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ABSTRACT

In the implementation of thermal enhanced oil recovery (TEOR) techniques, the temperature impact
on relative permeability in oil–water systems (K rw and K ro) is of special concern. Hence, developing
a fast and reliable tool to model the temperature effect on K rw and K ro is still a major challenge for
precise studying of TEOR processes. To reach the goal of this work, two promising soft-computing
algorithms, namely Group Method of Data Handling (GMDH) and Gene Expression Programming
(GEP) were employed to develop reliable and simple to use paradigms to predict the temperature
dependency of K rw and K ro. To do so, a large database encompassing wide-ranging temperatures
and fluids/rock parameters, was considered to establish these correlations. Statistical results and
graphical analyses disclosed the high degree of accuracy for the proposed correlations in emulat-
ing the experimental results. In addition, GEP correlations were found to be the most consistent
with root mean square error (RMSE) values of 0.0284 and 0.0636 for K rw and K ro, respectively. Lastly,
the performance comparison against the preexisting correlations indicated the large superiority of
the newly introduced correlations. The findings of this study can help for better understanding the
temperature dependency of K rw and K ro in TEOR.
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1. Introduction

Nowadays, energy demand is expected to rise signifi-

cantly with the increased prosperity in different sectors of

industry and with the higher and continues consumption

(Tillerson, 2008). As fossil source is still the dominant

spring of energy, there have been noticeable and sig-

nificant efforts to promote the standards techniques to

improve the outcomes from oil reservoirs (Olayiwola &

Dejam, 2019). Due to this fact, extraction of oil from

unconventional reservoirs and oil with low API grav-

ity has turned into quite important ways to compensate

the expected need in the fossil energy (Meyer, Attanasi,

& Freeman, 2007). The high amount of heavy oils and

bitumen over the worldwide raises awareness on this

supplementary source of fossil energy although the defi-

ciencies in the characteristics of associated oil such as the

high viscosity, low API gravity, and asphaltene content

(Ameli, Alashkar, & Hemmati-Sarapardeh, 2018; Green

CONTACT Shahaboddin Shamshirband Shahaboddin.Shamshirband@tdut.edu.vn

& Paul Willhite, 1998; Prats, 1982; Saboorian-Jooybari,

Dejam, & Chen, 2016). Therefore, one robust procedure

to address such extreme conditions is increasing the tem-

perature by means of steam or hot water injection, to

reduce the viscosity which represents the resistance to the

flow (Prats, 1982). These temperature-based techniques

for oil recovery are assembled beneath the umbrella of

the so-called Thermal Enhanced Oil Recovery (TEOR).

TOER includes many methods in which the main

screening application criterion is based on the viscosity

values. Accordingly, we distinguish steam-assisted grav-

ity drainage (SAGD) process that is applied for the recov-

ery of bitumen, steam flooding which is effective for the

case of heavy oil extraction and cyclic steam stimulation

(CSS) which is appropriate for extra-heavy oil (Ameli

et al., 2018). It is well known that in such techniques,

temperature has strong influence on the porous medium

flow; and hence, various mechanisms of heat transfer
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such as convection, conduction, and radiation can take

place. In fact, the increase in the in-situ reservoir temper-

ature brings significant effects in interaction of rock-fluid

which can impact the behavior of the flow (Akhlagh-

inia, Torabi, & Chan, 2013; Ashrafi, Souraki, & Torsaeter,

2012; Esmaeili, Sarma, Harding, & Maini, 2019a). It is

worth mentioning that in addition to the presence of

heat transfer mechanisms, related-multiphase phenom-

ena such as diffusion and dispersion also make their

marks in TOER. As a result, a more complicated multi-

phase flow in porous media is noticed when implement-

ing TEOR techniques. The commonly applied mathe-

matical approach to describe the flow is these cases is

the outgrowth of the Darcy flow equation to multiphase

flow (Maini, 1998) and thermal-based Darcy flow (Ameli

et al., 2018).

Relative permeability is considered a vital factor that

is involved in the mathematical models describing the

multiphase flow in porous media, in which TEOR pro-

cesses belong (Esmaeili, Sarma,Harding, &Maini, 2019b;

Esmaeili et al., 2019a;Maini, 1998; Nait Amar et al. 2019).

Relative permeability which is commonly denoted Kr, is

recognized as the ratio of effective permeability of a fluid

at given saturation to the absolute permeability (Ahmed,

2018). Relative permeability data are a must for a large

variety of fluid flow calculations related to TEOR. As a

matter of fact, modeling and simulation tasks, which are

the means to forecast and predict the performances that

can be achieved under different scenarios of these tech-

niques cannot be done without the specification of the

relative permeability at reservoir conditions. Hence, it

is necessary to have accurate and representative values

for this parameter to reduce the risks and uncertain-

ties in the simulation results. However, it is needed to

add that relative permeability can be affected by vari-

ous factors and parameters, among which we can cite

the absolute permeability, viscosities of water and oil

phases and saturation (Honarpour, Nagarajan, & Sam-

path, 2006). In addition, the changes made in the fluids

and rock proprieties by the temperature upsurge influ-

ence the relative permeability curves in TEOR (Casse

& Ramey Jr, 1979; Ehrlich, 1970; Honarpour et al.,

2006; Sinnokrot, 1969; Zhang, Tong, Xiong, & Zhao,

2017).

The temperature impact on relative permeability val-

ues and the shape of their curves has received consider-

able attention during last decades (Ashrafi et al., 2012;

Esmaeili et al., 2019a; Maini, 1998; Zhang et al., 2017).

