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Abstract

We present a continuum approach to model segregation of size-bidisperse granular materials in
unsteady bounded heap flow as a prototype for modeling segregation in other time varying flows.
In experiments, a periodically modulated feed rate produces stratified segregation like that which
occurs due to intermittent avalanching, except with greater layer-uniformity and higher average
feed rates. Using an advection-diffusion-segregation equation and characterizing transient changes
in deposition and erosion after a feed rate change, we model stratification for varying feed rates
and periods. Feed rate modulation in heap flows can create well-segregated layers, which effectively
mix the deposited material normal to the free surface at lengths greater than the combined layer-
thickness. This mitigates the strong streamwise segregation that would otherwise occur at larger
particle-size ratios and equivalent steady feed rates and can significantly reduce concentration
variation during hopper discharge. Coupling segregation, deposition and erosion is challenging but
has many potential applications.
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1. Introduction

Flowing granular materials spontaneously
separate due to particle size or density dif-
ferences [44, 20, 51] to form a variety of seg-
regation patterns [41, 2, 40]. The degree of
segregation and the nature of the segregation
pattern depend on the complex interactions
between the flow dynamics and the segrega-
tion dynamics [40, 37, 21, 25]. A successful
approach to predicting species segregation in
flowing granular materials is based on a mod-
ification of the continuum advection-diffusion
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equation that includes a term accounting for
segregation of each species [51]. This ap-
proach works well for steady segregating flows
including heaps [16, 46, 9, 58, 12, 26], inclined
planes [8, 10, 53, 39, 23, 11, 10, 25], and wall-
driven flows [19], as well as for transient seg-
regation in rotating tumblers [47, 9, 35] and
unsteady flows in complicated geometries like
hoppers [55, 35, 7]. Here we use this contin-
uum advection-diffusion-segregation model to
better understand the even more complex in-
teraction between flow dynamics and segrega-
tion dynamics that results in stratified layers
of segregated particles for time-periodic heap
flow [56].

We consider single-sided quasi-two-
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dimensional (quasi-2D) bounded heap flows
in which particles fall onto the highest point
of the heap and flow down the sloped surface
until they reach a bounding downstream
vertical wall [15]. For steady feed rates of
size-bidisperse particle mixtures, three seg-
regation conditions can result [14]. At low
feed rates, intermittent avalanches produce
an irregular stratified segregation pattern
composed of large and small particle layers
that vary in thickness and streamwise ex-
tent [38, 54, 24, 3, 14]. At moderate feed rates
the downslope flow is steady, and smaller par-
ticles fall between larger particles to deposit
mainly on the upstream portion of the heap,
while larger particles rise to the top of the
flowing layer and, consequently, deposit mostly
on the downstream portion of the heap [14].
At sufficiently high feed rates, particles have
too little time to segregate and deposit on the
heap in a nearly fully mixed condition [14, 16].

In many practical situations in industry, a
fully mixed condition is preferred but difficult
to achieve because of the high feed rates that
are required. Alternative methods to prevent
segregation include altering particle character-
istics such as density [13, 50, 22, 29, 28, 18, 31]
or elasticity [5], or adding small amounts of
liquid to dry particle mixtures to make them
cohesive [32, 42, 43, 33, 34]. However, these ap-
proaches are not always feasible or appropriate
in application. Here we focus on an alterna-
tive approach, that of unsteady flow of a size-
bidisperse mixture of particles on a heap cre-
ated by periodic feed-rate modulation, which
results in a regular segregation pattern of strat-
ified layers of small and large particles that is
“mixed” at length scales larger than the strat-
ification layer thickness [56].

Unlike a low constant feed rate, which typ-
ically results in quasi-periodic avalanches that
lead to irregularly stratified layers [38, 54, 24, 3,
14], the modulated feed rate approach consid-
ered here allows moderate cycle-averaged feed
rates without the usual segregation of small

particles in the upstream region and large par-
ticles in the downstream region that occurs
for equivalent steady feed rates or the uneven
stratification that occurs at low feed rates [56].
Consider, for example, filling a hopper with a
strongly segregating mixture of small and large
particles in an industrial situation where the
preference is for the particles to remain mixed
to assure product uniformity. Although this
can be achieved using high feed rates [14], such
high feed rates can be difficult and costly to
achieve in practice. Instead, modulating the
feed rate to force a regular stratified pattern
of small and large particle layers results in
greater overall uniformity and significantly re-
duced segregation upon discharge [56] at low
to moderate average feed rates. In addition to
its practical application, the stratification pat-
tern formation is driven by a strong coupling
between segregation and erosion and deposi-
tion [56, 57, 36], which is a combination of pro-
cesses that is not well understood or modelled.

Our approach to investigating the effects
of a modulated feed rate on the segrega-
tion of size-bidisperse mixtures in bounded
heap flows is to implement the unsteady form
of a continuum advection-diffusion-segregation
model [51] combined with a model of the tran-
sient heap flow kinematics when the feed rate
is changed [57]. This permits analysis of the
interaction of the transient flow with the seg-
regation to better understand the origin of the
stratified structures of small and large particles
observed in experiments [56] and to predict the
impact of feed rate modulation parameters on
the resulting stratification patterns.

2. Background and the Continuum Seg-
regation Model

The specific problem that we consider here
is the formation of stratified segregation pat-
terns in a quasi-2D single-sided bounded heap
driven with a modulated feed rate, an example
of which is shown in Fig. 1 [56]. In experiments,
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Figure 1: Stratified segregation pattern (digitally en-
hanced contrast) of a size bidisperse mixture (0.5 mm
diameter red particles and 2 mm diameter blue parti-
cles) fed onto a quasi-2D bounded heap with width
W = 69 cm and thickness T = 1.27 cm by alternating
between a fast flow rate of qf = 37.0 cm2/s for tf = 3 s
and a slow flow rate of qs = 0.4 cm2/s for ts = 62 s [56].
Dashed line indicates boundary between material de-
posited during bounded (above) and unbounded (be-
low) heap flow; here we study the former.

a well-mixed size-bidisperse equal-volume mix-
ture of small (red, ds = 0.5 mm) and large
(blue, dl = 2 mm) spherical glass particles is
fed from a screw feeder at a volumetric feed
rate, Q, into the T = 12.7 mm gap between par-
allel vertical plates having a horizontal width
of W = 69 cm [56]. The particles segregate
as they flow in a thin layer down the L long
slope from the feed location to the downstream
bounding wall. To achieve stratified patterns of
large and small particle layers, Q is modulated
by alternating between a faster and a slower
feed rate. The resulting 2D feed rates at the
upstream end of the flowing layer, qj = Qj/T ,

are applied for times tj , and produce flowing
layer thicknesses δj , where j ∈ {f, s} for fast
and slow, respectively. Note that the local flow
rate on the heap, q(x, t), is maximum at the
upstream end of the flowing layer, where it
equals the feed rate, i.e. q(x = 0, t) = qj , and
decreases linearly to zero at the downstream
endwall during steady flow as particles are de-
posited uniformly onto the heap.

