
Modeling Techniques for Magnetostrictive ActuatorsRalph C. Smith 1Department of MathematicsIowa State UniversityAmes, IA 50011AbstractTechniques for modeling hysteresis and material nonlinearities in magnetostrictive materials are presented. Hys-teresis in these materials is due to both the driving magnetic �eld and stress relations within the material andis signi�cant throughout most of the drive range of the material. Two characterizations are presented here. The�rst model is posed in terms of Preisach operators and is purely phenomenological in nature. The second model isphysics-based with parameters related to measurable properties of the input magnetic �eld. The two approaches areillustrated in the context of an Euler-Bernoulli beam model which incorporates magnetostrictive actuators.Keywords: Magnetomechanical model, magnetostrictive materials, Preisach model, Terfenol1. IntroductionNew and promising control transducers are currently being designed using magnetostrictive materials. Thesematerials exhibit the dual properties that strains are generated in response to an applied magnetic �eld whileconversely, material stresses in the materials produce domain changes which yield measurable magnetic e�ects. Incertain rare earth materials such as Terfenol-D, these e�ects are su�ciently large to warrant the material's useas control actuators and sensors. The forces generated by magnetostrictive transducers can be of the order offorces generated by large and more massive magnetic shakers, and are signi�cantly larger than those produced byelectrostrictives or piezoceramics. Due to their capacity for generating large strains and forces, magnetostrictiveactuators have been employed as ultrasonic transducers, sonar projectors and actuators for controlling vibrationsin thick structures and heavy industrial machinery. To fully utilize their capabilities as either sensors or actuators,however, the hysteresis and nonlinearities inherent to the magnetostrictive materials must be characterized in amanner amenable to parameter estimation and control applications.Two techniques for characterizing hysteresis in magnetostrictive materials are presented here. The �rst model isformulated in terms of generalized Preisach or Krasnoselskii-Pokrovskii operators. This provides a phenomenologicalor empirical characterization of the input/output relations of the magnetostrictive materials which circumventsunmodeled or unknown physical mechanisms. The advantage of this technique lies in its generality. The modelrequires the estimation of a large number of nonphysical parameters, however, and does not provide physical insightsinto the material dynamics. The second model is formulated through consideration of reversible and irreversibledomain wall movements in the material. Hence it is physics-based with parameters related to magnetic characteristicsof the input magnetic �eld. This characterization is obtained through extension of the ferromagnetic hysteresis modelsof Jiles and Atherton [8, 9, 10] to magnetostrictive actuators. The two approaches are illustrated in the context ofan Euler-Bernoulli beam model which incorporates magnetostrictive actuators.The con�guration of magnetostrictive transducers and physical properties of the magnetostrictive materials aredescribed in Section 2. The source and form of the nonlinearities and hysteresis are detailed to illustrate issues tobe addressed in the models. A phenomenological model based upon Preisach or Krasnoselskii-Pokrovskii operatorsis discussed in Section 3 and the physics-based model is presented in Section 4. The two approaches are illustratedin the context of an Euler-Bernoulli beam model in Section 5.1Email { rsmith@iastate.edu; URL { http://www.math.iastate.edu/rsmith1



2. Magnetostrictive TransducersIssues which must be addressed when modeling magnetostrictive materials are illustrated in the context of thetransducer depicted in Figure 1. This transducer is typical of those currently employed in applications and containsthe basic components required for experimental use as a control actuator. Details regarding the construction andperformance of this transducer can be found in [6].The primary components of the transducer consist of a magnetostrictive rod, a wound wire solenoid, and acylindrical permanent magnet. In current transducers, the magnetostrictive material is typically composed of terbiumand dysprosium alloyed with iron. A commonly employed material is Terfenol-D (Ter: terbium, fe: iron, nol: NavalOrdinance Laboratory, D: dysprosium) which is constructed as a cylindrical rod and