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[1] The sensitivity of model-produced time-dependent wind-driven circulation on the
continental shelf to the turbulent closure scheme employed is studied with a two-
dimensional approximation (variations across-shelf and in depth) using the Princeton
Ocean Model. The level 2.5 Mellor-Yamada closure (MY), k-e closure, and K-Profile
Parameterization schemes are used to evaluate the mesoscale fields and the spatial and
temporal variability of mixing. All three submodels produce similar features in the
mesoscale circulation. They produce qualitatively similar eddy diffusivities and eddy
viscosities, although the turbulent structure and the mixing intensities can differ
quantitatively. The k-e length scale follows the buoyancy length scale when stratification
is important. In contrast, the length scale produced by the q2l equation in the MY
scheme deviates substantially from the buoyancy scale unless a stratification-dependent
limitation is imposed. During upwelling-favorable winds, the majority of turbulent mixing
occurs in the top and the bottom boundary layers and in the vicinity of the vertically and
horizontally sheared coastal jet. Turbulent mixing in the coastal jet is primarily driven
by shear-production. The near-surface flow on the inner shelf becomes convectively
unstable as wind stress forces the upwelled water to flow offshore in the surface layer.
During downwelling-favorable winds, the strongest mixing occurs in the vicinity of the
downwelling front. The largest turbulent kinetic energy and dissipation are found near the
bottom of the front. Turbulence in the bottom boundary layer offshore of the front is
concentrated between recirculation cells which are generated as a result of symmetric
instabilities in the boundary layer flow. INDEX TERMS: 4219 Oceanography: General: Continental

shelf processes; 4568 Oceanography: Physical: Turbulence, diffusion, and mixing processes; 4255

Oceanography: General: Numerical modeling; 4279 Oceanography: General: Upwelling and convergences;
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1. Introduction

[2] Recent modeling studies by Allen et al. [1995] and
Allen and Newberger [1996] examine the time-dependent
response of the coastal ocean to upwelling- and downwel-
ling-favorable winds. Using bathymetry and stratification
from the central Oregon shelf, they investigate the develop-
ment and structure of both upwelling and downwelling
density fronts and the accompanying alongshore jets. Both
studies use a two-dimensional (i.e., spatial variations across
shelf and with depth, uniformity alongshore) version of the
Princeton Ocean Model (POM) [Blumberg and Mellor,
1987]. Allen et al. [1995] find that under constant upwell-
ing-favorable wind forcing a surface density front forms and
moves offshore, roughly consistent with existing descrip-
tions of coastal upwelling [e.g., Brink, 1983; Huyer, 1983].
They also find that the turbulent closure scheme used has
substantial impact on the shelf circulation. Allen and New-

berger [1996] investigate the response to downwelling-
favorable winds and also find that the turbulent closure
scheme has a significant influence on model-produced
downwelling circulation over the shelf.
[3] Direct comparisons of model results for mesoscale

velocity and density fields and observations from the
Oregon shelf have been made by Federiuk and Allen
[1995] and Oke et al. [2002a, 2002b]. Utilizing POM with
a two-dimensional approximation, Federiuk and Allen
[1995] conduct a 60-day simulation of flow on the Oregon
shelf during summer 1973 with realistic bottom topography
and initial conditions and with forcing by measured wind
stress and buoyancy flux. Model results are compared with
current and hydrographic measurements from the Coastal
Upwelling Experiment CUE-2. Reasonable agreement of
model and observed alongshore velocities is obtained and
the qualitative nature of the shelf circulation appears to be
well represented, but quantitative differences exist. In work
by Oke et al. [2002a, 2002b] a three-dimensional simulation
of flow on the Oregon shelf, including the region studied by
Federiuk and Allen [1995] is pursued for 60 days during
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summer 1999 also using POM and comparing model results
with measurements from the OSU National Oceanographic
Partnership Program (NOPP) field experiment. Overall,
encouraging agreement between model results for the mes-
oscale fields and observations is obtained. For example,
model horizontal velocities and temperatures are highly
correlated with corresponding observed velocities and tem-
peratures from an inner shelf mooring in 50 m water depth
(Figure 1). Similar comparisons at a midshelf mooring in
80 m water depth are not quite as close although time-
dependent model density fields show good agreement with
repeated hydrographic measurements along an across-shelf
section [Oke et al., 2002a].
[4] It is clear that physical circulation models have the

potential to represent complex aspects of the wind-driven
flows on continental shelves. The fact, however, that the
mesoscale flow fields produced by shelf circulation models
can depend on the turbulence closure scheme provides a
strong incentive for further study of the effectiveness of
parameterization methods for small-scale turbulent pro-
cesses. Definitive model-data comparisons to evaluate the
parameterizations are clearly an ultimate objective. Some
successes in that regard have been achieved from the
analysis of small-scale turbulence measurements in tidally
forced situations where reasonable simplifying assumptions
about the nature of the large-scale flow could be made [e.g.,
Simpson et al., 1996; Burchard et al., 1998; Stacey et al.,
1999; Lu et al., 2000; Peters and Bokhorst, 2000; and
Burgett et al., 2001]. The complex time and spatial varia-
bility of most wind-driven shelf flows, however, makes
meaningful comparisons of direct turbulence measurements
and turbulence submodels in that case an extremely chal-
lenging task that requires further research. While efforts
along those lines are proceeding, it is sensible to examine
the comparative performance of the most widely used
turbulence parameterization schemes in relevant shelf cir-
culation problems in order to learn more about the impli-
cation of each scheme for the energetic mesoscale flow and
for the turbulence variables.
[5] In the present study we continue the two-dimensional

modeling effort and focus on the impact of particular
turbulent-closure schemes on the mesoscale circulation and
on the dynamics of mixing in upwelling and downwelling
fronts. The utilization of the two-dimensional approximation
provides a useful simplification while still retaining impor-
tant mixing effects and constitutes a desirable prerequisite to
studies involving more complex three-dimensional flows.
The main objectives of this study are to examine the structure
and dynamics of vertical mixing over the continental shelf
forced by upwelling- and downwelling-favorable winds and
to examine the sensitivity of the time-dependent upwelling
and downwelling circulation to a given turbulent submodel.
For simplicity, the numerical experiments here involve wind
forcing only with no surface buoyancy flux. In the following
we use three popular turbulent submodels, the Mellor-
Yamada level 2.5 closure [Mellor and Yamada, 1982] (here-
inafter MY), the k-e closure [Rodi, 1987] (hereinafter k-e)
and the K-Profile Parameterization [Large et al., 1994]
(hereinafter KPP). The mesoscale model and the turbulent
closure schemes are described in section 2 and Appendix A,
respectively. A description of the numerical experiments is
given in section 3. Sections 4 and 5 discuss, respectively,

upwelling and downwelling circulation in response to con-
stant wind forcing. A summary and conclusions are pre-
sented in section 6.

2. Model Formulation

[6] The Princeton Ocean Model (POM) [Blumberg and
Mellor, 1987] is based on the hydrostatic primitive equa-
tions in sigma coordinates. We use potential density as a
variable so that for two dimensional flow the equations are
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where (u, v) are the horizontal velocity components in the
(x, y) directions, H(x) is the undisturbed water depth, h(x, t)
is the free surface elevation, D = H + h, s = (z � h)/D, z is
the original Cartesian vertical coordinate, t is time, w is the
velocity normal to s surfaces, sq is the potential density, r0
is the constant reference density, f is the Coriolis parameter,
g is the acceleration of gravity, I is a solar radiation forcing
term, AM is a constant horizontal eddy viscosity and AH

(=AM) is a constant horizontal diffusivity. The vertical
viscosity KM and diffusivity KH are given by

KM ¼ K̂M þ nm ð5aÞ

KH ¼ K̂H þ nh; ð5bÞ

where nm and nh are constants and where K̂M and K̂M are
determined by the turbulent submodel (see Appendix A).
[7] Since we find from the experiments that in general jhtj

� j(uD)xj, jwsj, where subscripts t, x and s denote partial
differentiation, it is useful to neglect ht in equation (1) and
to calculate an approximate streamfunction for the u and w
velocity components. We assume (uD)x + ws � 0, define
�s = uD, �x = �w, and calculate

� x;sð Þ ¼ �

Z

x
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where x = x0 is the location of the coast. We will also
examine the vertical velocity component w along the z axis,

(2)
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where w is calculated consistently using (u, v, w) and the
definition of w [Blumberg and Mellor, 1987].
[8] The model domain is an across-shelf section (Figure 2)

bounded by vertical walls. A right-handed coordinate sys-
tem is used where x is positive onshore, y is positive
northward, and s varies from s = 0 at the surface [z =
h(x, t)] to s = �1 at the bottom [z = �H(x)]. The offshore
boundary is at x = 0 and the coast is at x = x0. As in Figure
2, the horizontal distance shown in subsequent figures will
be the distance offshore, x0 � x.
[9] The boundary conditions at the surface are

w ¼ 0 at s ¼ 0; ð7aÞ

KM=Dð Þ us; vsð Þ ¼ t xð Þ; t yð Þ
� �

=r0; ð7bÞ

KH=Dð Þsqs ¼ I1; s ! 0; ð7cÞ

where t(x) and t( y) are the (x, y) components of the surface
wind stress, and I1 is the surface buoyancy flux. In this
study we assume no surface buoyancy flux and specify I1 = 0
and likewise in equation (4) Is = 0.
[10] The boundary conditions at the bottom are

w ¼ 0 at s ¼ �1; ð8aÞ
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where the bottom stress components are
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The bottom velocity components (ub, vb) are evaluated at the
grid point next to the bottom; that is, at sb = �1 + �sb/2,
where �sb is the s finite-difference grid interval at the
bottom. The drag coefficient,

CD ¼ max k2 ln �zb=zob þ 1ð Þf g�2; 2:5� 10�3
h i

; ð10Þ

where k = 0.4 is the von Kármán constant, z0b is bottom
roughness length and �zb = �sbH/2. The boundary
conditions along the vertical sidewalls at the coast (x = x0)
and offshore (x = 0) are

u ¼ 0; vx ¼ 0; and sqx ¼ 0; at x ¼ 0; x0: ð11Þ

[11] Three turbulent-closure schemes, MY [Mellor and
Yamada, 1982; Galperin et al., 1988; Kantha and Clayson,
1994], k-e [Rodi, 1987; Burchard et al., 1998] and KPP
[Large et al., 1994] are used to compute vertical turbulent
fluxes in the mesoscale model. The details of the turbulent
schemes are included in Appendix A.

