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Abstract

Predation driven Allee effects play an important role in the dynamics of small population, however,

such predation-driven Allee effects cannot occur for the model with type I functional response. It

generally occurs when a generalist predator targets some specific prey. However, apart from the lethal

effects of predation, there are some non-lethal effects in the presence of predator. Due to the fear of

predation, positive density dependence growth may be observed at low population density, because of

reduced foraging activities. Moreover, this non-lethal effect can be carried over generations. In the

present manuscript, we investigate the role of predation fear and its carry-over effects in prey-predator

model. First, we study the single species model in global perspective. We have shown that depending

on the birth rate, our single species model describes three types of growth dynamics, namely, strong

Allee dynamics, weak Allee dynamics and logistic dynamics. Then we consider the explicit dynamics of

predator, with type I functional response. Basic dynamical properties, as well as global stability of each

equilibria have been discussed. From our analysis, we can observe that both the fear and its carry-over

effects have significant role in the stability of the coexistence equilibrium, even if for the model with

type I functional response. The phenomenon ’paradox of enrichment’ can be observed in our model,

which cannot be observed in the classical prey-predator model with type I functional response. However,

we can see that such phenomenon can be ruled out by choosing suitable non-lethal effect parameters.

Therefore, our study shows how non-lethal effects change the dynamics of a competition model, and has

important biological insights, specially for the understanding of the dynamics of small populations.
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1. Introduction

Allee effect, is a positive density-dependence phenomena, which is defined as the positive relation-

ship between population density and per capita growth rate (pgr) at low population density (Allee, 1931;

Courchamp et al., 2008). In contrast to the logistic dynamics, Allee effects play an important role to

the extinction of small populations. There are a number of mechanisms for which Allee effects have

been observed, such as, mate limitation, cooperative defense, cooperative feeding, environmental condi-

tioning, inbreeding depression, demographic stochasticity, etc. (Courchamp et al., 2008; Stephens et al.,

1999; Kramer et al., 2009; Dennis, 1989; Lewis and Kareiva, 1993). Apart from the above mechanisms,

predator-driven Allee effects also can be observed in nature. Though, predator-driven Allee effects are
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limited as predator population declines, prey population also declines - leading to the negative density

dependence growth. It can be observed for some specific type of functional response, such as Holling

type II functional response (Courchamp et al., 2008; Gascoigne and Lipccius, 2004; Kramer and Drake,

2010). However, here we will investigate the occurrence of Allee effects for Holling type I functional

response, in the presence of non-lethal effects of predation. Due to considerable impact of Allee effects,

it seeks significant attention among theoretical ecologists in several aspects, like population ecology

(Courchamp et al., 2008; Dennis, 1989, 2002; Sasmal and Ghosh, 2017; Sasmal et al., 2017), biological

invasion (Drake, 2004; Lewis and Kareiva, 1993; Taylor and Hastings, 2005), eco-epidemiology (Deredec

and Courchamp, 2006; Kang et al., 2014; Sasmal and Chattopadhyay, 2013) etc.

Apart from the direct killing, which is widely observed in nature, many preys modify their traits

in response to the predation risk. These modified traits could be related to behavior, morphology, life

history of prey. To avoid predation, prey shows various anti-predator behaviors, e.g., habitat changes,

reduced foraging activities, vigilance, some physiological changes, etc. (Cresswell, 2011). Such effects

are known as trait-mediated indirect effect, as such effect arises from predator’s influence on prey traits,

rather than arises from prey densities. Such non-lethal predator effects could be immediate and can

influence entire prey population over entire lifetime. It can be argued that non-lethal effects are impor-

tant and are needed to consider in population ecology only when it is large compared to direct density

dependent effects. However, it may not be the case even when predation rate is high. Many authors

suggest that such indirect effects could be equivalent or more influential compared to density effects

(direct predation) (Creel and Christianson, 2008; Cresswell, 2011; Preisser and Bolnick, 2008). This

argument was supported by the experimental data from prey-predator interaction of larval dragonfly -

Anax sp. (predator) and bullfrog tadpoles - Rana catesbeiana (prey) (Peacor and Werner, 2001). Some

recent studies showed that among such anti-predator responses, fear of predation can play an important

role as direct predation effect in prey-predator models (Zanette et al., 2011; Wang et al., 2016; Sasmal,

2018). Due to the predation fear, scared prey forages less, as well as it leads to some stress-related

physiological changes, which impact reproduction success (Creel and Christianson, 2008; Schmitz et al.,

1997; Elliott et al., 2016). For example, birds flee from their nests in response to their predators sound as

an anti-predator response (Creel and Christianson, 2008; Cresswell, 2011). Though such anti-predator

response may be instantly beneficial as it increases the adult survival, however, as a long-term cost it

reduces the reproduction rate (Cresswell, 2011). Zanettee et al. (Zanette et al., 2011) experimentally

showed the 40% reduction in offspring production of prey (song sparrows - Melospiza melodia) due to

predation fear by providing predatory sound only and without direct killing. They showed that this

reduction is due to anti-predator behavior which affects the reproduction of song sparrows. Therefore,

for free living wildlife population, incorporation of non-lethal trait-mediated indirect effect by predation

fear is important. Moreover, as density declines, prey individuals are more vigilant and less foraging.

Therefore, such non-lethal effect could be a cause of Allee effects and increases the extinction risk of

small populations (Clutton-Brock et al., 1999; Mooring et al., 2004).

The ’carry-over effect’ originally started from recurrent measures of clinical experiments. However,

recently it has been used in ecological and evolutionary aspects and can be used for broad range of

situations. O’Connor et al. (O’Connor et al., 2014) proposed the following working definition for carry-

over effects: “In an ecological context, carry-over effects occur in any situation in which an individual’s

previous history and experience explains their current performance in a given situation”. In view of the

above definition, carry-over effects are not restricted to the seasonal requirement, discrete-time scale,

migration, etc. (Marshall and Morgan, 2011; O’Connor et al., 2011), which was previously considered.
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It should be considered as a more general phenomenon, which allows us to identify in broad range of

situations, like, within and across life-history stages, seasons, years etc. Under this definition, life-history

trade-offs and costs of reproduction can be viewed as special types of carry-over effects. Moreover, some

lab experiments showed that non-lethal carry-over effects have impact in long-term population dynamics

(Betini et al., 2013a,b). Carry-over effects can occur in both across multiple seasons or within a single

season (e.g., transitions between physiological states within a season). Experimental evidences of carry-

over effects within a single season and over short time periods are observed in insects (De Block and

Stoks, 2005), amphibians (Touchon et al., 2013), marine fish (Johnson, 2008), and marine invertebrates

(Marshall and Morgan, 2011), etc. Due to the above reasons, study on ecological carry-over effects has

been increasing in mathematical modeling studies (Norris, 2005; Runge and Marra, 2005; Norris and

Taylor, 2006), as well as in empirical research (Norris et al., 2004; Inger et al., 2010; Legagneux et al.,

2012; Sedinger et al., 2011). Therefore, integrating the research on carry-over effects, with potential

connection between life-history trade-offs and cost of reproduction will improve our understanding of

the factors affecting population dynamics in nature.

