) of S2 show that urbanization will lead to a strong increase in peak 484 discharge and a very early peak flow at the outlets. Compared with S2, the total flow 485 volume for S3 and S4 decreased by 8.66%, 14.75% to 670.3 ×10⁶ and 625.5×10⁶L, 486 respectively, and the average peak flow decreased by 8.59% and 14.14% to 4.7 m³/s and 487 4.4 m³/s respectively. The corresponding peak flow times were both delayed by 87 min. 488 Thus, LID installations could reduce the average peak flow and total flow volume in S3 489

and S4. In comparison to S3, the average peak flow and the total flow volume of S4 decreased by 6.4% and 6.7%, respectively, despite the identical peak flow times of these scenarios. This result implies that reducing DCIA by changing the locations of hypothetical LID controls would contribute to reducing the outflow at the outlets. Thus it can be concluded that improving the LID spatial pattern and at the same time considering the overland flow routing by redirecting surface runoff to the LID units are both important for management of stormwater (Table 9).

497

498 Table 9. Comparison of the outflows in the outlets under the four scenarios

Scenario	Average peak flow (m ³ /s)	Peak flow time (day, hr: min)	Total flow volume (10 ⁶ L)
S 1	4.2	24rd, 03:47	464.7
S2	5.1	23rd, 22:51	733.8
S 3	4.7	24rd, 00:18	670.3
S4	4.4	24rd, 00:18	625.5

499

500 **5. Conclusion**

Hydrological performances of the four urban development scenarios under the same 501 single storm event were simulated using the GIS-based SWMM5.0 in a new urbanized 502 area, west of Bazhong, China. Hydrological responses to the land use changes, as well as 503 the effects of hypothetical LID practices were evaluated by comparisons with a traditional 504 505 urban development scenario. This research integrated LID controls within urban planning to manage stormwater and provided an operable technical framework that demonstrated 506 how SWMM, with the support of GIS, can be used at the city and district scale. The 507 results of this study illustrate that urban development as described in regulatory planning 508 (S2) would produce large increases in the impervious surface, and flood control will be a 509 critical planning issue; however, traditional stormwater management strategies cannot 510 cope with these problems well. Alternatively, urban development schemes integrating 511 LID controls (S3) and designs to decrease DCIA (S4) can contribute to mitigating the 512 513 impacts of urbanization by attenuating stormwater runoff, even though the study area could not be completely restored to the pre-development hydrological environment. 514 Consistent with previous studies (Loperfid et al., 2014; Juan et al., 2016), results from 515 this analysis also imply that following a massive increase in impervious land (from 516 5.8%-39.6 as in this study), the TIA might still be the main factor controlling stormwater 517 hydrology behavior, especially under large rainfall events. Nevertheless, the results still 518

corroborate the effectiveness of LID controls and design in providing some floodreduction benefits.

The research reported here presents a modeling study of the potential effects of the 521 large-scale implementation of LID practices as an important step in guiding large-scale 522 LID practices, planning and overall effort. Several limitations should be also 523 acknowledged that present important directions for the future work. First, there are 524 limitations to using the recommended model parameter values from the SWMM5.0 manual 525 or relevant literature. Complex topography and large number of sub-catchments in urban 526 areas ideally require that input parameters for the SWMM should be obtained through 527 direct field survey and observations. Second, a better understanding of LID controls and 528 their hydrological effects will require a finer level of sub-catchment discretization to 529 properly account for their localized placement. Because this study was conducted at a 530 district scale, the effects of factors such as the underground water level, evaporation and 531 current water retention on the simulation results were not considered in the model 532 simulation. In addition, a more informative comparison of development scenarios could 533 be achieved with a continuous long-term simulation to evaluate the land use change and 534 LID performance. Finally, in this research, the drainage pipe system of the three 535 post-development scenarios are the same, and only one heavy rainfall condition was used 536 to assess the impact of LID and DCIA decrease on stormwater runoff characteristics. The 537 optimizing possibility of the grey stormwater drainage systems and the effect of LID 538 controls and DCIA change on the sensitivity of stormwater runoff characteristics to 539 different rainfall events were both not considered, which also represents an important 540 future step to inform the improvement of urban planning and stormwater management 541 strategies in growing cities such as our study region. Further research is needed to look 542 into the integration of LID systems with grey stormwater drainage systems and fully 543 544 understand the effects of LID controls and the DCIA under different rainfall conditions.