Although unanimous agreement is not satisfied in this

topic, a dominant part of experimental and modeling

studies that have been published, have noticed the depen-

dency of relative permeability in oil – water systems

(Kro and Krw) on temperature (Esmaeili et al., 2019a;

Esmaeili et al., 2019b; Li et al., 2014; Schembre, Tang, &

Kovscek, 2005; Weinbrandt, Ramey Jr, & Casse, 1975).

The investigation conducted by (Weinbrandt et al., 1975)

confirmed this statement using consolidated Boise sand-

stone and mineral oil. The studies of (Schembre et al.,

2005) and (Li et al., 2014) demonstrated the effect of tem-

perature on the two-phase oil–water relative permeability

on two distinct cases. In addition, the research performed

by (Ehrlich, 1970) based on the adsorption resulted in

analytical paradigm for the temperature dependency of

oil–water relative permeability. Besides, some othermod-

els based on IFT as intermediate influencing parame-

ters were developed by (Amaefule & Handy, 1982) and

(Kumar, Torabzadeh, & Handy, 1985). To keep the work

concise, a deep overview about different studies con-

ducted in the literature to inspect the effect of tempera-

ture on relative permeability can be found in our prior

published work (Nait Amar, Noureddine, Hemmati-

Sarapardeh, & Shamshirband, 2019) and other relevant

publications (Akhlaghinia et al., 2013; Ashrafi et al., 2012;

Esmaeili et al., 2019a; Esmaeili et al., 2019b; Zhang et al.,

2017).

Experimentally, the two-phase oil – water relative per-

meability in heavy oil cases can be measured by means

of three possible techniques: low / high rate displace-

ment tests; and the steady-state co-injection method

(Maini, 1998). However, the experimental approaches

suffer from sensitive drawbacks such as the complexity

of lab preparation and realization, the long time needed

to accomplish the tests without forgetting the expensive

cost. Therefore, in recent years, addressing these issues by

establishing cheap and simple-to-usemethods to gain the

impact of temperature onKr has triggered a huge amount

of scientific inquiry. (Zhang et al., 2017), (Mosavat,

Mohsenzadeh, & Al-Wahaibi, 2016), (Torabi, Mosavat, &

Zarivnyy, 2016), and (Bennion, Thomas, Schulmeister,

& Ma, 2006) are among the well-known predictive cor-

relations that consider the temperature influence on Kr

in oil – water systems. A summary of the aforemen-

tioned correlations is given in Table 1. As it is shown

in this table, although the form straightforwardness of

the prior correlations, they suffer from lack of gener-

alization as their applicability domains are limited to

restricted ranges of temperature, rock and fluids param-

eters. In addition, it should be added that these preexist-

ing correlations have been implemented on the basis of

limited databank. In the same context, some other corre-

lations have been established by (Esmaeili, Sarma, Hard-

ing, & Maini, 2019c), but these models are not unified

with respect to the types of the rock and fluids, and

hence, each of them is applicable for specific case, such

as consolidated or unconsulated sands interacted with

light/heavy.
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Table 1. Summary of the important correlations for temperature-based oil/water relative permeability prediction. (Bennion et al., 2006),
(Mosavat et al., 2016), (Torabi et al., 2016) and (Zhang et al., 2017) are.

Model Correlations Note

(Bennion et al., 2006) 60◦C < T < 100◦C Krw = 0.021
(

1 − 0.6−Sw
0.45

)5

Kro =
(

0.6−Sw
0.45

)2.2

Krw = 0.055
(

1 − 0.85−Sw
0.7

)2.5

Kro =
(

0.85−Sw
0.7

)3

On the basis of:

• McMurray sand
• Unsteady state / steady state
• Heavy oil
• Darcy law / history match

150◦C < T < 275◦C Restrictions:
• 0.11 < Swi < 0.43
• 0.12 < Sor < 0.72
• 8000 < µo < 106cP

(Torabi et al., 2016)

Krw = 0.0466

(

0.0588
Pexp

Pstd

)−1.28676

× e
0.34443

(

2−
qexp

qstd

)

×
(

0.0025
µo

µstd

)−0.34267(
Sw − Swi

1 − Swi

)2 On the basis of:

• Berea sandstone
• Unsteady state approach
• Heavy oil and light oil
• JBN method

Kro =
(

0.0588
Pexp

Pstd

)−0.0291

× e
−0.01254

(

2−
qexp

qstd

)

×
(

1 −
Sw − Swi

1 − Swi

)2

×

⎛

⎜

⎜

⎝

1 −
(

Sw − Swi

1 − Swi

)0.1

(

0.025
µo

µstd

)−0.818
⎞

⎟

⎟

⎠

Restrictions:

• 0.092 < Swi < 0.138
• 0.463 < Sor < 0.539
• 27 < T < 45◦C
• 24.3 < µo < 400.2cP

(Mosavat et al., 2016) Krw =
(

Sw−Swi
1−Swi

)a

a = 1.32 + 0.00123
(

µo

µw

)

− 7.47 × 10−7
(

µo

µw

)2

b = 102 + 0.000298
(

µo

µw

)

− 1.38 × 10−7
(

µo

µw

)2

c = 2.22 + 0.00318
(

µo

µw

)

− 1.22 × 10−6
(

µo

µw

)2

On the basis of:

• Ottawa silica sand
• Unsteady state approach
• Heavy oil
• History match

Kro =
(

1 −
(

Sw−Swi
1−Swi

)b
)

(

1 − Sw−Swi
1−Swi

)c

Restrictions:

• 0.05 < Swi < 0.105
• 0.2 < Sor < 0.413
• 23 < T < 100◦C
• 19.5 < µo < 1860cP

(Zhang et al., 2017) Krw = K0−50C
rw

(

e1 + e2T +
e3

T
+

e4

T2

)