Betini et al. (Betini et al., 2013a) introduced an experimental model system of Drosophila to study

the sequential density dependence and carry-over effects and used a simple Ricker map with season-

specific parameters. On the other hand, Elliott et al. Elliott et al. (2017) investigated the role of

fear in relation to fitness and population density by considering a prey-predator system of Drosophila

melanogaster (prey) and mantid (predator), both in breeding and non-breeding seasons. They used the

experimental results to parameterize a bi-seasonal Ricker map and provided the evidence that indirect

effect of predator can be a cause of Allee effect, which is very important to understand the dynamics

of small population. Motivated from the above discussion, we develop and analyze continuous-time

population models to investigate the cost of predation fear and its carry-over effects in prey-predator

interaction with Holling type I functional response. The objectives of our study are to answer the

following questions: (i) How these non-lethal effects (cost of predation fear and its carry-over effects)

change the growth dynamics of prey population? (ii) How the phenomenon ’paradox of enrichment’

can be observed for our model and under which condition it can be ruled out? (iii) Role of non-lethal

effects on the stability of the coexistence equilibrium. (iv) What is the global dynamical behavior of

our proposed model? The remainder of the paper is organized as follows: In Section 2, we formulate

and analyze a single species population model with fear and its carry-over effects. We find the global

dynamical behavior of our proposed single species model, as well as we show that how growth dynamics

changes depending on the parameter values. In Section 3, we consider the explicit dynamics of predator

population, with Holling type I functional response. Basic dynamical properties, as well as global

stability of equilibria are provided in this section. Moreover, existence and stability of Hopf-bifurcation

is also provided in this section. Some numerical simulation results are shown in the Section 4. In Section

5, we discuss our results and findings and provide some potential future directions. Some detailed proofs

of our analytical findings are given in Section 6.

2. Single species model with fear and carry-over effects

First, we consider prey growth follows the logistic dynamics, which can be split into three parts,

birth, natural death, and death due to intra-prey competition. Thus in the absence of predator, a single

species population model is given by the following ODE:

dx
dt = rx− d1x− d2x

2, (2.1)
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where x is the density of prey, whose maximum birth rate is r in the absence of predation. d1 is the

natural death rate and d2 is the density dependent death rate of prey. Next, we consider a single species

(prey) population model with a generalist predator, which is at constant density y. Here, we neglect the

direct predation. We develop and analyze a single species population model with fear and carry-over

effects which is given by

dx
dt = rx︸︷︷︸

birth

1 + cx

1 + cx+ fy︸ ︷︷ ︸
fear and carry-over effect

−d1x− d2x
2 = x

[
r(1 + cx)

1 + cx+ fy
− d1 − d2x

]
︸ ︷︷ ︸

per capita growth rate

≡ xΘ(x).
(2.2)

Here c is the carry-over effect parameter due to fear, which is quantified by the parameter f . In the

Model (2.2), if f = 0 (i.e., if there is no growth-rate reduction due to predation fear), then the model

will be simply logistic dynamics (2.1). If c = 0, then model is reduced to the single species model with

only fear effect which has been studied in (Wang et al., 2011; Sasmal and Takeuchi, 2020).

Lemma 2.1. The solution of system (2.2) is uniformly ultimately bounded in R+ with

lim
t→∞

x(t) ≤ r − d1

d2
,

when r ≥ d1.

Here, System (2.2) can exhibit Allee effects depending on the parameters r, c, f , d1, d2, and when

Θ
′
(0) > 0. The Allee effect will be weak if population of (2.2) persists with Θ(0) > 0 and strong if

there exists a threshold density (Allee threshold) below which population of (2.2) goes to extinction and

above which population persists for Θ(0) < 0. Moreover, when Θ
′
(0) < 0 or any one of the parameters

f and c is zero (or both) then the system (2.2) shows logistic dynamics.

System (2.2) always has the extinction equilibrium x0 = 0. Other equilibria of the System (2.2) are

roots of the quadratic equation

Φ(x) ≡ cd2x
2 + [c(d1 − r) + d2(1 + fy)]x+ [d1 − r + d1fy] = 0. (2.3)

We rename the coefficients of the above equation as

Ω1 = c(d1 − r) + d2(1 + fy) and Ω2 = d1 − r + d1fy.

Denote the roots of the above equation by

x1,2 =
−Ω1 ±

√
∆

2cd2
,

where

∆ = Ω2
1 − 4cd2Ω2 = [c(d1 − r) + d2(1 + fy)]

2 − 4cd2 [d1 − r + d1fy] . (2.4)

Here, x1 > x2 (when both the roots are real, i.e., when ∆ > 0). Further we note that Θ(x) < 0 for

any x > 0, when r ≤ d1. Hence, x(t)→ 0 as t→∞, when r ≤ d1. No other non-negative equilibrium ex-

ists in this case, except x0 = 0, which is globally asymptotically stable. Hereafter, we assume that r > d1.

Depending on the number of roots of the quadratic equation (2.3), we have the following three cases:
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1. (2.3) has no positive solution in the following two cases:

(i) Ω1 ≥ 0 and Ω2 ≥ 0, (ii) Ω1 < 0 and ∆ < 0

2. (2.3) has unique positive solution in the following three cases:

(i) Ω2 < 0, (ii) Ω1 < 0 and Ω2 = 0, (iii) Ω1 < 0 and ∆ = 0.

3. (2.3) has two positive solutions if

Ω1 < 0,Ω2 > 0 and ∆ > 0.

Following theorem summarizes the existence and stability of all equilibria for the Model (2.2).

Theorem 2.1. [Existence and stability of equilibria for Model (2.2).]

1. The System (2.2) has only the trivial extinction equilibrium x0 = 0, if any of the following two

conditions holds:

(i) r ≤ min
{
d1(1 + fy), d1 + d2(1+fy)

c

}
(see Figure 1(a)).

(ii) r > d1 + d2(1+fy)
c and ∆ < 0 (see Figure 1(b)).

In this case the equilibrium x0 = 0 is globally asymptotically stable.

2. The System (2.2) has two non-negative equilibria, namely, the trivial extinction equilibrium x0 = 0,

and a non-trivial equilibrium, if any of the following three conditions holds:

(i) If r > d1(1 + fy), then (2.2) has unique positive equilibrium point x1. Here, x0 is always

unstable and x1 is globally asymptotically stable (see Figure 1(c)).

(ii) If r = d1(1 + fy) > d1 + d2(1+fy)
c , then (2.2) has unique positive equilibrium x3 =

c(r−d1)−d2(1+fy)
cd2

. Here also x0 is unstable and x3 is globally asymptotically stable (see Figure

1(d)).

(iii) If r > d1+d2(1+fy)
c and ∆ = 0, then (2.2) has one positive equilibrium x4 = c(r−d1)−d2(1+fy)

2cd2

of order two. Here, x0 is locally asymptotically stable and x4 is a saddle (see Figure 1(e)).

3. The System (2.2) has three non-negative equilibria, namely, the trivial extinction equilibrium x0,

and two non-trivial equilibria x1 and x2, if d1 + d2(1+fy)
c < r < d1(1 + fy) and ∆ > 0. Here, both

the equilibria x0 and x1 are locally asymptotically stable, and x2 is always unstable (see Figure

1(f)).

Where ∆ is defined in (2.4).

Note: Under conditions of Theorem (2.1) part 1(i) and 1(ii), pgr (per capita growth rate) of the

Model (2.2) is always negative, (Θ(x) < 0 for all x > 0), i.e., as a whole pgr lies below the density

axis. In this case population declines and eventually goes extinct, no matter how large the population

is, which is known as “fatal Allee effects” (figures (1(a)) and (1(b))) (Courchamp et al., 2008).

In the following lemma, we discuss the possible bifurcation points for the System (2.2).
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c
= 1.5, and ∆ = 0.06 (> 0).

Figure 1: Existence of equilibria and their stability for the Model (2.2). Green dots (•) are globally stable equilibria, red

dots (•) are unstable equilibria, yellow dots (•) are locally stable equilibria, and blue arrows (→) are the flow direction.

The fixed parameters are f = 1, c = 1, y = 1, d1 = 1, d2 = 0.25.
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Figure 2: Bifurcation diagram of our Model (2.2), with respect to the parameter r. Saddle-node bifurcation occurs at

r = 1.866 (black dot-dashed line) and transcritical bifurcation occurs at r = 2 (black dashed line). All the other parameters

are fixed at f = 1, y = 1, c = 1, d1 = 1, and d2 = 0.25.

