
 1

  
Abstract—Synthesizing Single-Walled Carbon-Nanotubes 

(SWCNTs) with accurate structural control has been widely 
acknowledged as an exceedingly complex task culminating in the 
realization of CNT devices with uncertain electronic behavior. In 
this paper we apply a statistical approach in predicting the 
SWCNT band-gap and effective mass variation for typical 
uncertainties associated with the geometrical structure. This is 
firstly carried out by proposing a simulation-efficient analytical 
model that evaluates the band-gap (Eg) of an isolated SWCNT 
with a specified diameter (d) and chirality (θ). Similarly, we 
develop a SWCNT effective mass model, which is applicable to 
CNTs of any chirality and diameters > 1nm. A Monte Carlo 
method is later adopted to simulate the band-gap and effective 
mass variation for a selection of structural parameter 
distributions. As a result, we establish analytical expressions that 
separately specify the band-gap and effective mass variability 
(Egσ, m* σ) with respect to the CNT mean diameter (dµ) and 
standard deviation (dσ). These expressions offer insight from a 
theoretical perspective on the optimization of diameter-related 
process parameters with the aim of suppressing band-gap and 
effective mass variation. 
 

Index Terms—Single Walled Carbon Nanotube (SWCNT), 
Third-Nearest-Neighbor Tight-Binding (TB) model, Band-gap 
variation, Effective mass variation, CNT device models. 
 

I. INTRODUCTION 

ARBON NANOTUBES (CNTs) possess distinctive 
electronic properties that make them ideal candidates for 

next generation on-chip devices and interconnects [1-4]. 
Unlike other nanoscale materials, they can remarkably exhibit 
semiconducting (Eg > 0) or metallic (Eg = 0) behavior 
depending on their geometrical structure, which consists of the 
diameter (d) and chirality (θ) [5]. At present, the fabrication of 
CNTs with accurate diameter and chirality control is a serious 
challenge and as a result a large band-gap (Eg) variability is 
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typically observed for a set of CNTs grown under identical 
process conditions [3, 6, 7]. Equally susceptible to structural 
variation is the effective mass (m*), which has a crucial 
influence upon the CNT carrier transport properties [8, 9]. 
Consequently, due to the unpredictability associated with these 
parameters, the implementation of CNT based devices with 
desired performance characteristics has been problematic [3]. 

In an attempt to tackle this issue, researchers have proposed 
the adoption of statistical process optimization techniques to 
optimize the CNT growth process and generate narrowly 
distributed geometrical characteristics around a desired mean 
value [6, 7, 10-15]. Progress, however, has been limited due to 
the incomplete understanding associated with the CNT growth 
mechanism [16]. Further, the impact of CNT geometrical 
structure on the performance characteristics of various CNT 
Field-Effect-Transistors (FETs) has been experimentally [3, 
10, 17] and theoretically [18-22] examined. Yet, no statistical 
model defining the CNT band-gap and effective mass 
distributions has evolved from these studies, especially with 
regards to semiconducting SWCNTs. 

Here, we present a statistically supported model that 
predicts the CNT band-gap and effective mass distribution 
properties for a given structural variation. The structural 
dispersions considered reflect typical spreads identified in 
CNT geometry after Chemical Vapor Deposition (CVD) 
synthesis. As an outcome of the models produced, we offer 
better insight on ways in which CVD process parameters such 
as the mean CNT diameter dµ and standard deviation dσ could 
be optimized to achieve a required band-gap or effective mass 
variation. Moreover, the proposed models could be 
incorporated into compact device models to accurately 
simulate a substantial number of dissimilar CNT-devices over 
a judicious time period. 