(

Sw − Swi

1 − Swi − Sor

)a3T+a4

e1 = 20.14
e2 = −0.053
e3 = −1638.84
e4 = 40763.24
a1 = 0.0244
a2 = 3.8848
a3 = −0.0001
a4 =0.5099
b1 = 0.0025
b2 = 0.1941
c1 = −0.1121
c2 = 0.6711

On the basis of:

• Tight sand stone
• Unsteady state approach
• Light oil
• Combination of JBN and Corey

correlation

Kro =
(

1 − Sw − c1 ln(T) − c2

1 − b1T − b2 − c1 ln(T) − c2

)a1T+a2

Restrictions:

• 0.234 < Swi < 0.482
• 0.153 < Sor < 0.324
• 25 < T < 100◦C
• 4 < µo < 48cP

On the other hand, smart computational techniques

have emerged and evolved as powerful and advanced

approaches that can resolve highly complex related-

modeling topics (Amirian, Dejam, & Chen, 2018;

Hemmati-Sarapardeh, Ghazanfari, Ayatollahi, & Masihi,

2016; Hemmati-Sarapardeh et al., 2018; Hobold & da

Silva, 2019; Nait Amar & Zeraibi, 2018; Nait Amar,

Zeraibi, & Redouane, 2018a; Nait Amar, Zeraibi, &

Redouane, 2018b; Redouane, Zeraibi, & Amar, 2018;

Shahsavar, Khanmohammadi, Karimipour, & Goodarzi,

2019; Xi, Gao, Xu, Zhao, & Li, 2018). Among the

successful examples of soft computing techniques appli-

cations, we can cite production forcasting in thermal

enhanced oil recovery (Amirian, Leung, Zanon, & Dzur-

man, 2015; Amirian, Fedutenko, Yang, Chen, & Nghiem,

2018), optimization of enhanced oil recovery techniques

(Nait Amar & Zeraibi 2019), reservoir flood control

(Chuntian & Chau, 2002), hydrology (Chau, 2017; Wu

& Chau, 2011; Yaseen, Sulaiman, Deo, & Chau, 2019),

and meteorology related topics (Ali Ghorbani, Kazem-

pour, Chau, Shamshirband, & Ghazvinei, 2018; Moazen-

zadeh, Mohammadi, Shamshirband, & Chau, 2018).
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Figure 1. General sketch of the problem.

More recently, Esmaeili et al. (Esmaeili et al., 2019b)

applied least square support vector machine (LSSVM)

to model the dependency of oil – water relative per-

meability on temperature. (Nait Amar et al., 2019) pro-

posed various intelligent paradigms as kinds of trustwor-

thy models to estimate oil – water relative permeabil-

ity in TEOR by combining radial basis function (RBF)

neural network and LSSVM with some nature-inspired

algorithms. The developed models in the two afore-

mentioned studies showed very satisfactory predictions.

The present investigation was done with the aim of

implementing explicit, user-friendly and accurate corre-

lations using group method of data handling (GMDH)

and gene expression programming (GEP) for predicting

the dependency of Kr in the two – phase oil – water

systems on temperature, so that it could be applicable

to a wider range of temperature, and fluids and rock

proprieties.

In the present work, group method of data han-

dling (GMDH) and gene expression programming (GEP)

are applied to establish reliable correlations for estimat-

ing temperature-based oil – water relative permeability

through defining five input parameters; namely the sat-

uration of water (Sw), absolute permeability (K), tem-

perature (T), oil and water viscosities (µo and µw). To

this end, a comprehensive data source of 1223 points

gathered from valid available literature and covering an

extensive range of rock and fluids parameters and tem-

perature, is utilized to establish the correlations. After

developing GEP and GMDH models, they are assessed

by means of several statistical criteria and graphical

error analyses. Lastly, to testify the reliability of the pro-

posed correlations, these ones are compared with pre-

existing correlations that model the dependency of oil

– water relative permeability on temperature. There are

some important differences between the present study

and the previously performed studies in literature: (1)

the established paradigms in this study have widespread

applicability ranges, and besides, (2) different user-

friendly explicit expressions for modeling temperature

dependency of Kro and Krw in thermal enhanced oil

recovery processes are developed. Figure 1 recaps the

sketch of the problem.

The next sections of the paper are ordered as fol-

lows. Section 2 highlights a detailed description of the

databank employed to establish the correlations. Section

3 describes the GMDH and GEP concepts. Results are

described and discussed in Section 4. Finally, Section 5

points out the main outcoming results.

2. Data description

To develop reliable correlations that can ensure the gen-

eralization and accuracy, a comprehensive and a large

databank with widespread conditions must be consid-

ered. Due to this fact, in this study, 1223 experimen-

tal data points were collected from published literature

(Akhlaghinia et al., 2013; Ashrafi et al., 2012; Ashrafi,

Souraki, & Torsaeter, 2014; Lo &Mungan, 1973; Maini &

Okazawa, 1987; Poston, Ysrael, Hossain, & Montgomery

III, 1970; Sinnokrot, Ramey Jr, &Marsden Jr, 1971; Torabi

et al., 2016; Weinbrandt et al., 1975). The collected data

cove a wide range of temperature and fluid/rock con-

ditions. Among the 1223, 648 points describe the oil

relative permeability (Kro) cases, while the remaining 575

correspond to the relative permeability of water (Krw).