placed in the center of thetransducer. The sensor/actuator capabilities of the material are provided by magnetic domains which rotate in thepresence of an applied magnetic �eld. As depicted in Figure 2a, the domains are primarily oriented perpendicularto the longitudinal rod in the absence of an applied �eld. Prestressing the rod with the spring washer serves toincrease the number of domains perpendicular to the axis (see Figure 2b) and place the material in compression.This latter objective is necessary due to the inherent brittleness of Terfenol-D. In the presence of a magnetic �led,the domains rotate so as to align with the �eld. Consequently, if the �eld is applied in the direction of the rod axis,the domains rotate in the sense depicted in Figure 2c and signi�cant strains are generated. This is termed the Joulee�ect and provides the actuator capabilities of the transducer. Sensing is accomplished through the measurementof the magnetic �elds which result when mechanical stresses cause rotations of the domains (Villari e�ect). Detailsregarding these e�ects can be found in [7, 14] while further discussion regarding the physics of magnetic domains isgiven in Section 4.The strains generated through an applied �eld are always positive since rotation of the domains from the pre-stressed perpendicular state leads to an increase in the rod length. As indicated in Figure 3, the relationship betweenthe applied magnetic ux or induction B and strain e is also highly nonlinear with saturation occurring at large �eldstrengths. Moreover, slight hysteresis also exists between B and e at high drive levels [12] (this is not depicted inthe �gure).The generation of bidirectional strains is accomplished through either a DC current I0 applied to the solenoidwhich surrounds the rod or an enclosing cylindrical permanent magnet which provides a biasing magnetic inductionB0. A time varying current I(t) is then used to vary the induction in the rod between 0 and Bm. This provides thecapability of generating both positive and negative strains.To model the transducer for actuator and sensor purposes, it is necessary to characterize the relationship betweenthe current I applied to the solenoid, the resulting magnetic �eld H, the associated magnetization M , and �nally,the generated strains e. Furthermore, the quanti�cation must incorporate the contributions due to the permanentmagnet.
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Figure 1. Cross section of a typical Terfenol-D magnetostrictive transducer.2



The magnetic induction and �eld are related by the permeability � which is de�ned as� = BH(see [7] for the general relations between H;M and B). The magnetic �eld is due both to the solenoid and thepermanent magnet. The magnetic induction from the permanent magnet is approximated by B = �H0 whileAmp�ere's law yields B = �nI, where n is the number of turns per unit length in the solenoid, as the approximatemagnetic induction due to the solenoid (this relation neglects edge e�ects, air gaps, et cetera).For Terfenol-D, the permeability � is highly nonlinear and exhibits signi�cant hysteresis as indicated by the in-duction/�eld relations depicted in Figure 4a. To indicate the stress dependence, the permeability in magnetostrictiveapplications is often denoted by �� . The hysteretic relationship between the magnetic �eld, magnetic induction andmaterial stress are then inherently manifested in the �eld-strain relations as shown in Figure 4b.Furthermore, the nonlinear relationship between the applied current and resulting strains is augmented by con-stitutive nonlinearities in the magnetostrictive materials. For example, experimental results in [3, 5] indicate thatthe Young's modulus EH for Terfenol is dependent upon the applied magnetic �eld which partially accounts forthe dependence of magnetic hysteresis on the material stress. Furthermore, these experiments demonstrate thatother material properties including magnetomechanical coupling coe�cients are highly sensitive to operating con-ditions such as prestress level, AC drive levels, operating frequencies and temperature. This indicates some of therequirements for the Preisach and magnetomechanical models described in subsequent sections.
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(a)Figure 2. Magnetic domains in the Terfenol-D rod; (a) Orientation of domains in unstressed rod in absence of appliedmagnetic �eld; (b) Orientation of domains in prestressed rod with no applied �eld; (c) Orientation of domains inprestressed rod when �eld is applied in direction of longitudinal rod axis.
