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Abstract

Techniques for modeling hysteresis and material nonlinearities in magnetostrictive materials are presented. Hys-
teresis in these materials is due to both the driving magnetic field and stress relations within the material and
1s significant throughout most of the drive range of the material. Two characterizations are presented here. The
first model is posed in terms of Preisach operators and is purely phenomenological in nature. The second model is
physics-based with parameters related to measurable properties of the input magnetic field. The two approaches are
illustrated in the context of an Euler-Bernoulli beam model which incorporates magnetostrictive actuators.
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1. Introduction

New and promising control transducers are currently being designed using magnetostrictive materials. These
materials exhibit the dual properties that strains are generated in response to an applied magnetic field while
conversely, material stresses in the materials produce domain changes which yield measurable magnetic effects. In
certain rare earth materials such as Terfenol-D, these effects are sufficiently large to warrant the material’s use
as control actuators and sensors. The forces generated by magnetostrictive transducers can be of the order of
forces generated by large and more massive magnetic shakers, and are significantly larger than those produced by
electrostrictives or piezoceramics. Due to their capacity for generating large strains and forces, magnetostrictive
actuators have been employed as ultrasonic transducers, sonar projectors and actuators for controlling vibrations
in thick structures and heavy industrial machinery. To fully utilize their capabilities as either sensors or actuators,
however, the hysteresis and nonlinearities inherent to the magnetostrictive materials must be characterized in a
manner amenable to parameter estimation and control applications.

Two techniques for characterizing hysteresis in magnetostrictive materials are presented here. The first model is
formulated in terms of generalized Preisach or Krasnoselskii-Pokrovskii operators. This provides a phenomenological
or empirical characterization of the input/output relations of the magnetostrictive materials which circumvents
unmodeled or unknown physical mechanisms. The advantage of this technique lies in its generality. The model
requires the estimation of a large number of nonphysical parameters, however, and does not provide physical insights
into the material dynamics. The second model is formulated through consideration of reversible and irreversible
domain wall movements in the material. Hence it is physics-based with parameters related to magnetic characteristics
of the input magnetic field. This characterization is obtained through extension of the ferromagnetic hysteresis models
of Jiles and Atherton [8, 9, 10] to magnetostrictive actuators. The two approaches are illustrated in the context of
an Euler-Bernoulli beam model which incorporates magnetostrictive actuators.

The configuration of magnetostrictive transducers and physical properties of the magnetostrictive materials are
described in Section 2. The source and form of the nonlinearities and hysteresis are detailed to illustrate issues to
be addressed in the models. A phenomenological model based upon Preisach or Krasnoselskii-Pokrovskii operators
is discussed in Section 3 and the physics-based model is presented in Section 4. The two approaches are illustrated
in the context of an Euler-Bernoulli beam model in Section 5.
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2. Magnetostrictive Transducers

Issues which must be addressed when modeling magnetostrictive materials are illustrated in the context of the
transducer depicted in Figure 1. This transducer is typical of those currently employed in applications and contains
the basic components required for experimental use as a control actuator. Details regarding the construction and
performance of this transducer can be found in [6].

The primary components of the transducer consist of a magnetostrictive rod, a wound wire solenoid, and a
cylindrical permanent magnet. In current transducers, the magnetostrictive material is typically composed of terbium
and dysprosium alloyed with iron. A commonly employed material is Terfenol-D (Ter: terbium, fe: iron, nol: Naval
Ordinance Laboratory, D: dysprosium) which is constructed as a cylindrical rod and placed in the center of the
transducer. The sensor/actuator capabilities of the material are provided by magnetic domains which rotate in the
presence of an applied magnetic field. As depicted in Figure 2a, the domains are primarily oriented perpendicular
to the longitudinal rod in the absence of an applied field. Prestressing the rod with the spring washer serves to
increase the number of domains perpendicular to the axis (see Figure 2b) and place the material in compression.
This latter objective is necessary due to the inherent brittleness of Terfenol-D. In the presence of a magnetic filed,
the domains rotate so as to align with the field. Consequently, if the field is applied in the direction of the rod axis,
the domains rotate in the sense depicted in Figure 2c and significant strains are generated. This is termed the Joule
effect and provides the actuator capabilities of the transducer. Sensing is accomplished through the measurement
of the magnetic fields which result when mechanical stresses cause rotations of the domains (Villari effect). Details
regarding these effects can be found in [7, 14] while further discussion regarding the physics of magnetic domains is
given in Section 4.