The rest of this paper is structured as follows: Section II 
provides a brief review of SWCNT electronic properties and 
discusses the shortcomings of present band-gap models. In 
Section III we develop an analytical model that predicts the 
band-gap of an isolated SWCNT for a given diameter and 
chirality. Section IV proposes a CNT effective mass model 
that takes account of all chiralities and diameters > 1nm. 
Section V presents a set of band-gap distributions generated 
using a Monte Carlo approach for both Gaussian and Gamma 
dispersed diameters. These results are exploited with the aim 
of creating analytical models relating band-gap variation to the 
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corresponding structural distribution properties. Section VI 
follows a similar procedure to that taken in Section V where 
the effective mass variation is articulated with respect to the 
Normally distributed diameter properties. The implications of 
the proposed models are assessed and summarized in Section 
VII. 

II.  REVIEW OF SWCNT ELECTRONIC PROPERTIES 

A Single-Walled Carbon Nanotube (SWCNT) is a self-
assembled hollow cylinder constructed from a rolled-up sheet 
of graphene [23]. The tube can be uniquely defined by a roll-
up vector known as the chiral vector, Ch, which can be 
expressed in terms of the primitive unit vectors a1 and a2 of the 
graphene lattice [24]: 
 

21h aaC nm +=
                 

(1) 

 
where m and n are integers that are specific to a (m,n) CNT 
[24]. The magnitude of Ch corresponds to the circumference 
around the nanotube. This can be used to determine the 
diameter (d) as denoted by (2). 
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In (2) the constant acc (0.142nm) represents the nearest-

neighbor C-C distance [25]. The chiral angle (θ) is defined as 
the angle between Ch and a1, which can be expressed as [26]: 
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Previous studies have confirmed the sensitivity of the 

CNT’s band-gap to both d and θ, where several theoretical and 
analytical models have been established to simulate their 
electronic band-structure [23, 24, 26-30]. Amongst the 
commonly used band models are the nearest-neighbor Tight-
Binding (TB) approach with zone-folding [23, 24, 26-28], the 
Extended Hückel Theoretical (EHT) technique [29] and First-
principle ab-initio calculations [23, 30]. Although very 
accurate, the specified models are computationally intensive 
and possess a time complexity that increases with the size of 
the nanotube. For applications that require the simultaneous 
simulation of millions of distinct CNT-devices these models 
would be very difficult to utilize in a timely manner. 

Analytical models such as those mentioned in [25, 31] were 
formed by experimentally probing a small number of 
semiconducting CNTs in order to measure their geometric 
structure and corresponding electrical output characteristics. In 
turn, results were plotted and curves extrapolated to acquire 
the CNT band-gap [30]. Not only were these results based on 
undersized samples of CNTs but the measurements were found 
to be strongly dependent upon the characterization technique 
employed [7, 32, 33]. Moreover, it has been argued that the 

statistical validity of measurements made using bulk sensitive 
probes is uncertain due to the lack of sensitivity in the 
characterization of individual nanotubes present within a given 
sample [7, 11]. Although the analytical model proposed in [34] 
does consider chirality, they presume that the type of CNT 
being dealt with is already known. 

III.  MODELING BAND-GAP OF ISOLATED SWCNT 

In this section, we propose an analytical model with a time 
complexity that is independent of the size of the nanotube and 
simply consists of a single expression that directly determines 
the band-gap of an isolated SWCNT. 

Normally, the electronic properties of a SWCNT are 
obtained by firstly computing the dispersion relation of 
graphene using a TB approach. Next, the Born-von Karman 
periodic boundary conditions are imposed along the 
circumferential direction slicing the 2D band-structure of 
graphene  into 1D sub-bands [23]. If one of these slices 
intersects with a high symmetry K point in the Brillouin zone 
of graphene (where conduction and valence band touch at the 
Fermi-level) the nanotube can be considered metallic [35]. 
Otherwise, the nanotube is semiconducting with a finite Eg. 
According to the choice of n and m, each CNT will have a 
different electronic band-structure. This is known as the zone-
folding technique and is sufficient in approximating the CNT 
band-gap for our study. 