3. Description of Numerical Experiments

[12] The numerical experiments involve initial-value
problems for flows forced by essentially constant upwell-
ing- and downwelling-favorable winds similar to those of
Allen et al. [1995] and Allen and Newberger [1996],
respectively. Designations for the experiments are based
on the turbulent submodel and, in the case of MY and k-e,
on the particular stability functions utilized and are listed in
Table 1. Three primary experiments are conducted for each
wind condition to study the dependence of the response on

Figure 1. Time series of (a) alongshore wind stress t, (b)
modeled and (c) observed depth-average current vectors (U,
V ), and (d) model and observed near-surface temperature T,
from a mooring in 50 m water depth off Newport, Oregon,
during 1999. Adapted from the results presented and
analyzed by Oke et al. [2002a, 2002b]. CC(r, q) is the
amplitude and phase of the complex cross-correlation
coefficient between modeled and observed current vectors,
and CC(T ) is the cross-correlation between the modeled and
observed temperatures.

Figure 2. (a) Model computational domain. The shaded
area shows the Oregon shelf and slope topography at
41�150N. The grid spacing is uniform in s and in x with 60 s
levels; horizontal grid resolution in x is 250 m. The full s
resolution is shown only near the bottom. (b) Initial density
field.
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the turbulent mixing scheme, MYK, k-eK or KPP, while
keeping topography, stratification, and wind stress forcing
unchanged. Four secondary experiments are included for
comparison. The first two, denoted by MYG and k-eG, are
carried out using the Galperin et al. [1988] stability
functions, C2 = C3 = 0 in equation (A12). The third,
MYO, uses the Galperin et al. [1988] stability functions
and replaces equation (A10) by l̂ = l as in the original POM.
Finally, an experiment, MYE, with E3 = 5.093 in equation
(A2) is included based on the recent discussion by Burchard
[2001].
[13] The initial state corresponds to a stratified coastal

ocean at rest with a horizontally uniform density field. The
initial conditions are

u ¼ v ¼ w ¼ 0; sq ¼ sq0ðzÞ; q2 ¼ q2l ¼ e ¼ �0; at t ¼ 0:

ð12Þ

where �0 is a small number taken to be 1 � 10�8. The wind
forcing is a spatially independent alongshore wind stress
given by

t yð Þ ¼ t0 sin tp=2TRð Þ; 0 � t � TR ð13aÞ

t yð Þ ¼ t0; TR � t; ð13bÞ

where jt0j = 0.05 N m�2 and TR = 2 days. The constant
t0 < 0 for upwelling-favorable and t0 > 0 for downwelling-
favorable winds. The other forcing terms in equations (4),
(7b), and (7c) are zero; that is, t(x) = I = I1 = 0. As a result,
in the KPP scheme f(V) = 1, wf = k u*, and gf = 0.
[14] For all experiments, the topography of the continental

shelf and upper slope (Figure 2a) corresponds to that off
Oregon at 45�150N. The initial density sq0(z) (Figure 2b) is
obtained by horizontally averaging an observed density field
from 29 June 1973. For all experiments, f = 1.0362 � 10�4

s�1. The model domain extends 200 km offshore. The depth
at the coast is 10 m and the depth offshore is 500 m. For finite
difference solutions, uniform grid spacing in s is used with
60 s intervals. As a result, the vertical grid spacing varies
from 0.17 m at the coast to 8.33 m in the deepest water. The
horizontal grid size is 0.25 km.
[15] The horizontal eddy viscosity and diffusivity are set

to be small; that is, AM = AH = 4 m2 s�1 so that horizontal
diffusion processes play a negligible role. We choose nm =
nm0 = nh = 2 � 10�5 m2 s�1. The roughness parameter z0 =
0.01 m for both surface and bottom boundary layers. The
reference density r0 = 103 kg m�3. Finite difference time

steps are 60 s for the baroclinic and 2.5 s for the barotropic
components.

4. Upwelling Simulation: Constant Wind Forcing

[16] The model response to an upwelling-favorable wind
stress as a function of the turbulent closure scheme is
discussed below. We focus on a description of the flow
field over the continental shelf with emphasis on turbulent
mixing processes. All the variables that are presented have
been averaged over an inertial period (hereinafter IP) to
isolate subinertial features of the circulation.

4.1. Mesoscale Variability

[17] The across-shelf and depth (x, z) fields of potential
density sq, alongshore velocity v, stream function �, verti-
cal velocity w, potential vorticity �, eddy viscosity K̂M, and
eddy diffusivity K̂H over the shelf at time t = 24 IP are
plotted in Figure 3. The structures of these fields at 24 IP are
qualitatively similar for the three mixing schemes. The
figures show the isopycnals upwelled near the coast and
the presence of a southward coastal jet in the alongshore
velocity v. The across-shelf circulation pattern shown by the
stream function � indicates offshore Ekman transport in the
surface boundary layer, with onshore transport concentrated
in the bottom boundary layer. As shown by �, the offshore
flow in the surface layer exhibits a small dip downward on
the inner shelf as upwelled water is forced to flow offshore.
The offshore flow downwells or subducts on the shoreward
side of the dip and upwells on the offshore side. A small-
scale recirculation cell is present, and the offshore flow
tends to reverse closer to the surface. The potential vorticity,
which is defined for a two-dimensional hydrostatic flow in
Cartesian coordinates as [Allen and Newberger, 1996]

� ¼ f þ vxð Þsqz � vzsqx; ð14Þ

is negative everywhere at t = 0, and becomes positive in the
surface boundary layer for t > 0. Large values of � > 0 are
associated with the dip, indicating that spatial fluctuations in
the offshore flow may be due to slant-wise convection
resulting from hydrostatic symmetric instability. The sign
change of � is a necessary condition for a generation of
inviscid symmetric instability in the surface layer flow [e.g.,
Allen and Newberger, 1998].
[18] Differences in the turbulent closure schemes can be

seen in the fields of K̂H and K̂M. Although the depth of the
surface mixing layer is similar for all three schemes, the
structure within this layer depends upon the submodel.
The region with K̂M and K̂H near 0.01 is nearly uniform

Table 1. Summary of Experiments

Model
Turbulence
Equations

Stability Function
Coefficients

(Equation (A12))
limit on l

(Equation (A10))
q2l Production Coefficients

(Equation (A2))

MYK q2, q2l Kantha-Clayson yes E1 = E3 = 1.8
k-eK k = q2/2, e Kantha-Clayson yes
KPP
MYG q2, q2l Galperin et al. yes E1 = E3 = 1.8
k-eG k = q2/2, e Galperin et al. yes
MYO q2, q2l Galperin et al. no E1 = E3 = 1.8
MYE q2, q2l Kantha-Clayson yes E1 = 1.8, E3 = 5.093
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offshore for KPP and extends to about 20 m. The vertical
structure for KPP depends primarily on the shape function
G which does not vary much across-shelf offshore of the
velocity front since the surface friction velocity is constant
and the depth of the well mixed layer is nearly constant. For
MYK, the region of relatively large K̂H and K̂M is shallower
(about 15 m) and has a pronounced minimum at the location
of the dip in �. There is considerable additional across-shelf
variation in the magnitude of K̂H and K̂M for k-eK with a
small vertical extent at the dip and a sharp increase in
thickness about 15 km offshore.