Xiao et al. [56] studied segregation patterns
in one-sided quasi-2D heap flow experiments
like the example shown in Fig. 1 by varying
the flow rate modulation parameters qj and tj .
In that work, the stratification patterns were
postulated to be primarily driven by the time-
varying flow kinematics, specifically the prop-
agation and relaxation of the local flow rate on
the heap from the feed zone to the downstream
end wall, and the associated particle segrega-
tion.

What needs to be done to better under-
stand the interaction of time-varying flow and
segregation is to extend the application of a
continuum segregation model to accommodate
the modulated feed rate and subsequent
variation in flow down the heap. This model
is based on the advection-diffusion equation
with an additional term for segregation [12, 4].
It has been successfully applied for modeling
steady, developing, and transient granular
flows of size-segregating or density-segregating
materials [23, 48, 16, 50, 58, 9, 20, 51, 13].
We use a form of the transport equation
incorporating a relatively simple expression
for the segregation term [16, 51], specified as:

∂ci
∂t

+
∂(uci)

∂x
+
∂(wci)

∂z︸ ︷︷ ︸
advection

+
∂(wp,ici)

∂z︸ ︷︷ ︸
segregation

− ∂

∂x
(D

∂ci
∂x

) +
∂

∂z
(D

∂ci
∂z

)︸ ︷︷ ︸
diffusion

= 0, (1)

where ci is the local concentration of species
i, u and w are the mean granular velocity in
the streamwise (x) and surface-normal (z) di-

rections, respectively, and D is the collisional
diffusion coefficient. The time rate of change
of species concentration ci (1st term) depends
on advection due to mean flow (2nd and 3rd
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terms), segregation via a mixture-specific per-
colation velocity for each of the species, wp,i =
wi −w (4th term), where wi is the local veloc-
ity component for species i and w is the local
velocity component of the mixture normal to
the free surface, and collisional diffusion (last
two terms).

A key aspect of this model is the depen-
dence of the percolation velocity of species i on
the local shear rate and the local concentration
of the other particle species [16, 46] such that
wp,i = Sγ̇(1 − ci), where S = SRds ln dl/ds is
a mixture-specific segregation length scale pa-
rameter and γ̇ = ∂u

∂z is the local shear rate.
The diffusion coefficient, D, is calculated as
D = CDγ̇d̄

2, where CD is a material depen-
dent property and d̄ is the average particle di-
ameter [52, 49, 17]. Here we use SR = 0.26
and CD = 0.1, consistent with previous stud-
ies [55, 7], although results are not strongly de-
pendent on either parameter’s exact value [16].
We further assume, as usual, that the stream-
wise diffusion term in Eq. 1 is negligible as a
consequence of δj/L� 1 [51].

Equation 1 can be solved numerically for the
local concentration of the two particle species
at all points in the flow for the steady case
using an operator splitting approach [16, 45].
However, implementing a modulated flow rate
in the continuum segregation model is more
challenging because the local flow rate, flow-
ing layer thickness, and, consequently, veloc-
ity field can all vary continuously with respect
to time and streamwise location depending on
the modulation parameters. In our previous
“instantaneous flow transition” modelling ap-
proach for this problem [36], we simply ig-
nored the unsteady kinematics by applying the
model using fully-developed steady flow con-
ditions [16] and instantaneously changing the
velocity field and flowing layer thickness ev-
erywhere in the flowing layer from that cor-
responding to a low feed rate to that for a high
feed rate, and vice versa. Thus, Eq. 1 is solved
at one flow rate as a steady flow, say at the

slow flow rate qs with the value for δs based
on a steady-state empirical correlation [46] for
duration ts. Then the conditions are instanta-
neously changed to those for the fast flow rate
qf , and Eq. 1 is implemented for qf as a steady
flow with the associated δf for duration tf .
Although the downstream propagation of the
change in flow rate and flowing layer thickness
from the feed zone is completely ignored in this
approach, repeating this instantaneous modu-
lation of the flow conditions along the entire
flowing layer results in a stratified segregation
pattern that is qualitatively similar to an ex-
periment at the same conditions [36], especially
when tj is large compared to the transient du-
ration associated with the change in feed rate
(see next paragraph). In this paper, we uti-
lize a more sophisticated approach to model-
ing the modulated flow, described in the next
section, that more accurately reflects the tran-
sient physics and consequently provides higher
fidelity results for the concentration field.

3. Modeling segregation during feed rate
transitions

When the feed rate of material falling onto
the top of a heap is increased, a wedge of ma-
terial with a steeper angle of repose, ᾱw, forms
near the feed zone, as shown in Fig. 2(a), noting
that here we use the horizontal and vertical co-
ordinates, x′ and y′ with the origin at the lower
left corner of the bounding box. Similarly,
when the feed rate is decreased, a deficit of
material due to bed erosion near the feed zone
results in a “negative” wedge with a smaller
surface angle, ᾱw, as shown in Fig. 2(b). Both
wedges propagate downslope as the front of the
new flow rate (indicated by x′wf) advances down
the heap. Eventually, the wedge propagates to
the downstream end of the heap, resulting in a
new constant angle of repose along the entire
heap surface and steady flow thereafter.