The strains generated through an applied field are always positive since rotation of the domains from the pre-
stressed perpendicular state leads to an increase in the rod length. As indicated in Figure 3, the relationship between
the applied magnetic flux or induction B and strain e is also highly nonlinear with saturation occurring at large field
strengths. Moreover, slight hysteresis also exists between B and e at high drive levels [12] (this is not depicted in
the figure).

The generation of bidirectional strains is accomplished through either a DC current Iy applied to the solenoid
which surrounds the rod or an enclosing cylindrical permanent magnet which provides a biasing magnetic induction
Bg. A time varying current I(t) is then used to vary the induction in the rod between 0 and B,,. This provides the
capability of generating both positive and negative strains.

To model the transducer for actuator and sensor purposes, it is necessary to characterize the relationship between
the current I applied to the solenoid, the resulting magnetic field H, the associated magnetization M, and finally,
the generated strains e. Furthermore, the quantification must incorporate the contributions due to the permanent
magnet.
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Figure 1. Cross section of a typical Terfenol-D magnetostrictive transducer.



The magnetic induction and field are related by the permeability pz which is defined as

=T
(see [7] for the general relations between H, M and B). The magnetic field is due both to the solenoid and the
permanent magnet. The magnetic induction from the permanent magnet is approximated by B = puHy while
Ampere’s law yields B = unl, where n is the number of turns per unit length in the solenoid, as the approximate
magnetic induction due to the solenoid (this relation neglects edge effects, air gaps, et cetera).

For Terfenol-D, the permeability g is highly nonlinear and exhibits significant hysteresis as indicated by the in-
duction/field relations depicted in Figure 4a. To indicate the stress dependence, the permeability in magnetostrictive
applications is often denoted by p?. The hysteretic relationship between the magnetic field, magnetic induction and
material stress are then inherently manifested in the field-strain relations as shown in Figure 4b.

Furthermore, the nonlinear relationship between the applied current and resulting strains is augmented by con-
stitutive nonlinearities in the magnetostrictive materials. For example, experimental results in [3, 5] indicate that
the Young’s modulus £ for Terfenol is dependent upon the applied magnetic field which partially accounts for
the dependence of magnetic hysteresis on the material stress. Furthermore, these experiments demonstrate that
other material properties including magnetomechanical coupling coefficients are highly sensitive to operating con-
ditions such as prestress level, AC drive levels, operating frequencies and temperature. This indicates some of the
requirements for the Preisach and magnetomechanical models described in subsequent sections.
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Figure 2. Magnetic domainsin the Terfenol-D rod; (a) Orientation of domains in unstressed rod in absence of applied
magnetic field; (b) Orientation of domains in prestressed rod with no applied field; (¢) Orientation of domains in
prestressed rod when field is applied in direction of longitudinal rod axis.

Figure 3. Strain distribution e generated by an applied magnetic induction B.
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Figure 4. (a) Relationship between the magnetic field strength H and the magnetic induction B. (b) Applied
magnetic field H and resulting strain distribution e.

3. Preisach Models

A model based on Preisach or Krasnoselskii-Pokrovskii operators is discussed here. This section summarizes
material in [13], which in turn depends upon theory from [1], and the reader is referred to those references for further
details.

To motivate the general kernels, we first illustrate with a single delayed, relay operator k. This kernel is charac-
terized in terms of crossing times 7(¢) defined by

7(t) ={n € (0, 77| u(n) = s1 or u(n) = s2}
where s = (s1, s2) are points in the Preisach half plane
S = {5 € IR? |s = (s1,82),81 < 52}

and u denotes an input function. The values s1, s are threshold values for the multivalued kernel as reflected in the

definition .
A k(e 0) it ()=
[ks(uw,E)](1) =< —1 it 7(t) # 0 and u(maxr(t)) = 51
+1 it 7(t) # 0 and u(max7(t)) = sg.

A depiction of this kernel is given in Figure 5a. The starting value

-1 if  u(0) < s
[ky(u,6)](0) = { € if 51 < u(0) < s
+1 if w(0) > s

defines the initial state of the kernel in terms of the parameter & € {—1,1}.