[19] The time evolution of vertical profiles of u, v, sq,
K̂M, and K̂H at the 52-m isobath, 6.9 km offshore, and at the
26-m isobath, 2.6 km offshore, is shown in Figures 4 and 5.
The locations of these profiles are shown as vertical white
lines in Figure 3 with the offshore profile at the maximum
of the potential vorticity � and the second profile inshore of
the coastal jet. Results from the three models show consid-
erable agreement. In particular, the surface and bottom layer
thicknesses are nearly identical for the three models
(Figures 3, 4, and 5) and the velocity and density magni-
tudes and shapes are similar. In general, K̂M and K̂H have

Figure 3. Fields of alongshore velocity v (color contours and white contour lines) together with density
sq (black contour lines), vertical velocity w (color contours) together with the stream function for the
across-shelf flow � (black contour lines), potential vorticity �, eddy viscosity K̂M and eddy diffusivity
K̂H for the MYK, k-eK and KPP mixing schemes at t = 24 IP (�day 17). All variables are averaged over
an inertial period. The contour intervals are �sq = 0.2 kg m�3, where sq = 26 kg m�3 is marked by a
heavy line; �v = 0.1 m s�1; �� = 0.1 m2 s�1, where � = 0.4 m2 s�1 is marked with a heavy line. The
vertical white lines mark the locations of profiles to be discussed in detail.
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local maxima in the surface and the bottom boundary layers
with small values in the stratified interior.
[20] The 52-m isobath is located within the alongshore jet

at all times shown. At t = 10 IP the surface and bottom
mixed layers are separated by a large inviscid region with
small onshore velocities, large density gradients and very
small values of K̂M and K̂H. By t = 18 IP the surface layer
had deepened significantly and by t = 24 IP there is only a
10-m stratified, inviscid region between the surface and
bottom layer. The near-surface peaks in K̂H and K̂M are
sharpest for k-e and broadest with a deep maximum for
KPP, consistent with the pattern seen in Figure 3. The shape
of K̂M and K̂H for KPP depends primarily on the cubic
equation for the shape function G and is fit smoothly to the
values in the interior region so that there is little structure
within the boundary layers. A region of increased K̂M and
K̂H due to the Richardson number parameterization in the
interior can be seen at the bottom of the surface layer for
KPP at t = 24 IP. The vertical gradient of the across-shore
velocity u in the surface layer is greatest for KPP with

onshore flow near the surface at t = 18 IP and t = 24 IP
reflecting the recirculation cell above the dip shown in the
streamfunction � field in Figure 3.
[21] The 26-m isobath is within the alongshore jet at t =

10 IP, and the profiles exhibit the features seen at the 56-m
isobath at later times. At t = 18 and 24 IP this location is
inshore of the jet and the alongshore velocities are smaller.
The potential density is approximately constant in both the
surface and bottom layer with a sharp gradient in the small
region between. There is nearly uniform offshore flow in a
surface layer and onshore flow in a bottom layer. The
coefficients K̂M and K̂H are large in the surface layer,
especially for k-e at t = 24 IP (�0.2 m2 s�1).
[22] The KPP scheme computes K̂M and K̂H as a product

of boundary layer height, velocity scale, and nondimen-
sional shape function G(x) in boundary layers (equation
(A28)), and as a function of gradient Richardson number in
the stratified interior (equation (A36)). For constant wind-
driven simulations, the vertical structure of K̂M and K̂H in
the boundary layers is determined primarily by G(x),

Figure 4. Vertical profiles at the 52-m isobath (6.9 km offshore) of u, v, sq, K̂H and K̂M for t = 10 IP
(�day 7), 18 IP (�day 15) and 24 IP (�day 17). The dashed, thin and thick lines denote, respectively, the
KPP, k-eK and MYK submodels. The thin shaded line is u = 0 m s�1.
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because the turbulent velocity scale is independent of depth
and the nonlocal transport term gf is zero. The turbulent
velocity scale is proportional to the friction velocity, equa-
tion (A15) or (A17), and the height of the boundary layer is
determined from the bulk Richardson number criterion. The
properties of G are determined from similarity scaling and
boundary matching conditions at the stratified interface.
Although KPP diffusivities are similar to MYK and k-eK,
there is no obvious physical explanation for why a cubic
polynomial provides a best fit for eddy diffusivity and
viscosity in boundary layers.

4.2. Small-Scale Variability: Comparison ofMYand k-EEE

[23] The MY and k-e closure schemes have the advantage
that they produce fields of the turbulence quantities. The
KPP model does not and thus cannot be included in this
comparison. Both MYand k-e schemes compute K̂M and K̂H

as a product of a velocity scale, a turbulent length scale, and
nondimensional stability functions. We expect similarities
between MYK and k-eK outputs simply because both are
local two equation closure schemes and use identical forms
of the TKE (q2/2) equation (A1) and the same stability
functions (equation (A12)). The major difference between
MY and k-e is the way in which the turbulent length scale is
computed. Fields of TKE, computed length scale l, effective
length scale l̂ (equation (A10)) used to compute the eddy
diffusivity and eddy viscosity (equation (A9)), and the
stability functions SM and SH (equation (A12)) are shown
at t = 24 IP in Figure 6. The most noticeable difference
between these models is found in the length scale l. This
will be analyzed below. The fields of TKE, l̂, SH and SM
which are used in the calculation of K̂H and K̂M (equation
(A9)) are qualitatively similar for the two schemes with the
TKE produced by the k-e scheme somewhat larger. The
largest values of TKE are found in the surface layer and are
located near the dip in the stream function � (Figures 3 and
4). The majority of turbulent mixing over the shelf occurs in
the regions where either the across-shelf or along-shelf

transport is large. These regions include the surface and
bottom boundary layers and the part of the southward
flowing coastal jet where density stratification is weak
and the vertical shear of the mesoscale currents is large.
There are maxima in the stability functions SH and SM
located inshore of the jet consistent with the large K̂M and
K̂H at the 26-m isobath shown in Figure 5.
[24] Fields of terms from the TKEequation (A1), includ-

ing shear production P (equation (A3a)), buoyancy produc-
tion B (equation (A4a)), dissipation rate e (equation (A5a)),
and the vertical diffusion of turbulent kinetic energy DV

(equation (A6a)) at t = 24 IP are shown in Figure 7 for the
MYK and k-eK experiments. Note that the definition of
the zplotted terms is such that e is approximately equal to
the sum of the other terms. The time variability and
advection terms (not shown) are small. As shown in Figures
6 and 7, the mixing structure in the coastal jet is horizon-
tally asymmetric about the jet axis which is located about
12 km offshore at t = 24 IP (Figure 3). The coastal jet has
the strongest vertical shear on the shoreward side, where
TKE, shear production, dissipation and buoyancy flux are
all large (Figures 3, 6, and 7). In the inshore region of large
SM and SH shown in Figure 6, the buoyancy flux B is
positive indicating that the surface layer is weakly unstably
stratified leading to the large values of K̂H and K̂M shown in
Figure 5.
[25] The nature of mixing on the inner part of the shelf is

different from that in the coastal jet and in the midshelf
boundary layers. The positive buoyancy flux on the inner
shelf is a signature of convective overturning (Figure 7).
Here, potential energy is converted to TKE, and buoyancy
production is a source for TKE. In shear-driven mixing such
as occurs in the coastal jet, buoyancy flux is negative and
opposes shear production. It appears that the upwelled water
on the inner shelf becomes gravitationally unstable as wind
stress forces the surface-layer flow offshore.
[26] To look more closely at the mixing near the max-

imum of TKE and potential vorticity � (Figures 3 and 7),

Figure 5. Vertical profiles at the 26-m isobath (2.6 km offshore) of u, v, sq, K̂H and K̂M as in Figure 3.
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we examine the terms in the turbulence equations for MYK
and k-eK. Vertical profiles of terms in the TKE equations at
the 52-m isobath for t = 24 IP are shown in Figures 8a and
8b. Note that the advection and time variability of TKE are
significantly smaller than the other terms and are not shown.
For both MYK and k-eK schemes a production P and
dissipation e balance holds near the surface and the bottom,
and a production P, dissipation e, and buoyancy B balance
holds for the rest of the water column. Local peaks in P, e,
and B near the top of the bottom boundary layer characterize
entrainment mixing, which is stronger in the k-eK scheme
than in the MYK scheme (Figure 8). Nearly 10% of the
shear-production P is balanced by negative buoyancy pro-
duction B in regions where the P, e, and B balance holds.
Vertical profiles of the terms in the q2l and e equations are
plotted in Figures 8c and 8d. In general, production and
dissipation are the largest terms in both the q2l and e
budgets. The advection and time derivative terms are small
and are not plotted. As shown in Figure 8c, Pl + Bl � el � 0
for most of the water column, except near the surface and

the bottom boundaries, where DVl also contributes to the q2l
budget. The dissipation term el in the q2l equation has two
components: a local sink e (marked with crosses in Figure
8c) and a nonlocal sink e E2(l/kL)

2. Both components are
important in determining el. In the e budget, the dissipation
term e is larger than the production term Pe (Figure 8d),
near the top and bottom boundaries where e � Pe + DVe.
The buoyancy term Be (equation (A20b)) is positive
throughout the water column and acts as a source to the e
budget independent of the stability, whereas Bl (equation
(A3b)) is negative for stable stratification; that is, it acts as a
sink of q2l.
[27] Vertical profiles of TKE (q2/2), l, l̂, SM, K̂H, K̂M and e

at the 52-m isobath at t = 24 IP are shown in Figure 9. The
top row shows the profiles for the MYK and k-eK experi-
ments using the parameters from Kantha and Clayson
[1994], the middle row repeats MYK and includes both
MYG and k-eG that utilize the parameters of Galperin et al.
[1988], the bottom row repeats MYK and includes MYE
with E3 = 5.093 in equation (A2) ([Burchard, 2001] and

Figure 6. Fields of turbulent quantities at t = 24 IP for (left) MYK and (right) k-eK. Variables include
TKE ¼ 1