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(a) (b)Figure 4. (a) Relationship between the magnetic �eld strength H and the magnetic induction B. (b) Appliedmagnetic �eld H and resulting strain distribution e.3. Preisach ModelsA model based on Preisach or Krasnoselskii-Pokrovskii operators is discussed here. This section summarizesmaterial in [13], which in turn depends upon theory from [1], and the reader is referred to those references for furtherdetails.To motivate the general kernels, we �rst illustrate with a single delayed, relay operator k̂. This kernel is charac-terized in terms of crossing times � (t) de�ned by� (t) = f� 2 (0; T ] ju(�) = s1 or u(�) = s2gwhere s = (s1; s2) are points in the Preisach half planeS = �s 2 lR2 j s = (s1; s2); s1 < s2	and u denotes an input function. The values s1; s2 are threshold values for the multivalued kernel as reected in thede�nition [k̂s(u; �)](t) = 8><>: [k̂s(u; �)](0) if � (t) = ;�1 if � (t) 6= ; and u(max� (t)) = s1+1 if � (t) 6= ; and u(max� (t)) = s2 :A depiction of this kernel is given in Figure 5a. The starting value[k̂s(u; �)](0) = 8><>: �1 if u(0) � s1� if s1 < u(0) < s2+1 if u(0) � s2de�nes the initial state of the kernel in terms of the parameter � 2 f�1; 1g.The output remains on a branch until a threshold is reached in the monotonically increasing input u. At thatpoint, the output jumps to the other saturation value and remains there until the other threshold value is reached.For example, an output response starting with a value of �1 will retain that value until u(t) reaches s2. The outputthen jumps to +1 until the threshold value of s1 is reached.The classical Preisach operators are then de�ned in terms of parallel collections of these single relay operators. Tothis end, we let M denote the set of all �nite, signed Borel measures on S and let f be a Borel measurable functionmapping S ! f�1; 1g. For u 2 C[0; T ] and � 2 M, the Preisach operator is de�ned by[P̂�(u; f)](t) = ZS [k̂s(u; f(s))](t)d�(s):4



The goal in the parameter identi�cation problem is to estimate � so that a model response \�ts" experimental datain a least squares sense.While this provides an operator which is useful for many applications, this classical de�nition does not yield akernel, and hence operator, which is continuous with respect to either time or parameters. Speci�cally, as proven in[1], the mapping in time t 7! [k̂s(u; �)](t)and the parameter space mapping s 7! [k̂s(u; �)](t)are discontinuous for the classical Preisach kernel k̂s(u; �). Continuity in time is important from a physical perspectivewhile continuous parameter dependence is crucial for the development of practical parameter estimation methods.To avoid the di�culties associated with the discontinuous mappings, a Krasnoselskii-Pokrovskii kernel of the typediscussed in [1] is employed. This kernel is somewhat less general than the inuence operators considered in [11] andarises as an extension of smoothed Preisach operators. These operators di�er from the previously-de�ned Preisachoperator in the manner through which an envelop of admissible paths is de�ned. In this case, an envelop is providedby translates rs1 = r(x� s1)rs2 = r(x� s2)of a Lipschitz continuous ridge function r(x) as depicted in Figure 5b. For monotone inputs um 2 C[0; T ], a monotoneoutput operator is de�ned by[R(um; �)](t) = ( maxf�; r(um(t) � s2)g if um is non-decreasingminf�; r(um(t) � s1)g if um is non-increasing :In terms of this operator, a kernel is de�ned for piecewise monotone inputs upm 2 C[0; T ]\ S1;j[0; T ], S1;j [0; T ] isthe set of piecewise linear splines with j knots in [0; T ], in the following manner. The initial value of the operator istaken to be R0 2 �. A kernel ks is then de�ned recursively on each subinterval by[ks(upm; �)](t) = [R(upm;Rk�1)](t) ; t 2 [tk�1; tk] (1)where Rk � R(upm;Rk�1)(tk) ; k = 1; � � � ; j. The input and action of this kernel are illustrated in Figure 6. Thisprovides a de�nition of the kernel useful for computational algorithms in which inputs are discretized in terms of apiecewise linear basis. This de�nition is readily extended to arbitrary u 2 C[0; T ] through standard density argumentsas detailed in [11]. Details illustrating the use of this kernel for characterizing hysteresis in magnetostrictive actuatorsare provided in Section 5.2.