The output remains on a branch until a threshold is reached in the monotonically increasing input u. At that
point, the output jumps to the other saturation value and remains there until the other threshold value is reached.
For example, an output response starting with a value of —1 will retain that value until u(¢) reaches s3. The output
then jumps to +1 until the threshold value of sy is reached.

The classical Preisach operators are then defined in terms of parallel collections of these single relay operators. To
this end, we let M denote the set of all finite, signed Borel measures on & and let f be a Borel measurable function
mapping § — {—1,1}. For u € C[0,T] and v € M, the Preisach operator is defined by

[Py, N](1) = / ey (o1, £(5)] (1)l (5).
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The goal in the parameter identification problem is to estimate v so that a model response “fits” experimental data
in a least squares sense.

While this provides an operator which is useful for many applications, this classical definition does not yield a
kernel, and hence operator, which is continuous with respect to either time or parameters. Specifically, as proven in
[1], the mapping in time

s [k (u, €)1(1)

and the parameter space mapping

s = [k (u, §)](2)
are discontinuous for the classical Preisach kernel k, (u,&). Continuity in time is important from a physical perspective
while continuous parameter dependence is crucial for the development of practical parameter estimation methods.

To avoid the difficulties associated with the discontinuous mappings, a Krasnoselskii-Pokrovskii kernel of the type

discussed in [1] is employed. This kernel is somewhat less general than the influence operators considered in [11] and
arises as an extension of smoothed Preisach operators. These operators differ from the previously-defined Preisach
operator in the manner through which an envelop of admissible paths is defined. In this case, an envelop is provided
by translates

rs, = r(x — 1)

rs, = (T — $2)
of a Lipschitz continuous ridge function r(x) as depicted in Figure 5b. For monotone inputs w,, € C[0, T], a monotone
output operator is defined by

o o max{{, r(um(t) — s2)} if uy, is non-decreasing
R(um, () =

min{&, r(um(t) — s1)} if uy, is non-increasing .
In terms of this operator, a kernel is defined for piecewise monotone inputs up, € C[0, 71N S ;[0,T], Si;[0,T] is
the set of piecewise linear splines with j knots in [0, 7], in the following manner. The initial value of the operator is
taken to be Rg € €. A kernel k; is then defined recursively on each subinterval by

[Fs (pm, ))T) = [R(upm, Ri-1)](2) , ¢ € [tr—1, 5] (1)

where Ry = R(tpm,Re—1)(tx) , k =1,---,j. The input and action of this kernel are illustrated in Figure 6. This
provides a definition of the kernel useful for computational algorithms in which inputs are discretized in terms of a
piecewise linear basis. This definition is readily extended to arbitrary u € C[0, T] through standard density arguments
as detailed in [11]. Details illustrating the use of this kernel for characterizing hysteresis in magnetostrictive actuators
are provided in Section 5.2.
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Figure 5. (a) Single Preisach relay operator with threshold values s1,s2. (b) Hysteresis envelop provided by the
translates 71 and ro of the ridge function r(z).
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Figure 6. (a) Piecewise monotone input. (b) Output from the Krasnoselskii-Pokrovskii kernel in response to a
plecewise monotone input.

4. Domain Wall Model

The physics-based model considered here is based upon the theory that magnetization in ferromagnetic materials
is due to the realignment of domains, which are defined as regions in which magnetic moments are always aligned,
in response to an applied magnetic field. From energy considerations, it has been established that the primary
reorientation of magnetic moments occurs within transition layers, or domain walls, between the domains. For a
material which is free from defects, bending and translation of domain walls leads to anhysteretic (hysteresis free)
behavior which is completely reversible. Most materials, however, contain defects (e.g., carbides in steel or second
phase materials such as the rare earth rich phase in Terfenol) which impede domain wall motion due to the reduction
in energy which occurs when the wall intersects the defect. At low magnetic field levels, the walls remain pinned
or close to the defect and the motion is reversible. The motion becomes irreversible at higher energy levels due to
wall intersections with remote defects or pinning sites. This leads to the hysteresis observed in ferromagnetics. It
should be noted that the presence of such domains has been verified experimentally while domain wall effects are
manifested through phenomena such as the Barkhausen discontinuities observed in magnetization curves.