2
q2 (J kg�1), turbulent length scale l (m), effective length scale l̂ (m) (equation (A10)) used to

calculate K̂M and K̂H, the stability function of eddy viscosity SM and the stability function of eddy
diffusivity SH. Contour intervals are �TKE = 1 � 10�4, �l = �l̂ = 1, �SH = �SM = 0.2.
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Appendix B) and MYO with the Galperin et al. [1988]
parameters and l̂ = l as in the original POM (Table 1 and
Appendix A). SH and SM are functions of GH = �l̂2N2/q2

and increase as GH increases (becomes less negative).
Therefore, SH and SM are large for weak or unstable
stratification and for large values of TKE. Since l̂ �
0.53 q/N (equation (A10)), GH is required to be greater
than or equal to �0.272 and GH = �(0.53)2 = �0.272 when
l̂ = 0.53 q/N. Thus, SH and SM take on their minimum values
whenever l̂ < l. Note that large values of K̂H and K̂M can
exist even in regions where this limit is in effect. For
example, in k-eK near the bottom of the surface layer (at
approximately �12 m) where larger q2 and l̂ for k-eK and
larger SM and SH for MYK result in similar values of K̂H and
K̂M (Figure 9). For all of the models, large dissipation rates
e are found in the surface and bottom layers with substantial
dissipation occurring throughout the region where the TKE
levels are significant.
[28] From Figure 9 we see that MYK and MYG are

almost indistinguishable. In both, there is a large difference
between l and l̂ in the stably stratified, low mixing region
above the bottom boundary layer. In contrast, l and l̂ agree
closely for k-eK and for MYE. There is more difference

between k-eK and k-eG than between MYK and MYG
where for k-eG l and q2/2 are larger in the top 20 m and
there is a greater difference between l and l̂. We examine the
steady state nature of the length scale below and in
Appendix B (for E3 6¼ E1) to attempt to understand this
behavior. Note that MYO which uses l̂ = l from the q2l
equation in the calculation of the turbulent quantities has
small values of K̂H and K̂M in the stratified interior despite
the fact that l is greater that the 0.53qN�1 limit in this
region. The stability functions SH and SM can approach zero
without the limit on l̂ (equation (A10)). We see that different
combinations of the stability functions, the turbulent veloc-
ity scale q and turbulent length scale l̂ can result in similar
values of K̂H and K̂M.
[29] To illustrate further the effects on the mesoscale flow

of changing the turbulence scheme, we consider the near-
surface alongshore velocity at t = 24 IP. Across-shelf
profiles are shown for k-eK, MYK, MYE, MYO and, for
comparison, KPP (Figure 10). The location of the jet agrees
well for the four schemes with KPP having the smallest
magnitude and MYO the largest. Although the turbulence
quantities differ, the near-surface expression of the along-
shore upwelling jet is quite similar.

Figure 7. Fields on the inner shelf of terms from the turbulent kinetic energy equation (A1) for (left)
MYK and (right) k-eK at t = 24 IP (� day 17): shear production P (equation (A3a)), dissipation rate e
(equation (A5a)), buoyancy production B (equation (A4a)) and vertical diffusion DV (equation (A6a)).
The thick solid lines in the DV and B plots denote the DV = 0 and B = 0 contours. The vertical white lines
mark the locations of profiles discussed in detail in the text.
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Figure 8. Vertical profiles at the 52-m isobath (6.9 km offshore) at t = 24 IP of the terms in the TKE
equation (A1) for (a) MYK and (b) k-eK. Shown are shear production P (thick solid line), buoyancy
production B (medium solid line), dissipation rate e (thin solid line) and vertical diffusion DV (dashed
line). (c) Terms in the q2l equation (A2) of MYK, with e shown with crosses, and (d) the e equation (A19)
of k-eK. Other lines are as for the corresponding terms in Figures 8a and 8b. The zero line is shaded. Note
that all of the terms plotted, defined in equations (A3a)–(A6), (A20) and (A21), have units of dissipation
e (W kg�1); that is, the terms in equations (A1), (A2), and (A19) are divided by 2D, Dl, and D (2e/q2),
respectively.

Figure 9. Vertical profiles at the 52-m isobath of 1
2
q2, l, l̂ (long-dashed line), SH, SM, K̂H, K̂M and e at

t = 24 IP; (top) MYK and k-eK; (middle) MYK, MYG and k-eG; (bottom) MYK, MYE and MYO.
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[30] The MYK length scale, l = (q2l/q2) (�lMY) increases
away from boundaries, and becomes largest at the edge of
the boundary layers. The value of l when q2 or q2l are near
zero is essentially meaningless and is arbitrarily set to 1 m
as in the center of the domain in Figure 6. The k-eK length
scale gradually increases away from the boundary, attains a
subsurface maximum, and then decreases as stratification
increases (Figures 6 and 9). For regions where buoyancy
production is important in the TKE budget, it is shown
below and illustrated in Figures 6 and 9 that the turbulent
length scale of k-eK scales similarly to the buoyancy scale
0.53qN�1. On the other hand, the effective length scale for
the MYK scheme is selected by choosing the minimum
value between lMY and 0.53qN�1 where these two quantities
can differ appreciably.
[31] To understand the steady state nature of the MY

length scale, we examine q2 and q2l equations by neglecting
vertical diffusion and advection in equations (A1) and (A2),
to obtain

P þ B� e ¼ 0 ð15Þ

E1P þ E3B� Ŵe ¼ 0; ð16Þ

where E1 = E3 = 1.8 and Ŵ is defined in equation (A7). The
steady state solution requires Ŵ = E1, and the corresponding
equilibrium length scale becomes,

lMY
eq ¼

E1 � 1

E2

� �1=2

kL: ð17Þ

For E1 = 1.8, E2 = 1.33, and k = 0.4, leq
MY = 0.3 L.

Consequently, the equilibrium length scale is proportional to
L(A7) and is independent of stratification, shear, Richardson
number, or any other dynamical variable, which might
represent mixing in stratified fluids. The vertical variation of
lMY closely follows that of leq

MY for MYK (Figure 11), and
both scales deviate notably from 0.53qN�1 (Figures 6 and
9). We conclude from Figures 9 and 11 that, with the
Mellor-Yamada [Mellor and Yamada, 1982] parameter

values E1 = E3, the q2l equation does not produce a
physically meaningful steady-state length scale when
vertical stratification is important.
[32] There is no steady state Richardson number solution

to equations (15) and (16) [Burchard, 2001]. As a proposed
change to MY, Burchard [2001] introduces E3 6¼ E1, that is,
unequal contributions of P and B in the q2l equation (A2),
and obtains a steady state solution by neglecting divergence
terms and by approximating Ŵ = 1. He argues that physi-
cally sound results are obtained by changing the relative
contribution of the buoyancy production, that is by chang-
ing the value of E3. However, the appropriate contributions
of P, B and e in the length scale equation are not well
established. An analysis, similar to Burchard [2001] but
applicable here where Ŵ is given by equation (A7), is
included in Appendix B. As seen in Figure 9, l and l̂ behave
similarly for the choice E3 = 5.093 (see Appendix B) with
the other parameters as in the work by Kantha and Clayson
[1994], but the corresponding values of K̂M and K̂H in the
surface layer are reduced appreciably.
[33] Unlike the MY q2l equation, the e equation has

unequal contributions from P and B, and as a result there
exits a unique steady state Richardson number and equili-
brium length scale solution. Using a production, dissipation,
and buoyancy balance in the k(q2/2) and e equations (A1)
and (A19) reduce to

P þ B� e ¼ 0 ð18Þ

ce1P þ ce3B� ce2e ¼ 0: ð19Þ

Figure 10. Near-surface alongshore velocities in the
upwelling jet at t = 24 IP as a function of distance offshore
from the MYK, MYE, MYO, k-eK and KPP schemes.

Figure 11. Turbulent length scale l computed from the q2l
equation (A2) is plotted against the equilibrium length scale
computed from equation (17) from experiment MYK. The
results are from the vertical profiles at the 52-m isobath at
t = 24 IP as shown in Figure 8.
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A steady flux Richardson number Rf becomes

Rf ¼
�B

P
¼

ce2 � ce1

ce2 � ce3
: ð20Þ

We find the steady state Rf 9 0.2 for ce1 = 1.44, ce2 = 1.92,
and ce3 = �0.4 [Burchard et al., 1998], which is consistent
with laboratory measurements [e.g., Rohr et al., 1988], and
also with assumptions used in microstructure-based eddy
flux estimates [e.g., Osborn, 1980].
[34] Substituting B = �qlSHN

2 (equation (A4)), e (equa-
tion (A5)), SH (equation (A12a)), and GH = �l2N2q�2

(equation (A13)) in equations (19) and (20), we obtain the
following expression for the equilibrium length scale,

lk�e
eq ¼

q

N

�
� ce1 � ce2ð Þ

ce1 � ce2ð Þ 3A2B2 1� C3ð Þ þ 18A1A2ð Þ þ ce1 � ce3ð ÞA2B1 1� 6A1B
�1
1

� 	

" #1=2

:

We can rewrite equation (21) using the above values for
(ce1, ce2, ce3) and the constants given by Kantha and
Clayson [1994] as

lk�e
eq ¼ 0:9

q

N
� 3:48

e

N3

� �1=2
: ð22Þ

For ce3 = �0.534, we can obtain leq
k-e = 0.53q/N = 1.5

(e/N3)1/2 and Rf = 0.195. We note that with C3 = 0 as in
work by Galperin et al. [1988] the length scale leq

k-e is
imaginary so that an equilibrium length scale is not defined in
that case. In fact, C3 > 0.145 is required for leq

k-e to be real.
Alternatively, with C3 = 0, ce3 <�0.6 is required for leq

k-e to be
real. Figure 9 shows that the value of l computed for k-eG
does not agree as well with l̂ as does the value of l from k-eK
which has a meaningful equilibrium length scale.
[35] The steady state solution of the k-eK scheme produ-

ces a turbulent length scale leq
k-e equation (22) that is propor-

tional to the buoyancy length scale [e.g., Galperin et al.,
1988] in the stratified water column. The steady state
solution also is consistent with oceanic observations. For
example, the last 2 decades of microstructure observations
indicate that on average, the physically observable length
scale, the Thorpe scale [Thorpe, 1977], is approximately
equal to the Ozmidov length scale LO = (e/N3)1/2 [Ozmidov,
1965; Dillon, 1982], whenever vertical stratification is
important. A conclusion to be drawn from Figure 9 and
equation (22) is that, with the constants in equation (A12)
given by Kantha and Clayson [1994], the k-e scheme
provides a physically meaningful length scale for both the
stratified interior and the top and bottom boundary layers.