Type of growth dynamics Parameter constraints

Weak Allee dynamics r > max
{
d1(1 + fy), d2(1+fy)2

cfy

}
Strong Allee dynamics max

{
d1 + d2(1+fy)

c , d2(1+fy)2

cfy

}
< r < d1(1 + fy) and ∆ > 0 (2.4)

Logistic dynamics r < d2(1+fy)2

cfy or c = 0 or f = 0

Table 1: Type of growth dynamics and parameter constraints for the Model (2.2).

Lemma 2.2. [Saddle-node and transcritical bifurcations.] When the Model (2.2) parameters are such

that ∆ = 0, then a saddle-node bifurcation occurs at the positive equilibrium point x4. Moreover, when

Ω2 = 0, i.e., r = d1(1 + fy), then Model (2.2) experiences a transcritical bifurcation at the positive

equilibrium x3.

The saddle-node bifurcation and transcritical bifurcation have shown in the Figure 2.

For the Model (2.2), the pgr is given by Θ(x) and Θ
′
(x) = rcfy

(1+cx+fy)2 − d2. Therefore, according

to the previous discussion, Model (2.2) may show Allee dynamics if Θ
′
(0) > 0, i.e., if r > d2(1+fy)2

cfy .

Therefore, our model (2.2) shows three types of growth dynamics, which is summarized in the Table (1).

• If r > d1(1 + fy), then the population of species is persistent in R+. Moreover, Θ(0) ≥ 0 if

r ≥ d1(1 + fy). Therefore, the Model (2.2) shows weak Allee dynamics (Figure 3(a)) if

r > max
{
d1(1 + fy),

d2(1 + fy)2

cfy

}
.

• If d1 + d2(1+fy)
c < r < d1(1 + fy) and ∆ > 0, then the population of species is persistent in

R+\[0, x2), and goes to extinction otherwise. Since Θ(0) < 0 if and only if r < d1(1 + fy). The

Model (2.2) shows strong Allee dynamics (Figure 3(b)) if the following conditions holds

max
{
d1 +

d2(1 + fy)

c
,
d2(1 + fy)2

cfy

}
< r < d1(1 + fy) and ∆ > 0.
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Here, x2 is known as Allee threshold. Population will persist if initial population density is above

x2, otherwise it goes extinction.

• Moreover, if r < d2(1+fy)2

cfy , then the System (2.2) shows logistic growth dynamics (Figure 3(c)).

Also, if f = 0 or c = 0 (or both are zero), then also equation (2.2) shows logistic growth dynamics

(Figure 3(d)).

Remark 2.1. In this section, we do not consider the predator dynamics explicitly. We only consider the

constant predator population, without predation term. However, the qualitative properties of the Model

(2.2), will be the same for constant predator population model with Holling type I functional response.

In fact, we rewrite the model as,

dx
dt = rx 1+cx

1+cx+fy − d1︸︷︷︸
constant death

x− d2x
2 − axy︸︷︷︸

type-I response

= rx 1+cx
1+cx+fy − (d1 + ay)︸ ︷︷ ︸

constant death

x− d2x
2.

In the next section, we will discuss the dynamics in the presence of predator population explicitly,

with Holling type-I functional response.

3. Predator-prey model with type - I response function

In this section, we study a prey-predator model with fear and carry-over effects with linear functional

response (Holling type-I). Thus, our two-species prey-predator model becomes,

dx
dt = rx(1+cx)

1+cx+fy − d1x− d2x
2 − axy

dy
dt = aαxy −my.

(3.1)

Here, a is the rate of predation, α is the conversion efficiency from prey biomass to predator biomass

and m is the natural death rate of predator population. In the following theorem we summarize the

basic dynamical properties of the Model (3.1).

Lemma 3.1. [Positivity and boundedness of solutions for Model (3.1).] For the System (3.1), the set

R2
+ is positively invariant. Moreover, the System (3.1) is dissipative, i.e., every solution of (3.1) is

ultimately bounded in R2
+, with the following properties

limt→∞ supx(t) ≤ r−d1
d2

limt→∞ sup
[
x(t) + 1

αy(t)
]
≤

{ r−d1
d2

if m>r−d1

(r−d1+m)2

4d2m if m≤r−d1.

The Model (3.1) always has the trivial extinction equilibrium E0 = (0, 0). Apart from this, it has the

boundary equilibrium (or prey only equilibrium) E1 =
(
r−d1
d2

, 0
)

, under the condition r > d1. Moreover,

there exists a unique interior equilibrium E∗ = (x∗, y∗) =
(
m
aα , y∗

)
where y∗ is the root of the quadratic

equation

Γ0y
2 + Γ1y + Γ2 = 0,

8
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f = 0 (or when both are zero) and dot-dashed line is

for c = 0.

Figure 3: Other parameters are fixed as y = 1, d1 = 1 and d2 = 0.25. Dashed line represent the x− axis (i.e., when PGR

is zero).
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where

Γ0 = a3α2f

Γ1 = aα [a(aα+ cm) + f(d1aα+ d2m)]

Γ2 = (aα+ cm)(d1aα+ d2m− raα).

The above equation has unique real positive root

y∗ =
−[a(aα+cm)+f(d1aα+d2m)]+

√
[a(aα+cm)−f(d1aα+d2m)]2+4a2αrf(aα+cm)

2a2αf , (3.2)

iff raα > d1aα+ d2m i.e., iff r > d1 + d2m
aα . (3.3)

Remark 3.1. When the prey and predator population coexists at E∗, the density of prey population does

not depend on any of the parameters, cost of predation fear (f) and carry over effect (c). However, the

density of predator population depends on both the parameters. We have,

∂y∗
∂f = −

(aα+cm)
[
a(aα+cm)−f(d1aα+d2m)+2aαrf−

√
[a(aα+cm)−f(d1aα+d2m)]2+4a2αrf(aα+cm)

]
2aαf2

√
[a(aα+cm)−f(d1aα+d2m)]2+4a2αrf(aα+cm)

. (3.4)

Now, it is easy to prove that the numerator of (3.4) is positive, iff r > d1 + d2m
aα , which is the existence

condition of y∗. Thus, ∂y∗
∂f < 0, i.e., at the coexistence state, as we increase the cost of fear, the density

of predator population decreases.

Similarly, we have

∂y∗
∂c = −

m
[√

[a(aα+cm)−f(d1aα+d2m)]2+4a2αrf(aα+cm)−a(aα+cm)+f(d1aα+d2m)−2aαrf
]

2a
√

[a(aα+cm)−f(d1aα+d2m)]2+4a2αrf(aα+cm)
. (3.5)

Again, it is easy to prove that the numerator of (3.5) is negative, iff r > d1 + d2m
aα , which is the existence

condition of y∗. Thus, ∂y∗
∂c > 0, i.e., at the coexistence state, as we increase the carry over effect, the

density of predator population increases.

The following theorem describes the local stability of all three equilibria.

Theorem 3.1. [Local stability of equilibria for Model (3.1).]

1. The extinction equilibrium E0 is locally asymptotically stable if r < d1, and a saddle otherwise.

2. The prey-only equilibrium E1 is locally asymptotically stable if the condition (3.3) is reversed and

a saddle when the condition (3.3) is satisfied.

3. The coexistence equilibrium E∗ is locally asymptotically stable if r < d2(aα+cm+aαfy∗)
2

a2α2cfy∗
, where y∗

is defined in (3.2).

Moreover, if d1 + d2m
aα < r < 4d2(aα+cm)

aαc , then the coexistence equilibrium E∗ is always locally

asymptotically stable.