The property to be quantified i1s the strain which results when the magnetostrictive material 1s subjected to an
applied magnetic field. A reasonable measure of this strain is the magnetostriction A = de which indicates the relative
change in length of the material from the ordered but unaligned state to the state in which domains are aligned.
While the magnetostriction does not quantify DC effects or the effects of domain order, it does quantify the strains
generated in a Terfenol actuator.

An important issue when modeling magnetostrictive materials such as Terfenol concerns the form of material
and magnetic anisotropies. In the absence of applied stresses, cubic anisotropy models are often assumed with the
saturation magnetostriction A; defined in terms of the independent saturation magnetostrictions Ajgp and Aj17 1n
the (100) and (111) directions, respectively. As detailed in [7], under the assumption that the material contains a
large number of domains and has no preferred grain orientation, averaging of domain effects yields the expression

2 3
As = =Ajgo + =X
s = pAL00 T pALL
for the total saturation magnetostriction (typical saturation values for Terfenol are Ajgg = 90 x 1075 and A1 =

1600 x 107°).

As depicted in Figure 2b, the application of a longitudinal compressive stress to a Terfenol rod has the effect of
aligning the domain moments perpendicular to the rod axis. Application of a magnetic field in the direction of the
rod axis then causes domain rotations which, to first approximation, yield the magnetostriction

_3 A

A= SIoa 2)

Here M and M denote the saturation and applied magnetic fields, respectively. Note that this expression ignores
higher order contributions to the magnetostriction (see [8]) and magnetostrictive hysteresis (see [12]). Issues regarding
these latter contributions in magnetostrictive actuators are currently under investigation.



To characterize the magnetization M for typical actuator/sensor applications, it is necessary to quantify the
anhysteretic magnetization M, , the reversible magnetization M,., and the irreversible magnetization M;,, in terms
of the applied magnetic field and exogenous stresses. In general, the magnetization is dependent upon the crystal
anisotropy of the material. If sufficiently large prestresses are applied to the material, however, stress anisotropy will
dominate the crystal anisotropy.

In this case, the effective magnetic field is given by

Heff:H—l—OzM—l—Hg

where aM quantifies contributions due to the magnetic interaction between domains and H, is the field resulting
from magnetoelastic domain interactions. From thermodynamic considerations, the effective field component due to

an applied stress o can be shown to be
3o [0A
Hi=—-— | ——
2 Ho 6M T

where A again denotes the bulk magnetostriction, pg is the free space permeability, and the subscript T denotes
constant temperature (see [8, 12] for details). Note that with the approximation (2) for A, the effective field can be
expressed as

9 Mo

Hesp = H M+ - .

el f + oM + 2 11y M2

Under the assumption of constant domain density N, the anhysteretic magnetization is then defined in terms of
the Langevin function

Man(Ha U) = MS‘C’(Heff/a)

e [COth (H e (9250/2%1\43)1\4) - (H ol + (9250/2%1\43)1\4)] Y

The constant a is theoretically given by ¢ = NkgT/uoM; where kgT represents the Boltzmann or thermal energy.
In applications, this parameter can be determined from physical properties of the experimental hysteresis curve
through the algorithm of [10]. We reiterate that this expression for the anhysteretic magnetization is derived under
the assumption that magnetic anisotropies dominate crystal anisotropy effects and is valid for applications in which
materials are sufficiently prestressed. For applications in which prestresses are small, the Langevin equation (3) is
no longer valid since different anisotropic energy i1s measured in different directions. For that case, the contributions
of magnetic moments must be individually summed to obtain the anhysteretic magnetization.

The expression (3) for the anhysteretic magnetization incorporates the rotation of domain moments but does
not include the dissipative effects of domain wall motion. The inclusion of domain wall bowing yields an additional
reversible magnetization component M,., while translation of domains and intersection with remote pinning sites
contributes an irreversible magnetization component M, .