5. Downwelling Simulation: Constant
Wind Forcing

5.1. Mesoscale Variability

[36] The (x, z) fields of sq, v,�, w,�, K̂M, and K̂H at t = 24
IP are plotted in Figure 12 for the case of downwelling-
favorable wind. A dominant feature of the flow response is a
downwelling front at about 8 km from the coast character-
ized by large, nearly depth independent, horizontal gradients

in the alongshore velocity v, large horizontal gradients of
density near the bottom at the same location, and by
vertically well-mixed density inshore of the front. The
velocity front is sharpest in the k-eK model with the MYK
and KPP velocity fronts comparable. The near-surface
density field shows an evolution of three distinct mixed
layer regimes. A surface Ekman layer forms over the
midshelf as reported by Allen and Newberger [1996], where
the mixed layer depth is approximately uniform in the
across-shore direction. The mixed layer becomes shallowest
at the downwelling front, and then increases abruptly on the
shoreward side of the front in a region on the inner shelf
where density is vertically mixed throughout the water
column. As shown in Figure 12, the density field splits in
the vicinity of the downwelling front, where one branch of
the density outcrops on the offshore side of the velocity front
and the other branch is in the vertically mixed region near the
shore. The outcropping isopycnals generate a shallow mixed
layer offshore of the downwelling front. The density field
supports a coastal jet with a subsurface maximum where
turbulent mixing is weak. The inner shelf exhibits a lateral
density gradient with vertically-mixed density increasing
offshore, a weak alongshore velocity, relatively large values
of eddy viscosity and eddy diffusivity and no Ekman layer
[e.g., Allen and Newberger, 1996]. As shown in the across-
shelf stream function, the downwelling front includes a
circulation cell extending from surface to bottom. On the
shoreward side of the cell, surface water moves down while
on the offshore side near-bottom water upwells.
[37] The nature of the offshore flow in the bottom

boundary layer is found to vary as wind forcing continues
similar to the results of Allen and Newberger [1996]. By t =
24 IP the flow near the bottom generates temporal and
spatial oscillations and recirculation cells (Figure 12). These
features have been identified as symmetric instabilities
[Allen and Newberger, 1996, 1998] based partly on the
positive values of potential vorticity � that are evident in
the same region.
[38] The time evolution of vertical profiles of u, v, sq, K̂M,

and K̂H, at the 41-m and 63-m isobaths is shown in Figures 13
and 14. These locations are indicated by vertical white lines
on Figure 12. The 41-m isobath is on the inner shelf and is in
the recirculating cell just offshore of the downwelling front at
t = 10 IP and in the well mixed region inshore of the front at
the later times. At t = 10 IP there is strong onshore flow at the
surface and offshore flow at middepths. The weak onshore
flow at the bottom reflects the beginning of the bottom layer
instabilities. The mixing is large only in a surface layer with
the layer extending deepest for KPP and shallowest for k-eK.
For times t = 18 IP and t = 24 IP after the front passes this
location, the potential density is nearly constant with depth
and the surface boundary layer extends to the bottom. For the
KPP this implies that the mixing coefficients are determined
for the full depth by the nondimensional shape function G
(equation (A30)) which results in greater mixing in the
interior than in MYK or k-eK. The jagged structure seen in
the MYK and k-eK profiles results from small variations in
the vertical gradient of the density. The velocities are in good
agreement for all three schemes. However, there is small
offshore flow at the surface and onshore flow near the
bottom for KPP which can be seen in the � field of Figure
12 as well.

(21)
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[39] At the 63-m isobath the stratification is strong at t =
10 IP, which is just offshore of the maximum of the
alongshore jet, and mixing is restricted to the surface layer.
The differences in the velocities and the density from the
three schemes are small and remain small at t = 18 IP when
the jet maximum is just offshore of this location. The
density front is located near the 63-m isobath at t = 24 IP
as shown in Figure 12. The potential density at this location
is mixed nearly to the bottom. There is onshore flow near
the surface and a near bottom maximum of offshore flow
which is part of the recirculation cell seen in the � field of

Figure 12. At this location, the large mixing associated with
the front does not extend to the bottom which is within the
unstable boundary layer (Figures 12 and 14). The mixing
coefficients are largest for k-eK and smallest for KPP with
an indication of increased mixing near the bottom for KPP.

5.2. Small-Scale Variability: Comparison of MY
and k-E

[40] Fields of TKE (q2/2), computed length scale l,
effective length scale l̂ (equation (A10)) used to compute
K̂M and K̂H (equation (A9)), and the stability functions SM

Figure 12. Fields of alongshore velocity v (color contours and white contour lines) together with
density sq (black contour lines), vertical velocity w (color contours) together with stream function for the
across-shelf flow � (black contours), potential vorticity �, eddy viscosity K̂M and eddy diffusivity K̂H for
the MYK, k-eK and KPP mixing schemes at t = 24 IP (� day 17) for the downwelling experiments. The
contour intervals are �sq = 0.2 kg m�3, where sq = 26 kg m�3 is marked by a heavy line; �v = 0.1 m
s�1; �� = 0.1 m2 s�1, where � = 0 is marked with a heavy line and � > 0 is dashed. The vertical white
lines mark the locations of profiles to be discussed in detail.
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and SH (equation (A12)) are shown for MYK and k-eK at t =
24 IP in Figure 15. The majority of the mixing occurs in the
downwelling front, surface boundary layer, and on the inner
part of shelf (Figures 12–15) with some mixing in the
bottom boundary layer. Qualitatively similar to the upwell-
ing results, the TKE produced in the downwelling front by
the k-eK scheme is substantially larger. Mixing in the interior
over the midshelf is weak, where eddy viscosities and eddy
diffusivities are approximately equal to the model specified
background level of 2 � 10�5 m2 s�1. A striking aspect of
the fields in Figure 15 is the significant difference in l and l̂
for MYK. These differences are in sharp contrast to the close
similarity of l and l̂ found for k-eK. The values of l from
MYK are evidently determined as in equation (17) from the
wall proximity function. Near the bottom offshore of the
front these values of l show no recognition whatsoever of
the patchy nature of the TKE (discussed further below)
associated with the symmetric instabilities. The behavior
of l for MYK differs considerably from that of l̂ and that of
both l and l̂ for k-eK. For these variables, non-zero values
near the bottom reflect the patchy nature of the TKE
distribution.
5.2.1. Downwelling Front
[41] As described above, the downwelling flow exhibits a

front in both density and alongshore velocity. There is a
strong circulation cell at the location of the downwelling

front seen in the � contours of Figure 12 with upwelling
just offshore of the front. Strong mixing occurs on the
shoreward side of the density front (i.e., near the bottom of
the circulation cell) where vertical shear of alongshore
velocity is strong and the density has either a weak stable
stratification or a weak unstable stratification, depending
upon the mixing scheme. TKE, shear production, and dis-
sipation rate are all large near the bottom of the circulation
cell (Figures 15 and 16). The major difference betweenMYK
and k-eKmixing in the frontal region is the sign of buoyancy
production term (Figure 16). MYK predicts a positive buoy-
ancy flux on the shoreward side and a negative buoyancy flux
on the offshore side of the front. Positive values of B indicate
that the flow is gravitationally unstable on the shoreward side
of the front and that the buoyancy production is a source of
TKE. The k-eK scheme predicts negative values of B
throughout the water column indicating that shear-driven
turbulence produces TKE and vertical mixing.
[42] In order to look more closely at the turbulence in the

frontal region, we will examine the terms in the TKE and q2l
equations for MYK and the TKE and e equations for k-eK at
t = 24 IP. The fields of the terms in the TKE equation are
shown in Figure 16 while profiles for the terms in the
TKE(A1), q2l(A2) and e (A19) equations are shown in
Figure 17 at the 63-m isobath. Although P and e are the
largest terms in the TKE budget at the front, DV, B, and A are

Figure 13. Vertical profiles at the 41-m isobath (5.1 km offshore) of u, v, sq, K̂H and K̂M for t = 10 IP
(�day 7), 18 IP (�day 15) and 24 IP (�day 17) from the downwelling experiments. The dashed, thin and
thick lines denote, respectively, the KPP, k-eK and MYK submodels.
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essential to balance the budget (Figures 16, 17a and 17b).
Vertical profiles of the q2l and e budgets are shown in
Figures 17c and 17d. In the q2l equation, DVl, Pl, and el are
in balance near the surface, while Pl, el, and Bl are in
balance near the bottom of the circulation cell. As during
upwelling, eE2(l/k L)2 and e provide contributions of similar
magnitude to el and Bl acts as a sink term (Figures 8c and
17c). In contrast, in the e equation Be is a source near the
bottom of the cell.
[43] Figure 18 shows profiles of the turbulence quantities