The considered inputs to develop the correlations are the

following: temperature (T), water saturation (Sw), water

viscosity (µw), oil viscosity (µo) and the absolute per-

meability (K). Table 2 reports a full description of the

employed databank in this study. It should be mentioned

that these data have already been used in our previous

paper (Nait Amar et al., 2019).

To establish the correlations using GEP and GMDH,

the database was divided randomly into training data

covering 80% of the whole databank, and testing data
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Table 2. Statistical description of the input/output data.

Max Min Mean SD

Oil Relative Permeability Input Absolute permeability (mD) 95000 147 21778.9 34047.5
Temperature (°C) 200 21.10 97.75 47.31
Sw 1 0.052 0.4623 0.2010
Water viscosity (cP) 1.10 0.136 0.42 0.29
Oil viscosity (cP) 1190 0.419 88.93 224.38

Output Kro 1 0 0.3634 0.3118
Water Relative Permeability Input Absolute permeability (mD) 95000 147 23443.39 35241

Temperature (°C) 200 21.10 99.56 45.66
Sw 1 0.052 0.533 0.219
Water viscosity (cP) 1.10 0.136 0.40 0.27
Oil viscosity (cP) 1190 0.7 88.39 223.19

Output Krw 1 0 0.1096 0.2029

including the remaining 20%. The training data were

used to investigate for the best correlations, while the test-

ing data were exploited to evaluate the behavior of the

correlations with blind data.

3. Models

3.1. Groupmethod of data handling (GMDH)

GroupMethod ofDataHandling (GMDH) known also as

polynomial neural network is one of the most promising

families of artificial neural networks (ANNs) (Dargahi-

Zarandi, Hemmati-Sarapardeh, Hajirezaie, Dabir, &

Atashrouz, 2017). Beside the reliability shown by GMDH

in modeling complex systems, it ensures the advantage

of providing user-friendly polynomial formula to the

system being studied. The conception of GMDH tech-

nique consists in employingmultiple nodes which belong

to intermediate layers. The generated value by each

GMDH node is calculated based on a quadratic poly-

nomial model that includes the previous neuron. This

GMDH version corresponds to the earliest model that

was introduced by (Ivakhnenko, Krotov, & Ivakhnenko,

1970). As the earliest version of GMDH presented some

generalization lacks, a modified version, known also as

hybrid version, was proposed as an extensive version

that includes more interactions between the nodes and

variables; hence, this version ensures more flexibility for

modeling more complex systems (Rostami et al., 2019).

The GMDH hybrid version follows the below-shown

rule:

yi = a +
d

∑

i=1

d
∑

j=1

. . .

d
∑

k=1

cij...kx
n
i x

n
j . . . xnkn = 1, 2, . . . , 2m

(1)

where yi, xij...k stand for the inputs and output parameters

of the model, respectively; cij...k denote the polynomial

coefficients;m and dmean respectively, the size of layers

and the input parameters number.

Afterwards, the full-form mathematical formulation

can be done by partial polynomials with predefined

orders to combine between the nodes in previous layers;

hence, new nodal variables (i.e. O1, O2, . . . ) are cre-

ated. For the case of two neurons related with a quadratic

polynomial model, the following equation is applied:

OGMDH
i = a0 + a1xi + a2xj + a3xixj + a4x

2
i + a5x

2
j

(2)

To adjust the coefficients of the above-shown equation,

the least square method (LSM) is applied. Therefore, the

following expression is formulated:

δ2j =
Nt
∑

i=1

(yi − OGMDH
i )2 j = 1, 2, . . . ,

(

d

2

)

(3)

In which d is the variables number and Nt is the size

of the training set.

To solve this problem, this latter if transformed to a

matrix form as (Dargahi-Zarandi et al., 2017; Hemmati-

Sarapardeh & Mohagheghian, 2017):

y = ATX (4)

The LSM generates the solution of Eq. (4) as follows:

AT = yXT(XXT)−1 (5)

where y = {y1, y2, . . . , yd} and A = {a0, a1, a2, a3, a4, a5},
in which d points out the number for variables.

3.2. Gene expression programming (GEP)

Gene expression programming (GEP) is an advanced soft

computing method which was introduced by Ferreira

(Ferreira 2001). This technique is a part of the family of

evolutionary algorithms (EAs) and it applies the evolu-

tionary principles. GEP provides the advantage of gener-

ating explicit mathematical expression to the studied sys-

tems. From the conception standing point of view, GEP is

regarded an improved version of Genetic Programming
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Figure 2. An example of two-gene chromosome and its mathematical expression.

(GP) introduced by (Koza, 1992), as GEP handled the GP

issues, such as the limited regression strategies (Ferreira

2001).

As the other evolutionary algorithm, GEP processes

the searching for best expression model by employing

chromosomes that codify and reflect possible solutions.

In addition, another key element which is the Expres-

sion Tree (ET) is introduced in GEP. ET is obtained

by transforming the chromosomes into real candidates.

GEP employs genes that involve terminals and a head

containing functions. Each gene has a fixed length list

of symbols which represent kinds of operators such as

{+,×,−, /, log,
√

} and a terminal set such as {x, y, z}
(Teodorescu & Sherwood, 2008). Figure 2 shows a

chromosome having two genes and its mathematical

formula.

The GEP searching procedure is summarized in the

following steps:

(1) GEP setting parameters: it consists to define the

needed key parameters such as the size of the popu-

lation, the stopping criteria, and the length of genes.

(2) Population initialization: create randomly initial

chromosomes (different possible mathematical

expression).

(3) Evaluate the chromosomes using a fitness function.

(4) Select the fittest individuals and save them for the

next generation.

(5) Apply tournament selection to choose the individ-

uals that will be recombined to generate new off-

spring. One point and two points recombination are

available in GEP.