As detailed in [8], consideration of energy dissipation due to pinning and unpinning yields the expression

dMirr _ Man — Mirr (4)
dH ﬁ_g_ (a+%:_u<§;4>\2)71) (Man_Mirr)

for the differential susceptibility of the irreversible magnetization (the pinning constant & and sign parameter § can
be estimated from the experimental hysteresis curve). The reversible magnetization quantifies the degree to which
domain walls bulge before breaking loose from pinning sites, and to first approximation is given by

Mrev = C(Man - Mirr) (5)

(see [9] for details concerning this derivation). The constant ¢ is the ratio of the initial and anhysteretic differential
susceptibilities. Finally, the total magnetization is given by

M= Mrev + Mirr . (6)

Hence for materials in which uniaxial stress anisotropies dominate the inherent crystal anisotropies, the total stress-
dependent magnetization can be computed through combination of (4), (5) and (6) with the anhysteretic magneti-
zation given by (3).



For drive levels below the saturation magnetization, a first approximation to the strain generated by the actuator
is provided by (2). Tt should be noted that this expression includes the magnetoelastic effects due to stress through
the inclusion of these effects in the anhysteretic magnetization. As detailed in the next section, this provides a
mechanism for including the effects of prestress and elastic stresses when computing actuator inputs in structural
applications utilizing magnetostrictive transducers.

5. Thin Beam Actuator Model

To illustrate the use of the Preisach and magnetomechanical frameworks described in the last two sections to
characterize hysteresis in magnetostrictive materials, we consider the modeling of magnetostrictive actuators mounted
to a cantilever beam as depicted in Figure 7. The actuators are considered to be mounted to the clamps at the fixed
edge of the beam so that mass loading from the actuators themselves is minimized. A rigid bar is used connect the
end of the Terfenol rod in the transducer to the beam. By driving the transducers out-of-phase, bending moments
are generated in a manner which can be used to attenuate beam vibrations. As described by [4], this experimental
setup has been used in initial experiments to determine the potential of magnetostrictive transducers as structural
actuators. Due to limitations in models and control laws; driving currents in the experiments were restricted to a
range in which linearized results could be employed. Even in this restricted regime, the results of [4] demonstrate
the utility of the magnetostrictive transducers. An advantage of magnetostrictive actuators over piezoceramics and
electrostrives in many structural applications is due to the magnitude of the forces generated by the magnetostrictives.
Hence they can produce effective bending moments in applications where other actuators will quite often fail.

For modeling purposes, we take the beam to have length ¢, width b and thickness h with the transverse displace-
ment denoted by w. The density, Young’s modulus, Kelvin-Voigt damping coefficient and air damping coefficient for
the beam are denoted by pp, Eb, ¢p, and =, respectively. The cross-sectional area of the Terfenol rod is denoted by
Amag while the Young’s modulus for the Terfenol rod is denoted by E'. The length and width of the connecting
bar are denoted by /£, and b,, respectively, while the bar density is given by p,.

The Euler-Bernoulli equation

6210 ow 82./\/12'7” _ 82-/\/lmag
P(ﬂﬁ)w(t’l‘) + 75(121‘) + W(t’l‘) = f(t,z)+ T(tal‘)
w(t,0) = 6—w(t,0) =0 (7)
ox
oM. , t>0
Mine(t, £) = ;m (t,0) =0

with appropriate initial conditions is used to model the beam dynamics. Exogenous surface forces to the beam are
denoted by f(t,#) while p(x) is the composite density for the structure. The internal and external bending moments
are denoted by M;y; and M, ., respectively.

—
2

Figure 7. Cantilever beam with magnetostrictive actuators.



To determine appropriate functional forms for the density and internal moments, the structural contributions due
to the connecting bar and Terfenol rod must be quantified. We assume here that the connecting bars are perfectly
rigid and contribute mass to the beam but do not affect the bending moments (we neglect air resistance to the bars).
The actuator and Terfenol rod are considered to be supported from the boundary clamps so they do not contribute
mass to the beam. The Terfenol is assumed to contribute an elastic stress which is taken to be uniform across the
cross-sectional area of the rod. Finally, it is assumed that the Terfenol rod is subjected to a prestress oy by the
spring washer (see Figure 1).

Under the assumption of uniform cross-sectional strains in the magnetostrictive rods, the elastic stress in an
individual rod is approximated in terms of the elastic strain € by

& = Efé
O?w (8)
~ ER(hj2+¢,) R

The density, stiffness and Kelvin-Voigt damping parameters for the structure are then taken to be

p(l‘) = pohb + QprTETde(l‘)

Eyh®b . ,

Ef(l‘) = D + 2AmagE (h/2 —1—&«) Xrod(l‘) (9)
h3b

ol = CDiQ

where the location of the rods is delineated by the characteristic function x,,q which has a value of 1 in the region
covered by the connection bar and is 0 elsewhere. We have assumed here that material damping in the Terfenol rod
is negligible; if desired, Kelvin-Voigt damping in the rod can be incorporated through an obvious modification of the
parameter ¢pl. The internal moment is then given by
2 3
Mini(t, z) = El(x)g%(t, )+ ch%(t, z).