However, in [28, 32] it was shown that the nearest-neighbor 
TB approximation does not accurately reproduce the graphene 
band-structure when compared to ab initio calculations. 
Instead, it was revealed that the third-nearest-neighbor TB 
approach yielded better fitting results along the high-symmetry 
points of the Brillouin zone and that CNT band-structure 
models improved by the inclusion of more distant neighbors 
[28]. 

Using the third-nearest-neighbor TB approach with fitting  
parameters extracted from [28] in conjunction with the zone-
folding technique we carried out a number of simulations in 
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Fig. 1 SWCNT band-gap (Eg) for different geometrical properties, d and θ. 
CNTs with different chirality are illustrated by separate colour shading. 
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MATLAB where the band-gap was calculated for a set of 286 
SWCNTs. These tubes were characterized by all possible 
chiralities, 00-300, and diameters ranging between 0.45-
2.55nm. Fig. 1 shows the calculated Eg for various θ and d. 
 

A. Distinguishing semiconducting and metallic SWCNTs 

The geometric variables (θ,d) that produced a zero band-gap 
and non-zero band-gap were separately plotted as data points, 
indicated by symbols + and ○ respectively, in the structural 
parameter space shown in Fig. 2. 
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Fig. 2. CNT structural parameter space indicating data points (θ,d) for 
metallic and semiconducting tubes. ── Curves represent equation (5) for 
p=1-10. 
 

In order to establish an expression that will predict the zero 
band-gap data points, a relationship between d and θ was 
initially derived as follows. By rearranging (3) and substituting 
into (2) gives the following: 

 

θπ sin2

3 na
d cc=                 (4) 

 
Assuming that the sine function of (4) can be approximated 

by a first-degree polynomial (bθ+c) over the interval 00≤ θ 
≤300 then it can be deduced that the diameter d is inversely 
proportional to bθ+c. This assumption is based on the 0.6 % 
normalized root-mean-square (NRMS) error achieved when 
approximating a sine function with a linear polynomial over 
the required interval. 

When examining the zero band-gap data points in Fig. 2 it 
could be seen that if several distinct curves were to be fitted 
over the points then they would all share the same asymptote at 
θ=300. Thus, b can be expressed in terms of c as b=–c/30, 
leaving us only with one unknown variable; c. 

Upon close inspection of the zigzag tubes (θ=00) we detect a 
pattern in the tube diameters that offer a zero band-gap. These 
diameters include the third multiple of the smallest possible 
diameter. In theory, the smallest possible SWCNT diameter 
can be determined from (2) given a tube indices of (1,0), 

providing dmin=√3acc/π. Therefore, the value of c can be 
expressed as a reciprocal of 3pdmin, where p is a positive 
integer. Combining the above mentioned results allows us to 
form an expression for the zero band-gap data points: 
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Equation (5) represents the zero band-gap curves shown in 

Fig. 2 where p selects the curve of interest. However, (5) is 
unable to predict Armchair tubes (θ=300) as well as zero 
diameter tubes. Thus, to cover all zero band-gap data points in 
Fig. 2, a function can be formulated that assumes a value of 
zero only when either: 
 
• the diameter d lies on a curve approximated by (5) for a 
given geometry, 
• or, the SWCNT is an Armchair (θ=300) tube, 
• or, the SWCNT has a null diameter (d=0nm).  
 
Quantitatively, this can be expressed as: 
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Where N represents the total number of curves taken into 

consideration. f(θ,d) can be rearranged giving: 
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Where: 
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d
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To solve (7), N iterations are required where each product 

term is evaluated individually and then multiplied by the rest 
of the function. This process is time consuming for simulating 
a design with multiple CNT-devices and hence there is a need 
to reduce the product term to a non-iterative form. Moreover, 
the accuracy of (7) is limited by the number of curves chosen 
when defining N since the more curves considered the higher 
the number of zero band-gap data points covered. One way of 
resolving these issues is to consider a high number of curves 
and taking the limit as N tends towards a finitely large value. 
To accomplish this, we firstly multiply and divide (7) by the 
conjugate of the product term. Then, f(θ,d) is rearranged to: 
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As N tends towards a finitely large value, the first product 
term of (9) could be approximated by a sinc(πα) function and 
the second product term tends towards a high value. Since only 
the roots of f(θ,d) are of interest we can approximate (9) as: 