(6) Mutation operator:mutation plays a principal role in

GEP. It changes genomes by modifying an element

by another.

(7) Transposition and insertion of sequences some-

where in a chromosome: it consists to activate and

jump parts of the genome in the chromosome (Fer-

reira 2001).

The steps from (3) to (7) are reiterated while the

stopping criterion is not satisfied.

4. Results and discussion

4.1. Developing the correlations

As previously mentioned, after preparing the databank

and specifying the training and testing sets for both cases

Kro and Krw, the two rigorous techniques namely GEP

and GMDH were applied to establish correlations for

these two parameters with the following inputs: the sat-

uration of water (Sw), absolute permeability (K), temper-

ature (T), oil and water viscosities (µo and µw). There-

fore, the temperature dependency of oil – water relative

permeability correlations are developed with respect to
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Figure 3. A schematic structure of the proposed GMDH for predicting Krw.

Figure 4. A schematic structure of the proposed GMDH for predicting Kro.

the aforementioned inputs as follows:

Kro = f (Sw,T,µo,µw,K) (6)

Krw = f (Sw,T,µo,µw,K) (7)

In both approaches, mean square error (MSE) was

defined as the error function to be minimized during the

search process for the best correlations.MSE is defined as

follows:

MSE =
∑N

1 (Kriexp − Kripre)
2

N
(8)

in which Kr means the oil or water relative permeabil-

ity, N is the number of points and the subscript pre

and exp mean the predicted and experimental values,

correspondingly.

When implementing GEP technique, its control

parameters such as the population size, mutation prob-

ability, the included operators, etc. should be tuned to

Table 3. GEP setting parameters used in the study.

Parameters Value/setting

The number of head size 8 – 15
Chromosome 150
Gene 8 – 12
Population 300 – 500
Mutation rate 0.25
Inversion rate 0.1
Operators used +,−,×, /, EXP, X2 , INV, TANH, LOG , SQRT

improve the accuracy of the generated correlations. The

considered GEP setting parameters in this study are

stated in Table 3.

A summarized schematic of the Krw and Kro correla-

tions obtained with GMDH are presented in Figures 3

and 4, correspondingly. As it is shown in these figures,

the Krw network encompasses one input layer, one out-

put layer and three intermediate layers; while for the

case of Kro, one input layer, one output layer and two
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intermediate layers were obtained. The resulted GMDH

correlations are expressed as follows:

• Krw

Krw = 0.023971 + 0.790913 × N4

− 4.492498 × 10−7

× K − 0.00104 × T − 3.950588 × 10−6

× K × N4 − 0.000433 × T × N4

+ 4.465764 × 10−9

× T × K + 0.610576 × N2
4 + 2.816213

× 10−11 × K2 + 1.4329 × 10−5 × T2

+ 5.142623 × 10−9 × T × K × N4

+ 0.00068 × K × N2
4

− 2.7281999 × 10−10 × K2 × N4 + 0.002079

× T × N2
4 + 2.737294 × 10−13 × T × K2

− 8.539067 × 10−6 × T2 × N4

− 1.877768 × 10−10

× T2 × K − 0.58709 × N3
4

− 3.568052 × 10−16

× K3 − 4.849053 × 10−8 × T3 (9)

• Kro

Kro = 0.728253 − 0.072037 × N2 + 3.82443 × 10−5

× K − 3.4903857 × Sw − 1.549463 × 10−5

× K × N2 + 0.100212 × Sw × N2

− 1.124351 × 10−5

× Sw × K + 0.934668 × N2
2

− 9.736863 × 10−10

× K2 + 5.4835969 × S2w − 3.342406 × 10−5

× Sw × N2 − 1.073647 × 10−5 × K × N2
2

+ 4.3652039 × 10−10 × K2 × N2

+ 2.154452 × Sw × N2
2

+ 6.461956 × 10−10 × Sw × K2

+ 0.8212563 × S2w × N2

− 3.8461259 × 10−5 × S2w × K − 0.662322

× N3
2 + 4.315276 × 10−15 × K3

− 2.820277 × S3w (10)

The resulted GMDH nodes and genomes included

in the above-obtained correlations are reported in

Appendix A.

The obtained correlations by GEP are expressed as

follows:

• Krw

Krw = −(0.02353 × Sw + 0.1717 × S2w) × K0.5

× exp(−µo) − 0.0007187 + A + B + C + D

(11)

where A, B, C and D are defined as shown-below:

A =
30.40 × S6w

exp(−µo) + ln(K) − 1

−
60.6 × S6w

1.759 × (S2w + ln(K)) − 0.955
(12)

B = −
3.713 × S4w

1.126 × (S2w + µ2
w) − 8.898

−
7.349 × S4w

45.04 × (µo + tanh(µo)) − 362.7
(13)

C = −
2.123 × 10−5 × S2w × T2

2 × µo + ln(K) − 17.43

−
1.011 × 10−3 × S4w × µ2

o

4.612 × (µo + µw) + 73.63
(14)

D = −
29.92 × Sw × exp(−S2w) ×

√

exp(−µo)

T
(15)

• Kro

• − For 21.10 < T ≤ 100◦C

Kro = 0.05447

(

Sw × T × µo

K

)

(0.12071 × T − 1)

+ 0.04403

(
√

K

µw

)

(

0.2376
√

µw
− 1

)

+ µo

(

0.00619 +
17.9

T − K

)

+ A1 × Sw − A2

× (Sw × T × µw) − A3 ×
(µw

T

)

+ A4 ×
(

K

Sw

)

− A5 + A6 (16)

−For 100 < T ≤ 200◦C

Kro = 0.7083 × S2w ×
(

0.003467 × T ×
√

µo − S4w
)

+ 10−6 ×
[

7834 × µ3
w − 5.963 ×

(

T2 +
√

µo

)
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Figure 5. Cross plots of the established GMDH and GEP correlations (Kro).