TKE, (q2/2), l (and l̂ dashed line), SH, SM, K̂H, K̂M and e
through the region of large mixing at t = 24 IP at the 63-m
isobath located about 8.5 km offshore. Results from all the
versions of MYand k-e are shown as in Figure 9. In all cases,
the TKE has a maximum value 15–20 m above the bottom.
As was seen in the upwelling case, both k-eK (Figure 9, top)
and MYE (Figure 9, bottom) produce meaningful turbulent

length scales l with little difference between l and l̂ (equation
(A10)). There is essentially no difference between MYK and
MYG. The difference is greater between k-eK (Figure 9, top)
and k-eG (Figure 9, middle) with larger values of l and
bigger differences between l and l̂ found in k-eG. At this
location MYK and MYG have smaller values of TKE and of
K̂H and K̂M than do the k-emodels which reflects the fact that
the l produced by MYK, essentially leq

MY (equation (17)), is
smaller than the leq

k-e (equation (21)). For MYO the length
scale l is used in the calculation of the turbulent quantities so
that there is no lower limit on GH and therefore on SH and SM
which are near zero in the stratified layer near the bottom
resulting in a reduction of K̂H and K̂M in that region and in
smaller values of TKE. Dissipation e is large at the surface
and above the bottom. As shown in Figure 16, there are large
horizontal gradients in all of the terms in the equation so that
distinguishing between these models on the basis of meas-

Figure 14. Vertical profiles at the 63-m isobath (8.6 km offshore) of u, v, sq, K̂H and K̂M as in Figure 12.
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urements of turbulent quantities such as e will require a very
large number of closely spaced measurements.
5.2.2. Bottom Boundary Layer
[44] At t = 24 IP the near-bottom offshore flow produced

by each turbulence scheme shows spatial oscillations in the
across-shelf stream function with accompanying recircula-
tion cells (Figures 12 and 19). Allen and Newberger [1996,
1998] argue that these spatially periodic oscillations are a
result of finite-amplitude slantwise convection resulting
from a hydrostatic symmetric instability. The strength of
the vertical mixing in the bottom boundary layer also shows
an oscillatory pattern similar to the stream function
(Figures 12 and 19). Large values of TKE, dissipation rate
e, buoyancy production B, and shear production P are found
in regions of offshore flow between the recirculation cells.
The negative sign of buoyancy production indicates that
vertical mixing is governed by shear-production. A shear-
drivenmixing scenario is also consistent with the idea that the
boundary layer flow is susceptible to the onset of slant-wise
convection without being gravitationally unstable. There are
no large spatial oscillations in v and vz, although such

oscillations are clearly apparent in u and w, and their vertical
derivatives. The oscillatory pattern in turbulence is therefore
mainly due to the spatial variability of uz, which is small
inside recirculating cells and is large between them. It appears
that the combined effects of strong shear and weak density
gradients close to the bottom generate the oscillatory mixing
structure shown in Figure 19.
[45] In Figure 20 we examine the near-surface alongshore

velocities at t = 24 IP to further illustrate the differences in
the mesoscale flows caused by different turbulence param-
eterizations. The location and magnitude of the jet are in
good agreement. The largest differences are found inshore
of the jet where KPP does not produce a small maximum
and the magnitude of the k-eK and KPP velocities are
somewhat smaller than those of MYK and MYE.

6. Summary and Conclusions

[46] The sensitivity of model-produced time-dependent
upwelling and downwelling circulation on the Oregon
continental shelf to the turbulent closure scheme employed

Figure 15. Fields of turbulent quantities at t = 24 IP from the downwelling experiment for (left) MYK and
(right) k-eK. Variables include TKE ¼ 1

2
q2 (J kg�1), turbulent length scale l (m), effective length scale l̂ (m)

(equation (A10)) used to calculate K̂M and K̂H, the stability function of eddy viscosity SM and the stability
function of eddy diffusivity SH. Contour intervals are�TKE = 2 � 10�4,�l =�l̂ = 1,�SH =�SM = 0.2.
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Figure 16. Mixing in the downwelling front over the inner shelf at t = 24 IP from the downwelling
experiments. Color contours are shear production P, dissipation rate e, buoyancy production B, advection
A, vertical dissipation DV and turbulent kinetic energy TKE ¼ 1

2
q2

� 	

. The thin black lines denote �,
where the contour interval �� = 0.1 m2 s�1. The thin white lines are selected contours of sq at the frontal
boundary, where sq � 24 kg m�3 and the contour interval �sq = 0.05 kg m�3.
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is examined using the Princeton Ocean Model [Blumberg
and Mellor, 1987]. The level 2.5 Mellor-Yamada closure,
k-e closure, and K-Profile Parameterization schemes are
used to evaluate eddy viscosities and eddy diffusivities in
the circulation model. The model is forced by idealized,
constant wind stress with no surface buoyancy flux. The
spatial and temporal variability of mixing and the associated
mesoscale fields are examined for both upwelling- and
downwelling-favorable winds. Our modeling study has led
to the following results.

6.1. Comparison of Submodels

[47] . All three submodels produce similar features in the
mesoscale coastal circulation. They produce qualitatively
similar eddy diffusivities during both upwelling and
downwelling although the turbulent structure and the mix-
ing intensities can differ quantitatively. In particular, the
predicted thickness of the surface and bottom boundaries
are close for all models. This is in contrast with the earlier
studies of Allen et al. [1995] and Allen and Newberger
[1996] where large differences are found between results
using the Mellor-Yamada closure and either constant eddy
coefficients or a Richardson number mixing scheme.
[48] . The MY and k-e schemes provide spatial and

temporal information about the turbulence quantities TKE
and e which are measurable. The KPP model does not.
[49] .With the constants in equation (A12) as in the work

by Kantha and Clayson [1994] the k-eK length-scale
follows the buoyancy length scale q/N extremely well when
stratification becomes important. In contrast, the length
scale produced by the q2l equation in the MYK scheme
deviates substantially from the buoyancy scale during
similar situations. The MYK equilibrium length scale is
proportional to the length scale specified in the wall-
proximity function. Inclusion in MY of the Galperin et al.
[1988] buoyancy limitation (equation (A10)) acts to impose

a dependence of the length scale on q/N. On the other hand,
if in the equation for q2l the value of the parameter E3 is
changed and is taken to be larger than 4.75, an equilibrium
length scale dependent on the stratification exists and in
particular with E3 = 5.093 [Burchard, 2001] this model
produces a turbulent length scale comparable to the buoy-
ancy scale in stratified regions as well.
[50] . During downwelling, the MYK scheme shows

convective-mixing (positive buoyancy production) on the
shoreward side of the front and shear-driven mixing (neg-
ative buoyancy production) on the offshore side. The k-eK
scheme shows shear-driven mixing on both sides.

6.2. Mixing During Upwelling-Favorable Winds

[51] . The majority of turbulent mixing occurs in the top
and the bottom boundary layers, and in the vicinity of the
vertically and horizontally sheared coastal jet.
[52] . Turbulent mixing in the coastal jet is primarily

driven by shear-production, which is stronger on the shore-
ward side of the jet than on the offshore side.
[53] . The near-surface flow on the inner shelf becomes

convectively unstable as wind stress forces the upwelled
water to flow offshore in a turbulent surface layer.

6.3. Mixing During Downwelling-Favorable Winds

[54] . The strongest mixing occurs in the vicinity of the
downwelling front. The offshore side of the front is strati-
fied and turbulent mixing is weak. The shoreward side is
well mixed and turbulent mixing is strong. The largest TKE
and e are found near the bottom of the front.
[55] . Turbulence in the bottom boundary layer offshore

of the front is concentrated between recirculation cells
which are generated as a result of symmetric instabilities
in the boundary layer flow [Allen and Newberger, 1996].
Here TKE is generated by shear-production.

Figure 17. Vertical profiles as in Figure 8 at the 63-m isobath (8.6 km offshore) at t = 24 IP for the
downwelling experiment. In addition, advection A is shown as a long dashed line. The terms in the TKE
equation (A1) are used for (a) MYK and (b) k-eK. The terms for (c) the q2l equation (A2) of MYK and (d)
the e equation (A19) of k-eK.
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[56] Our two-dimensional mesoscale circulation study
reveals interesting results concerning mixing over the
Oregon shelf. Although the model experiments represent
an idealized scenario (with no surface buoyancy flux and
with no tides), some of the features of mixing in upwelling
and downwelling fronts are captured and seem to depend
only weakly on the turbulent submodel. This is notable, in
particular, because of the substantial differences in model
assumptions involved in the formulation of MY and k-e
compared to those used for KPP. The lack of sensitivity to
the turbulence parameterization may indicate that realistic
simulations are possible with the parameterizations that are
in use at present. On the other hand, it also indicates that
the task of comparing turbulence parameterizations with
data and improving the submodels based on these compar-
isons will be challenging. A logical next step is to
compare the submodels in a more realistic situation.
Alongshore variations of all quantities, time varying forc-
ing, surface heating and cooling and higher resolution
topography will all increase the complexity of the solu-
tions and may provide situations where the turbulence
submodels behave significantly differently. It is also log-
ical and necessary to begin to carry out detailed model-

data comparisons. A major limitation in comparing model
results and observations over the continental shelf is the
lack of detailed turbulence and velocity measurements in
the surface and bottom boundary layers and in upwelling
and downwelling fronts. Since the mixing over the shelf is
highly space and time dependent, measurements that
resolve both space and time variability of small-scale
fields are required for a meaningful comparison of
model-produced mixing with observations. Necessary
velocity, hydrographic, and microstructure observations
over the shelf may be best obtained by combining com-
plementary measurements from several different platforms,
such as vertical profilers, towed undulating vehicles,
autonomous underwater vehicles, and moored tripods. In
any case, the desirability of additional observations in
coastal flows that include direct measurements of turbulent
quantities seems clear.