The following theorems give the additional stability properties for the coexistence equilibrium.
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Theorem 3.2. If r < rc, then the coexistence equilibrium E∗ is always locally asymptotically stable.

Furthermore, if r > rc, then the sufficient condition for the local stability of the coexistence equilibrium

E∗ is f < fc, where rc and fc are given by

rc =
c(aα+cm)(d1aα+d2m)+

√
c(aα+cm)(d1aα+d2m)[c(aα+cm)(d1aα+d2m)+4a2α2d2]

2aαc(aα+cm) ,

fc = a2αd2[aαd2+rc(aα+cm)]
rc[aαr2c(aα+cm)−rc(aα+cm)(d1aα+d2m)−aαd2(d1aα+d2m)] .

Remark 3.2. If r < rc, then the condition (6.2) is always satisfied, i.e., when r is small (smaller than

rc), the fear parameter f has no role in the coexistence equilibrium stability. In other words, if

d1 +
d2m

aα
< r < rc,

then the equilibrium E∗ is always locally asymptotically stable. The stability of E∗ will not change if the

birth rate of prey is not large enough to support oscillations, which is similar to the result obtained by

Wang et al. (2016) with type-II response function.

If r > rc, then the condition (6.2) is satisfied if f < fc, which is the sufficient condition for the

stability of E∗, when r is large (larger than rc). In other words, if

r > max
{
d1 +

d2m

aα
, rc

}
,

then the sufficient condition for the local stability of E∗ is f < fc.

Therefore, we can see that the fear parameter has an important role on the stability of the coexistence

equilibrium, even for the type-I response function. However, the actual stability property with respect to

the fear parameter f is more complex than the above scenarios, which is discussed later through numerical

simulations.

Theorem 3.3. If r < 4d2m
aα , then the coexistence equilibrium E∗ is locally asymptotically stable. Fur-

thermore, if r > 4d2m
aα , then the sufficient condition for the local stability of E∗ is c < cr, which does not

depend on the fear parameter f , where
(
cr = 4d2aα

raα−4d2m

)
.

Remark 3.3. If r < 4d2m
aα , then the condition (6.5) is always satisfied, i.e., when r is small, the

parameter c has no role in the stability of the coexistence equilibrium. In other words, if

d1 +
d2m

aα
< r <

4d2m

aα
,

then the equilibrium E∗ is always locally asymptotically stable. The stability of E∗ will not be changed if

the birth rate of prey is not large enough to support oscillations.

If r > 4d2m
aα , then the condition (6.5) is satisfied if c < cr, which is the sufficient condition for the

stability of E∗. In other words, if

r > max
{
d1 +

d2m

aα
,

4d2m

aα

}
,

then the sufficient condition for the local stability of E∗ is c < cr (6.6).

11



From the previous two Theorems (3.2) and (3.3), we can see that when prey growth rate r is small,

the stability of the coexistence equilibrium is not affected by the cost of fear or carry over effect. For

the classical prey-predator model with Holling type I functional response, without cost of fear and carry

over effect, Hopf-bifurcation never occur (our Model (3.1) will be reduced to the classical prey-predator

model with Holling type I functional response, if we neglect the cost of fear). The result is same for

the prey-predator model with Holling type I functional response with only the cost of fear. However,

for our model with both cost of fear and carry over effect, Hopf-bifurcation occurs as we increase the

parameter r, and the phenomenon ’paradox of enrichment’ appears (McAllister et al., 1972; Riebesell,

1974; Rosenzweig, 1971; Gilpin and Rosenzweig, 1972). When birth rate of prey is large enough, prey

and predator can still go to the coexistence steady state according to preys cost of fear or carry over

effect. If either of the cost of fear and carry over effect is small enough, then it can suppress oscillations.

Therefore, by incorporating the cost of fear and carryover effect, the phenomenon ’paradox of enrich-

ment’ can occur, however, we can rule out such phenomenon by choosing suitable f or c. It is to be

noted that the carrying capacity (e.g. for logistic model) is considered as the parameter to be evaluated

in terms of enrichment (Morozov et al., 2007). In this study, the parameter r, which is the maximum

birth rate of prey, is considered as the parameter to be evaluated in terms of enrichment. Actually, if

we simplify the Model (2.1) then we will get the expression for the carrying capacity as r−d1
d2

. From

this expression, we can see that the carrying capacity increases or decreases with the parameter r, when

other parameters are fixed. Therefore, it is reasonable to assume the parameter r as the parameter to

be evaluated in terms of enrichment.

All the local stability conditions in the Theorem (3.1) are actually global conditions. In the next

theorems we will discuss about the global stability of all equilibria for Model (3.1).

Theorem 3.4. [Global stability of boundary equilibria for Model (3.1).] The equilibrium E0 is globally

asymptotically stable if r ∈ (0, d1) and E1 is globally asymptotically stable if r ∈
(
d1, d1 + d2m

aα

)
.

Theorem 3.5. [Global stability of interior equilibrium for Model (3.1).] The positive equilibrium E∗ is

globally asymptotically stable if r ∈
(
d1 + d2m

aα ,
4d2
c

)
.

Remark 3.4. From the Theorem (3.1), we can see that, as the parameter r increases the Model (3.1)

experiences two bifurcation of equilibrium and a Hopf-bifurcation at positive equilibrium (discussed later).

When 0 < r < d1, E0 is globally asymptotically stable, when r passes d1, E0 loses its stability to E1,

which becomes globally asymptotically stable in d1 < r < d1+ d2m
aα . Again, when r passes d1+ d2m

aα then E1

loses its stability to E∗, which is locally asymptotically stable in d1 + d2m
aα < r < d2(aα+cm+aαfy∗)

2

a2α2cfy∗
, where

y∗ is defined in (3.2). Moreover, when r passes through d2(aα+cm+aαfy∗)
2

a2α2cfy∗
, then E∗ loses its stability and

limit cycle oscillation occurs around E∗ through Hopf-bifurcation.

3.1. Existence of limit cycles and Hopf-bifurcation

In this subsection, we investigate the possibility of Hopf-bifurcation at the coexistence equilibrium

E∗ by considering the fear effect parameter f , as the bifurcation parameter. Similarly, we can obtain

the Hopf-bifurcation with respect to other parameters r and c.

At the Hopf-bifurcation point, the real parts of the eigenvalues of the characteristic equation (6.1)

equal to zero. We set, at f = fH the Hopf-bifurcation occurs, which gives

Ψ11(fH) = 0 and Ψ12(fH)Ψ21(fH) > 0.

12



Thus, at the Hopf-bifurcation point, we have

Ψ11(fH) = 0⇒ fH =
aαrc− 2d2(aα+ cm)±

√
aαrc [aαrc− 4d2(aα+ cm)]

2d2aαy∗
.

Moreover, if we simplify the above condition by using maple software, we can obtain that the values

of fH are the roots of the quadratic equation

C1f
2 + C2f + C3 = 0,

where

C1 = d2 [c(d1aα+ d2m)(arα− (d1aα+ d2m))− arαd2(aα+ cm)]

C2 = ac [arcα(arα− (d1aα+ d2m)) + d2(aα+ cm)(2(d1aα+ d2m)− 3arα)]

C3 = −a2cd2(aα+ cm)2.

Therefore, fH =
−C2±

√
C2

2−4C1C3

2C1
.

Further, at the Hopf-bifurcation point, we have

d(λr)

df

∣∣∣
f=fH

=
2λ2

i
d(Ψ11)
df −Ψ11

d(Ψ12Ψ21)
df

Ψ2
11 + 4λ2

i

∣∣∣
f=fH

6= 0,

which is true if
[
2λ2

i
d(Ψ11)
df −Ψ11

d(Ψ12Ψ21)
df

] ∣∣∣
f=fH

6= 0, where λr and λi are real and imaginary parts of

the eigenvalues of the characteristic equation (6.1).