Figure 6. Cross plots of the established GMDH and GEP correlations (Krw).

+ A1 × (Sw × K) + A2

(

K

T

)

− A3

(

K

µw

)

+ A4 × µ
3
2
o −

A5√
Sw

]

+ A6 × µo + A7 (17)

The expressions of the terms appearing in the obtained

GEP correlation for Kro are specified in Table 4.

4.2. Performances evaluation

Graphical error analyses and statistical criteria and were

employed to assess the accuracy of the developed correla-

tions and chose the best representative ones in forecasting

the temperature – based Kro and Krw.

The root mean square error (RMSE) and coefficient

of determination (R2) and are the statistical indexes that

were used in this study. These two statistical criteria are

defined in Appendix B.

To fine-tune the above-mentioned criteria, broaden

the assessment of the established correlations and give

visual comparisons, graphical evaluation diagrams such

as cross plots, and histograms of error distribution

were considered. In the cross plots, the predicted val-

ues by the correlations are plotted versus the counterpart

Figure 7. Comparison between the established correlations: (a)
RMSE and (b) R2.
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Table 4. Expressions of the terms appearing in Kro GEP correlations.

21.10 < T ≤ 100◦C 100 < T ≤ 200◦C

A1 0.5492 × µw + 3.596 × Sw −
10−5 × T2

1.3 × µo − 10.67562
5.8 − 6.343 × Sw × √

µo

A2 0.06567 + 0.1093 × tanh(µw) − 0.001972 × Sw × T × µw +
(

Sw

K

)

× (0.467 × T + 3.869) 7422 × Sw − 4659 × tanh(Sw) − 5.8 × T

A3 0.4542 + µw(0.001875 × K + 0.007486) +
0.0003327 × K

µw

11.01 +
1.809

µw

(T − 1)

A4
1.355 × 10−5

T × µ2
w

−
6.954 × 10−6

√
µo

68.06 + 6.343 × S2w

A5 0.6238 × exp(2 × Sw) + 0.3137 ln(T + µo) + (4.421 − 0.02517 × ln(K)) × ln(K) 7.523 × (T + K) +
11.01 × µo√

Sw

A6 0.006523 ×
(√

K − µw

)

+
0.0001183 × (K − T)

µo

+ 27.8 −0.007834 +
2.722

K
+

0.3102 × Sw × µw

3.603 × µo − 30.37

A7
0.03168 + 0.009715 × µo

tanh(µw)
− 4.208 × tanh(tanh(Sw))

+0.6253 × ln(Sw + µw) + 2.722 × √
µw − 1.437 × µ

1

4
o + 2.702
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Table 5. Statistical indexes of the established correlations.

Training Testing All

RMSE R2 RMSE R2 RMSE R2

Krw GMDH 0.0468 0.9711 0.0408 0.9846 0.0456 0.9738
GEP 0.0278 0.9899 0.0305 0.9918 0.0284 0.9903

Kro GMDH 0.1206 0.9221 0.1296 0.9104 0.1224 0.9197
GEP 0.0610 0.9809 0.0740 0.9737 0.0636 0.9794

Figure 8. The comparison between the predicted Kro values by the GEP model and the Kro real values: (a) training data and (b) testing
data.

experimental values. Existence of large amount of points

nearby the line Y = X indicated the high accuracy of

the model and the excellent degree of correspondence

between predictions and real data. In the histograms of

error, the distribution of errors is plotted in a bar form

and if a normal distribution is noticed nearby zero value,

the model is deemed very satisfactory.

Figures 5 and 6 display cross plots comparing between

experimental data and predictions of GEP and GMDH

correlations for Kro and Krw, respectively. As it can be

obviously seen from these figures, GMDH predictions

show large sparse for both Kro and Krw, whereas the pre-

dictions of GEP are accumulated nearly enough around

the unit slope line. According to this visual survey, it

can be said that the GEP correlations are more awe-

inspiring as sublime accommodations between their pre-

dictions and experimental results are noticed. To excavate

the integrity of the established correlations and distin-

guish the most representative one, Table 5 and bar plots

of Figure 7 report statistical and graphical error analy-

ses through the considered assessment criteria, namely

RMSE and R2, for the established correlations. With
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Figure 9. The comparison between the predicted Krw values by the GEPmodel and the Krw real values: (a) training data and (b) testing
data.

Figure 10. Histogram plot for the datasets applied in establishing GEP correlation for Kro: (a) train and (b) test.
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Figure 11. Histogram plot for the datasets applied in establishing GEP correlation for Krw: (a) train and (b) test.

accordance to the demonstrated results in Table 5 and

Figure 7, it can be concluded that GEP correlations esti-

mate better Krw and Kro compared to GMDH correla-

tions. The temperature-based oil – water relative perme-

ability correlations established using GEP exhibit overall

RMSE values of 0.0284 and 0.0636 for Krw and Krw,

respectively, and correlation coefficients that exceed 0.97

for the both cases. Therefore, the developed GEP correla-

tions were considered for further investigation in the rest

of paper.

To depict effectiveness and reliability of the GEP cor-

relations regarded to the generated results, the compar-

ison between predicted relative permeability from the

implemented correlations and their counterpart real val-

ues versus corresponding indexes of data samples were

demonstrated in Figure 8 for Kro and in Figure 9 for Krw.