 

( ) ( )( )παθ sin, ℜ=df             (10) 

 
Where R is a function that rounds values to the nearest 
integer, giving f(θ,d)=0 for metallic CNTs and f(θ,d)=1 for 
semiconducting tubes. 

Equation (10) was evaluated by sourcing the geometrical 
properties of all 286 randomly distinct metallic and 
semiconducting CNTs. The results for f(θ,d) are depicted in 
the structural parameter space of Fig. 3. 
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Fig. 3. CNT structural parameter space indicating data points (θ,d) for 
metallic and semiconducting tubes. + (o) represents metallic 
(semiconducting) results obtained using the third-nearest-neighbor TB 
approach with the zone-folding technique. ▲ (●) represents metallic 
(semiconducting) tubes identified correctly by equation (10). 

 
From Fig. 3 we found that 266 out of a total of 286 tubes are 

correctly assigned. That is, the formulated expression, (10), 
can correctly distinguish metallic and semiconducting tubes 
with 93% accuracy when compared to the third-nearest-
neighbor TB approach with zone-folding. This value offers an 
11% improvement over the accuracy obtained in [36]. 
 

B. Calculating band-gap of semiconducting SWCNTs 

It is clear from Fig. 1 that for all semiconducting SWCNTs the 
dependence of Eg on diameter is inversely proportional. This 
reinforces the 1/d relationship derived in [1, 23, 25, 27, 30, 31, 
34, 37]. However, all these sources differ on an additional 
factor that is used during the calculation of a semiconducting 
CNT band-gap; the overlap energy γ0. γ0 is a constant that has 
been debated to be in the range 2.45-2.90eV and no agreed 
value has ever emerged [34]. In [34] it was mentioned that the 
reason for the resulting discrepancy in γ0 is due to the fact that 
chirality is neglected when interpreting the band-gap for 
different diameters. Thus, here we have plotted Eg with 

respect to d and θ for the semiconducting nanotubes only. 
Subsequently, a curve-fitting technique is used to establish a 
relationship between Eg, d and θ. Fig. 4 shows the resulting 
optimal curve given by: 

 

dd
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Eg cc 692.0
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3
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Equation (11) confirms that Eg is proportional to 1/d and 

the constant of proportionality is independent of θ. Moreover, 
a value of 2.44eV is calculated from (11) for the overlap 
energy constant, which is in close agreement with that derived 
using First-principles (2.5eV) in [23]. This offers a consistency 
check for our approach. 

When the semiconducting CNT band-gap values were 
generated using (11) and compared against the third-nearest-
neighbor TB approach with zone folding, this yielded a NRMS 
error of 1.75% only. 

To further verify (11), comparisons were made with respect 
to two references that experimentally analyzed semiconducting 
SWCNTs using different techniques. In [25] Scanning 
Tunneling Spectroscopy (STS) was used to examine the 
electronic properties as a function of d and θ for a set of 
SWCNTs. The measurements obtained are clearly indicated in 
Fig. 4. In [31] Scanning Tunneling Microscopy (STM) 
characterization of the SWCNTs was undertaken and the band-
gap of 5 nanotubes were extracted and recorded as shown in 
Fig. 4. Through inspecting the experimental data points we can 
validate that the measured band-gap values lie very close to 
the curve proposed by (11). Additionally, in [31], the overlap 
energy was approximated as 2.45eV, which matches well with 
our result. 
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Fig. 4. Semiconducting band-gap vs. diameter for all θ. + represents results 
obtained using the third-nearest-neighbor TB approach with the zone-folding 
technique. ― is the fitting curve given by equation (11). ♦ and ■ depict 
experimental measurements made in [25] and [31], respectively. 