Appendix A: Turbulence Closure Schemes

A1. Mellor-Yamada Scheme

[57] To calculate eddy viscosity and diffusivity, a turbu-
lent kinetic energy per unit mass q2/2 (TKE) and a turbulent

Figure 18. Vertical profiles at the 63-m isobath (8.5 km offshore) of 1
2
q2, l, l̂ (long-dashed line), SH,

SM, K̂H, K̂M and e at t = 24 IP; (top) MYK and k-eK; (middle) MYK, MYG and k-eG; (bottom) MYK,
MYE and MYO.
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length scale l are required [Mellor and Yamada, 1982]. The
governing equations for TKE and turbulent length scale are

@ q2Dð Þ

@t
þ
@ q2uDð Þ
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þ
@ q2wð Þ

@s
�
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@s
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@q2
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� �
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@

@x
D
@q2

@x

� �

¼ 2D P þ B� e½ 	; ðA1Þ

@ q2lDð Þ
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þ
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þ
@ q2lwð Þ

@s
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D
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@s

� �
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@

@x
D
@q2l

@x

� �

¼ Dl E1P þ E3B� Ŵe

 �

¼ Dl Pl þ Bl � el½ 	; ðA2Þ

where the shear production terms,

P ¼
K̂M

D2

@u

@s

� �2

þ
@v

@s

� �2
" #

ðA3aÞ

Pl ¼ E1P; ðA3bÞ

Figure 19. Mixing in the bottom boundary layer offshore of the downwelling front at t = 24 IP. Color
contours are shear production P, buoyancy production B, dissipation rate e and turbulent kinetic energy
TKE ¼ 1

2
q2

� 	

. The thin black lines denote�, where the contour interval�� = 0.1 m2 s�1. The thin white
lines represent selected contours of sq, where sq� 26 kg m�3 and the contour interval�sq = 0.05 kg m�3.

Figure 20. Near-surface alongshore velocities in the
downwelling jet at t = 24 IP as a function of distance
offshore from the MYK, MYE, MYO, k-eK and KPP
schemes.
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the buoyancy production terms,

B ¼
gK̂H

Dr0

@sq
@s

ðA4aÞ

Bl ¼ E3B; ðA4bÞ

and the dissipation rate terms,

e ¼
q3

B1l
ðA5aÞ

el ¼ Ŵe: ðA5bÞ

In addition, in equations (A1) and (A2) we will refer to the
vertical diffusion terms as

DV ¼
1

2D

@

@s

KQ

D

@q2

@s

� �

ðA6aÞ

DVl ¼
1

Dl

@

@s

KQ

D

@q2l

@s

� �

; ðA6bÞ

and the advection terms as

A ¼ �
1

2D

@ q2uDð Þ

@x
þ
@ q2wð Þ

@s

� �

ðA6cÞ

Al ¼ �
1

Dl

@ q2luDð Þ

@x
þ
@ q2lwð Þ

@s

� �

: ðA6dÞ

In equation (A2), the wall proximity function

Ŵ ¼ 1þ E2 l=kLð Þ2 ðA7aÞ

where

L�1 ¼ h� zþ z0sð Þ�1 þ H þ zþ z0bð Þ�1; ðA7bÞ

and z0s and z0b are the surface and bottom roughness
lengths, respectively.
[58] The vertical diffusion coefficients are given by

KQ ¼ K̂Q þ nm0; ðA8aÞ

K̂Q ¼ 0:41K̂M ; ðA8bÞ

K̂M ¼ q̂lSM ; ðA9aÞ

K̂H ¼ q̂lSH ; ðA9bÞ

where nm0 is constant and, following Galperin et al. [1988],
the length scale used in calculating the vertical diffusion
coefficients is given by

l̂ ¼ min l; 0:53qN�1
� 	

for N2 > 0 ðA10aÞ

l̂ ¼ l; for N2 � 0 ðA10bÞ

where N the buoyancy frequency is given by

N2 ¼ �
g

r0D

@sq
@s

: ðA11Þ

[59] The stability functions SH and SM, including the
modifications by Kantha and Clayson [1994] to the func-
tions specified by Galperin et al. [1988] (Table A1), are
given by the solution to

SH 1� 3A2B2 1� C3ð Þ þ 18A1A2f gGH½ 	 ¼ A2 1� 6A1B
�1
1


 �

ðA12aÞ

SM 1� 9A1A2GH½ 	 � SH 9A1 2A1 þ A2 1� C2ð Þf gGH½ 	

¼ A1 1� 6A1B
�1
1 � 3C1


 �

; ðA12bÞ

where

G0
H ¼ �l̂

2
N2q�2; GH ¼ min G0

H ; 0:028
� 	

: ðA13Þ

The values of the constants used in equation (A12) are
chosen following Kantha and Clayson, [1994] (Table A1).
The stability functions of Galperin et al. [1988] are
recovered for C2 = C3 = 0. Note that the scheme we refer
to as MYK includes the Kantha and Clayson [1994]
modifications to SH and SM whereas the scheme labeled
MYG refers to the original Galperin et al. [1988] versions
of SH and SM.
[60] The boundary conditions at the surface are

q2 ¼ B
2=3
1 u2ts ðA14aÞ

q2l ¼ q2z0s at s ¼ 0; ðA14bÞ

where

u2ts ¼ t xð Þ2 þ t yð Þ2
� �1=2

=r0 ðA15Þ

is the square of the friction velocity. The boundary
conditions at the bottom are

q2 ¼ B
2=3
1 u2tb ðA16aÞ

q2l ¼ q2z0b at s ¼ �1; ðA16bÞ

where

u2tb ¼ t
xð Þ2
b þ t

yð Þ2
b

� �1=2
=r0: ðA17Þ

The boundary conditions along the vertical sidewalls at the
coast and offshore are

q2x ¼ 0 ðA18aÞ

q2l
� 	

x
¼ 0 at x ¼ 0; x0: ðA18bÞ

A2. The k-EEE Mixing Scheme

[61] In this scheme [e.g., Rodi, 1987; Burchard et al.,
1998], the turbulent velocity scale is estimated from the
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TKE equation, which is identical to the q2 equation in the
MY scheme (k = q2/2). The dissipation rate e is calculated
from the transport equation,

@ eDð Þ

@t
þ
@ eDð Þ

@x
þ
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¼ D
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2e

q2

� �

Pe þ Be � ee½ 	;

ðA19Þ

where the following quantities are defined for future use.

Pe ¼ ce1 P; ðA20aÞ

Be ¼ ce3 B; ðA20bÞ

ee ¼ ce2e; ðA20cÞ

DVe ¼
q2

2De

@

@s

Ke

D

@e

@s

� �

; ðA21aÞ

Ae ¼ �
q2

2De

@ eDð Þ

@x
þ
@ ewð Þ

@s

� �

: ðA21bÞ

The turbulent length scale l is obtained from e and q2 using
equation (A5a),

l ¼
q3

B1e
: ðA22Þ

The length scale used for calculating the vertical diffusion
coefficients is l̂ defined as for MY (equation (A10)). The
constants (ce1, ce2) = (1.44, 1.92) [Burchard et al., 1998].
For stable stratification ce3 = �0.4, for unstable stratification
ce3 = 1. As in MY, K̂Q, K̂H and K̂M are obtained from
equations (A8) and (A9) and K̂e = K̂Q/se where se = 1.11.
The scheme referred to as k-eK includes the Kantha and
Clayson [1994] functions SH and SM while k-eG utilizes the
functions of Galperin et al. [1988] (Table A1).
[62] The boundary conditions for e at the bottom and at

the surface are

e ¼
q3

B1k ~zþ z0ð Þ
as ~z ! 0; ðA23Þ

where ~z is the distance from the bottom or the surface and z0
is the bottom or surface roughness length. By differentiating

equation (A23) with respect to ~z and assuming @q/@~z = 0 as
~z ! 0 an equivalent flux boundary condition for e can be
derived,

@e

@~z
¼ �

q3

B1k ~zþ z0ð Þ2
as ~z ! 0: ðA24Þ

[63] Burchard et al. [1998] report that high vertical
gradients of e near boundaries cause numerical problems
when equation (A23) is employed and recommend the use
of equation (A24). We also found numerical problems
implementing boundary condition (A23) for e and thus
utilize the flux boundary condition (A24). The boundary
conditions along the vertical sidewalls at the coast and
offshore are

ex ¼ 0; at x ¼ 0; x0: ðA25Þ

A3. K-Profile Parameterization (KPP) Scheme

[64] The KPP scheme is described in detail by Large et
al. [1994]. Here we summarize only the main features and
our implementation. In this scheme the vertical profiles of
turbulent momentum and scalar fluxes for the surface and
the bottom boundary layers are expressed [Large et al.,
1994] as

wf zð Þ ¼ �K̂f �z � gf

� 	

; ðA26Þ

and the corresponding profiles for the stratified interior are
expressed as

wf zð Þ ¼ �K̂f�z; ðA27Þ

where � denotes a mean field, either a scalar or a horizontal
velocity component, f denotes fluctuations of �, the
subscript z denotes partial differentiation and gf is the
nonlocal transport term.
[65] In the stratified interior K̂f is a function of the

gradient Richardson number Rig. In surface and bottom
boundary layers the diffusivity K̂f is expressed as the
product of a x dependent turbulent velocity scale wf(x),
the boundary layer height h, and a nondimensional shape
function Gf(x),

K̂f xð Þ ¼ hwf xð ÞGf xð Þ; ðA28Þ

where x = ~z/h, is a dimensionless vertical coordinate that
varies between 0 and 1 in the boundary layer and ~z is the
distance from the bottom or the surface. The KPP scheme
consists of determining each of these three factors for the
surface and bottom boundary layers and matching the
coefficients K̂f smoothly between the boundary layers and
the interior.