The following theorem gives conditions for the existence of Hopf-bifurcation at E∗ for Model (3.1).

Theorem 3.6. [Condition for the existence of Hopf-bifurcation at interior equilibrium for Model (3.1).]

If Ψ12(fH)Ψ21(fH) > 0, and
[
2λ2

i
d(Ψ11)
df −Ψ11

d(Ψ12Ψ21)
df

] ∣∣∣
f=fH

6= 0, hold, then the interior equilibrium

E∗ of Model (3.1) is locally asymptotically stable when f < fH , and undergoes Hopf-bifurcation at E∗
when f = fH .

The following theorem gives the direction and stability of Hopf-bifurcation around the coexistence

steady state E∗.

Theorem 3.7. [Direction and stability of Hopf-bifurcation at interior equilibrium for Model (3.1).] Let

define L as

L := 3g2
vguuu [(1− guvz1) + 2z1(guvvz2w − guuvz1gv)] + 3wgvvvz2 [2w(huguvvz2 − wguuvz1) + guvhu]

+ guvvw [w(1− guvz1) + 2z2(gvguu − hugvv) + 2z2w(wguvvz1 − gvz2guuv)]

+ 2guuvz1

[
g2
v(wguuvz2 − guu)− w2(gvv + gvz1guvv)

]
+ guv(hugvv + wgvguuvz2 − gvguu).

Then the Hopf-bifurcation is supercritical if L < 0 and it is subcritical if L > 0.
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(a) Bifurcation diagram of prey w.r.t. r.

0 0.5 1 1.5 2 2.5

r

0

1

2

3

4

5

6

P
r
e
d
a
t
o
r

(b) Bifurcation diagram of predator w.r.t. r.

Figure 4: Bifurcation diagrams for Model (3.1) with respect to r. Here, r varies from 0 to 2.5, with the initial condition

[x(0), y(0)] = [0.5, 0.1]. Fixed parameter values are f = 1, c = 0.8, d1 = 0.1, d2 = 0.25, a = 0.1, α = 0.5, and m = 0.01.

4. Numerical simulations

In the Figure (4), we fix the parameters f , c, d1, d2, a , α and m (the specific values are given in the

figure) and vary the parameter r. From the figure, we can see that as we increase the parameter r, the

coexistence equilibrium becomes unstable through Hopf-bifurcation and prey-predator oscillation occurs.

This phenomenon is known as ’paradox of enrichment,’ which can not be observed in the classical prey-

predator model with Holling type I functional response (even in the presence of only fear effect (Wang

et al., 2016; Sasmal, 2018)). Here, we consider the parameter r as the enrichment parameter because,

if we simplify the Model (2.1), we will get the expression for carrying capacity as r−d1
d2

, therefore, it is

reasonable to assume r as the enrichment parameter, when other parameters are fixed.

In Theorems (3.2) and (3.3), we found the critical values of r and have shown that if r is less than

the critical values then oscillation cannot be observed for our model (3.1). The coexistence equilibrium

is always stable irrespective of the non-lethal parameters values. For oscillation, r must be greater

than some threshold value, and in that case also, oscillation can be suppressed by the non-lethal effects

parameters, which is shown in Figures (5) and (6). Theoretically, we prove that for large values of

r, if f or c is sufficiently small, then we can suppress the oscillation, however, the situation is more

complex, which is shown in these two figures. In both the Figures (5) and (6), we choose r sufficiently

large (greater than the critical values) and observed that predator-prey oscillation can occur only for

the intermediate values of f and c. Therefore, oscillation can be suppressed by both sufficiently low and

high values of the cost of fear and carry over effect parameters, and we can rule out the phenomenon

’paradox of enrichment.’ We draw phase diagrams in Figure (7), to show how we can rule out the

oscillating behavior by choosing high anti-predator response. Moreover, in Figure (8), we have shown

the Hopf-bifurcation curve for our Model (3.1), in the r − f parameter plane. From this figure, we can

see that the parameter r should be sufficiently large to show oscillatory behavior. Moreover, numerically

we have checked the direction and stability of Hopf-bifurcation and found that the Hopf-bifurcation is

only supercritical. We use Matlab 2017b software to produce all the figures ((4) to (8)) in this section.
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(b) Bifurcation diagram of predator w.r.t. f .

Figure 5: Bifurcation diagrams for Model (3.1) with respect to f . Here, f varies from 0 to 0.75, with the initial condition

[x(0), y(0)] = [0.5, 0.1]. Fixed parameter values are r = 1.5, c = 0.8, d1 = 0.1, d2 = 0.25, a = 0.1, α = 0.5, and m = 0.01.

The critical values of r and f are rc = 0.2896 (6.3) and fc = 0.0186 (6.4), respectively.
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(b) Bifurcation diagram of predator w.r.t. c.

Figure 6: Bifurcation diagrams for Model (3.1) with respect to c. Here, c varies from 0 to 35, with the initial condition

[x(0), y(0)] = [0.5, 0.1]. Fixed parameter values are r = 0.37, f = 1, d1 = 0.1, d2 = 0.25, a = 0.1, α = 0.5, and m = 0.01.

The critical values of r = 4d2m
aα

= 0.2 and c = cr = 5.8824 (6.6).

15



0 0.2 0.4 0.6 0.8 1

Prey

2.5

3

3.5

4

4.5

P
r
e
d
a
t
o
r

E
*
 = (0.2, 3.4)

(a) Stable limit cycle oscillation occur around the co-

existence equilibrium E∗, for f = 1.
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(b) Coexistence equilibrium is stable for f = 1.5.

Figure 7: Coexistence equilibrium stability for the fixed parameter values r = 2, c = 0.8, d1 = 0.1, d2 = 0.25, a = 0.1,

α = 0.5, and m = 0.01, corresponding to the Model (3.1).

Figure 8: Hopf-bifurcation curve in r−f parameter plane for the Model (3.1). Other parameter values are fixed at c = 0.8,

d1 = 0.1, d2 = 0.25, a = 0.1, α = 0.5, and m = 0.01.
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5. Discussion

One of the central topics in ecology and evolutionary biology is to understand the variety of mech-

anisms which influence the fitness and survivability of the population (Pough, 1989). In the literature,

most of the studies only concentrated on the lethal effects of predator in prey-predator interaction. How-

ever, some recent studies showed that apart from the lethal effects, there are some non-lethal effects,

whose impact is equally important as of the previous one (Preisser and Bolnick, 2008). Among such ef-

fects, fear of predation has an important role on population fitness and survivability in the prey-predator

system. Even such non-lethal effects are not restricted to affect in a single generation or in a particular

season, it can be carried-over over generations or within generation (O’Connor et al., 2014). Therefore,

in the present study, we consider both the cost of predation fear and its carry-over effects in population

model.

First, we developed and analyzed a single species (e.g., prey) population model, by incorporating

non-lethal effects of predator by considering constant predator population and without explicit preda-

tor dynamics. We incorporate the non-lethal effects in form of birth rate reduction due to the fear of

predation. Moreover, we consider that such non-lethal effects can be carried within or over generations.

We provide detailed analysis of our single species model, by neglecting direct predation, however, the

qualitative properties of the model will be the same, if we consider predation followed by the Holling

type I functional response. We derive the global dynamical properties of our proposed single species

Model (2.2). For the single species Model (2.2), our main study objective is to find the different growth

dynamics due to the cost of predation fear and its carry-over effects. More specifically, our goal is to

investigate the occurrence of Allee effects due to such non-lethal effects of predator. From our anal-

ysis, we can see that such non-lethal effects can be a cause of generating Allee effects and our model

shows three types of growth dynamics; namely, weak Allee dynamics, strong Allee dynamics and logistic

dynamics, depending on the restrictions of model parameters, which is summarized in the Table (1).