It should be noted that the passive or internal contributions due to the connecting bars and magnetostrictive
actuator are dependent upon the exact experimental setup and different assumptions and models may also be used
incorporate these contributions. In all cases, the parameters p, E1 cpl and ~ must be estimated through a least
squares fit to experimental data to attain a reasonable model for the specific experimental device. While the values
determined by (9) can be used as initial values for optimization routines, they cannot be used with certainty when
modeling the experimental apparatus due to inaccuracies in manufacturer specifications, et cetera.

5.1. External Moments — Domain Wall Model

We consider here a characterization of the external moment M,, .4 in terms of the domain wall model discussed
in Section 4. To attain bidirectional strains, we will assume that an offset DC current [j is used to bias the input
current to each actuator. Ampere’s law then yields the magnetic field

H(t) = n[I(t) + Io]

where again, n is the number of terms per unit length in the solenoid and I() is the time-dependent current applied
to the solenoid. For systems in which elastic stresses are reversible, it follows from (5) and (6) that the total
stress-dependent magnetization which results from the magnetic field is given by

M(o,t) = cMgpn(0,t) + (1 — ¢) Mypr (0,1) (10)
where Mj,, is determined by (4). The applied stresses
o(t) = oo+ (1)

32
= oo+ EH (h/2+(,) a—;‘j(t)



in (10) reflect both the prestress oy and the internal elastic stress (8). The total stress for the magnetostrictive
material in an individual actuator i1s then given by

Trot(t) = EH[é(t) = A(t)]

where the bulk magnetostriction A generated by the magnetization (10) is given by (2). The mechanical stress
& = EH¢ has already been included in the internal moment through (9). The external moment generated by the
pair of Terfenol rods is then given by

Monag(t, ) = 2Amag BT (/2 + £,)7 A1) Xroa(2) .

When employed in the Euler-Bernoulli equation (7), this provides a physics-based characterization of the Ter-
fenol actuator inputs to the thin beam model. This characterization is fully coupled in the sense that reversible
magnetomechanical effects due to stresses are included in the generating magnetization and resulting moments. For
time-dependent elastic stresses which are sufficiently large so as to be irreversible, energy mechanisms of the type
discussed in [8] can be employed to incorporate magnetomechanical effects.

5.2. External Moments — Preisach Model

The Preisach approach provides a purely mathematical characterization for the generated moment through the
fitting of the hysteresis and material nonlinearities in terms of the kernels described in Section 3. Specifically, the
external moment generated by the magnetostrictive transducer is taken to be

Minag(t, ) = 2Amag (h/2+ £:) [P (1, §)](t)Xroa ()

where

PALEN() = / o (1, £)](2) div(s)

s
The kernel k; is the extension of that defined in (1) to input currents I € C[0,7]. For a given set of experimental
operating conditions, the measure v must be estimated through a fit to experimental data. This then yields a
characterization of the external moment which can be utilized in actuator or controller design. It should be noted
that the advantage to this approach lies in its generality. It requires a large number of parameters, however, and
does not directly utilize knowledge of the material physics.

6. Conclusions

Two techniques for characterizing hysteresis in magnetostrictive actuators were presented here. The first model,
formulated in terms of Preisach kernels, provides a phenomenological characterization of hysteresis and material
nonlinearities. The advantage of this approach lies in its applicability in situations involving physical mechanisms
which are unmodeled or poorly understood. The resulting model requires the estimation of a large number of
nonphysical parameters, however, and does not provide physical insights into the material dynamics. The second
model is physics-based with parameters related to magnetic characteristics of the input magnetic field. Through
thermodynamic considerations and incorporation of magnetomechanical effects; the influence of stress on actuator
dynamics is directly included in this model whereas these effects are only indirectly included in the Preisach model.
Comparison of these models for an experimental system is currently under investigation and will be reported in a
future work.
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