To accurately model and understand segre-
gation during these transients, consider first
the single transitions that occur when the feed
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(a)

(b)

Figure 2: In monodisperse flow, a feed rate change pro-
duces a wedge of material inclined at angle ᾱw that
propagates downstream with front location x′wf , while
the downstream portion of the heap beyond the wedge
remains inclined at angle ᾱ1 associated with the initial
flow rate. (a) A “positive” wedge occurs during slow-
to-fast transitions (shown shortly after the transition to
qf); (b) a “negative” wedge occurs for fast-to-slow tran-
sitions (shown shortly after the transition to qs) [57].

rate is changed from slow-to-fast or vice versa.
We borrow the kinematics for the transient
wedge of bidisperse material associated with
a change in feed rate from our previous work
on the kinematics for monodisperse feed rate
transients [57]. Assume that the heap is in
steady state at the slow feed rate qs when the
feed rate is suddenly changed to the fast feed
rate qf , as shown in Fig. 2(a). After the flow
rate is increased to qf , the surface near the feed
zone rises quickly to form a wedge of material
with an average surface angle ᾱw that is steeper
than the steady-state average surface angle ᾱ1

under qs, while the rest of the heap (down-
stream of the wedge) continues to rise uni-
formly with vertical rise velocity vr,s = qs/W.
In time, the wedge front position, x′wf , propa-
gates downstream until it reaches the endwall,
after which the entire heap is again in steady
state but at a higher repose angle ᾱ2 associated
with qf . For the opposite case of a fast-to-slow
feed-rate transition, Fig. 2(b), the situation is
analogous. After qf is reduced to qs, the rise
velocity of the surface near the feed zone de-
creases quickly and there is a net local outflow
of material associated with the reduced repose
angle at the slower feed rate. Since the lower
portion of the heap continues to rise with ve-
locity v′r,f = qf/W , a “negative” wedge having
a lower surface angle ᾱw forms near the feed
zone. The position of the wedge front, x′wf ,
propagates down the heap as time advances.

Using mass conservation, we previously pro-
posed a flow model for the front position
for monodisperse particles following a sudden
change in the feed rate as [57]:

x′wf =
√
Ct, (2)

where x′wf is the instantaneous wedge front po-

sition, C = 2(q2−q1)
tan ᾱw−tan ᾱ1

, and q1 and q2 are
the feed rates before and after the transition,
respectively, which correspond to qs and qf ,
or vice versa. Using Eq. 2, the characteristic
time for the wedge front to propagate to the
downstream boundary of the flowing layer, i.e.

5



x′wf = W , is τ = W 2/C. Additionally, due
to mass balance and the local relation between
the flux and surface slope, the transient local
flow rate q(x′, t) down the flowing layer follows
a diffusion-like equation [57]:

∂q̃

∂t
= A

∂2q̃

∂x′2
, (3)

where q̃ = q(x′, t) − q1(1 − x′/W ), and A =
0.028 m2/s is a fitting parameter from the re-
lation, q = A tanα + B, between the local
flow rate q and the local surface angle α, with
an additional constant B = −0.015 m2/s [57].
(Both A and B are expected to depend on the
particle-wall friction coefficient and the ratio of
the gap width to the particle diameter.) Solv-
ing Eq. 3 with appropriate boundary condi-
tions gives [57]

q̃(x′, t) = (q2 − q1)

1−
erf( x′√

4tA
)

erf(
x′wf√
4tA

)

 , (4)

upstream of the wedge front (i.e. in the wedge
for x′ < x′wf). For regions downstream
of the wedge front, x′ > x′wf , q(x′, t) =
q1 (1− x′/W ). The corresponding free surface
height profile (i.e. the “top” of the flowing
layer), z′t(x

′, t), can be determined via mass
conservation ∂z′t/∂t + ∂q/∂x′ = 0. Ideally,
the propagation constant C in Eq. 2 should
be specified for each combination of feed rates,
which requires extensive calibration. However,
since a linear relation exists between q and
tanα, the value of C should be nearly con-
stant. Here we use C = 3A for all sim-
ulations for simplicity, which corresponds to
tan ᾱw − tan ᾱ1 = 2

3(tan ᾱ2 − tan ᾱ1), which
is an estimate from experimental results [57].

Assuming that wedge formation kinemat-
ics are unaffected by segregation, we apply
the monodisperse wedge flow model, Eq. 4, to
segregation in bidisperse flow in conjunction
with the continuum segregation model (i.e.,
Eq. 1). Because erosion and deposition are
important features of the transient segrega-

tion process, we model the heap as two cou-
pled regions consisting of a flowing layer and
an erodible bed separated by an interface at
the bottom of the flowing layer, z′b(x′, t) =
z′t(x

′, t) − δ(x′, t), see Fig. 3. Deposition on
the bed occurs when z′b increases. The bed
concentration, cbed(x′, z′, t), in the newly de-
posited region is just the concentration at the
bottom of the flowing layer, i.e. cbed(x′, z′b, t) =
c(x′, z′b, t). Erosion of the bed occurs when
z′b decreases (the situation shown in Fig. 3),
in which case the concentration of material
eroded into the base of the flowing layer is
c(x′, z′b, t) = cbed(x′, z′b, t). In other words, ero-
sion causes particles previously deposited on
the bed to be re-incorporated into the flowing
layer. This coupling mechanism ensures that
the concentration is continuous at the inter-
face between the bed and the flowing layer.
The upper and lower boundaries of the flow-
ing layer in Fig. 3 are curved due to the cou-
pling of z′b and z′s to q via Eq. 3. Further
note that from mass conservation and incom-
pressibility, ∂z′s/∂t + ∂q/∂x′ = 0, erosion oc-
curs when dq/dx′ > 0 (corresponding to the
situation in the negative wedge for a fast-to-
slow transition in Fig. 3) and deposition occurs
when dq/dx′ < 0 (corresponding to the situa-
tion downstream of the wedge front in Fig. 3).

To simplify the flow kinematics calculation,
we assume that the flowing layer thickness is
uniform along the entire length of the flow-
ing layer [reducing δ(x′, t) to δ(t)], even though
it varies slightly with streamwise location and
flow rate in experiments [16, 46]. The ini-
tial flowing layer thickness is set using a pre-
viously determined scaling law [46]: δj =

Cδd̄
[
qj/
√
gd̄3
]βδ

, with Cδ = 5, d̄ = (dl +ds)/2,

βδ = 0.35, and j ∈ {f, s}. During a slow-to-
fast transition, the flowing layer thickness ini-
tially equals δ = δs and then increases toward
δf as the front propagates, following δ(t) =
x′wf
W δf + (1 − x′wf/W )δs, noting that x′wf is a

function of time (Eq. 2). For a fast-to-slow
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Erosion

Deposition

Flowing layer

Erodible bed

Figure 3: Schematic of the computational domain for
the transition from qf to qs, resulting in a negative
wedge in the upstream portion of the flowing layer
(white region between short-dashed line and flowing
layer), where red- and blue-shading indicate the flowing
layer and static bed, respectively, and the short-dashed
line marks the free-surface location had the feed rate
stayed at qf .

transition, δ(t) =
x′wf
W δs + (1− x′wf/W )δf .