As these figures illustrate, the gained results from the

GEP correlations are as close as possible to actual values

of Krw and Kro during the training and testing phases.

For a better understanding of the GEP correlations

integrity in estimating the temperature – based Kro and

Krw, Figures 10 and 11 demonstrate histograms of errors

between the actual and estimated values for Kro andKrw,

respectively. These figures include error histograms for

training and testing phases in the two cases, Kro andKrw.

Table 6. Statistical parameters of various models for
temperature-based oil-water relative permeability.

RMSE R2

Kro Mosavat et al. 0.2982 0.8257
Zhang et al. 0.1879 0.8326
Bennion et al. 0.2665 0.6240
GEP 0.0636 0.9794

Krw Mosavat et al. 0.3105 0.7687
Zhang et al. 0.0451 0.8923
Bennion et al. 0.2425 0.2347
GEP 0.0284 0.9903

Based on the reported results in these histograms, we can

observe that the most frequent error values are nearby

zero. In addition, it can be said that the error distributions

follow the normal curve in all the subplots. The error

distributions reported in Figures 10 and 11 confirm the

high ability of the established correlations in predicting

the temperature – based Kro and Krw.

4.3. Comparison of developed GEP correlations

with literaturemodels

In the present study, the accuracy of the developed

GEP correlations was compared to various available cor-

relations in the literature, which include the effect of
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Figure 12. Comparison of experimental and predicted temperature-based oil relative permeability by Bennion et al., Mosavat et al. and
Zhang et al.

Figure 13. Comparison of experimental and predicted temperature-based water relative permeability by Bennion et al., Mosavat et al.
and Zhang et al.

temperature on Kro and Krw. These latter include (Ben-

nion et al., 2006), (Zhang et al., 2017), and (Mosavat

et al., 2016). It should be mentioned that while apply-

ing the preexisting correlations to the employed data in

this study, only the points that fall within the applica-

tion ranges were included according to each correlation.

To this end, the estimated values using the previously

mentioned correlations versus the experimental data are
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Figure 14. The obtained (a) root mean squared error and (b) coefficient of correlation while estimating temperature-based oil/water
relative permeability by GEP and available pre-existing correlations.

plotted in Figure 12 for Kro and in Figure 13 for Krw. Fig-

ures 12 and 13 demonstrate that large scatters in the Kro

and Krw data around the unit slop line were generated by

(Bennion et al., 2006) and (Mosavat et al., 2016) correla-

tions, while acceptable accumulation around the X = Y

line was noticed in the case of estimating Krw with the

(Zhang et al., 2017) correlation. This obviously indicates

that (Bennion et al., 2006) and (Mosavat et al., 2016), cor-

relations fail in forecasting the correct values of both Kro

and Krw, whereas (Zhang et al., 2017) fails particularly in

predicting Kro.

Table 6 and Figure 14 summarize the performances

of the correlations considered in this work along with

those of GEP correlations. The comparison results show

that the developed GEP correlations lead to the best per-

formances in predicting both Kro and Krw. According

to Table 6 and Figure 14, it is concluded that the devel-

oped GEP correlations outperforms largely the preexist-

ing temperature-based oil/water correlations.

4.4. Validity of the developed GEP correlations in

term of water saturation (Sw)

To testify the efficiency of the established GEP correla-

tions in predicting the curves of temperature – based Kro

and Krw as function of Sw, Figure 15 illustrates the gen-

erated Kro and Krw curves via GEP correlations, and

compare with corresponding experimental values from

two different samples included in this study. As the sub-

plots (a) and (b) of Figure 15 depict, a very satisfactory

integrity is shown by the GEP correlations to estimate the

temperature-basedKro andKrw curves as their emulated
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Figure 15. Comparison between experimental values and outputs generated via GEP correlations versus water saturation for two cases
included in this study.

results have almost identical behaviors as actual records

do. The prediction capability of the proposed GEP corre-

lations has once again been certified in Figure 15.

Finaly, it should be mentioned that the proposed cor-

relation formodeling the temperature dependency ofKro

and Krw should be utilized when the data falls within the

applicability realm, otherwise its exactness is not ensured

as precise results for certain conditions can be generated,

and imprecise results for some others. However, as previ-

ously stated, these correlations were gained by including

widespread databank, and hence, it can be applied for

several cases which have input parameters filling in the

applicability realm.

5. Conclusions

In this study, new explicit, simple-to-use and accurate

correlations were proposed to model the dependency

of relative permeability in oil – water systems on tem-

perature. Group method of data handling (GMDH) and

gene expression programming (GEP) were implemented

as promising tools to implement the correlations using

a large comprehensive databank. Several assessment cri-

teria were considered to figure out integrity and perfor-

mance of the new correlations. The main conclusions of

the study are summarized as follows:

1. GEP-based correlations were found as the most reli-

able correlations to predict the temperature depen-

dency of Kr in oil – water relative systems.

2. The newly implemented GEP correlations for pre-

dicting the temperature-based Kro and Krw exhib-

ited very satisfactory performances with overall

RMSE values of 0.0284 and 0.0636 for Krw and Kro,

respectively.

3. The developed GEP correlations were compared

with other well-known preexisting correlations;

namely those of (Zhang et al., 2017), (Bennion et al.,

2006) and (Mosavat et al., 2016). The integrity of the

proposed correlations was testified and found to be

substantially superior to all of these models.

4. By performing a trend analysis of the developedGEP

correlations in term of water saturation, the gained

curves for both Kro and Krw followed the expected

forms and logical variations in term of water

saturation.

5. The established correlations in this study can be

applied under a wide variety of conditions and also

can be improved in presence of new additional

data.