 
Equation (12) represents a simplistic model that unifies the 

key expressions established thus far. Given any SWCNT 
diameter (nm) and chirality (0), (12) computes the SWCNT 
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band-gap with a runtime independent of tube size and the 
value of N. This is more simulation efficient than the model 
proposed in [36], which possesses a time complexity of the 
order of O(N). 
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692.0

sin παℜ=             (12) 

IV.  MODELING EFFECTIVE MASS OF ISOLATED SWCNT 

The electron and hole effective mass is an extensively used 
parameter for modeling electrical transport in semiconductor 
devices [8, 38]. It is inversely proportional to the carrier 
mobility and can therefore be utilized in characterizing the 
CNT’s electric conductivity [8]. 

Typically, the effective mass m* of a semiconducting 
material is determined from the curvature of the corresponding 
band-structure [8]. Formally, this is expressed as: 
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where m* is usually represented in terms of the electron rest 
mass m0 [8].  

In our study we only consider the first conduction/valence 
bands as they are the dominant sub-bands participating in CNT 
carrier transport [22]. Also, due to the close symmetry between 
the CNT conduction and valence band we can assume that the 
hole effective mass is approximately the same as the electron 
effective mass [8, 9]. Thirdly, the bottom of the conduction 
band could be estimated using a second order polynomial fit 
(e.g. E(k) = Ak2+Bk+C), which can be substituted into (13) to 
obtain the curvature. This is known as the parabolic effective 
mass model (EFM) and has demonstrated reasonable accuracy 
for CNT diameters greater than 1nm [8, 22]. At lower 
diameters the parabolic EFM becomes imprecise due to the 
curvature effect [8]. 

Again, using the third-nearest-neighbor tight-binding 
technique with zone folding we calculate the band structure for 
133 semiconducting nanotubes having diameters and 
chiralities ranging between 1-2.6nm and 00-300, respectively. 
Next, the parabolic EFM is employed to realize the effective 
mass. These results are illustrated in Fig. 5. 
Fig. 5 shows that the effective mass has a dependency on 
chirality and generally decreases with diameter, which is in 
agreement with [8, 9, 22, 38]. In comparison to ab initio 
calculations made in [9] for chiral and achiral CNTs we also 
find that the data points do not fall on a simple trend line. In 
addition, at similar diameters, we confirm that the effective 
mass of chiral tubes is higher than achiral tubes [9]. 
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Fig. 5. SWCNT effective mass of the lowest conduction sub-band for 
different geometrical properties, d and θ. ● and + represent achiral and chiral 
CNTs, respectively. ♦ and ■ depict effective mass models proposed for zig-
zag tubes in [22] and [38], respectively, with γ0= 2.7eV. 

 
Previously proposed effective mass models such as in [22] 

and [38] (shown in Fig. 5) were analytically derived for zig-
zag tubes only. Here, we employ a regression technique -
Response Surface Modeling (RSM) - to predict the effective 
mass for all tube chiralities within 1-2.6nm. The RSM method 
renders a first-order model relating the predictors (θ,log(d)) to 
the response variable (log(m*)). After performing an inverse-
logarithmic transform, the model yields the following: 
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where γ0 (2.44eV) is the overlap energy calculated in the prior 
Section. (14) was found to predict the effective mass data 
points of Fig. 5 with a NRMS error of 9.7%. This is a good 
approximation given that there is a nonlinear correlation 
between the effective mass and chirality. 

V. SIMULATING &  MODELING SWCNT BAND-GAP VARIATION  

The following section initially defines the probability 
functions chosen to replicate a realistic spread in SWCNT 
diameter and chirality. By varying the distribution properties 
and running a set of Monte Carlo simulations we generate the 
corresponding band-gap dispersions, which are subsequently 
compared and statistically analyzed. As an outcome, simplistic 
yet accurate models are proposed providing a relationship 
between the semiconducting CNT diameter distribution 
properties and the resulting band-gap variation characteristics; 
Egµ and Egσ. 