The velocity field (u′, w′) is required to solve
Eq. 1, but only in the flowing layer since
the bed region is static and simply acts as
a “store” of material that is either depleted
or supplied by the flowing layer. The ve-
locity field in the flowing layer with q(x′, t),
z′t(x

′, t), and z′b(x′, t) specified must satisfy four
requirements. First, the horizontal velocity de-
creases exponentially with depth [16, 55] while
matching the streamwise flux requirement that

q(x′, t) =
∫ z′t
z′b
u′(x′, z′, t)dz. Second, at the bot-

tom of the flowing layer, u′(x′, z′b) = 0 and
w′(x′, z′b) = 0, so that the velocity field goes
to zero at the fixed bed and is continuous.
Third, at the free surface, w′/u′ =

∂z′t
∂x′ , en-

suring that the flow is always parallel to the
free surface. Fourth, the continuity equation,
∂u′/∂x′+ ∂w′/∂z′ = 0, is satisfied everywhere.
The local shear rate, γ̇ = ∂u/∂z, can be calcu-

lated in the coordinates consistent with Eq. 1
by taking the derivative of the streamwise ve-
locity, u = u′ cosα−w′ sinα, in the perpendic-
ular direction z, with α = − arctan (∂z′t/∂x

′).
With these constraints realized, the velocity
field is [55]:

u′(x′, z′) =Mq
(
ek(z′−z′t)/δ − e−k

)
, (5)

w′(x′, z′) =M
∂q

∂x′

[
(z′ − z′b)e−k − δ

k

(
ek(z′−z′t)/δ − e−k

)]
+Mq

∂z′t
∂x′

(
ek(z′−z′t)/δ − e−k

)
,

(6)

where M = k/{δ[1 − (1 + k)e−k]} and k =
2.3 [16, 55]. In steady state, the velocity field
reduces to a simpler form with an exponential
profile as described previously [16].

Having specified the advection field, the seg-
regation term, the diffusion term, and the
position of the interface between the bed
and the flowing layer, the advection-diffusion-
segregation equation (Eq. 1) is solved numeri-
cally using the finite element method [55]. The
Arbitrary Eulerian Lagrangian (ALE) method
handles the moving boundary of the flowing
layer and the bed region, and the Streamline
Upwind Petrov Galerkin (SUPG) method is
used to stably simulate advection dominated
regions [55] in the flowing layer. In the ap-
proximately trapezoidal computational domain
shown in Fig. 3, quadrilateral elements are
used with a resolution of 250×80 nodes for the
flowing layer and 250× 400 nodes for the bed,
and the integration time step is 0.01 s. Results
are insensitive to reasonable variations of the
grid size and the time-step. In each simula-
tion, the initial condition in the flowing layer
is set as the steady state solution to Eq. 1 un-
der the initial feed rate q1, and the bed con-
centration is initialized using the initial con-
centration profile at the bottom of the flow-
ing layer, c(x′, z′b). The simulation parame-
ters match the experiments with W = 69 cm,
dl = 2 mm, and ds = 0.5 mm. The initial sur-
face profile z′t is set to linear with a slope of
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28◦, which is a simplification based on experi-
mental observation [56, 57]. The slope for the
bottom of the computational domain is also
set to 28◦ to avoid unnecessary computations
for the static heap, and the initial bed depth
is set to 0.5q1/W + 0.05 m to ensure adequate
depth for erosion. As the simulation proceeds,
the transient advection field is calculated using
Eqs. 4-6 under the modulation parameters, qf ,
qs, tf , and ts. This field is in turn used to solve
Eq. 1 with the boundary movement specified
by the calculated positions of the top, z′t, and
bottom, z′b, of the flowing layer. This yields the
instantaneous flowing layer concentration pro-
file c(x′, z′b ≤ z′ ≤ z′t, t) and bed concentration
profile cbed(x′, z′ ≤ z′b, t) through the interface
coupling scheme described above.

4. Model validation

Before exploring the dynamics of modulated-
flow-driven stratification using the continuum
model, we first validate the model against ex-
periment. Specifically, model predictions are
compared with a previous experiment [56] at
the same operating conditions and at two dif-
ferent times during bed formation in Fig. 4.
For the model results, red corresponds to
high small-particle concentration, blue to high
large-particle concentration, and white indi-
cates an equal volume mixture of the two
species. The continuum model (left column)
starts with a steady feed rate period, evident
as simple segregation with small red particles
upstream and large blue particles downstream
in the lower portion of the computational do-
main (where particles are first deposited), be-
fore slightly more than three iterations of feed
rate modulation occur, evident as the sloped
stratification pattern in the upper portion of
the domain. The experiment includes six iter-
ations of the feed rate modulation but does not
start with a steady feed rate interval.

The stratified segregation pattern generated
by the continuum model (upper portion of the

domain in the left column) matches the pat-
tern in the experiment (right column) in terms
of the extent each segregated layer penetrates
into the upstream and downstream regions, the
inclination of the stratified layers relative to
the free surface angle, and the change in layer
thickness vs. streamwise position on the heap
(i.e., large blue particle layers increase in thick-
ness downstream, while small red particle lay-
ers maintain a nearly constant thickness).

Not only does the stratification pattern of
the particles deposited on the static heap
match between the continuum model and the
experiment, but the details of how the pattern
forms during slow-to-fast and fast-to-slow feed
rate transitions also match. When the fast feed
phase starts, a slight “positive wedge” forms
at the top of the heap and propagates toward
the downstream endwall. As the material flows
downstream, segregation in the wedge causes
an excess of large blue particles to accumulate
at the leading edge of the layer of small (red)
particles, as shown in the magnified regions in
Fig. 4(a, b) 3 s into the fast feed phase (this
concentration of large particles at the leading
edge of the small particles is reminiscent of
similar behavior observed in avalanches [24]).
These large particles are followed and buried by
small particles in the flowing layer, resulting in
deposition of large particles onto the upstream
portion of the heap. It is important to note
that for these conditions the wedge front is al-
ready almost three-quarters of the way down
the slope based on Eq. 2. Thus, the leading
edge of the small particles trails behind the
wedge front.