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Figure 6. (a) Piecewise monotone input. (b) Output from the Krasnoselskii-Pokrovskii kernel in response to apiecewise monotone input. 4. Domain Wall ModelThe physics-based model considered here is based upon the theory that magnetization in ferromagnetic materialsis due to the realignment of domains, which are de�ned as regions in which magnetic moments are always aligned,in response to an applied magnetic �eld. From energy considerations, it has been established that the primaryreorientation of magnetic moments occurs within transition layers, or domain walls, between the domains. For amaterial which is free from defects, bending and translation of domain walls leads to anhysteretic (hysteresis free)behavior which is completely reversible. Most materials, however, contain defects (e.g., carbides in steel or secondphase materials such as the rare earth rich phase in Terfenol) which impede domain wall motion due to the reductionin energy which occurs when the wall intersects the defect. At low magnetic �eld levels, the walls remain pinnedor close to the defect and the motion is reversible. The motion becomes irreversible at higher energy levels due towall intersections with remote defects or pinning sites. This leads to the hysteresis observed in ferromagnetics. Itshould be noted that the presence of such domains has been veri�ed experimentally while domain wall e�ects aremanifested through phenomena such as the Barkhausen discontinuities observed in magnetization curves.The property to be quanti�ed is the strain which results when the magnetostrictive material is subjected to anapplied magnetic �eld. A reasonable measure of this strain is the magnetostriction � � d`̀ which indicates the relativechange in length of the material from the ordered but unaligned state to the state in which domains are aligned.While the magnetostriction does not quantify DC e�ects or the e�ects of domain order, it does quantify the strainsgenerated in a Terfenol actuator.An important issue when modeling magnetostrictive materials such as Terfenol concerns the form of materialand magnetic anisotropies. In the absence of applied stresses, cubic anisotropy models are often assumed with thesaturation magnetostriction �s de�ned in terms of the independent saturation magnetostrictions �100 and �111 inthe h100i and h111i directions, respectively. As detailed in [7], under the assumption that the material contains alarge number of domains and has no preferred grain orientation, averaging of domain e�ects yields the expression�s = 25�100 + 35�111for the total saturation magnetostriction (typical saturation values for Terfenol are �100 = 90 � 10�6 and �111 =1600� 10�6).As depicted in Figure 2b, the application of a longitudinal compressive stress to a Terfenol rod has the e�ect ofaligning the domain moments perpendicular to the rod axis. Application of a magnetic �eld in the direction of therod axis then causes domain rotations which, to �rst approximation, yield the magnetostriction� = 32 �sM2s M2 : (2)Here Ms and M denote the saturation and applied magnetic �elds, respectively. Note that this expression ignoreshigher order contributions to the magnetostriction (see [8]) and magnetostrictive hysteresis (see [12]). Issues regardingthese latter contributions in magnetostrictive actuators are currently under investigation.6



To characterize the magnetization M for typical actuator/sensor applications, it is necessary to quantify theanhysteretic magnetizationMan, the reversible magnetizationMrev and the irreversible magnetizationMirr in termsof the applied magnetic �eld and exogenous stresses. In general, the magnetization is dependent upon the crystalanisotropy of the material. If su�ciently large prestresses are applied to the material, however, stress anisotropy willdominate the crystal anisotropy.In this case, the e�ective magnetic �eld is given byHeff = H + �M +H�where �M quanti�es contributions due to the magnetic interaction between domains and H� is the �eld resultingfrom magnetoelastic domain interactions. From thermodynamic considerations, the e�ective �eld component due toan applied stress � can be shown to be H� = 32 ��0 � @�@M �Twhere � again denotes the bulk magnetostriction, �0 is the free space permeability, and the subscript T denotesconstant temperature (see [8, 12] for details). Note that with the approximation (2) for �, the e�ective �eld can beexpressed as Heff = H + �M + 92 �s��0M2s M:Under the assumption of constant domain density N , the anhysteretic magnetization is then de�ned in terms ofthe Langevin functionMan(H;�) = MsL(Heff=a)� Ms �coth�H + �M + (9�s�=2�0M2s )Ma ��� aH + �M + (9�s�=2�0M2s )M �� : (3)The constant a is theoretically given by a = NkBT=�0Ms where kBT represents the Boltzmann or thermal energy.In applications, this parameter can be determined from physical properties of the experimental hysteresis curvethrough the algorithm of [10]. We reiterate that this expression for the anhysteretic magnetization is derived underthe assumption that magnetic anisotropies dominate crystal anisotropy e�ects and is valid for applications in whichmaterials are su�ciently prestressed. For applications in which prestresses are small, the Langevin equation (3) isno longer valid since di�erent anisotropic energy is measured in di�erent directions. For that case, the contributionsof magnetic moments must be