The above results not only relate the Allee effects and predation fear mechanism, but also answer the

first objective raised in the introduction section. Moreover, our system shows both saddle-node and

transcritical bifurcations depending on the parameter values.

Next, we include the explicit dynamics of predator population, where predation follows Holling type

I (Holling, 1959) functional response. We derive the basic dynamical properties of our proposed model,

existence and local stability conditions of each equilibria. Unlike the previous studies (Wang et al.,

2016; Sasmal, 2018), our mathematical and numerical results show that the cost of predation fear and

its carry-over effect, affect the prey-predator interactions in many ways, even if predation is followed by

the Holling type I functional response. If the birth rate of prey is small enough, then non-lethal effects

parameters have no effects on the system stability at coexistence equilibrium. However, if the birth rate

of prey is large enough to support oscillation, then non-lethal effects parameters have great impact on

the system stability. System can be stable if non-lethal effects parameters are less than some threshold

density, which is discussed in Theorems (3.2) and (3.3). Moreover, at the coexistence equilibrium, equi-

librium density of prey does not depend on any of the non-lethal effects parameters, however, predator

density decreases as we increase the parameter associated with cost of predation fear (f). On the other

hand, the effect of carry-over parameter (c) is opposite, i.e., predator density increases as we increase

the parameter (c), when population are at the coexistence steady state. The above discussion fulfills

the third objective given in the introduction section regarding the role of non-lethal effects on system

stability at the coexistence equilibrium.
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We provide the global stability conditions of each equilibria in Theorems (3.4) and (3.5). As we

increase the birth rate parameter (r), our Model (3.1) experiences two bifurcations of equilibrium and

a Hopf-bifurcation at positive equilibria. Existence of Hopf-bifurcation, its direction and stability at

the interior equilibrium are discussed in Theorems (3.6) and (3.7). From our analysis, we can see that

the unique coexistence equilibrium is globally asymptotically stable if the birth rate of prey is not large

enough to support the oscillation. One of the interesting result is that our model system supports oscilla-

tion, even for the Holling type I functional response, which can not be observed in classical prey-predator

model with Holling type I functional response. Even oscillation cannot be observed in the presence of

only growth rate reduction due to predation fear and with type I functional response (Wang et al.,

2016; Sasmal, 2018). Therefore, the phenomenon ’paradox of enrichment’ (Rosenzweig, 1971; Gilpin and

Rosenzweig, 1972) can be observed in our model. However, both analytical and numerical results suggest

that such phenomenon can be ruled out by choosing suitable values of cost of fear and/or carry-over

effects. This answers the second and fourth questions listed in the introduction section regarding the

global dynamical behavior and the phenomenon ’paradox of enrichment.’

In the present study, we split the logistic dynamics into birth - death to incorporate the cost of fear

only in the birth rate. However, some theoretical study showed that due to the complexity of ecosystem,

cost of fear can affect in many ways, like, it may increase the adult death rate, intra-specific competition,

etc. (Zanette et al., 2011; Clinchy et al., 2013; Cresswell, 2011). Therefore, one may consider the fear

and its carry-over effect directly to the logistic growth dynamics, when some experimental evidences

are available in future. We consider the simplest type I functional response in the presence of predator

population. However, a more complicated functional response, like, Holling type II or III functional

response can be a mechanism for generating Allee effect in prey due to their predation satiation properties

(Gascoigne and Lipccius, 2004). Moreover, two or more Allee effects can occur simultaneously in the

same population, and this is known as double or multiple Allee effects (Berec et al., 2007). Therefore,

it may be interesting to see how multiple Allee effects occur due to fear and its carry-over effects when

predator follows Holling type II or III functional response. Furthermore, it may be interesting to study

how different dynamics can be observed by considering fear and its carry-over effects for other models,

for example, Lotka-Volterra model, Beverton-Holt model etc.

6. Proofs

Proof of the Theorem (2.1)

Proof. The local stability of x0, x1 and x2 for Model (2.2) can be determined by the sign of

Υ(xi) = Θ(xi) + xΘ
′
(xi),

where Θ
′
(xi) = rcfy

(1+cxi+fy)2 − d2. Now, Υ(x0) = Θ(0) = r
1+fy − d1. Thus, the equilibrium x0 is locally

asymptotically stable if r < d1(1 + fy).

For the first part of the Theorem (2.1), Φ(x) > 0,∀x > 0, and consequently, Θ(x) < 0,∀x > 0. As

(2.2) is a scalar differential equation, x0 attracts every solution, i.e., x0 is globally asymptotically stable.

Moreover, Θ(x) can be written as

Θ(x) = − Φ(x)

1 + cx+ fy
=

(x1 − x)(x− x2)

1 + cx+ fy
.
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It is easy to obtain,

Θ
′
(x1) = − (x1−x2)

1+cx1+fy (< 0) and

Θ
′
(x2) = (x1−x2)

1+cx2+fy (> 0).

for x1 6= x2 (as x1 > x2 for the case when Φ(x) = 0 has real roots).

Thus, Υ(x1) < 0 and Υ(x2) > 0. Therefore, the equilibrium x1 is always locally asymptotically

stable when it exists, whereas the equilibrium x2 is always unstable.

For part 2(i), x0 is unstable as r > d1(1 + fy). Moreover, Θ(x) < 0, ∀x > x1 and Θ(x) > 0,

∀x < x1. As equation (2.2) is a scalar differential equation, then x1 attracts every solution in R+, i.e.,

x1 is globally asymptotically stable.

For part 2(ii), also the extinction equilibrium x0 is unstable and the positive equilibrium x3 is locally

asymptotically stable (as Θ
′
(x3) < 0). Here also we can easily show that Θ(x) < 0, ∀x > x3, and

Θ(x) > 0, ∀x < x3, and therefore x3 attracts every solution in R+.

For part 2(iii), since ∆ = 0, then Ω2 must be positive, i.e., r < d1(1+fy), which is the local stability

condition of x0. Here, Φ(x) = 0 has an identical real positive root, and Θ
′
(x4) = 0. Therefore, we can’t

apply eigenvalue approach for the local stability. However, Φ(x) > 0 for all x > 0 and x 6= x4. Therefore,

Θ(x) < 0, ∀x > 0 and x 6= x4. Therefore, x0 is locally asymptotically stable as it attracts every solution

in R+ with x < x4 and x4 is a saddle as it attracts every solution, starting at x > x4, but repels x < x4.

For the final part, both the equilibria x0 and x1 are locally asymptotically stable. Here, Θ(x) < 0,

∀x > x1 and 0 < x < x2, Θ(x) > 0, ∀x2 < x < x1. Thus the basin of attraction of the extinction

equilibrium x0 is [0, x2), and for the positive equilibrium x1 is R+\[0, x2).

Proof of the Lemma (3.1)

Proof. As dx
dt

∣∣∣
x=0

= 0 and dy
dt

∣∣∣
y=0

= 0 for any x ≥ 0 and y ≥ 0, then x = 0 and y = 0 are invariant

manifolds, respectively. Due to the uniqueness of solution the set R2
+ is positively invariant for the Model

(3.1). Moreover,
dx

dt
≤ rx(1 + cx)

1 + cx+ fy
− d1x− d2x

2 ≤ rx− d1x− d2x
2.

By the comparison theory we can prove that

lim
t→∞

supx(t) ≤ r − d1

d2
.

Define w(t) = x(t) + 1
αy(y), then

dw
dt = rx(1+cx)

1+cx+fy − d1x− d2x
2 − m

α y

< rx− d1x− d2x
2 −m(w − x)

= (r − d1 +m)x− d2x
2 −mw.

Then similar to the proof of the theorem (2.1) in (Sasmal and Takeuchi, 2020), our results follow.