Similarly, when the slow feed phase begins,
the height of the free surface near the feed
zone decreases slightly, forming a slight “neg-
ative” wedge in the upstream region of the
heap. As the negative wedge propagates to-
ward the downstream endwall, previously de-
posited small particles in the upstream regions
of the bed are eroded into the flowing layer,
flow downstream, and then deposit back onto
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Figure 4: Comparison of continuum model predictions (left column) to experimental results [57] (right column) in a
W = 69 cm wide and T = 1.27 cm thick heap under modulated flow conditions for an equal volume mixture of 2 mm
blue and 0.5 mm red glass spheres at (a, b) 3 s into the slow-to-fast transition and at (c, d) 10 s into the fast-to-
slow transition. Color bar in (a) indicates the small-particle concentration. Modulation parameters: qs = 2 cm2/s,
ts = 20 s, qf = 23.6 cm2/s, and tf = 5 s. Note that the continuum model (left column) starts with a steady feed rate
(lower portion of the flow domain) followed by slightly more than three iterations of feed rate modulation, while the
experiments include six iterations of feed rate modulation without an initial steady feed rate period.

the static bed further downstream than where
they were initially eroded. This process is vis-
ible in the magnified regions of Fig. 4(c, d)
10 s into the slow feed phase where the lead-
ing edge of the layer of small (red) particles
has advanced more than two-thirds of the way
down the slope.

Close agreement between the overall pattern
and details of the pattern forming process in
the continuum model predictions and experi-
ments is also observed for other combinations
of the modulations parameters (i.e., qj and
tj). Having confirmed that the model can ac-
curately reproduce experiments, we now use
it to better understand the stratification pro-
cess and explore the pattern dependence on the

feed-rate-modulation parameters.

5. Transient segregation during single
feed rate transitions

Before applying the model to the more com-
plicated case of the periodically modulated feed
rate, we first consider the simpler case of a sin-
gle feed rate transition in order to better un-
derstand the propagation of the change in flow
rate down the heap and its effect on segrega-
tion. Figure 5 shows the segregation in terms of
the concentration of small particles, csmall, dur-
ing downslope wedge propagation for a slow to
a fast feed rate transition at five different times
for an equal volume mixture of small and large
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Figure 5: Layer formation due to wedge propagation
after transition from a slow (qs = 12 cm2/s) to a
fast (qf = 36 cm2/s) feed rate at t = 0 for differ-
ent times t (increasing from bottom to top) accord-
ing to the continuum model for an equal volume mix-
ture of 2 mm blue and 0.5 mm red glass spheres with
W = 69 cm. Small-particle concentration, csmall, is in-
dicated by color bar, yellow curves indicate the bot-
tom of the flowing layer, z′ = z′b. Times correspond to
t/τ = 0, 0.44, 1.05, 2.11, 3.86.

particles. The yellow curve in each concentra-
tion field indicates the instantaneous interface
at the bottom of the flowing layer, z′ = z′b,
at the current time step of the computations.
Particles deposited on the heap lie below this
interface; particles flowing down the heap are
above it.

In steady state (i.e., t = 0 in Fig. 5), the
concentration in the static portion of the heap
(beneath the flowing layer) varies only in the
streamwise direction. In the upstream por-
tion, mostly small particles are deposited (large
csmall, red) due to rapid segregation in the

flowing layer, although csmall is slightly less at
the extreme upstream end of the heap where
there is too little time for some large parti-
cles to segregate upward before depositing on
the static heap. Approximately half-way down
the slope (for this equal volume mixture), the
flowing layer becomes depleted of small parti-
cles, and csmall diminishes rapidly so that the
flowing layer is composed entirely of large par-
ticles (blue), which are then deposited exclu-
sively on the remainder of the static heap. The
resulting streamwise-segregated pattern gener-
ated by the model is typical of heaps at mod-
erate feed rates [14].

Now consider how a sudden increase in the
feed rate alters the concentration field. Shortly
after switching to the fast feed rate (t > 0),
a positive wedge of material forms at the up-
stream end of the flowing layer, evident at t =
2.5 s in Fig. 5, which corresponds to t/τ = 0.44,
where τ = W 2/C = 5.7 s. At this time, the
wedge front is at x′wf = 0.46 m (x′wf/W = 0.67)
according to Eq. 2. However, the leading edge
of the small particles is well behind the wedge
front at x′ ≈ 0.2. This is because as the
wedge front advances downstream, large par-
ticles segregate upward toward the free sur-
face of the wedge, while small particles per-
colate downward toward the bottom of the
flowing layer in the usual manner. Since the
streamwise velocity of large particles on the
free surface of the wedge is greater than that
for small particles deeper in the flowing layer
and greater than the wedge front velocity, large
particles are conveyed to the forward portion of
the wedge. (Similar conveying behavior occurs
in segregating avalanche flows [21, 56].) The
large particle concentration in the forward por-
tion of the wedge grows until the flowing layer
there consists almost entirely of large particles.
Consequently, large particles deposit from the
wedge front onto the static portion of the heap
where only small particles had previously de-
posited during the preceding steady slow feed
rate (t ≤ 0). These large particles are then cov-
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ered by small particles as the front moves fur-
ther downstream (t = 6 s and t = 12 s), which
forms a large particle enriched layer in the up-
stream portion of the heap visible for t ≥ 6 s in
the figure.

After the wedge front reaches the down-
stream boundary of the heap, corresponding
to t = τ = 5.7 s, the flowing layer relaxes
back to steady-state (here for t & 12 s), but
at the higher feed rate qf . In steady state at
qf , the transition between small and large par-
ticles (i.e., the white region corresponding to
csmall = 0.5) is slightly broader and located fur-
ther downstream, and the small particle con-
centration in the upstream region is reduced
compared to the slow feed rate, see Fig. 5 at
t = 22 s. These three differences are due to
the increased importance of advection and dif-
fusion relative to segregation at the higher feed
rate [16].

The most significant result shown in Fig. 5
at t = 22 s is that after a single change in the
feed rate from slow-to-fast there is a single layer
of large particles extending significantly further
upstream on the heap than the steady-state po-
sition of the boundary between small and large
particle dominated regions for either the slow
or fast feed rate. The full upstream extent of
this layer to x′ ≈ 0.2 is fixed by t = 6 s, which
corresponds to t/τ = 1.05, the approximate
time for the wedge front to reach the down-
stream wall. The thickness of the large parti-
cle layer grows for some time after this as the
flow relaxes toward its steady state condition
along the entire length of the surface after the
wedge front reaches the downstream wall, but
its final thickness is established by t = 12 s
(t/τ = 2.11), as is evident by comparing it
to the situation at t = 22 s. Thus, it appears
that the upstream extent of the large particle
layer is established by the time the wedge front
reaches the downstream wall at τ but continues
to thicken until about 2τ .