individually summed to obtain the anhysteretic magnetization.The expression (3) for the anhysteretic magnetization incorporates the rotation of domain moments but doesnot include the dissipative e�ects of domain wall motion. The inclusion of domain wall bowing yields an additionalreversible magnetization component Mrev while translation of domains and intersection with remote pinning sitescontributes an irreversible magnetization component Mirr .As detailed in [8], consideration of energy dissipation due to pinning and unpinning yields the expressiondMirrdH = Man �Mirrk��0 � ��+ 32 ��0 � @2�@M2 �T� (Man �Mirr) (4)for the di�erential susceptibility of the irreversible magnetization (the pinning constant k and sign parameter � canbe estimated from the experimental hysteresis curve). The reversible magnetization quanti�es the degree to whichdomain walls bulge before breaking loose from pinning sites, and to �rst approximation is given byMrev = c(Man �Mirr) (5)(see [9] for details concerning this derivation). The constant c is the ratio of the initial and anhysteretic di�erentialsusceptibilities. Finally, the total magnetization is given byM = Mrev +Mirr : (6)Hence for materials in which uniaxial stress anisotropies dominate the inherent crystal anisotropies, the total stress-dependent magnetization can be computed through combination of (4), (5) and (6) with the anhysteretic magneti-zation given by (3). 7



For drive levels below the saturation magnetization, a �rst approximation to the strain generated by the actuatoris provided by (2). It should be noted that this expression includes the magnetoelastic e�ects due to stress throughthe inclusion of these e�ects in the anhysteretic magnetization. As detailed in the next section, this provides amechanism for including the e�ects of prestress and elastic stresses when computing actuator inputs in structuralapplications utilizing magnetostrictive transducers.5. Thin Beam Actuator ModelTo illustrate the use of the Preisach and magnetomechanical frameworks described in the last two sections tocharacterize hysteresis in magnetostrictive materials, we consider the modeling of magnetostrictive actuators mountedto a cantilever beam as depicted in Figure 7. The actuators are considered to be mounted to the clamps at the �xededge of the beam so that mass loading from the actuators themselves is minimized. A rigid bar is used connect theend of the Terfenol rod in the transducer to the beam. By driving the transducers out-of-phase, bending momentsare generated in a manner which can be used to attenuate beam vibrations. As described by [4], this experimentalsetup has been used in initial experiments to determine the potential of magnetostrictive transducers as structuralactuators. Due to limitations in models and control laws, driving currents in the experiments were restricted to arange in which linearized results could be employed. Even in this restricted regime, the results of [4] demonstratethe utility of the magnetostrictive transducers. An advantage of magnetostrictive actuators over piezoceramics andelectrostrives in many structural applications is due to the magnitude of the forces generated by the magnetostrictives.Hence they can produce e�ective bending moments in applications where other actuators will quite often fail.For modeling purposes, we take the beam to have length `, width b and thickness h with the transverse displace-ment denoted by w. The density, Young's modulus, Kelvin-Voigt damping coe�cient and air damping coe�cient forthe beam are denoted by �b; Eb; cDb and , respectively. The cross-sectional area of the Terfenol rod is denoted byAmag while the Young's modulus for the Terfenol rod is denoted by EH . The length and width of the connectingbar are denoted by `r and br, respectively, while the bar density is given by �r .The Euler-Bernoulli equation�(x)@2w@t2 (t; x) +  @w@t (t; x) + @2Mint@x2 (t; x) = f(t; x) + @2Mmag@x2 (t; x)w(t; 0) = @w@x (t; 0) = 0Mint(t; `) = @Mint@x (t; `) = 0 9>>=>>; ; t > 0 (7)with appropriate initial conditions is used to model the beam dynamics. Exogenous surface forces to the beam aredenoted by f(t; x) while �(x) is the composite density for the structure. The internal and external bending momentsare denoted byMint andMmag , respectively.
Figure 7. Cantilever beam with magnetostrictive actuators.8



To determine appropriate functional forms for the density and internal moments, the structural contributions dueto the connecting bar and Terfenol rod must be quanti�ed. We assume here that the connecting bars are perfectlyrigid and contribute mass to the beam but do not a�ect the bending moments (we neglect air resistance to the bars).The actuator and Terfenol rod are considered to be supported from the boundary clamps so they do not contributemass to the beam. The Terfenol is assumed to contribute an elastic stress which is taken to be uniform across thecross-sectional area of the rod. Finally, it is assumed that the Terfenol rod is subjected to a prestress �0 by thespring washer (see Figure 1).Under the assumption of uniform cross-sectional strains in the magnetostrictive rods, the elastic stress in anindividual rod is approximated in terms of the elastic strain ~e by~� = EH~e� EH (h=2 + `r) @2w@x2 : (8)The density, sti�ness and Kelvin-Voigt damping parameters for the structure are then taken to be�(x) = �bhb+ 2�rbr`r�rod(x)EI(x) = Ebh3b12 + 2AmagEH (h=2 + `r)2 �rod(x)cDI = cDbh3b12 (9)where the location of the rods is delineated by the characteristic function �rod which has a value of 1 in the regioncovered by the connection bar and is 0 elsewhere. We have assumed here that material damping in the Terfenol rodis negligible; if desired, Kelvin-Voigt damping in the rod can be incorporated through an obvious modi�cation of theparameter cDI. The internal moment is then given byMint(t; x) = EI(x)@2w@x2 (t; x) + cDI @3w@x2@t (t; x) :It should be noted that the passive or internal contributions due to the connecting bars and magnetostrictiveactuator are dependent upon the exact experimental setup and di�erent assumptions and models may also be usedincorporate these contributions. In all cases, the parameters �;EI; cDI and  must be estimated through a leastsquares �t to experimental data to attain a reasonable model for the speci�c experimental device. While the valuesdetermined by (9) can be used as initial values for optimization routines, they cannot be used with certainty whenmodeling the experimental apparatus due to inaccuracies in manufacturer speci�cations, et cetera.5.1. External Moments { Domain Wall ModelWe consider here a characterization of the external momentMmag in terms of the domain wall model discussedin Section 4. To attain bidirectional strains, we will assume that an o�set DC current I0 is used to bias the inputcurrent to each actuator. Amp�ere's law then yields the magnetic �eldH(t) = n[I(t) + I0]where again, n is the number of terms per unit length in the solenoid and I(t) is the time-dependent current appliedto the solenoid. For systems in which elastic stresses are reversible, it follows from (5) and (6) that the totalstress-dependent magnetization which results from the magnetic �eld is given byM (�; t) = cMan(�; t) + (1� c)Mirr(�; t) (10)where Mirr is determined by (4). The applied stresses�(t) = �0 + ~�(t)= �0 + EH (h=2 + `r) @2w@x2 (t)9



in (10) reect both the prestress �0 and the internal elastic stress (8). The total stress for the magnetostrictivematerial in an individual actuator is then given by�tot(t) = EH [~e(t) � �(t)]where the bulk magnetostriction � generated by the magnetization (10) is given by (2). The mechanical stress~� = EH~e has already been included in the internal moment through (9). The external moment generated by thepair of Terfenol rods is then given byMmag(t; x) = 2AmagEH (h=2 + `r)2 �(t)�rod(x) :When employed in the Euler-Bernoulli equation (7), this provides a physics-based characterization of the Ter-fenol actuator inputs to the thin beam model. This characterization is fully coupled in the sense that reversiblemagnetomechanical e�ects due to stresses are included in the generating magnetization and resulting moments. Fortime-dependent elastic stresses which are su�ciently large so as to be irreversible, energy mechanisms of the typediscussed in [8] can be employed to incorporate magnetomechanical e�ects.5.2. External Moments { Preisach ModelThe Preisach approach provides a purely mathematical characterization for the generated moment through the�tting of the hysteresis and material nonlinearities in terms of the kernels described in Section 3. Speci�cally, theexternal moment generated by the magnetostrictive transducer is taken to beMmag(t; x) = 2Amag (h=2 + `r) [P�(I; �)](t)�rod(x)where [P�(I; �)](t) � ZS [ks(I; �)](t) d�(s) :The kernel ks is the extension of that de�ned in (1) to input currents I 2 C[0; T ]. For a given set of experimentaloperating conditions, the measure � must be estimated through a �t to experimental data. This then yields acharacterization of the external moment which can be utilized in actuator or controller design. It should be notedthat the advantage to this approach lies in its generality. It requires a large number of parameters, however, anddoes not directly utilize knowledge of the material physics.6. ConclusionsTwo techniques for characterizing hysteresis in magnetostrictive actuators were presented here. The �rst model,formulated in terms of Preisach kernels, provides a phenomenological characterization of hysteresis and materialnonlinearities. The advantage of this approach lies in its applicability in situations involving physical mechanismswhich are unmodeled or poorly understood. The resulting model requires the estimation of a large number ofnonphysical parameters, however, and does not provide physical insights into the material dynamics. The secondmodel is physics-based with parameters related to magnetic characteristics of the input magnetic �eld. Throughthermodynamic considerations and incorporation of magnetomechanical e�ects, the inuence of stress on actuatordynamics is directly included in this model whereas these e�ects are only indirectly included in the Preisach model.Comparison of these models for an experimental system is currently under investigation and will be reported in afuture work. AcknowledgementsThe author expresses sincere appreciation to H.T. Banks, F.T. Calkins and D.C. Jiles for input regarding themodeling techniques employed here. This research was supported in part by the National Aeronautics and SpaceAdministration under NASA Contract Number NAS1-19480 while the author was a visiting scientist at the Institutefor Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA23681. Additional support was also provided by NASA grant NAG-1-1600.10
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