 

A. SWCNT diameter distribution 

The SWCNT structural distribution properties reported to-
date differ considerably due to the utilization of alternative 
synthesis techniques and growth conditions [4, 6, 7, 11-15, 33, 
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39].  
As the Chemical Vapor Deposition (CVD) synthesis process 

appears to be most promising in terms of scalability for CNT 
production [6, 13], we have deliberately restricted our survey 
of CNT structural data to references employing the CVD 
technique.  

Recently, in [13] it was proposed that at any given CVD 
process condition, so long as the carbon feeding rate is fixed, 
there is an optimal diameter of nanoparticles that nucleate 
nanotubes. Thus, assuming that the process of defining the 
catalyst particle size can be optimized to give a narrow 
distribution around a specified dµ, we can expect that as the 
number of fabricated SWCNTs increases significantly for a 
given batch, the spread in diameter will converge towards a 
Gaussian distribution. Furthermore, having synthesized and 
measured the diameter distribution in a sizable mixture of 
CNTs, it has been found that most groups use a Gaussian fit 
for their diameter profiles [7, 12-14]. 

It is also practical to consider a non-Gaussian distribution 
for the diameter variability as many underlying process 
characteristics could demonstrate abnormal behavior [40]. 
Given that the Gamma profile is always positive and has a 
wider asymmetry compared to the Normal function it may 
provide a valuable outlook on the implications of an 
asymmetric variation in the catalyst particle size. 
 

B. SWCNT chiral angle distribution 

Unlike the CNT diameter, controlling the chiral angle can 
be more intricate [19]. Regulating the CNT chiral angle entails 
the manipulation of the molecular assembly of the CNT [16]. 
This level of manipulation is unattainable using conventional 
CVD processes and consequently a homogeneous spread in 
chirality is commonly observed within a collection of 
synthesized CNTs [33, 41]. Hence, for our purposes it is 
reasonable to assume a uniform random distribution in the 
CNT chiral angle. 

 

C. Semiconducting SWCNT band-gap distribution 

Here, the variation in CNT band-gap is determined by 
executing expression (12) over a large number of samples that 
are randomly generated from the selected structural 
distributions outlined above. A sample size of 1.5x105 
nanotubes was chosen to gain adequate accuracy for the output 
variables Egµ and Egσ. This value was attained by 
progressively simulating larger sample sets and identifying the 
cut-off at which the output converges.  

For each run of our Monte Carlo simulation the diameter 
distribution properties dµ and dσ were varied between the 
ranges 1.01-1.71nm and 0.04-0.2nm, respectively. Fig. 6 (a) 
shows a density estimation of a subset (dµ=1.01nm and 
dσ=0.04-0.2nm) of semiconducting CNT band-gap results for a 
Gaussian spread in diameter. Fig. 6 (b) relates to a Gamma 
distributed diameter with equivalent properties. 
 

 
Fig. 6. Density estimation of semiconducting band-gap obtained from Monte 
Carlo simulations for a (a) Gaussian and (b) Gamma spread in diameter with 
dµ=1.01nm and dσ=0.04-0.2nm. 

 
At first, it can be observed that the band-gap distributions 

generated for the Normally and Gamma dispersed diameters 
are very much indistinguishable. However, in comparison, the 
band-gap distributions for the Gamma spread in diameter were 
identified to be considerably less skewed. For instance, at dσ= 
0.2 nm the skewness (0.88) was estimated to be almost a third 
of the value calculated for the corresponding band-gap 
distribution with a Gaussian spread in diameter. 