Figure 6 shows the analogous layer-
formation process for a fast-to-slow feed

rate transition. The initial fully segregated
condition for the static bed at t = 0, is similar
to that in Fig. 5, except that the transition
from small (red) to large (blue) particles is
a bit wider and further downstream due to
the faster feed rate. After switching to the
slow feed rate at t = 0, the surface height
in the upstream portion of the flowing layer
decreases slightly (evident at t = 4.5 s and
t = 15 s) due to the associated surface relax-
ation, forming a negative wedge. As a result,
previously deposited small-particle-enriched
material re-enters the flowing layer via erosion
of the static bed (darker red in the lower
part of the upstream portion of the flowing
layer), and segregation in the flowing layer
is amplified due to the higher concentration
of small-particles and the slower flow rate
compared to when they were first deposited.
As the negative wedge advances downstream
and the heap adjusts to the lower repose angle,
the flowing layer continues to be enriched by
small particles via bed erosion. This allows
the flowing layer to deposit small particles
further downstream before being depleted
of small particles, as is evident in the figure
for t = 4.5 s and t = 15 s. The ultimate
downstream extent of the small particle layer
at x′ ≈ 0.6 m is almost established by t = 4.5 s,
which corresponds to t/τ = 0.79. But like
the upstream large particle layer for the
slow-to-fast feed rate transition, the small
particle layer grows thicker for t > τ , evident
at t = 15 s (t/τ = 2.63), as the flow relaxes
toward its steady state condition along the
entire length of the surface after the negative
wedge front reaches the downstream wall.
After the formation of the small particle layer,
steady-state heap growth resumes but at
the slower flow rate and shallower slope, as
shown at t = 40 s in the figure. Accordingly,
the streamwise concentration transition at
csmall = 0.5 is located further upstream and is
narrower than for qf .

The net result of the fast-to-slow feed rate
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Figure 6: Layer formation due to wedge propaga-
tion after transition from a fast (qf = 36 cm2/s) to
a slow (qs = 12 cm2/s) feed rate at t = 0 for differ-
ent times t (increasing from bottom to top) accord-
ing to the continuum model for an equal volume mix-
ture of 2 mm blue and 0.5 mm red glass spheres with
W = 69 cm. Small-particle concentration, csmall, is in-
dicated by color bar, yellow curves indicate the bot-
tom of the flowing layer, z′ = z′b. Times correspond to
t/τ = 0, 0.79, 2.63, 3.86, 7.02.

transition, evident in Fig. 6 at t = 40 s, is
a layer of deposited small particles that ex-
tends significantly further downstream than
the steady-state position of the boundary be-
tween small and large particle dominated re-
gions at either the slow or fast feed rate.

6. Stratified segregation patterns: pa-
rameter dependence

As illustrated in Sec. 4, when the two strati-
fication processes described in Figs. 5 and 6 oc-
cur sequentially and repeatedly, large-particle

layers deposit further upstream during a slow-
to-fast transition (Fig. 5) and small-particle
layers deposit further downstream during a
fast-to-slow transition (Fig. 6), resulting in a
periodic layering of the large and small parti-
cle species. The continuum model developed
in Secs. 2 and 3 is useful in exploring the pa-
rameter dependence of the stratified segrega-
tion patterns.

Figure 7 shows segregation patterns result-
ing from repeated slow-to-fast and fast-to-slow
transitions for twenty combinations of qf and
qs with tf = ts = 8 s, which corresponds to
tj/τ = 1.41. The two-dimensional feed rate,
qj , is nondimensionalized with the horizontal
width of the heap, W , average particle diam-
eter, d̄, and feed rate duration, tj , such that
q̃j = qj/(Wd̄/tj) . This can be thought of as
the two-dimensional area of material added to
the heap during each feed rate interval, qjtj ,
measured in units of the area of a single layer
of particles, Wd̄. In each case, the system
starts from a base deposited in steady flow at
the slow feed rate qs (except when qs = 0 for
which the steady initial flow is at qf) and then
switches repeatedly between fast and slow feed
rates every 8 s. Only feed rate combinations
with q̃f ≥ q̃s are shown, since the patterns de-
veloped for q̃f < q̃s are identical after the sec-
ond feed rate switch.

When q̃f = q̃s, the feed rates are equal so no
layering occurs. As discussed in the previous
section, with increasing feed rate (moving up
the diagonal), the equal concentration bound-
ary (white) moves slightly downstream, the
streamwise extent of the concentration transi-
tion from small to large particle dominated re-
gions increases, and the degree of segregation
decreases in the upstream portion of the heap
as the relative influences of advection and dif-
fusion in the flowing layer increase relative to
that of segregation.

Consider now the limiting case where one
of the feed rates is zero, here q̃s = 0, shown
in the first column in Fig. 7. The slow-fast
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Figure 7: Effect of varying fast and slow feed rates on stratification for qs ∈ {0, 12, 24, 36, 48, 60} cm2/s and qf ∈
{12, 24, 36, 48, 60} cm2/s with equal feed durations (tf = ts = 1.41τ = 8 s) after three full cycles of modulation (48 s)
following an initial period of steady state heap growth to a target bed height as described in Sec. 3. The initial
steady state is formed at a feed rate of qs for all cases except for when qs = 0, in which case the initial feed rate is qf .

transition (in this case, zero-fast transition) re-
sults in a layer of large particles extending rela-
tively far up the slope, while the fast-slow tran-
sition (fast-zero transition) results in a layer
of small particles extending down the slope.
Compared to the other cases in Fig. 7 where
both q̃s and q̃f are non-zero, the length of the
stratified layers is longest when one of the feed
rates is zero. This is consistent with the ob-
servation in experiments that the length of the
layer increases with decreasing q̃s [56]. Further-
more, this result is similar to that for stratifica-
tion in heaps at low constant feed rates where
the flow down the slope is quasi-periodic (on-
off) [38, 54, 24, 3, 14]. We note, however, that
when the duration tf of the non-zero feed rate
(qf) is too short, corresponding to small values

of q̃f , the amount of material deposited is in-
sufficient to form a long layer of material (e.g.,
q̃f = 10.7 or 21.4, q̃s = 0). Also note that the
angle of the stratified layer with respect to the
angle of repose differs slightly for q̃s = 0 com-
pared to the other cases due to the different
initial condition (steady feed at q̃f instead of
q̃s).