546 Acknowledgments

- 547 This research was supported by the National Natural Science Foundations of China (Nos.
- 548 31670470, 41440006, 51478217). We also thank Professor Sally Thompson from UC
- 549 Berkeley Civil and Environmental Engineering for the useful comments.
- 550

551 **References**

- Adams, L. M., Schulte, S., Rivarola, M., McDonald, C., Ruhl, J. K., (2010). Alternative
 Futures: Economic and Water Resource Analysis of Traditional vs. Low Impact
 Redevelopment. In: S Struck. K H. Lichten Low impact development: redefining
 water in the city. San Francisco: ASCE Press: 853–863.
- Ahiablame, L. M., Engel, B. A., & Chaubey, I. (2012). Effectiveness of low impact
 development practices: literature review and suggestions for future research. Water,
 Air, & Soil Pollution, 223(7), 4253-4273.
- Barco, J., Wong, K. M., & Stenstrom, M. K. (2008). Automatic calibration of the US EPA
 SWMM model for a large urban catchment. Journal of Hydraulic Engineering, 134(4),
 466-474.
- Baxter, P. J., Moller, I., Spencer, T., Spence, R. J., Tapsell, S., (2002). Flooding and climate
 change. In P. Baxter, A. Haines, M. Hulme, R. S. Kovats, R. Maynard, D. J. Rogers
 and P. Wilkinson (Eds.). Health Effects of Climate Change in the UK, Department of
 Health, London, 152–192.
- Bazhong Planning Bureau, 2014. Bazhong Technical Regulations on Urban Planning and
 Management, Available at: http://www.bzgh.gov.cn/Notice/2014/12-30/1506.html (in
 Chinese)
- Beck, S. M., McHale, M. R., Hess, G. R. (2016). Beyond Impervious: Urban Land-Cover
 Pattern Variation and Implications for Watershed Management. Environmental
 management, 1-16.
- Bell, C. D., McMillan, S. K., Clinton, S. M., & Jefferson, A. J. (2016). Hydrologic
 response to stormwater control measures in urban watersheds. Journal of Hydrology,
- Bosley, E. K., II. (2008). Hydrologic evaluation of low impact development using a
 continuous, spatially-distributed model. MA thesis, Virginia Polytechnic Institute and
 State Univ., Va.

- 577 Carter, T., Jackson, C. R. (2007). Vegetated roofs for stormwater management at multiple
 578 spatial scales. Landscape and urban planning, 80(1), 84–94.
- Cembrano, G., Quevedo, J., Salamero, M., Puig, V., Figueras, J., & Martı, J. (2004).
 Optimal control of urban drainage systems. A case study. Control Engineering
 Practice, 12(1), 1-9.
- Choi, W., & Deal, B. M. (2008). Assessing hydrological impact of potential land use
 change through hydrological and land use change modeling for the Kishwaukee River
 basin (USA). Journal of Environmental Management, 88(4), 1119–1130.
- Coffman, L. S., 2002. Low-impact development: an alternative stormwater management
 technology. In R. L. France (Ed.), Handbook of water sensitive planning and design
 (pp. 97–124). Washington, D.C.: Lewis.
- Cunha, M. C., Zeferino, J. A., Simões, N. E., & Saldarriaga, J. G. (2016). Optimal location
 and sizing of storage units in a drainage system. Environmental Modelling &
 Software, 83, 155-166.
- Dietrich, A. T. (2015). Estimation of stormwater runoff mitigation in Lucas County, Ohio
 using SWMM modeling and GIS analysis (Doctoral dissertation, University of
 Toledo).
- Dietz, M. E. (2007). Low impact development practices: A review of current research and
 recommendations for future directions. Water, air, and soil pollution, 186(1-4),
 351-363.
- Dougherty, M., Dymond, R. L., Grizzard Jr, T. J., Godrej, A. N., Zipper, C. E., &
 Randolph, J. (2007). Quantifying long-term hydrologic response in an urbanizing
 basin. Journal of Hydrologic Engineering, 12(1), 33-41.
- Ebrahimian, A., Wilson, B. N., Gulliver, J. S. (2016). Improved methods to estimate the
 effective impervious area in urban catchments using rainfall-runoff data. Journal of
 Hydrology, 536, 109–118.
- Elliott, A. H., & Trowsdale, S. A. (2007). A review of models for low impact urban
 stormwater drainage. Environmental modelling & software, 22(3), 394-405.
- Elliott, A. H., Trowsdale, S. A., & Wadhwa, S. (2009). Effect of aggregation of on-site
 stormwater control devices in an urban catchment model. Journal of Hydrologic
 Engineering, 14(9), 975-983.