 

D. Modeling SWCNT band-gap variation for Normally 
distributed diameters 

In realizing the mean (Egµ) and variability (Egσ) of the 
produced band-gap dispersions we consider the sample mean 
and standard deviation, respectively, as unbiased estimators. 
This is possible due to the large sample sizes used in our 
Monte Carlo simulations. 

When Egµ was plotted against dµ for band-gap dispersions 
generated from the normally spread diameter, as depicted by 
Fig. 7, it was found that the mean band-gap shifted upwards 
with higher dσ and even more so for smaller dµ. The optimal 
curves illustrated were created using the RSM regression 
technique that formed a second-order model given by (15). 
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The regression coefficients of (15) are β0= -0.3727, β1= -
0.9939, β2= 0.0852, β12= -0.3456, β11= 0.0229 and β22= 
0.7070. Although (15) is highly accurate (NRMS error of 
0.19%) within the mean diameter range specified in our 
simulation, (16) can also provide a reasonable approximation 
to (15), especially for large mean diameters. 
 

µ
µ d

Eg
692.0=                 (16) 

 
For 1.01nm ≤ dµ ≤ 1.71nm the NRMS error of (16) in 

predicting the actual mean band-gap is 2.7%. 
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Fig. 7. SWCNT band-gap distribution mean (Egµ) vs. mean diameter (dµ). 
Data sets with different diameter standard-deviation (dσ) have been marked 
by a distinct symbol. ― represents the fitted curve given by equation (15). 
 

Next, the data points of the band-gap standard-deviation 
(Egσ) were plotted against the diameter standard-deviation (dσ) 
for different sets of dµ as shown in Fig. 8. 

Again, the curves of best fit were generated by employing 
the RSM method giving the following expression: 
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(17) 

 
where the regression coefficients are γ0= 0.2883, γ1= 
1.4036,γ2= -2.5146, γ12= -0.1460, γ11= 0.0624 and γ22= 0.1515. 
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Fig. 8. Band-gap standard-deviation (Egσ) vs. diameter standard deviation 
(dσ). Data sets with different mean diameter (dµ) have been marked by a 
distinct symbol. ― represents the fitted curve given by equation (17) for each 
dµ. 

 
The NRMS error of (17) in predicting the data points was 
evaluated as 0.66%. Additionally, we can propose a more 
simplified approximation given by (18) that possesses a 
NRMS error of 2% within the ranges specified for dµ and dσ. 
 

σ
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σ d
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Eg
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Equation (18) acknowledges a linear relationship between 

Egσ and dσ. More interestingly, it indicates that the band-gap 
variation can be significantly reduced by defining nanoparticle 
sizes with a higher mean diameter. 
 

E. Modeling SWCNT band-gap variation for a Gamma 
distributed diameter 

The band-gap distribution properties (Egµ, Egσ.) for the 
Gamma dispersed diameters were calculated in a similar 
manner to that outlined above. 

As expected, it was firstly established that Egµ could be 
accurately described by (15) and (16) with an NRMS error of 
0.21% and 2.56%, respectively. Subsequently, we found that 
the band-gap variation could also be expressed by (17) with 
regression coefficients γ0= -0.1019, γ1= 1.1624, γ2= -2.195, 
γ12= -0.0535, γ11= 0.0251 and γ22= 0.0583. This model has a 
small NRMS error of 0.21%. A more simplistic approximation 
of the variability is given by (19) where the NRMS error is 
only 0.8%. 
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The close resemblance between (18) and (19) suggests that 

variation in CNT band-gap may not significantly depend on 
the underlying diameter distribution chosen within the ranges 
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considered in our simulation. Equation (19) also reinforces the 
near inverse-square relationship between the mean diameter 
and band-gap variability. 

Coincidently, the implication of increasing dµ to reduce 
band-gap variation leads to the reduction of Egµ as indicated 
by (14), which in turn yields CNT devices with improved 
performance characteristics such as higher mobility and low 
contact resistance [10, 42, 43]. Hence, according to our 
results, CNT synthesis processes have to be optimized in 
minimizing dσ as well as increasing dµ. 