19



Proof of the Theorem (3.1)

Proof. The characteristic equation at the interior equilibrium E∗ is given by

λ2 −Ψ11λ+ Ψ12Ψ21 = 0, (6.1)

whose roots will be real negative or complex conjugate with negative real parts if Ψ11 < 0, where

Ψ11 = x∗

[
rcfy∗

(1+cx∗+fy∗)2
− d2

]
Ψ12 = x∗

[
rf(1+cx∗)

(1+cx∗+fy∗)2
+ a
]

(> 0)

Ψ21 = aαy∗(> 0).

Now,

Ψ11 < 0 iff
rcfy∗

(1 + cx∗ + fy∗)2
< d2, i.e., iff r <

d2(aα+ cm+ aαfy∗)
2

a2α2cfy∗
.

Therefore, E∗ is locally asymptotically stable if r < d2(aα+cm+aαfy∗)
2

a2α2cfy∗
. The local stability of other

two equilibria are similar, and hence not discussed here.

Moreover,

rcfy∗
(1+cx∗+fy∗)2

− d2 < 0,

⇔ d2a
2α2f2y2

∗ +
[
2d2aαf(aα+ cm)− ra2α2cf

]
y∗ + d2(aα+ cm)2 > 0,

which is always true if (for any real positive y∗)[
2d2aαf(aα+ cm)− ra2α2cf

]2 − 4d2
2a

2α2f2(aα+ cm)2 < 0,

⇒ r < 4d2(aα+cm)
aαc .

Proof of the Theorem (3.2)

Proof. We have, rcfy∗
(1+cx∗+fy∗)2

− d2 < rcfy∗ − d2 and

rcfy∗ − d2 < 0,

⇔ frc
[
aαr2c(aα+ cm)− rc(aα+ cm)(d1aα+ d2m)− aαd2(d1aα+ d2m)

]
< a2αd2 [aαd2 + rc(aα+ cm)] .

(6.2)

Thus, the condition (6.2) is a sufficient condition for the local stability of E∗.

Left hand side of the inequality (6.2) will be positive if

r >
c(aα+cm)(d1aα+d2m)+

√
c(aα+cm)(d1aα+d2m)[c(aα+cm)(d1aα+d2m)+4a2α2d2]

2aαc(aα+cm) = rc. (6.3)

When r > rc, then the sufficient condition for the local stability of E∗ is

f < a2αd2[aαd2+rc(aα+cm)]
rc[aαr2c(aα+cm)−rc(aα+cm)(d1aα+d2m)−aαd2(d1aα+d2m)] = fc. (6.4)
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Proof of the Theorem (3.3)

Proof. We have,

rcfy∗
(1+cx∗+fy∗)2

− d2 < 0,

⇔ d2a
2α2f2y2

∗ +
[
2d2aαf(aα+ cm)− ra2α2cf

]
y∗ + d2(aα+ cm)2 > 0,

a sufficient condition, that the above inequality holds true for any positive real y∗, is[
2d2aαf(aα+ cm)− ra2α2cf

]2 − 4d2
2a

2α2f2(aα+ cm)2 < 0,

⇔ c (raα− 4d2m) < 4d2aα.
(6.5)

Thus, the condition r < 4d2m
aα is a sufficient condition for the local stability of E∗.

Since the left hand side of the inequality (6.5) is positive if r > 4d2m
aα , and the sufficient condition for

the local stability of E∗ is

c < 4d2aα
raα−4d2m

= cr. (6.6)

Proof of the Theorem (3.4)

Proof. The global stability of E0 in r ∈ (0, d1) follows from lemma (3.1) and Theorem (3.1). Moreover,

when r ∈
(
d1, d1 + d2m

aα

)
, there exists only two equilibria E0 and E1 in R2

+, and hence there can not be any

periodic orbit in R2
+, which implies that every solution will converge to any one of E0 and E1. However,

when r ∈
(
d1, d1 + d2m

aα

)
then E0 is a saddle (repelling) and every solution will approach to E1. Therefore,

from local stability condition, E1 exists and is globally asymptotically stable if r ∈
(
d1, d1 + d2m

aα

)
.

Proof of the Theorem (3.5)

Proof. A sufficient condition for the local stability of the positive equilibrium is r < 4d2(aα+cm)
aαc . Since,

4d2
c < 4d2(aα+cm)

aαc , from the previous Theorems (3.1) and (3.4), to show the global stability of E∗, it is

sufficient to prove that for r ∈
(
d1 + d2m

aα ,
4d2
c

)
, there is no periodic orbit in {(x, y)|x > 0, y > 0}.

By taking the Dulac function D(x, y) = 1
xy for the System (3.1), we have

div
∣∣∣
(D dx

dt ,D
dy
dt )

= ∂
∂x

(
D(x, y)dxdt (x, y)

)
+ ∂

∂y

(
D(x, y)dydt (x, y)

)
= 1

y

[
rcfy

(1+cx+fy)2 − d2

]
= 1

y(1+cx+fy)2

[
−d2f

2y2 + {rcf − 2d2f(1 + cx)}y − d2(1 + cx)2
]
.

It is easy to see that [rcf − 2d2f(1 + cx)]
2 − 4d2

2f
2(1 + cx)2 < 0 if r < 4d2

c .

Therefore, div
∣∣∣
(D dx

dt ,D
dy
dt )

< 0 in {(x, y)|x > 0, y > 0} if r < 4d2
c . Then by the Dulac-Bendixson

theorem (Perko, 2013), there is no periodic orbit in {(x, y)|x > 0, y > 0} for System (3.1) if r < 4d2
c .

Moreover, E∗ is the only stable equilibrium in {(x, y)|x > 0, y > 0} if d1 + d2m
aα < r < 4d2

c . Hence every

positive solution will tend to E∗.
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Proof of the Theorem (3.7)

Proof. To find the stability and direction of Hopf-bifurcation, we calculate the 1st Lyapunov coefficient.

Let u = x− x∗ and v = y − y∗, then the System (3.1) becomes

du
dt = r(u+x∗)(1+c(u+x∗))

1+c(u+x∗)+f(v+y∗)
− d1(u+ x∗)− d2(u+ x∗)

2 − a(u+ x∗)(v + y∗) := g(u, v)
dv
dt = aα(u+ x∗)(v + y∗)−m(v + y∗) := h(u, v).

Now, considering the Taylor’s series expansion at (u, v) = (0, 0) up to 3rd order, we have

du
dt = guu+ gvv + g1(u, v),
dv
dt = huu+ hvv + h1(u, v),

(6.7)

g1(u, v) and h1(u, v) are the higher order terms of u and v, given by

g1(u, v) = guuu
2 + guvuv + gvvv

2 + guuuu
3 + guuvu

2v + guvvuv
2 + gvvvv

3,

h1(u, v) = huuu
2 + huvuv + hvvv

2 + huuuu
3 + huuvu

2v + huvvuv
2 + hvvvv

3,

where

gu = −d2x∗ + rcfx∗y∗
(1+cx∗+fy∗)2

, gv = −
[
ax∗ + rfx∗(1+cx∗)

(1+cx∗+fy∗)2

]
, guu = −d2 − rcfy∗(−1+cx∗−fy∗)

(1+cx∗+fy∗)3
,

guv = rcfx∗(1+cx∗−fy∗)
(1+cx∗+fy∗)3

, gvv = − 2rx∗(1+cx∗)f
2

(1+cx∗+fy∗)3
, guuu = 2rc2fy∗(−2+cx∗−2fy∗)

(1+cx∗+fy∗)4
,

guuv = − rcf(−1+c2x2
∗+f

2y2∗−4cx∗fy∗)
(1+cx∗+fy∗)4

, guvv = − 2rcf2x∗(2+2cx∗−fy∗)
(1+cx∗+fy∗)4

, gvvv = 6rx∗(1+cx∗)f
3

(1+cx∗+fy∗)4
,

and

hu = aαy∗, hv = 0, huu = 0, huv = aα, hvv = 0, huuu = 0, huuv = 0, huvv = 0, hvvv = 0.