A3.1. Turbulent Velocity Scale

[66] The general expression for the turbulent velocity
scale is

wf ¼
ku*

j dh=LMOð Þ
; d < x < 1; V ¼ ~z=LMO ¼ xh=LMO < 0 ðA29aÞ

wf ¼
ku*
j Vð Þ

otherwise; ðA29bÞ

Table A1. Coefficients Used in This Study

Experiment A1 A2 B1 B2 C1 C2 C3

MYK k-eK MYE 0.92 0.74 16.6 10.1 0.08 0.7 0.2
MYG k-eG MYO 0.92 0.74 16.6 10.1 0.08 0.0 0.0

Experiment E1 E2 E3 ce1 ce2 ce3 stable ce3 unstable

MYK MYG MYO 1.8 1.33 1.8
MYE 1.8 1.33 5.093
k-eK k-eG 1.44 1.92 �0.4 1.0
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where d = 0.1 is the fraction of the boundary layer where
Monin-Obukhov similarity holds, V is the stability para-
meter, j(V) is a similarity function, LMO = u3

*
/(kBf) is the

Monin-Obukhov length with u* the friction velocity and Bf

the buoyancy flux at the boundary (for details see Large et
al. [1994]). The surface and the bottom friction velocities
are given in equations (A15) and (A17). In the case
considered here, Bf = 0 and wf = ku* is independent of x in
each boundary layer.

A3.2. Shape Function

[67] The shape function is assumed to be a cubic poly-
nomial,

Gf xð Þ ¼ a0 þ a1xþ a2x
2 þ a3x

3: ðA30Þ

The four coefficients are estimated by matching the
diffusivities and their vertical derivatives at x = 0 to the
Monin-Obukhov similarity values and at x = 1 to the interior
values. Large et al. [1994] obtain

a0 ¼ 0; ðA31aÞ

a1 ¼ 1; ðA31bÞ

a2 ¼ �2þ 3Gf 1ð Þ � Gfx 1ð Þ; ðA31cÞ

a3 ¼ 1� 2Gf 1ð Þ þ Gfx
1ð Þ; ðA31dÞ

where

Gf 1ð Þ ¼
K̂f hð Þ

hwf 1ð Þ
; ðA32aÞ

Gfx 1ð Þ ¼
K̂f~z hð Þ

wf 1ð Þ
�
K̂f hð Þwfx 1ð Þ

hw2
f 1ð Þ

; ðA32bÞ

K̂f (h) is the interior diffusivity (described below) at ~z = h
and the subscripts x and ~z denote partial differentiation.
With Bf = 0, wfx = 0 so that

Gfx 1ð Þ ¼
K̂f~z hð Þ

wf 1ð Þ
: ðA32cÞ

A3.3. Height of the Boundary Layer

[68] The height of the boundary layer h is determined
from the bulk Richardson number criterion. That is, h is
equated to the smallest value of ~z at which the bulk
Richardson number Rib(~z) equals a critical value of Ric
(= 0.3), where

Rib ~zð Þ ¼
~Br � ~B ~zð Þ
�

�

�

�~z

Vr � V ~zð Þj j2þV 2
s ~zð Þ

; ðA33Þ

Vr is the mean near-boundary reference velocity, ~Br is the
near-boundary reference buoyancy, ~B(~z) = (g/r0)sq(~z) is the

buoyancy profile. The velocity scale of turbulent shear Vs is
expressed as

Vs ~zð Þ ¼
Cv �bTð Þ1=2

Rick2
csdð Þ�1=2

~zwf

 !1=2

; ðA34Þ

where Cv = 1.5, cs = 93.5 and bT = �0.2.
[69] With stable forcing, i.e., with surface buoyancy flux

upward, and LMO > 0, the boundary layer depth is required
to be less than or equal to the Monin-Obukhov length and to
the Ekman depth he, where he = 0.7u*/f. The requirement
h � he is enforced for no surface buoyancy flux as well.

A3.4. Interior Diffusivity

[70] The vertical mixing in the stratified ocean interior is
calculated as the superposition of three processes: local
Richardson number instability due to resolved vertical
shear, internal wave breaking, and double diffusion. The
profile of effective interior diffusivity is written as

K̂f ¼ Ks
f þ Kw

f þ Kd
f: ðA35Þ

The diffusivity due to mixing associated with shear
instability Ks

f is parameterized as a function of local
gradient Richardson number, Rig,

Ks
f ¼ K0; Rig < 0; ðA36aÞ

Ks
f ¼ K0 1� Rig=Ri0

� 	2
h i3

; 0 < Rig < Ri0; ðA36bÞ

Ks
f ¼ 0; Ri0 < Rig; ðA36cÞ

where K0 = 50 � 10�4 m2 s�1, Ri0 = 0.7, and

Rig ¼
N2

uz2 þ vz2
: ðA37Þ

The coefficient Kf
w is the diffusivity due to internal wave

breaking, and is typically treated as a constant. Here we set
Kf

w = vm for the velocity field and Kf
w = vh for the scalar

field. Kf
d is the diffusivity due to double diffusion, which we

do not consider here and thus set Kf
d = 0.

A3.5. Calculating K̂F

[71] First, K̂f is computed for the entire domain using the
Rig-based criterion (A36). Boundary layer heights for the
surface and bottom boundary layers at a given location are
estimated from equation (A33) and turbulent velocity scales
are estimated from equation (A29). If top and bottom
boundary layers do not overlap, a profile of K̂f is con-
structed independently for each of the boundary layers by
matching K̂f and its vertical gradients with the stratified
interior (equation (A32)). In situations when the top and
bottom boundary layers merge, for example, in shallow
depths as wind forcing continues, we utilize the following
procedure [Durski, 2001]. The profile of K̂f for the surface
boundary layer is calculated and matched to the Rig based
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interior values as before. The bottom layer K̂f and its
vertical gradient are matched with the surface boundary
layer values at ~z = h, the bottom layer height. If either
boundary layer height is equal to the water depth, the profile
of K̂f is obtained by matching K̂f and its vertical gradient to
wall values at both boundaries.

Appendix B: Mellor-Yamada Equilibrium Length
Scale (E3 6¼6¼6¼6¼6¼6¼6¼6¼6¼6¼ E1)

[72] We examine the equilibrium length scale leq in the
MY scheme when E3 6¼ E1 [Burchard, 2001] with the wall-
proximity function (A7) included. In that case, equations
(A1) and (A2) reduce to

P þ B� e ¼ 0 ðB1Þ

E1P þ E3B� Ŵe ¼ 0: ðB2Þ

[73] Utilizing equations (A4a), (A5a) and (A12) in equa-
tions (A1) and (A2) and defining

l2* ¼ l2eqN
2=q2; ðB3Þ

F1 ¼ q2=N2
� 	

kLð Þ�2; ðB4Þ

K1 ¼ 3A2B2 1� C3ð Þ þ 18A1A2; ðB5Þ

K2 ¼ A2 1� 6A1B
�1
1

� 	

; ðB6Þ

we obtain the following quadratic equation in l*
2:

l4
*
E2F1K1 þ l2

*
K2 E3 � E1ð ÞB1 � E1 � 1ð Þ½ K1 þ E2F1	

� E1 � 1ð Þ ¼ 0: ðB7Þ

Although the full solution to equation (B7) for l*
2 is readily

written down, it is more informative to examine the solution
in limiting cases.
[74] For F1 
 1, near the boundary where k L � q/N, we

obtain

l2eq �
E1 � 1ð Þk2L2

E2

; ðB8Þ

as in equation (17). For F1 � 1, away from the boundary
where kL 
 q/N, we obtain

l2eq �
q2

N2

E1 � 1ð Þ

K2 E3 � E1ð ÞB1 � E1 � 1ð ÞK1½ 	
: ðB9Þ

If we follow Burchard [2001] and obtain an estimate for E3

by using equation (B9) and setting

leq ¼ llim ¼ 0:53q=N ; ðB10Þ

where llim, which motivated equation (A10a), is given by
Galperin et al. [1988], we obtain

E3 ¼ 5:093: ðB11Þ

That value of E3 is utilized in the additional experiment
MYE in section 3 with E3 6¼ E1. Note also from equation
(B9) that to ensure l2eq > 0 with E1 = 1.8, it is necessary that

E3 > E3c ¼
E1 � 1ð ÞK1

K2B1

þ E1: ðB12Þ

Using the constants in Appendix A, we find

E3c ¼ 4:75: ðB13Þ
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