VI.  SIMULATING &  MODELING SWCNT EFFECTIVE MASS 

VARIATION FOR A GAUSSIAN DIAMETER DISTRIBUTION  

The effective mass dispersions were calculated by 
simulating (14) over 1.5x105 nanotube samples where the 
diameters were Normally distributed and the chiralities 
uniformly spread. As in the previous section, the same ranges 
for dµ and dσ were also considered. Fig. 11 represents a subset 
of the CNT effective mass results showing a more positively 
skewed distribution with higher diameter variation. 
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Fig. 9. Density estimation of effective mass obtained from Monte Carlo 
simulations for a Normally dispersed diameter with dµ=1.01nm and dσ=0.04-
0.2nm. 

 
The effective mass sample mean (m*µ) was evaluated for 

each dµ and dσ as depicted in Fig. 10. Akin to the mean band-
gap results, we observe that m*µ is somewhat shifted upwards 
with respect to the diameter variation, especially at lower mean 
diameters. The curves shown are given by: 
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where the regression coefficients are β0= -0.5823, β1= -0.7804, 
β2= 0.0538, β12= -0.2359, β11= 0.0176 and β22= 0.5039. This 
model offers an NRMS error of 0.2%.   
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Fig. 10. SWCNT Effective Mass distribution mean (m*µ/m0) vs. mean 
diameter (dµ). Data sets with different diameter standard-deviation (dσ) have 
been marked by a distinct symbol. ― represents the fitted curve given by 
equation (20). 

 
We also propose a simplified expression for the mean effective 
mass, given by (21), which provides a slightly higher NRMS 
error of 3.0%. 
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Lastly, a plot was created as shown in Fig. 11 to ascertain 

the variation in effective mass (m*σ) with respect to the 
diameter standard-deviation for each dµ. The fitted curves 
illustrated are expressed by (22) with regression coefficients 
γ0= -3.4453, γ1= 5.6367, γ2= -0.8807, γ12= -5.276, γ11= 2.8868 
and γ22= 0.2781. (22) was estimated to predict the effective 
mass variation data points with an NRMS error of 0.48% only.  
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Fig. 11. Effective mass standard-deviation (m*σ/m0) vs. diameter standard 
deviation (dσ). Data sets with different mean diameter (dµ) have been marked 
by a distinct symbol. ― represents the fitted curve given by equation (22) 
with new regression coefficients.  
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Once again we propose (23) as more concise form of the 

effective mass variability to that of (22). This comes with an 
extended NRMS error of 3.22%. 
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Unlike the band-gap variability, (23) indicates that the 

effective mass variation increases exponentially with diameter 
fluctuation. It is also observed that there is a reduction in m*σ 
with higher mean diameters, although not as much as with the 
band-gap variation. 

VII.  CONCLUSION 

In this paper we start by proposing analytical models for the 
CNT band gap and effective mass. These were derived from 
band-structures created using the third-nearest-neighbor Tight-
Binding (TB) method in conjunction with the zone-folding 
technique. We demonstrate that the band-gap model accurately 
distinguishes 93% of a set of both metallic and semiconducting 
CNTs. In addition, the NRMS band-gap error recorded for the 
semiconducting tubes is only 1.75%. The model is 
subsequently validated against two separate sources of 
experimental data.  

We also propose a model with an NRMS error of 9.7% that 
predicts the effective mass of a semiconducting CNT 
possessing any chirality and diameter >1nm. 

In exploiting the models developed and running an 
extensive set of Monte Carlo simulations we established 
simulation-efficient and accurate models that predict the 
variation in CNT band-gap and effective mass for different 
structural distributions. The implications of our work advocate 
that CNT synthesis processes have to be optimized in 
minimizing the diameter variability (dσ) as well as increase the 
mean diameter (dµ) to suppress band-gap and effective mass 
variations. 
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