- General Office of the State Council. Guiding Opinions of the General Office of the State
 Council on Advancing the Construction of Sponge Cities. 2015.
 http://www.gov.cn/zhengce/content/2015-10/16/content 10228.htm.
- Gironás, J., Roesner, L. A., Davis, J., Rossman, L. A., & Supply, W. (2009). Storm water
 management model applications manual. Cincinnati, OH: National Risk Management
 Research Laboratory, Office of Research and Development, US Environmental
 Protection Agency.
- Gironás, J., Roesner, L. A., Rossman, L. A., & Davis, J. (2010). A new applications
 manual for the Storm Water Management Model (SWMM). Environmental Modelling
 & Software, 25(6), 813–814.
- Gomez-Ullate, E., Castillo-Lopez, E., Castro-Fresno, D., & Bayon, J. R. (2011). Analysis
 and contrast of different pervious pavements for management of storm-water in a
 parking area in Northern Spain. Water resources management, 25(6), 1525-1535.
- Gregoire, B. G., & Clausen, J. C. (2011). Effect of a modular extensive green roof on
 stormwater runoff and water quality. Ecological Engineering, 37(6), 963-969.
- Hanak, E., & Lund, J. R. (2012). Adapting California's water management to climate
 change. Climatic Change, 111(1), 17-44.
- Horton, R. E. (1933). The role of infiltration in the hydrologic cycle. Eos, Transactions
 American Geophysical Union, 14(1), 446-460.
- Hsu, M. H., Chen, S. H., & Chang, T. J. (2000). Inundation simulation for urban drainage
 basin with storm sewer system. Journal of Hydrology, 234(1), 21-37.
- Hunt, W. F., Jarrett, A. R., Smith, J. T., & Sharkey, L. J. (2006). Evaluating bioretention
 hydrology and nutrient removal at three field sites in North Carolina. Journal of
 Irrigation and Drainage Engineering, 132(6), 600-608.
- Huber, W. C. (2001). New options for overland flow routing in SWMM. Urban drainagemodeling, 22-29.
- Huber, W. C., & Cannon, L. (2002). Modeling non-directly connected impervious areas in
 dense neighborhoods. In Proc. 9th Int. Conf. Urban Drainage-Global Solutions for
 Urban Drainage.

- Jacobson, C. R. (2011). Identification and quantification of the hydrological impacts of
 imperviousness in urban catchments: A review. Journal of Environmental
 Management, 92(6), 1438–1448.
- Jarden, K. M., Jefferson, A. J., Grieser, J. M. (2016). Assessing the effects of catchment
 scale urban green infrastructure retrofits on hydrograph characteristics. Hydrological
 Processes, 30, 1536–1550.
- Ji, S. and Qiuwen, Z. (2015). A GIS-based Subcatchment Division Approach for SWMM.
 The Open Civil Engineering Journal, 9, 515–521.
- Juan, A., Hughes, C., Fang, Z., & Bedient, P. (2016). Hydrologic Performance of
 Watershed-Scale Low-Impact Development in a High-Intensity Rainfall Region.
 Journal of Irrigation and Drainage Engineering, 04016083.
- Krebs, G., Kokkonen, T., Valtanen, M., Koivusalo, H., Setälä, H. (2013). A high resolution
 application of a stormwater management model (SWMM) using genetic parameter
 optimization. Urban Water Journal, 10(6), 394-410.
- Lee, J. G., & Heaney, J. P. (2003). Estimation of urban imperviousness and its impacts on
 storm water systems. Journal of Water Resources Planning and Management, 129(5),
 419-426.
- Lee, J. G., Selvakumar, A., Alvi, K., Riverson, J., Zhen, J. X., Shoemaker, L., & Lai, F. H.
 (2012). A watershed-scale design optimization model for stormwater best
 management practices. Environmental Modelling & Software, 37, 6-18.
- Lee, J. M., Hyun, K. H., & Choi, J. S. (2013). Analysis of the impact of low impact
 development on runoff from a new district in Korea. Water Science and Technology,
 659 68(6), 1315-1321.
- Liu, Y., Cibin, R., Bralts, V. F., Chaubey, I., Bowling, L. C., & Engel, B. A. (2016).
 Optimal selection and placement of BMPs and LID practices with a rainfall-runoff
 model. Environmental Modelling & Software, 80, 281-296.
- Loperfido, J. V., Noe, G. B., Jarnagin, S. T., & Hogan, D. M. (2014). Effects of distributed
 and centralized stormwater best management practices and land cover on urban
 stream hydrology at the catchment scale. Journal of Hydrology, 519, 2584-2595.