Here all the partial derivatives are calculated at the bifurcation point, i.e., (u, v) = (0, 0). Thus

system (6.7) can be written as

U̇ =

[
gu gv
hu hv

]
U + F (u),

where U = (u, v)T and F = (f1(u, v), g1(u, v))
T =

(
guuu

2 + guvuv + gvvv
2 + guuuu

3 + guuvu
2v + guvvuv

2 + gvvvv
3, huvuv

)T
.

Now, Hopf-bifurcation occurs when gu = 0, i.e., at the Hopf-bifurcation point, the eigenvalue will be

purely imaginary, which is given by iω, where ω =
√
−gvhu. Eigenvector corresponding to this eigenvalue

iω is given by v̄ = (gv, iω)
T

. Now, we define Q = (Re(v̄),−Im(v̄)) =

[
gv 0

0 iω

]
. Now, let U = QZ or

Z = Q−1U , where Z = (z1, z2)T . Therefore, under this transformation, the system is reduced to

Ż =

(
Q−1

[
gu gv
hu hv

]
Q

)
Z +Q−1F (QZ).

This can be written as [
ż1

ż2

]
=

[
0 −ω
ω 0

] [
z1

z2

]
+

[
F1(z1, z2)

F2(z1, z2)

]
,

where F1(z1, z2) and F2(z1, z2) are given by
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F1(z1, z2) = 1
gv

[
guug

2
vz

2
1 − ωguvgvz1z2 − gvhugvvz2

2 + guuug
3
vz

3
1 − ωguuvg2

vz
2
1z2 − gvhuguvvgvz1z

2
2 − gvhuωgvvvz3

2

]
F2(z1, z2) = gvhuvz1z2.

The direction of Hopf-bifurcation is determined by the sign of the 1st Lyapunov coefficient, which is

given by

L := 1
16

[
∂3F1

∂z31
+ ∂3F1

∂z1∂2z2
+ ∂3F2

∂2z1∂z2
+ ∂3F2

∂3z2

]
+ 1

16ω

[
∂2F1

∂z1∂z2

(
∂2F1

∂2z1
+ ∂2F1

∂2z2

)
− ∂2F2

∂z1∂z2

(
∂2F2

∂2z1
+ ∂2F2

∂2z2

)
− ∂2F1

∂2z1
∂2F2

∂2z1
+ ∂2F1

∂2z2
∂2F2

∂2z2

]
.

We use the maple software to simplify the expression of L, which is given as follows:

L := 3g2
vguuu [(1− guvz1) + 2z1(guvvz2w − guuvz1gv)] + 3wgvvvz2 [2w(huguvvz2 − wguuvz1) + guvhu]

+ guvvw [w(1− guvz1) + 2z2(gvguu − hugvv) + 2z2w(wguvvz1 − gvz2guuv)]

+ 2guuvz1

[
g2
v(wguuvz2 − guu)− w2(gvv + gvz1guvv)

]
+ guv(hugvv + wgvguuvz2 − gvguu).

Now by (Perko, 2013), Hopf-bifurcation is supercritical if L < 0 and it is subcritical if L > 0.

Acknowledgement

YT’s research is supported by Aoyama Gakuin University research grant “Ongoing Research Support”

and Japan Society for the Promotion of Science “Grand-in-Aid 20K03755.”

References

References

Allee, W. C., 1931. Animal Aggregations. A study in general sociology. University of Chicago Press,

Chicago.

Berec, L., Angulo, E., Courchamp, F., 2007. Multiple Allee effects and population management. Trends

in Ecology & Evolution 22 (4), 185–191.

Betini, G. S., Griswold, C. K., Norris, D. R., 2013a. Carry-over effects, sequential density dependence

and the dynamics of populations in a seasonal environment. Proceedings of the Royal Society B:

Biological Sciences 280 (1759), 20130110.

Betini, G. S., Griswold, C. K., Norris, D. R., 2013b. Density-mediated carry-over effects explain variation

in breeding output across time in a seasonal population. Biology Letters 9 (5), 20130582.

Clinchy, M., Sheriff, M. J., Zanette, L. Y., 2013. Predator-induced stress and the ecology of fear. Func-

tional Ecology 27 (1), 56–65.

Clutton-Brock, T., Gaynor, D., McIlrath, G., Maccoll, A., Kansky, R., Chadwick, P., Manser, M.,

Skinner, J., Brotherton, P., 1999. Predation, group size and mortality in a cooperative mongoose,

Suricata suricatta. Journal of Animal Ecology 68 (4), 672–683.

23



Courchamp, F., Berec, L., Gascoigne, J., 2008. Allee Effects in Ecology and Conservation. Oxford

University Press, Oxford.

Creel, S., Christianson, D., 2008. Relationships between direct predation and risk effects. Trends in

Ecology & Evolution 23 (4), 194–201.

Cresswell, W., 2011. Predation in bird populations. Journal of Ornithology 152 (1), 251–263.

De Block, M., Stoks, R., 2005. Fitness effects from egg to reproduction: bridging the life history transi-

tion. Ecology 86 (1), 185–197.

Dennis, B., 1989. Allee effects: population growth, critical density, and the chance of extinction. Natural

Resource Modelling 3, 481–538.

Dennis, B., 2002. Allee effects in stochastic populations. Oikos 96, 389–401.

Deredec, A., Courchamp, F., 2006. Combined impacts of Allee effects and parasitism. Oikos 112, 667–

679.

Drake, J., 2004. Allee effects and the risk of biological invasion. Risk Analysis 24 (4), 795–802.

Elliott, K. H., Betini, G. S., Dworkin, I., Norris, D. R., 2016. Experimental evidence for within-and

cross-seasonal effects of fear on survival and reproduction. Journal of Animal Ecology 85 (2), 507–515.

Elliott, K. H., Betini, G. S., Norris, D. R., 2017. Fear creates an Allee effect: experimental evidence from

seasonal populations. Proceedings of the Royal Society B: Biological Sciences 284 (1857), 20170878.

Gascoigne, J. C., Lipccius, R. N., 2004. Allee effect driven by predation. Journal of Applied Ecology 41,

801–810.

Gilpin, M. E., Rosenzweig, M. L., 1972. Enriched predator-prey systems: theoretical stability. Science

177 (4052), 902–904.

Holling, C., 1959. Some characteristics of simple types of predation and parasitism. Canadian Entomol-

ogist 91, 385–398.

Inger, R., Harrison, X. A., Ruxton, G. D., Newton, J., Colhoun, K., Gudmundsson, G. A., McElwaine,

G., Pickford, M., Hodgson, D., Bearhop, S., 2010. Carry-over effects reveal reproductive costs in a

long-distance migrant. Journal of Animal Ecology 79 (5), 974–982.

Johnson, D. W., 2008. Combined effects of condition and density on post-settlement survival and growth

of a marine fish. Oecologia 155 (1), 43–52.

Kang, Y., Sasmal, S. K., Bhowmick, A. R., Chattopadhyay, J., 2014. Dynamics of a predator-prey

system with prey subject to Allee effects and disease. Mathematical Biosciences and Engineering

11 (4), 877–918.

Kramer, A. M., Dennis, B., Liebhold, A. M., Drake, J. M., 2009. The evidence for Allee effects. Population

Ecology 51 (3), 341.

Kramer, A. M., Drake, J. M., 2010. Experimental demonstration of population extinction due to a

predator-driven Allee effect. Journal of Animal Ecology 79 (3), 633–639.

24
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