When the two feed rates are non-zero and
differ from one another (i.e., q̃f > q̃s), lay-
ering still occurs. If q̃f ∼ q̃s (e.g., q̃f =
53.5, q̃s = 42.8), the streamwise extent of lay-
ering is small, but if q̃f � q̃s, (e.g., q̃f = 53.5,
q̃s = 10.7), the streamwise extent of layering
is nearly as large as when q̃s = 0. Large rel-
ative differences between q̃f and q̃s are needed
for strong layering to both extend the small
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particle layer further downstream due to in-
creased erosion and flowing layer segregation
during the fast-to-slow feed transition and to
bring the large particle layer further upstream
by increasing the deposition of large particles
during the slow-to-fast transition. However, if
too much material is deposited during a feed
interval, the flow reaches steady state with the
small particles depositing upstream and large
particles depositing downstream according to
the steady-state pattern. This increases the
small particle layer thickness in the upstream
region and the large particle layer thickness
in the downstream region without increasing
the thicknesses of the penetrating layers (up-
stream or downstream) or the penetration of
those layers (upstream or downstream). This
effect is visible in Fig. 7 for the largest fast
feed rate (q̃f = 53.5, top row) compared to the
row just below it, particularly for q̃s = 0, 10.7,
and 21.4. In these cases, the penetration of
the layers upstream and downstream does not
change from one row to the other and the ver-
tically invariant concentration regions match-
ing the steady flow (diagonal) conditions are
visible after every slow-to-fast feed transition.
In addition, the total amount of material de-
posited per modulation cycle is

∑
qjtj , as is ev-

ident in the increasing thickness of each layer of
the heap moving up (higher q̃f) or to the right
(higher q̃s) in the figure. Thus, the thinnest
and deepest penetrating layers occur on the left
side of the figure where the ratio of the fast-to-
slow feed rate is large but the average feed rate
is low. The optimal layering is a balance be-
tween penetration (large enough relative differ-
ence between q̃f and q̃s) and avoiding reaching
steady state (q̃f or q̃s is too large). When q̃f

and q̃s are both small, the penetration is re-
duced (e.g., q̃f = 21.4, q̃s = 10.7), but when
q̃f or q̃s is too large, the layers thicken (e.g.,
q̃f = 53.5, q̃s = 10.7) but not for the penetrat-
ing portions of the layers.

In Fig. 7 the two feed rate durations are con-
stant and equal, tf = ts = 1.41τ = 8 s. In

Fig. 8 both the fast and slow durations (tf and
ts) are varied while the feed rates are fixed at
qs = 12 cm2/s and qf = 36 cm2/s, correspond-
ing to (q̃s = 10.7, q̃f = 32.1) in Fig. 7. Since our
computational approach only tracks the posi-
tion of a single wedge front at a time, we only
consider feed durations that exceed the time for
the wedge front to reach the downstream wall,
τ ; that is, tj/τ ≥ 1. Feed durations shorter
than this require computations in which a sec-
ond wedge front starts to propagate before the
previous wedge front reaches the downstream
wall. While this is computationally feasible, we
do not pursue this case here.

For all simulated combinations of tf and ts
in Fig. 8, relatively strong layering is observed
due to the relatively large difference in feed
rates, q̃f = 3q̃s. Very little, if any, change in
the upstream extent of the large particle layer
associated with varying the fast feed rate in-
terval is observed because tf/τ > 1. The large
particle layer in the upstream portion of the
bed is always fully deposited before the end
of the feed interval, and its deposition is thus
unaffected by the duration of tf . Neither is
the upstream extent of the large-particle en-
riched layer affected by ts, because in all cases
erosion associated with the negative wedge is
never deep enough to reach the previously de-
posited large particles. The downstream extent
of small-particle enriched layer is similarly in-
sensitive to ts, again because the erosive phase
of the fast-to-slow transition is completed be-
fore the slow feed rate phase ends.

The layer thickness increases with increas-
ing tf or ts, but more rapidly for tf due to its
larger associated feed rate, although the up-
stream penetration of the large particle layer
and downstream penetration of the small par-
ticle layer remain relatively unchanged in both
streamwise extent and thickness. This is most
easily seen in the left column for ts/τ = 1.05.
As tf/τ increases, the additional time, tf > τ ,
following the slow to fast feed rate transition
that forms the upstream penetrating large par-
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ticle layer results in steady-state deposition of
particles, consistent with Fig. 5. Similarly,
for the bottom row, increasing ts/τ results
in steady-state deposition of particles follow-
ing the fast to slow feed rate transition that
forms the downstream penetrating small parti-
cle layer, consistent with Fig. 6. This is more
difficult to see than the case for the slow to
fast transition because fewer particles are de-
posited at the slower feed rate in time ts; it
is barely visible as the slightly increasing cur-
vature of the interface between large and small
particles at the top of the small particle layer as
ts/τ increases much like that evident in Fig. 6
for the upper surface of the small particle layer
at t = 22 s. However, in both cases the pene-
trating portion of the layer remains similar in
both thickness and extent, regardless of tj/τ .
Although increasing tj/τ increases the overall
layer thickness, the regions of large particles
penetrating upstream and small particles pen-
etrating downstream are quite similar for all
tj/τ ; it is only the region of steady-state depo-
sition following the transition that changes the
overall layer thickness.

Of course, uniform mixtures of segregating
particles are usually desirable in industrial pro-
cesses. Modulating the feed rate to generate
layers of small and large particles can enhance
the overall mixture uniformity on heaps even
when materials are strongly segregating (e.g.,
due to large size or density ratios) or when suf-
ficiently high feed rates to avoid segregation
are impractical. However, the layering result-
ing from intentional modulation of the feed rate
is imperfect – there is still a general tendency
for small particles to deposit on the upstream
portion of the heap and large particles to de-
posit on the downstream portion. In addition,
the layers’ streamwise extent and thickness de-
pend on the modulation parameters. As we
have shown in this section, the length of the
layer increases as the ratio of q̃s to q̃f decreases,
and layer thickness decreases with decreases in
the total material deposited,

∑
qjtj , during ei-

ther the slow or fast phase of the feed modula-
tion.

To quantify the dependence of the layers on
the feed modulation parameters, the penetra-
tion length of the segregated layer ∆x is quan-
tified in terms of the streamwise extent of the
csmall = 0.5 (white) contour for the cases in
Figs. 7 and 8. The dependence of the normal-
ized length of the segregated layer, ∆x/L, for
these cases is shown in Fig. 9(a) as a function
of qs/qf . Consistent with experiments [56], the
greatest layer penetration is achieved with on-
off modulation of the feed rate (i.e. qs = 0).
The length of the stratification layer decreases
linearly from ∆x/L ≈ 0.8 at qs/qf = 0 to
∆x/L = 0 at qs/qf = 1, apart from the two
shaded data points corresponding to situations
where q̃f is too small to fully form a stratifica-
tion layer (q̃f = 10.7 and 21.4 in Fig. 7). The
cluster of data points at qs/qf = 0.33 corre-
sponds to the data in Fig. 8, demonstrating
that the duration tj does not alter the length
of the stratification layer, provided that tj > τ .