- 666 Mancipe-Munoz, N. A., Buchberger, S. G., Suidan, M. T., & Lu, T. (2014). Calibration of
- rainfall-runoff model in urban watersheds for stormwater management assessment.
 Journal of Water Resources Planning and Management, 140(6), 05014001.
- Martin-Mikle, C. J., de Beurs, K. M., Julian, J. P., Mayer, P. M. (2015). Identifying priority
 sites for low impact development (LID) in a mixed-use watershed. Landscape and
 Urban Planning, 140, 29-41.
- Martz L W, Garbrecht J. (1992). Numerical definition of drainage network and
 subcatchment areas from digital elevation models. Computers & Geosciences, 18(6):
 747-761.
- Mejía, A. I., & Moglen, G. E. (2010). Impact of the spatial distribution of imperviousness
 on the hydrologic response of an urbanizing basin. Hydrological Processes, 24(23),
 3359-3373.
- 678 MoHURD, Ministry of Housing and Urban-Rural Development. Technical Guide for
- 679 Sponge Cities-Construction of Low Impact Development (For Trial Implementation);680 2014.
- 681 http://www.mohurd.gov.cn/zcfg/jsbwj_0/jsbwjcsjs/201411/W020141102041225.pdf
- Pauleit, S., Ennos, R., Yvonne Golding, Y., (2005). Modeling the environmental impacts
 of urban land use and land cover change-a study in Merseyside, UK. Landscape and
 Urban Planning, 71(2-4): 295–310.
- Peterson, E. W., & Wicks, C. M. (2006). Assessing the importance of conduit geometry
 and physical parameters in karst systems using the storm water management model
 (SWMM). Journal of hydrology, 329(1), 294-305.
- Pomeroy, C.A., (2007). Evaluating the impacts of urbanization and stormwater
 management practices on stream response. PhD thesis. Fort Collins: Colorado State
 University.
- Pyke, C., Warren, M.P., Johnson, T., LaGro, J., Scharfenberg, J., Groth, P., Freed, R.,
 Schroeer, W. and Main, E., (2011). Assessment of low impact development for
 managing stormwater with changing precipitation due to climate change. Landscape
 and Urban Planning, 103(2), 166-173.

- Rosa, D. J., Clausen, J. C., & Dietz, M. E. (2015). Calibration and verification of SWMM
 for low impact development. Journal of the American Water Resources Association,
 51(3), 746-757.
- Rosenberg, E. A., Keys, P. W., Booth, D. B., Hartley, D., Burkey, J., Steinemann, A. C., &
 Lettenmaier, D. P. (2010). Precipitation extremes and the impacts of climate change
 on stormwater infrastructure in Washington State. Climatic Change, 102(1-2),
 319-349.
- Rossman, L A. (2010). Storm water management model user's manual, version 5.0.
 National Risk Management Research Laboratory, Office of Research and
 Development, US Environmental Protection Agency.
- Roy, A. H., Shuster, W. D. (2009). Assessing impervious surface connectivity and
 applications for watershed management. Journal of the American Water Resources
 Association, 45(1), 198-209.
- Scholz, M., Grabowiecki, P. (2007). Review of permeable pavement systems. Building
 and Environment, 42(11), 3830-3836.
- Sheng, J., Wilson, P.J., 2009. Watershed urbanization and changing flood behavior across
 the Los Angeles metropolitan region. Nature Hazards, 48: 41–57.
- Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E., & Smith, D. R. (2005). Impacts
 of impervious surface on watershed hydrology: a review. Urban Water Journal, 2(4),
 263-275.
- Shuster, W., Rhea, L. (2013). Catchment-scale hydrologic implications of parcel-level
 stormwater management (Ohio USA). Journal of Hydrology, 485, 177–187.
- Sohn, W., Kim, J. H., & Li, M. H. (2017). Low-impact development for impervious
 surface connectivity mitigation: assessment of directly connected impervious areas
 (DCIAs). Journal of Environmental Planning and Management, 1-19.
- 720 Urrutiaguer, M., Rossrakesh, S., Potter, M., Ladson, A., Walsh, C. J. (2012). Using directly
- connected imperviousness mapping to inform stormwater management strategies. In
- WSUD 2012: Water sensitive urban design; Building the water sensitive community;
- 723 7th international conference on water sensitive urban design (p. 314). Engineers724 Australia.

- USEPA, 2000. Low Impact Development (LID): A Literature Review. United States
 Environmental Protection Agency. EPA-841-B-00-005, Washington D.C.: United
 States Environmental Protection Agency.
- Yao, L., Wei, W., Chen, L. (2016). How does imperviousness impact the urban
 rainfall-runoff process under various storm cases? Ecological Indicators, 60, 893-905.
- 730 Yazdi, J., & Neyshabouri, S. S. (2014). Identifying low impact development strategies for
- flood mitigation using a fuzzy-probabilistic approach. Environmental Modelling &
 Software, 60, 31-44.
- Zimmer, C. A., Heathcote, I. W., Whiteley, H. R., Schroter, H. (2007). Low impact
 development practices for stormwater: implications for urban hydrology. Canadian
 Water Resources Journal, 32(3), 193-212.
- 736 Zhang L., Xiao T.G., Yan Y.F., Zhang H., Zhong X., (2010). Analysis on the
- 737 Characteristics of Climate Change in Bazhong Sichuan Province in Recent 38 Years,
- Journal of Chengdu University of Information Technology, 25(3): 293-300.