Nomenclature

Acronyms

ANNs artificial neural networks

CSS cyclic steam stimulation

GEP gene expression programming

GMDH group method of data handling

IFT interfacial tension

LSSVM least square support vector machine

MSE mean square error

RBFNN radial basis function neural network

RMSE Root mean squared error

R2 coefficient of determination

SAGD steam-assisted gravity drainage

TEOR thermal enhanced oil recovery

Variables

K absolute permeability

Kro oil relative permeability

Krw water relative permeability

Sw water saturation

T temperature

µw water viscosity

µo oil viscosity
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Subscripts

Min minimum

Max maximum
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Appendices

Appendix A. Obtained GMDH nodes and

genomes for Kro and Krw

The resulted GMDH nodes and genomes are expressed as
follows:

• Krw

N4 = −0.102767 − 1.983942 × N3 + 0.005098 × T

− 0.141932 × Sw + 0.01020 × T × N3

+ 6.158718 × Sw × N3 − 0.006264 × Sw × T

+ 3.078813 × N2
3 − 4.478272

× 10−5 × T2 + 0.931513

× S2w − 0.010119 × Sw × T × N3 + 0.0011847

× T × N2
3 − 1.530084 × 10−5 × T2 × N3

+ 0.031735 × Sw

× N2
3 + 2.267592 × 10−5 × Sw × T2 − 4.639188

× S2w × N3 + 0.003083 × S2w × T − 1.635732 × N3
3

+ 1.164436 × 10−5 × T3 − 0.7844912 × S3w

N3 = 0.176662 − 1.940022 × N2 + 1.3582468 × N1

− 0.9801913 × µw + 183.489858 × N1 × N2

+ 0.500095 × N2 × µw + 4.220132 × µw × N1

− 42.4369441 × N2
2 − 141.8141161 × N2

1 + 1.637756

× µ2
w − 235.2853497 × µw × N1 × N2

− 635.636686 × N1 × N2
2 + 545.98779 × N2

1

× N2 + 79.564658

× µw × N2
2 + 153.550115 × µw × N2

1 + 2.097266

× µ2
w × N2 − 4.2657881

× µ2
w × N1 + 225.747117

× N3
2 − 134.334663 × N3

1 − 0.891422 × µ3
w

N2 = −0.096002 − 5.9257567 × 10−6 × K − 0.000564

× µo + 1.130989 × Sw + 3.481102 × 10−9

× µo × K − 3.823397 × 10−6 × Sw × K

− 3.6069041 × 10−6 × Sw × µo

+ 2.674233 × 10−10 × K2

+ 1.561068 × 10−6 × µ2
o − 2.949632 × S2w

+ 1.131077 × 10−9 × µo × K × Sw

− 4.770877 × 10−14 × µo

× K2 + 2.038109 × 10−11 × µ2
o × K

+ 1.599609 × 10−10 × Sw × K2

− 3.171396 × 10−7 × Sw × µ2
o

− 1.538897 × 10−5 × S2w × K + 0.000121 × S2w

× µo − 2.397819 × 10−15 × K3

− 9.193278 × 10−10 × µ3
o + 2.792131 × S3w

N1 = −0.086648 − 6.263036 × 10−6 × K + 0.943031

× Sw − 2.686239 × 10−6 × Sw × K + 2.763862

× 10−10 × K2 − 2.593159 × S2w + 1.533535 × 10−10

× Sw × K2 − 1.5880239 × 10−5

× S2w × K − 2.461926 × 10−15 × K3 + 2.596955 × S3w

• Kro

N2 = −10.615467 + 3.079713 × N1 + 37.847865 × µw

+ 0.123872 × T − 10.501635 × µw × N1

− 0.038680 × T × N1 − 0.266058 × T × µw

+ 4.219898 × N2
1 − 41.718917 × µ2

w − 0.000483 × T2

+ 0.067595 × T × µw × N1 − 1.5338197 × µw

× N2
1 + 7.0341954 × µ2

w × N1 − 0.0146348 × T × N2
1

+ 0.0940588 × T × µ2
w + 0.000135 × T2 × N1

+ 0.000562 × T2 × µw − 1.465284 × N3
1 + 15.521063

× µ3
w + 5.4498556 × 10−7 × T3

N1 = 1.000296 − 9.2675342 × 10−6 × K − 0.000537

× µO + 0.091314 × Sw − 7.968958 × 10−8 × µO

× K − 1.500484 × 10−5 × Sw × K − 0.001163

× Sw + 1.466523 × 10−10 × K2

− 9.665598 × 10−7 × µ2
O

− 3.759212 × S2w − 3.849348 × 10−8 × Sw × µO

× K + 1.066838 × 10−12 × µO × K2

+ 1.416735 × 10−10

× µ2
O × K − 4.666963 × 10−11 × Sw × K2

+ 8.735882 × 10−9 × Sw × µ2
O

+ 2.5344757 × 10−5 × S2w × K

+ 0.001674 × S2w × µO − 5.754639 × 10−16

× K3 + 9.856402 × 10−10 × µ3
O + 2.665978 × S3w
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Appendix B. Statistical criteria

These two assessment criteria are defined as follows:

R2 = 1 −
∑N

i=1 (Kripred − Kriexp)
2

∑N
i=1 (Kripred − Kr)

2

RMSE =

√

√

√

√

1

N

N
∑

i=1

(Kriexp − Kripred)
2

In these equations, N corresponds to the number of data,
Kri and Kr are the phase (oil / water) relative permeability
and their corresponding averages, correspondingly; and the
subscripts pred and exp mean the predicted and experimental
values, correspondingly.
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