It is also possible to consider the degree of
segregation in terms of the feed modulation pa-
rameters. Here we characterize a region repre-
sentative of the material deposited on the heap
during modulated flow consisting of two de-
posited stratification layers just below the flow-
ing layer in terms of the Danckwerts segrega-
tion parameter [6], calculated as:

Id =
1

c̄(1− c̄)L

∫ L

0

l(x)(c(x)− c̄)2

l̄
dx, (7)

where c(x) is the average local species concen-
tration in a slice of length l(x) that is normal to
the free surface of the heap and extends from
the center of the first layer to the center of the
third layer at streamwise position x, c̄ = 0.5
is the average concentration of one of the par-
ticle species, and l̄ is the average slice length.
The slice length equals twice the layer spacing
except at the upstream and downstream ends
of the heap where it is reduced because of the
vertical end walls. The segregation index, Id,
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Figure 8: Effect of feed rate duration on stratification starting from a steady slow feed rate qs = 12 cm2/s and then
alternating between qf = 36 cm2/s and qs = 12 cm2/s for non-dimensionalized feed durations tj/τ ∈ {1.05, 1.40, 2.11}.

varies from 0 for perfectly mixed to 1 for com-
pletely segregated. We normalize the measured
segregation index by the segregation index for
the unmodulated case with the same average
feed rate, Id(q̄), where q̄ =

∑
qjtj/

∑
tj is the

average feed rate for the modulated case. This
requires fitting a curve to the segregation in-
dex data for the unmodulated flow cases on
the diagonal in Fig. 7 (i.e. Id(q̄) = I0e

q̄/q0 with
I0 = 0.85 and q0 = 88), for which Id varies
from 0.76 for the lowest flow rate to 0.44 for
the highest flow rate, and using Id(q̄) for the
value of q̄ corresponding to qs/qf for the other
modulated flow cases in Figs. 7 and 8. This
normalization isolates the effect of the modu-

lation alone over the steady feed rate case by
accounting for the impact of the average feed
rate, q̄, on Id.

The normalized segregation index measured
for the cases in Figs. 7 and 8 are shown in
Fig. 9(b) as a function of qs/qf . The greatest
overall mixing (smallest Id) occurs with on-off
modulation of the feed rate (i.e. qs = 0), and
the particles become more segregated with in-
creasing qs/qf to a maximum of Id/Id(q̄) = 1 at
qs/qf = 1. Again, the two shaded data points
correspond to situations where q̃f is too small
to fully form a layer (q̃f = 10.7 and 21.4 in
Fig. 7), so they are more segregated (larger Id)
than other cases at qs/qf = 0. The remaining
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Figure 9: Effect of feed rate modulation on (a) layer
penetration depth, ∆x/L, and (b) normalized Danck-
werts’ intensity of segregation [6], Id/Id(q̄), (see text)
for all cases included in Figs. 7 (◦) and 8 (4). The two
shaded circles indicate conditions with qf ∈ {12, 24}
where insufficient material is deposited to form a full
layer (see text).

cases for qs/qf = 0 are not perfectly mixed be-
cause the layers do not extend the full length of
the heap, see Fig. 9(a). There is some spread
in the segregation index for the cluster of data
points at qs/qf = 0.33 (data in Fig. 8). This re-
sults from the increased thickness of the strati-
fication layer without a corresponding increase
in the thickness of the interpenetrating portion
of the layer (as noted with respect to Fig. 8)
when the duration tj is too long compared to τ .
The consequence is that the segregation index
increases with increasing tj , even though the
length of the penetrating layer is unchanged
[Fig. 9(a)].

7. Conclusions

We have described a continuum-model-based
approach for modeling stratification of granu-
lar material in unsteady bounded heap flow,
which can potentially serve as a prototype for
modeling segregation in other transient and pe-
riodically varying flows. Specifically, by using
the unsteady form of an advection-diffusion-
segregation equation and accounting for the
propagation of the moving front of particles
down the slope of the heap after a change in the
flow rate, we demonstrate accurate modeling of
the dynamics of stratified layer formation.

This model allows us to explore the potential
for a modulated feed rate in heap flows of bidis-
perse particle mixtures to intentionally create
layers of the two species so that the material is
effectively mixed at length scales greater than
the combined layer thickness. This layered con-
figuration can have advantages over the usual
fully segregated pattern that occurs for con-
stant flow rates with the same average flow.
For instance, if a stratified heap is formed using
flow modulation when filling a hopper, the lay-
ers will remix as the hopper is discharged [56],
whereas a fully segregated heap formed when
filling a hopper at a constant fill rate will result
in an excess of small particles at the beginning
of the discharge and an excess of large particles
at the end of the discharge [55, 7].

With regard to heap segregation, further
work is necessary to fully understand the im-
pact of the feed flow parameters (rates and
durations) to produce optimal stratification.
The flow kinematics model used here (Figs. 5
and 6) only considers a single isolated transi-
tion between high and low feed rates or vice
versa. More work is necessary to model and
understand flow rate modulation in which mul-
tiple transitions occur simultaneously in the
heap, i.e. the feed rate is changed before the
wedge front from the previous change reaches
the downstream endwall, or in which the
feed rate is varied continuously. Furthermore,
this approach could be extended to density-
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bidisperse, polydisperse, and combined size-
and density-bidisperse mixtures as well as non-
spherical particles, since these can all be mod-
eled using the advection-diffusion-segregation
approach (Eq. 1) used here [7, 13, 58, 59, 30].

More generally, we have not considered flow
modulation in 3D geometries in which the in-
fluence of sidewall friction on flow kinemat-
ics is greatly reduced or eliminated and the
transient flow structures differ from the sim-
ple wedge shape [27, 26]. Modulated 3D flows
would likely need to be described by differ-
ent forms of Eqs. 2 and 4, and may result in
different transient phenomena (including un-
stable transients [1]). Nevertheless, these re-
sults demonstrate the potential for modeling
feed flow modulation and using it to intention-
ally generate stratified patterns in segregating
granular flows. Furthermore, as is evident here,
coupling particle segregation with the deposi-
tion and erosion of particles from the fixed bed
is challenging from both physics and numer-
ical modeling standpoints. However, we have
demonstrated that the approach is feasible and
potentially could be applied in many industrial
and geophysical flow situations.
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